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Abstract. Deep learning (DL) has proven itself as a powerful tool to
capture patterns that human eyes may not be able to perceive when
looking at high-dimensional data such as radiological data (volumetric
data). For example, the classification or grading of kidney tumors in
computed tomography (CT) volumes based on distinguishable patterns
is a challenging task. Kidney tumor classification or grading is clinically
useful information for patient management and better informing treat-
ment decisions. In this paper, we propose a novel DL-based framework to
automate the classification of kidney tumors based on the International
Society of Urological Pathology (ISUP) renal tumor grading system in
CT volumes. The framework comprises several pre-processing techniques
and a three-dimensional (3D) DL-based classifier model. The classifier
model is forced to pay particular attention to the tumor regions in the
CT volumes so that it can better interpret the surface patterns of the
tumor regions to attain performance improvement. The proposed frame-
work achieves the following results on a public dataset of CT volumes of
kidney cancer: sensitivity 85%, precision 84%. Code used in this publica-
tion is freely available at: https://github.com/Balasingham-AI-Group/
Classification-Kidney-Tumor-ISUP-Grade.

Keywords: Kidney cancer · Renal cancer · Deep neural networks ·
Tumor grading · Classification · CT scan

1 Introduction

Kidney cancer (or renal cancer) is among the most commonly diagnosed visceral
malignancies, with a significant annual increase in the incidence- and mortality-
rate accounting for 431,288 new cases and 179,368 new deaths in both genders
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in 2020 [1]. Surgical removal is still the most common treatment option for local-
ized kidney tumors. Recently, several other targeted therapies for the treatment
of kidney cancer have been introduced to improve patient outcomes and avoid
surgical intervention [2,3]. Accurate grading and classification of renal cell neo-
plasia are essential to provide the optimal treatment option and play a major
role in the estimation of patient prognosis. There are several grading systems,
with Fuhrman grading being the most widely used one. Recently, there have
been doubts about the applicability and prognostic value of Fuhrman grading
[4]. In 2012, the International Society of Urological Pathology (ISUP) held a
conference to address these issues and proposed a novel grading system known
as ISUP grading classification, categorizing renal cell carcinoma (RCC) into four
grades namely grades 1, 2, 3, and 4 [5]. It has been shown that a tumor’s specific
information can be observed pre-operatively from the tumor’s appearance on
cross-sectional imaging such as computed tomography (CT) scan or magnetic
resonance imaging (MRI) [6]. Manual interpretation and quantitative evaluation
of radiological data is a laborious and noisy process. In addition, there can be
hidden information that the human brain can not perceive from this type of
data. For example, microscopic morphological changes associated with histolog-
ical patterns are crucial in establishing the ISUP grading system.

Over the last decade, several computational methods have been proposed to
automate renal cancer classification and staging [7–10]. Deep learning (DL) has
been the dominant method because of its advances in finding complex hidden
patterns from training data and transforming the input images into abstract
features. In most of the studies [7–10], renal whole-slide histology images have
been the major source of information about microscopic morphological patterns
which are associated to different RCC subtypes such as clear cell RCC, pap-
illary RCC, chromophobe RCC, renal oncocytoma, etc. In contrast, there are
several attempts to utilize radiological data for the development of automatic
kidney cancer classification [11–15] and staging [16,17]. Many DL-based mod-
els were proposed for binary classification differentiating benign and malignant
renal tumors from either CT scans [13,15] or MRI [12,14]. S. Han [11] modified
GoogleNet [16] for discriminating three major subtypes of RCCs using CT image
analysis. N. Hadjiyski et al. [16] adapted the 3D variant of the inception model
to predict cancer staging, while M. A. Hussian et al. [17] proposed an automatic
low stage (I-II) and high stage (III-IV) RCC classification both from CT scans.

In this paper, we propose a novel DL-based framework to computationally clas-
sify kidney tumors into ISUP grades from pre-operative CT scans available for
each patient. To the best of our knowledge, our work is the first study to investi-
gate DL in 3D images for renal tumor ISUP grading indicating the histopathologi-
cal patterns and associated with risk score [5,18], which is the basis of the survival
analysis. We do not intend to detect and segment the kidneys and the tumors in
CT volumes; instead, we assume that the kidneys and tumors are already local-
ized and segmented. We first extract the kidneys from a 3D CT volume using
the provided manual ground truth of kidneys. We concatenate the extracted kid-
neys and the corresponding ground truth of the tumors into a single tensor on the
channel dimension. This concatenation step aims to force the DL-based classifier
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model to pay particular attention to the surface patterns of the tumor regions.
The concatenated tensor is then fed into a three-dimensional (3D) convolutional
neural network (CNN) to classify the kidney image(s) into 4 ISUP grades in every
CT volume. We adapt EfficientNet [19] as our classifier model. More specifically,
we transform the 2D EfficientNet-B7 to its 3D variant so that it can handle 3D
volumetric data. We apply various data augmentations to overcome the class
imbalance issue and feed the training model with more samples and several pre-
processing methods to standardize the inputs and improve their quality. We show
that our proposed framework can provide promising results on unseen CT vol-
umes. This initial result can further be developed into a prognosis model, survival
analysis, and treatment management plan.

2 Related Work

Recent studies have focused on the automated grading of clear cell renal cancer
carcinoma (ccRCC). Some of them employed histopathology images, while others
used CT or MRI for this prediction.

For histopathology images, Tian et al. [20], and Yeh et al. [21] employed
Fuhrman’s grading system to identify ccRCC as low or high grade. In both
studies, the authors, in collaboration with pathologists, examined whole-slide
images, identified regions of interest (ROIs), and assigned a grade to each ROI.
Then, features of histopathology images were retrieved from ROIs for the model
training. Tian et al. tried to find an optimal way between a neural net, random
forest, and support vector machine for the model training, while Yeh et al. tried
to use a support vector machine to train the classifier model. Both Tian et al.
and Yeh et al. could get high sensitivity, specificity, and AUC for their models,
and they recommended predicting ISUP grades in future work.

For radiological imaging, Sun et al. [22] developed the support vector
machine-based method to determine the ISUP grade of kidney cancer with clear
cells. In this research, CT images were divided into two categories: low and
high grade. Resampling and a Gaussian filter were utilized for denoising at the
preprocessing level. Then, the greatest cross-section picked by radiologists was
utilized as the ROI. Sun et al. used a feature extraction mechanism to generate
three distinct predictive models, each of which was based on a distinct selec-
tion of features. The AUC for the third model was the highest at 0.91. Another
research study led by Cui [23] graded ccRCC using CT and MR based on the
decision tree. Normalization and pixel resampling were utilized for preprocessing
level in this research. The classification was determined by low and high ISUP
grades. The RoI was determined based on the tumor-containing slices. Cui et
al. next attempted to extract the texture of the slices and create features from
them; they employed a decision tree to predict a low or high ISUP grade and
attempted to test the model using ACC. For Cui et al. model, an ACC greater
than 0.70 was achievable. In a different study, Zhao et al. [24] classified MRI
images based on ISUP and Fuhrman grading as low or high grade using CNN.
This study was a binary classification: low and high grade. Data augmentation
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was utilized prior to the model training. The model with the highest AUC was
selected as the ultimate model. The model was developed using ResNet50 and
2D CNN. Zhao et al. combined t1 and t2 sequences for the model and included
clinical variables such as age, gender, and tumor size in the network design. For
low and high ISUP classification, they could gain 0.92 in sensitivity and 0.78
in specificity. These studies [22–24] agree that CT texture analysis can predict
ccRCC pathologic nuclear grade noninvasively.

Multiple factors make our methodology superior to that of previous research
studies. First, it is based on CT images, which is a non-invasive method; second,
it uses deep learning and does not require feature extraction; third, it uses 3D
images and 3D models for predicting, so we do not lose any information by
changing it to a 2D based model; fourth, we attempted to have four output
classifications rather than a binary classification; and finally, we do not employ
clinical data in addition to the CT images, therefore our prediction is solely
based on the CT scans and does not require any further information.

3 Methods and Materials

Figure 1 illustrates our proposed DL-based framework developed for kidney
tumor grading classification based on the ISUP grading system. Every step will
be explained in detail in the following sections.
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Fig. 1. Overview of the framework proposed for kidney image classification based on
the ISUP grading system. We separate the left and right kidneys from the whole image
slices during image preparation. We enlarge the number of samples in the training
dataset by applying various forms of data augmentation strategies. We enhance the
data quality by improving image quality, resizing, and re-orienting the volumes in the
image pre-processing phase. To force the model to focus on the tumor surface patterns,
we concatenate the image and manual segmentation of the tumors, and finally, we train
the classification model with concatenated volumes. The model produces probability
values for the four different ISUP grades as the output decision.

3.1 Classifier Architecture

The state-of-the-art convolutional neural network (CNN)architecture for image
classification is called Efficient-Net [19]. In a quick but efficient way, Efficient-
Net scales up models using the compound coefficient method. The authors of
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EfficientNet proposed seven models of various dimensions, which exceeded the
state-of-the-art accuracy of most CNNs and had a far higher degree of efficiency.
The largest Efficient-Net model, Efficient-Net B7, obtained the best performance
on the ImageNet and the CIFAR-100 datasets. The number of parameters in
Efficient-Net B7 is higher than the other variants (e.g., B0, B1, B2, B3, B4, B5,
and B6). In this study, we adapt the exact structure of Efficient-Net B7 and
transform it to a three dimensional (3D) CNN model so that it can handle 3D
image data such as CT volumes.

3.2 Dataset

In this paper, we use KiTS21 dataset [25] for training and testing our proposed
method. This dataset consists of 300 different patients, each with clinical data
and a CT scan with manually annotated kidneys and tumors (ground-truth
labels). Patients receiving a partial or complete nephrectomy for suspected kid-
ney cancer between 2010 and 2020 at either the M Health Fairview or Cleve-
land Clinic medical facility have been included in this dataset. Before surgery,
all patients underwent a contrast-enhanced CT scan showing both kidneys. The
primary purpose of gathering this dataset was to apply segmentation algorithms.

We attempt to use this dataset since it has a detailed clinical dataset, precise
annotation, and adequate subjects. The dataset contains three files as follows:
CT scan volumes, annotation volumes, and clinical data. All of the images are
in NIFTI format. Each annotation volume contains manual segmentation of the
kidneys, tumor(s), and cyst(s). Clinical data is in a JSON file format with 63
fields of clinical parameters for every patient. All essential clinical information,
like pathology results, is stored in this file [26]. Originally this data came from
the Cancer Imaging Archive, where the imaging and segmentation were stored
in DICOM format, and the clinical data was a single CSV file1.

3.3 Data Preparation

Data preparation is a pre-processing mechanism to structure, manipulate, and
organize raw data to the data format that the training model can analyze more
efficiently. In this study, we apply data preparation on the CT scan volumes and
their corresponding annotation volumes.

Image Preparation. The 3D image data from the KiTS21 dataset depict the
whole abdomen. The kidneys with tumors cover only a small percentage of the
entire image slices. In this study, we aim to train our proposed framework to view
only the imaging information related to the kidneys and the tumors. Therefore,
we extract the left and right kidneys from the image volumes using the provided
ground-truth annotation. Figure 2 shows the steps used to prepare the training
samples by removing other organs and extracting the two kidneys from whole
image volumes.
1 https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61081171.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61081171
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The image and segmentation volumes are stored as 3D arrays. The numbers
in the image arrays are between 0 and 255, where 0 is the darkest part and 255
is the brightest part. The numbers in the segmentation arrays are 0, 1, 2 and
3 (1 = kidney, 2 = tumor, and 3 = cyst). For image preparation, we have 3
phases. In phase 1, we keep the numbers in image arrays that the corresponding
segmentation is one and change the other numbers in image arrays to zero. This
step will change all image space except two kidneys to black. Then in phase 2, we
keep two kidneys and delete the black background. In phase 3, the black space
between two kidneys should also be eliminated, as our first purpose was not to
enter the black space into the training model. So we extract the left and right
kidneys and merge them again in the width dimension in phase 3.

Fig. 2. Image preparation process

Label Preparation. From the clinical dataset file that comes with the KiT21
dataset, we use the tumor isup grade field as the label for image classification.
This clinical parameter has four values: 1, 2, 3, and 4. ISUP grade of the tumors
was indicated in the post-operative surgical pathology report. We notice that in
56 cases, the value of Null is used where ISUP grade does not apply, such as
benign tumors or Chromophobes. We remove those 56 patients from our training
and testing dataset, leaving us with 244 samples in our final dataset.

3.4 Data Augmentation

The deep learning models frequently need a large amount of training data, which
is not always available, in order to make accurate predictions. We apply data
augmentation to increase the number of samples in the training dataset. After
eliminating those patients without ISPU values, we are left with 244 samples.
Patients with the ISUP1 class make 13% of the total, the ISUP2 class 48%, the
ISUP3 class 27%, and those with the ISUP4 class 12%. This class imbalance leads
to biasing impact on the model training and the final results—the trained model
will be more biased toward the dominant class in the training dataset and show
poor performance on the minor class. Another challenge that we encounter is
that we have to train our classifier model from scratch as we are unable to apply
transfer learning or fine-tune a pre-trained 3D EfficientNet-B7 transformed from
the original 2D EfficientNet-B7 in this study. Two hundred forty-four samples
might not be enough for training a deep neural network for an image classification



Classification of Kidney Tumor ISUP Grades 81

model from scratch. A huge quantity of labeled training images is needed for deep
learning models to be trained from scratch. We try to partially overcome these
two problems with data augmentation.

When strategies like undersampling, oversampling, and data augmentation
are used to fix the class balance issue, the model’s efficacy increases [27,28]. We
don’t use oversampling as this method can lead to the model being overfitted
to the minority class [28]. Additionally, we avoid using undersampling since we
lack sufficient samples in the dataset and don’t want to lose any data. As we can
see in the literature, performance progress slowed down after 150 images in each
class, and after 500 images in each class, there was no noticeable improvement
[29]. We found that 500 images per class are enough to attain a reasonable
classification accuracy. We increase the number of samples to 2000, 500 in each
class. We calculate the number of subjects in each class and realize that class 1
would need to be augmented eleven times, class 2 twice, class 3 five times, and
class 4 fourteen times.

For data augmentation, we do not employ generative adversarial networks
and would rather use traditional approaches. The critical point is that if we
want to do the augmentation for class4 fourteen times, we must make fourteen
different augmented versions of the original data. We use MONAI transformers
for data augmentation because the MONAI module is a comprehensive python
library for manipulating 3D data such as volumetric images. MONAI library
contains all recommended image augmentation techniques to enlarge the number
of training samples. Table 1 shows the various transformations we use for data
augmentation. We utilize the various combinations of transformers from Table 1
for data augmentation. Figure 3 displays one slice of the original patient’s data
along with three augmented versions of that slice.

Table 1. MONAI transformers used for data augmentation

Position Augmentation Noise Augmentation

Affine GaussianNoise

Rotate90 GaussianSmooth

Flip GaussianSharpen

GibbsNoise

SpaceSpikeNoise

3.5 Data Splitting

Our augmented dataset consists of various copies of the original samples. To
prevent unfair performance evaluation of our proposed framework, we split the
dataset based on the patient ID into training and testing subsets. In this way, we
avoid having the same patient with all its augmented versions in both the training
and testing subsets. We use the K-fold cross-validation technique to split out the
dataset. We use 3-fold cross-validation. We split our dataset randomly into three
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Fig. 3. Comparison between one axial slice of original image with 3 different augmented
versions

different subsets: 162 samples in the training subset; 82 samples in the testing
subset. We choose 10% (16 samples) of the training subset as our validation
subset in every fold. As we intend to have the same ISUP class distribution in
the validation subset, we select four samples from each ISUP grade class.

3.6 Image Pre-processing

Image pre-processing is an essential step before image classification. The purpose
of pre-processing is to enhance the image’s quality and modify a few of its fea-
tures so that the training model can better interpret the input [30,31]. We resize
all the volumes to 128 × 128 × 128 to have the same size volumes for training
the model. We follow the recommended size by the MIT challenge2 to make the
data more manageable. We do not select a bigger size like 256 because a larger
image resolution is expensive both in terms of computational power and memory
[30]. One millimeter isotropic voxel size is chosen for every volume. This is the
standard voxel size recommended by previous studies [32,33]. We re-orient all
volumes to the RAS (Right, Anterior and Superior). This is the most common
orientation used in medical images [32–34]. We use intensity normalization based
on the Z-score in medical imaging [30,35]. We use the image contrast part in ITK
snap software3 for this normalization. We showed the images to the clinicians
to identify which contrast range between the kidney and the tumor was more
noticeable. So we can figure out the minimum and the maximum contrast num-
ber in which the tumor is more distinctive from the kidney. We change intensity
values in the image arrays based on this image contrast range.

For kidney image and tumor segmentation, we utilize identical image pre-
processing transformers; however, we do not apply intensity normalization for
tumor segmentation because the contrast of the segmentation image is not impor-
tant for training the model.

3.7 Kidney and Tumor Concatenation

In this study, our goal is to classify kidney tumors based on distinguishable
surface patterns. To force our 3D EfficientNet-B7 to pay particular attention to
2 http://6.869.csail.mit.edu/fa17/miniplaces.html.
3 http://www.itksnap.org/pmwiki/pmwiki.php.

http://6.869.csail.mit.edu/fa17/miniplaces.html
http://www.itksnap.org/pmwiki/pmwiki.php


Classification of Kidney Tumor ISUP Grades 83

the surface patterns on the tumors, we concatenate the extracted kidneys with
their corresponding provided manual segmentation of the tumors. In addition,
this image concatenation enriches the input volume with the location and size
of the tumors. If we train our 3D EfficientNet-B7 on the kidneys only without
providing the location of the tumors, the model may look at other parts of the
input volumes and find other patterns and associate them to the classes. This
leads to poor performance on unseen data.

3.8 Training Details

We use the Pytorch library for training our model. The experiments are executed
in the Linux Ubuntu Operating system on a machine with AMD Ryzen 7 5800X
8-Core Processor, NVIDIA GeForce RTX 3090 GPU and 32 GB RAM. Based
on the three folds we previously acquired, we train our model three times but
with the same hyperparameters. Each time validation set contains around 10%
of the training set. During training, none of the samples from the validation sets
are utilized to determine the loss function or back-propagate gradients across
the network.

After every training epoch, the model is evaluated on the complete validation
set, and the mean AUC4 is calculated. Model parameters are stored, overwriting
the previous model, each time a new best mean validation AUC is obtained.
In this regard, compared to all training epochs, the final model that is created
during training has the greatest mean validation AUC. We decide on 50 as the
number of epochs since we see that the training losses stop decreasing after about
50 epochs. Each model is trained with the help of the Cross-Entropy loss, which
is given by:

L = −
n∑

i=1

ti × log(pi), (1)

where ti is the true label and pi is the softmax probability for the ith class and
n is the number of classes.

The ADAM optimizer [36] is used to train the models, and a learning rate
of 1 × 10−4 is used since it is empirically proven to produce the best results on
clean data [37]. Ten batches are selected to train the model based on the image
sizes and computing memory.

4 Results and Discussion

After training the model on the three folds, we evaluated the model’s perfor-
mance. Precision, Recall, and F-score metrics were used to quantitatively eval-
uate the performance of the proposed framework. The performance metrics are
computed from the following formulas:

4 Area under the curve is a performance measurement for the classification problems.
It tells how much the model is capable of distinguishing between classes.
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Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F-score = 2×Precision × Recall
Precision + Recall

, (4)

TP is the number of samples that are truly classified, FP is the number of
samples that should be in an ISUP class except for the ISUP class-x, but they
belong to ISUP class-x; and FN is the number of samples that should be in ISUP
class-x, but they are in the other ISUP classes.

Precision, Recall, and F-score was computed for each ISUP class. We cal-
culated the average of four Precision, Recall, and F-scores we gained for each
ISUP class. We repeated this process three times for each of the three folds we
had, giving us three average Precision, Recall, and F-scores. For our model, we
obtained a total Precision of 0.74, Recall of 0.71, and F-score of 0.72 by calcu-
lating the mean three average Precision, Recall, and F-scores. Table 2 shows the
performance metrics in fold two in which the best performance was obtained.

Table 2. Fold 2 performance evaluation of the proposed framework

Precision Recall F-score

ISUP1 class 0.86 0.91 0.88

ISUP2 class 0.79 0.78 0.78

ISUP3 class 0.87 0.77 0.81

ISUP4 class 0.86 0.94 0.89

Average 0.84 0.85 0.84

According to Table 2, the F-scores are high in the following order: ISUP4
class, ISUP1 class, ISUP3 class, and ISUP2 class. If we look back at how many
times we augmented the classes, they are high in this order: fourteen times for
the ISUP4 class, eleven times for the ISUP1 class, five times for the ISUP3 class,
and twice for the ISUP2 class. We can assert that higher accuracy metrics are
obtained from a class when there is more augmentation in that class. It arises
because the predicted classes for augmented images are frequently the same
as those for the original patient image. Most of the time, if the ISUP class of
the original image could be accurately recognized, it could also be accurately
detected for the augmented version.

It may be beneficial since it demonstrates how the model can recognize that
the augmented image is another version of the original image and forecast the
same ISUP class for it. If we look at the accuracy metrics for the ISUP2 class,
they are at their lowest, where data augmentation was used the least compared
to the other ISUP classes.
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Figure 4 illustrates four images from different ISUP classes that are truly
classified, and Fig. 5 illustrates four images that are falsely classified. In Fig. 5,
we wrote the true ISUP classes as the caption, and the predicted ISUP classes
from left to right are ISUP2, ISUP4, ISUP4, and ISUP2. The green parts of the
images are the tumor parts. In Fig. 5b, despite the large tumor size, the true
ISUP grade was two, and the model identified ISUP 4 in this image. In Fig. 5d,
the tumor size was small; the true ISUP class for this image was four, but the
model predicted ISUP 2. It demonstrates the model’s attempt to concentrate on
tumor sizes in its prediction.

Fig. 4. Correctly classified images

Fig. 5. Misclassified images

Based on a few tumor features, the ISUP grade is determined. When you
ask a physician to determine the ISUP class based only on observing CT scan
images, they are unable to do so with high certainty [5,18]. We attempted to
create a model that could look at patients’ CT scans and forecast their ISUP
classes. We can conclude that our model was able to extract hidden features
relevant to ISPU classes that might not be seen by human eyes.

It is worth motioning that this study has some limitations: 1) to predict ISUP
grade, our model needs to get information as input from both the two kidneys
and manually segmented tumor(s) indicating the location of the kidney tumors.
There is an extract pre-processing stage that extracts the kidneys from the
input volume using the manual segmentations of the two kidneys. Our proposed
framework might not be able to produce highly accurate classification results
from the whole abdominal volumes, and 2) we noticed that sometimes our trained
model tries to predict ISUP classes by looking at the tumor size. This impurity
leads to ISUP misclassification, so small tumors with grade 4 surface patterns
might be classified as grade 1 or 2.
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5 Future Work

We can apply transfer learning to improve the performance results [38,39] by
getting more three-dimensional images from the cancer imaging archive. Any
3D medical imaging, such as an MRI of the brain or liver, can be used, but for
better outcomes, kidney images should be included [40].

Furthermore, we can utilize our image classification layers before fully con-
nected layers as feature extractors since we can use convolutional neural networks
for feature extraction [41]. We can link these features to the survival features
since the outputs of our image classification are related to the risk score. Thus,
we would provide the survival features as the input to the DL-based survival
functions, and we can estimate the time of the patient’s death by using the
patient’s medical images.

6 Conclusion

In this study, we proposed a classification framework for kidney tumors based
on the International Society of Urological Pathology (ISUP) grading system.
We transformed 2D EfficientNet-B7 into a 3D variant that can handle 3D data
volumes. To enhance the classification performance, we applied various data
augmentation and pre-processing methods. We eliminated other organs in the
volumes and kept only the kidneys. The extracted kidneys were concatenated
with the provided manual ground-truth annotations of the tumors. This image
concatenation is shown to be an important step to force our 3D EfficientNet-B7
to look particularly at the tumors’ surface patterns and associate them with the
ISUP classes. The data augmentation was applied to first increase the number of
samples in the training set and second to partially solve the class imbalance issue.
Several image pre-processing methods were applied to enhance the input image
quality. The proposed framework demonstrated good classification accuracy of
(84%) on the test set. This study shows how crucial it is to properly prepare the
dataset through actions like cropping, augmentation, and pre-processing. It is
worth mentioning that we tried to show how the results of this work can be gen-
eralized to other datasets as well. However, we could not find any similar dataset
in which we could get the required information, such as MRI or CT images of the
organs, organ segmentation, tumor ground truth, and, most importantly, ISUP
grades.
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