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Abstract. Wearable heart rate (HR) sensing devices are increasingly
used to monitor human health. The availability and the quality of the
HR measurements may however be affected by the body location at which
the device is worn. The goal of this paper is to compare HR data col-
lected from different devices and body locations and to investigate their
interchangeability at different stages of the data analysis pipeline. To
this goal, we conduct a data collection campaign and collect HR data
from three devices worn at different body positions (finger, wrist, chest):
The Oura ring, the Empatica E4 wristband and the Polar chestbelt. We
recruit five participants for 30 nights and gather HR data along with
self-reports about sleep behavior. We compare the raw data, the features
extracted from this data over different window sizes, and the performance
of models that use these features in recognizing sleep quality. Raw HR
data from the three devices show a high positive correlation. When fea-
tures are extracted from the raw data, though, both small and significant
differences can be observed. Ultimately, the accuracy of a sleep quality
recognition classifier does not show significant differences when the input
data is derived from the Oura ring or the E4 wristband. Taken together,
our results indicate that the HR measurements collected from the consid-
ered devices and body locations are interchangeable. These findings open
up new opportunities for sleep monitoring systems to leverage multiple
devices for continuous sleep tracking.

Keywords: Heart Rate · Wearable Devices · Ring · Wristband ·
Chestbelt · Statistical Analysis · Sleep Monitoring · Sleep Quality
Recognition

1 Introduction

Personal health monitoring systems have recently received significant attention.
They are capable of providing continuous and real time feedback to users about
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their health and daily behaviour [42]. Such systems rely on different physiological
signals, such as, e.g., heart rate, to assess users’ health state.

Improvements in sensors, battery and storage of wearable devices make them
more powerful, affordable and pervasive. These improvements increase their abil-
ity to capture various physiological signals which help in return the develop-
ment of personal health monitoring systems [44]. Such evolution encourages their
employment in many health domains. Most wearables are capable of capturing
heart rate (HR) traces, which can be employed in many health related applica-
tions like monitoring human stress [30,43], recovery after exercise [17] and sleep
behaviour [32,44]. Changes in HR and heart rate variability (HRV) reflect auto-
nomic nervous system patterns [44] and have been correlated with sleep stages
[45,46], stress [31,52] and affect [47].

The availability of several health monitoring devices makes finding the most
convenient device very challenging both for researchers and end users. The
rapid development of wearables created a gap between the available devices
and their evaluation studies [15,50]. Therefore, a comparison is needed to deter-
mine whether the sensor readings are interchangeable between devices, placed
on different body positions. While there exist a few studies that investigated the
measurements of wearable devices [37,50], it is not clear whether the raw phys-
iological data are exchangeable and how such sensor measurements perform in
downstream tasks. This understanding would allow researchers to make informed
decisions regarding the use of such devices in data collection studies and users
to choose the device that matches their needs without hampering the quality of
the measurements.

In this paper, we investigate the interchangeability of HR signals obtained
from three body positions, namely, finger, wrist and chest during sleep, since
one of the wearables used (Oura ring) is dedicated and provides data continu-
ously only during dormancy. To this goal, we run a data collection campaign in
the wild, to gather physiological HR data – along with self reports about sleep
behavior – using three well known devices: Oura ring (generation 3), Empat-
ica E4 wristband and Polar chestbelt. We make the dataset available to other
researchers upon request and signature of a data sharing agreement. Then, we
assess the interchangeability of HR collected from wearables worn at different
body locations. We extensively analyze the collected data using statistical mea-
sures as well as a sleep quality recognition task, to explore the interchangeability
of HR measures at the level of raw data, time-domain features and classification
capability. The main contributions of this paper are as follows:

– We collect and provide to the research community a dataset1, named HeartS2

collected from five participants over 30 days in their natural environments.
The dataset contains heart rate data collected using three wearable devices
– Oura ring (third generation), Empatica E4 wristband and Polar chestbelt
– and self-reports regarding sleep and wake up times as well as sleep quality.

1 Please contact the corresponding author of the paper to make a request regarding
the dataset.

2 Heart Rate from multiple devices and body positions for Sleep measurement.
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– We perform extensive statistical analysis on the raw HR data and show a
high correlation between the data of the three devices, suggesting their inter-
changeability.

– We extract common HR features from the three devices and show that the
majority of the features have statistically negligible differences in small win-
dow sizes and small differences in large window size, which may impact
machine learning tasks that use such features.

– We develop a machine learning pipeline and investigate the effect of the
extracted features in sleep quality recognition. Our results confirm the inter-
changeability of the considered devices for this task.

This paper is structured as follows. Section 2 presents an overview of the similar
studies in the literature; Sect. 3 describes the data collection procedure, while
Sect. 4 shows the comparison between HR signals from wearable devices. Follows
Sect. 5, which presents the analysis of HR features and the machine learning
task adopted for the comparison between wearable devices, and Sect. 6, which
describes the limitations and future work that can be addressed. Finally, Sect. 7
presents the conclusion.

2 Related Work

Several researchers evaluate the performance of wearable devices by analyzing
the provided sleep parameters, e.g., Total Sleep Time (TST), Total Wake Time
(TWT), Sleep Efficiency (SE), Wake After Sleep Onset (WASO) [37,50]. Such
studies are either conducted in controlled settings [44,48], or in unrestricted ones
[15,37,50].

Roberts et al. [44], for instance, conduct a comparison study between con-
sumer wearables (Oura ring, Apple watch)3, two actigraphy wristbands and
Polysomnography (PSG), used as ground truth. They report that data from
commercial multi-sensor wearables are highly correlated and can be adopted in
sleep-wake classification problem, competing with research-grade devices. Scott
et al. [48] perform a comparison study between a new commercial smart ring
(THIM) (See Footnote 3), two popular wearables (Fitbit and Actiwatch) (See
Footnote 3) versus PSG. Their results show no significant differences between
PSG and THIM. Other researchers evaluate the sleep-wake recognition capabil-
ities, but do not compare neither the features nor the raw physiological signals
[44,48].

Stone et al. [50] compare nine sleep tracking consumer devices positioned
on wrist, finger or mattress-affixed monitors, using as ground truth Electroen-
cephalography (ECG). Using sleep parameters, they show that Fitbit Ionic and
Oura ring have the highest accuracy and minimum bias in calculating the TST,

3 Oura Ring: https://ouraring.com; Apple watch: https://www.apple.com/watch/;
THIM ring: https://thim.io; Fitbit: https://www.fitbit.com/; Actiwatch:
https://www.usa.philips.com/healthcare/sites/actigraphy; Samsung Gear Sport
watch: https://www.samsung.com/us/watches/galaxy-watch4/.

https://ouraring.com
https://www.apple.com/watch/
https://thim.io
https://www.fitbit.com/
https://www.usa.philips.com/healthcare/sites/actigraphy
https://www.samsung.com/us/watches/galaxy-watch4/
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TWT and SE; while with sleep staging metrics they find no accurate result from
commercial devices. Mehrabadi et al. [37] compare sleep parameters (e.g., TST,
SE and WASO) from the Oura ring and the Samsung Gear Sport watch (See
Footnote 3) versus a medically approved actigraphy device. They found signif-
icant correlation of both devices with actigraphy. However, neither of [37,50]
applied comparisons over physiological data.

Table 1 provides a overview of the recently conducted studies that compare
different wearable devices, where we can observe that only two are publicly avail-
able. The previously mentioned studies focus on specific sleep parameters, show-
ing their interchangeability between different devices [37,48]. However, there is
a gap with regards to the analysis of physiological signals, collected from various
devices, and how these differences can impact sleep quality recognition task.

Table 1. Description of existing studies that compare different wearable devices

Study Study Settings Number of Participants Study Duration Publicly Available

[15] Home 21 7 nights No

[38] Laboratory 6 9 nights Yes

[48] Laboratory 25 1 night No

[44] Laboratory 8 4 nights No

[37] Home 45 7 nights Yes

[50] Home 5 98 nights No

3 Data Collection Campaign

We conduct a data collection campaign using two commercial devices and one
research-grade device, for the HeartS dataset. In this section, we describe the
study participants, the adopted devices, the collected data and the data collec-
tion procedure. The study is reviewed and approved by our Faculty’s delegate
for Ethics.

3.1 Participants

We recruit five participants (three females and two males) of age from 24 to 29
years (avg: 26.2, std: 2.3). Participants wear, for 30 consecutive nights, three
wearable devices: (1) The Oura ring (Generation 3) (See Footnote 3), which
measures sleep with a Photoplethysmography (PPG) sensor, from which HR and
HRV are extracted [3,14]; (2) The Empatica E4 wristband4, which is a research-
grade wristband that extracts HR via PPG sensor [49]; (3) The Polar chestbelt,
equipped with an Electrocardiogram (ECG) sensor [28]. Both the Polar H075 and
4 https://www.empatica.com/en-gb/research/e4/.
5 https://support.polar.com/e manuals/H7 Heart Rate Sensor/Polar H7 Heart Rate
\ Sensor\ accessory\ manual\ English.pdf.

https://www.empatica.com/en-gb/research/e4/
https://support.polar.com/e_manuals/H7_Heart_Rate_Sensor/Polar_H7_Heart_Rate\protect \global \let \OT1\textunderscore \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}\OT1\textunderscore Sensor\protect \global \let \OT1\textunderscore \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}\OT1\textunderscore accessory\protect \global \let \OT1\textunderscore \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}\OT1\textunderscore manual\protect \global \let \OT1\textunderscore \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}\OT1\textunderscore English.pdf
https://support.polar.com/e_manuals/H7_Heart_Rate_Sensor/Polar_H7_Heart_Rate\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}Sensor\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}accessory\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}manual\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}English.pdf
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H106 releases are included in the study, since we have only two Polar chestbelt.
E4 wristband and Polar chestbelt, along with previous generations of Oura ring,
are adopted in several studies in the literature, e.g., in [3,5,6,11,12,14,26,27,50].
The devices contain also other sensors, for instance, the E4 is equipped with
electrodermal activity, accelerometer and skin temperature sensors. In this study,
we use only the HR measurements because it is the only common sensor in all
the devices, which allows us to compare them.

3.2 Data Collection Procedure

To design the study and collect the data, we follow similar procedures to the
literature (e.g., [26,45,50]). At the beginning of the data collection procedure,
all participants sign an informed consent form. We provide the devices, pen-
and-paper diaries, and the instructions needed to set up the designated syn-
chronization applications for obtaining the raw data from devices. We instruct
participants to wear the devices on their left hand, since small lateral differences
might be present if choosing difference sides [1]. Every night all participants wear
the Oura ring and the E4 wristband, whereas only two wear the Polar chestbelt
(since we have only two Polar chestbelts available). The participants wear the
devices one hour before sleep and log the bed-time. The next day, the partici-
pants complete the self report about the sleep quality of the previous night and
the wake up time then take off the devices one hour after waking up. During the
day, the participants synchronize the collected data during the previous night
from each device and charge the devices. To make sure of the quality and quan-
tity of the collected data, we systematically monitor the compliance with the
data collection.

3.3 Collected Data

We collect two types of data, physiological data using three wearable devices and
self-reports using pen-and-paper diaries described as follows.

Physiological Data. The Oura ring provides one HR data point every five
minutes during sleep as well as the bed-time start and the bed-time end. Partic-
ipants use the Oura mobile application to synchronize the collected data to the
Oura cloud dashboard. The Empatica E4 wristband provides HR values every
second. Participants use the E4 manager desktop application7 to synchronize the
collected data to the pre-created study on the E4 website. The Polar chestbelt
integrates with a third party mobile application named Polar Sensor Logger8 to
provide an HR value per second. The application stores the collected data on
the device.
6 https://www.polar.com/en/sensors/h10-heart-rate-sensor.
7 https://support.empatica.com/hc/en-us/articles/206373545-Download-and-install-

the-E4-manager-on-your-Windows-computer.
8 https://play.google.com/store/apps/details?id=com.j ware.polarsensorlogger&hl=en
\&gl=US.

https://www.polar.com/en/sensors/h10-heart-rate-sensor
https://support.empatica.com/hc/en-us/articles/206373545-Download-and-install-the-E4-manager-on -your-Windows-computer
https://support.empatica.com/hc/en-us/articles/206373545-Download-and-install-the-E4-manager-on -your-Windows-computer
https://play.google.com/store/apps/details?id=com.j_ware.polarsensorlogger&hl=en\&gl=US
https://play.google.com/store/apps/details?id=com.j_ware.polarsensorlogger&hl=en\&gl=US
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We collect data of 105 sleep sessions. One participant did not wear the E4
wristband on the left hand so we discard the corresponding sessions to be consis-
tent among the participants. In total we have 98 sessions. We collect 9,038 HR
data points from the Oura ring which are equivalent to about 753 h of data. For
the E4 wristband, we collect 3,192,319 points (about 886 h), with mean (± stan-
dard deviation) 56.09± 14.58 bpm and 61.81± 12.42 bpm respectively. From the
Polar chestbelt, we collect 656,038 HR data points, equivalent to approximately
182 h with mean 59.26 ± 12.23 bpm.

Self Reports. Participants use the pen-and-paper diaries to provide daily self
reports about: their bed and wake up time, latency (i.e., the estimated time until
the participant fall asleep), number of awakenings and sleep quality level every
night, similar to [26,45]. They report sleep quality on a five level Likert scale [33]:
very poor, poor, normal, good, excellent following [10]. One of the participants
stopped logging self reports after the first week of the study. The dataset thus
contains 80 sleep sessions labelled with the sleep behaviour.

4 Comparison of 5-Minutes Averaged HR Signals

In this section we report the analysis performed using the HR signals collected
as described in Subsect. 3.3. In particular, we describe the pre-processing steps,
correlation and bias analysis.

4.1 Data Pre-processing

Since the Oura ring provides an average HR value every five minutes, for the
current signal analysis, we down-sample the HR measurements to the same sam-
pling frequency to obtain the same data granularity. In particular, we average
the HR data of the E4 and Polar devices over five-minutes window. Given that
Oura only provides the HR data during sleep, we use the bed-time start and
end provided by Oura to define the sleep period and to segment the data of the
E4 wristband and Polar chestbelt. We refer to the obtained traces as averaged
HR.

4.2 Correlation Analysis

We use Shapiro-Wilk normality test to evaluate the parametric characteristic
of the averaged HR [21]. We observe that the HR data, from all devices, is not
normally distributed (p-value < 0.05). Based on that, we use Spearman’s ρ rank
correlation coefficient [35] to quantify the association between the HR signals.
We conduct the analysis in two steps: first, we compute the correlation between
each pair of devices using the averaged HR from all participants stacked together;
then we compute the correlation using averaged HR, for each pair of device,
per participant. Figure 1a shows the obtained correlation coefficients between
averaged HR from every pair of devices. We find a high positive correlation
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(a) Per devices Spearman’s ρ correlation (b) Per participant Spearman’s ρ correlation

Fig. 1. Spearman’s ρ correlation results between raw HR

between the averaged HR data from the three devices (>0.7), with the highest
correlation between the Oura ring and the Polar chestbelt (0.86). All reported
results are statistically significant, tested using an initial threshold of α = 0.05
and Bonferroni [4] corrected to αn = 0.01, n = 3, as suggested in [25]. We also
observe in Fig. 1b that correlation results by participant and device are similar to
those by device (Fig. 1a), since they are all positive (>0.2). From this experiment,
we conclude that there is a high positive correlation between averaged HR data
from the three devices and the results are statistically significant (α = 0.05,
αn = 0.003, n = 15). The correlation analysis suggests interchangeability of the
HR data across the three devices.

4.3 Bias Analysis

To assess the average difference between the devices, i.e., bias [15], we use a
modified version of the Bland Altman Plot [7]. This plot measures the absolute
difference between two distributions against the pair-wise averages. From the plot
in Fig. 2, we observe that the data from Oura ring and the Polar chestbelt have
the least average absolute difference (2.17), while the data from E4 wristband
and the Polar chestbelt have the highest (5.01). These results confirm the higher
correlation found between Oura’s and Polar’s HR data, as shown in Subsect. 4.2.
In general, these results confirm the findings of the correlation analysis presented
above.
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Oura vs E4 Polar vs Oura Polar vs E4

Fig. 2. Bias analysis results between every pair of devices. We report the average
absolute differences and standard deviations.

5 Comparison of Features Extracted from Raw HR
Signals

Many human activity recognition tasks rely on features extracted from the HR
signals. This is in particular the case for sleep monitoring applications [32].
Thus, we extract time-domain HR features from each device using different win-
dow sizes and compare them. We execute the analysis in two steps. First, we
analyze statistical differences in the extracted features. Then, we compare the
performance obtained by machine learning (ML) classifiers for a sleep quality
recognition task that use these features as input.

5.1 Data Pre-processing and Cleaning

In this part of data analysis, we rely on raw HR data collected from Oura ring
and E4 wristband only. This is because we obtained only 18 sleep sessions for
the Polar chestbelt, as opposed to approximately 80 for the other devices. We
define sleep sessions, based on the bed-time start and end provided by Oura. We
extract time-domain HR features, specifically mean, standard deviation, range,
median, variance, minimum, maximum, difference, slope, over different window
sizes, similarly to [26,39,46]. We employ three non-overlapping window sizes of
5, 10 and 60 min, and a window corresponding to the whole sleep session, similar
to [25,39].

5.2 Effect Size Quantification of HR Features

To assess the difference between features extracted over each window from these
devices, we employ Cliff’s δ effect size [16], which allows us to determine the
degree of difference between two samples. Cliff’s δ values range between [−1, 1],
where 0 means that the two distributions are not different, while −1 and 1 indi-
cate no distribution overlap [36]. We show the results in Fig. 3. We observe that
for small window sizes, i.e., 5 and 10 min, most of the features show negligible
or small differences. Also, it is noticeable that large differences are present with
some Oura features due to its limited sampling rate in the designated windows.
Such features rely on the data variability, e.g., the standard deviation is always
0 in a 5 min window for all Oura’s data. By increasing the window size, we can
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Fig. 3. Cliff’s δ effect size or HR features over different window sizes

observe that the majority of the features have small differences and the differ-
ences in the features that require data variability decrease. Such observations
motivate the next experiment, where we evaluate the impact of the features’
differences on a sleep recognition task. These results, similarly to the correlation
experiment results in Sect. 4, suggest limited differences and interchangeability
between the devices.

5.3 Sleep Quality Recognition Task

In this part of the analysis, we detail the comparison between devices in a
machine learning task, with the aim of assessing the impact of the observed differ-
ences in the HR features from the devices. We employ a sleep quality recognition
task, given that Oura ring is indeed dedicated to sleep behavior monitoring. As
ground truth, we used the subjective sleep quality scores from the self reports,
described in Subsect. 3.3.

Classification Procedure. We define this problem as a binary classification
task, using normalised sleep quality labels (range [0,1]), with a threshold of 0.5 to
discriminate between positive (high) and negative (low) class, similar to [26,54].
From this we obtain the following distribution: 61% of the data on the positive
class and 39% on the negative class. Since the data is not completely balanced,
we employ, only during training, synthetic minority over-sampling technique
(SMOTE) [13]. Since the collected data provides one score per sleep session, when
using 5, 10 and 60 min windows we train by assigning the label to each window.
However, at validation time, we evaluate only one score per sleep sessions: to
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obtain this, we apply majority voting over the window-level predictions. When
training using the whole sleep session, majority voting is not used.

Classification Models. We adopt 10 classification models in our experiments:
Decision Tree (DT) [51], Gaussian Näıve Bayes (NB) [20], Support Vector
Machine (SVM) [19], Multilayer Perceptron (MLP) [24], k-nearest neighbour
(KNN) [41], Random Forest (RF) [8], XGBoost [23], AdaBoost [22], Quadratic
Discriminant Analysis (QDA) [29] and Gaussian Process (GP) [53]. We use the
implementation of such algorithms from the Scikit-Learn Python library [40].

Evaluation Methodology. We perform evaluation of the chosen models using
two cross validation paradigms. We first evaluate the models’ capability to gen-
eralize to a new participant, this is achieved with Leave One Participant Out
cross validation, in which we train each model using all but one user’s data,
and use the remaining user’s data as test set. Second, we evaluate the ability of
the models to recognize the sleep quality score for an already existing partici-
pant using the Leave One Session Out cross validation. This procedure allows
to train on all sleep sessions but one, and test on the remaining one. We use
two baseline classifiers, to identify if our models are capable of learning patterns
from the input data [34]. The first baseline is the Random Guess classifier (RG),
which makes sleep quality predictions by extracting randomly the positive and
negative labels from a uniform distribution. The second baseline, denominated
“a-priori”, always predict a constant value, chosen as the majority class, which in
this case is the positive class. We adopt the balanced accuracy as the evaluation
metric for the experiments, given the imbalance in the class distributions when
testing [9]. We compare the performance of these baseline classifiers with the
other models using the Wilcoxon signed-rank statistical significance test [18,21]
with a threshold of 0.05.

Classification Results. For the Leave One Participant Out cross validation,
we show results in Table 2. While small variations in performance are present
across window size and device, all classifiers do not achieve accuracies higher
than 0.65, with most models not higher then the baselines (0.5 RG and 0.6 a-
priori). Indeed, only one model (AdaBoost, whole night, E4) achieves a balanced
accuracy higher than 0.6. However, all models are not statistically different (p-
value threshold α = 0.05) from the a-priori baseline. The results suggest that
both interpersonal variability and the limited number of participants do not
allow to achieve significant performance, with respect to the baselines, when
testing on an unseen participant [2].

For the Leave Out Session Out cross validation paradigm, we report results
in Table 3. From these, we see that models trained on the whole night achieve a
lower performance than models trained over smaller windows. The results show
that for the 5 min window most of the models are able to recognize the sleep
quality for an already existing participant, surpassing the baselines (>0.62).
A model trained on the 60 min window, using Oura features, has the highest
overall average accuracy (0.76). For the whole night, one of the models can
reach a performance of 0.66 using the E4 features. Accordingly, the performance
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Table 2. Average balanced accuracy, with standard errors, for three devices in sleep
quality recognition task using different window size and Leave One Participant Out
cross validation. The a-priori baseline always predicts the positive class, while the
Random Guess (RG) uses a uniform distribution to make predictions

Window size
Device/
Model

5 mins 10 mins 60 mins whole night

Oura E4 Oura E4 Oura E4 Oura E4

DT 0.53 ± 0.13 0.45 ± 0.05 0.46 ± 0.03 0.50 ± 0.09 0.44 ± 0.05 0.43 ± 0.09 0.42 ± 0.07 0.48 ± 0.03

NB 0.49 ± 0.01 0.50 ± 0.00 0.47 ± 0.03 0.49 ± 0.01 0.42 ± 0.05 0.47 ± 0.03 0.45 ± 0.02 0.47 ± 0.03

SVM 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.01 0.45 ± 0.05 0.50 ± 0.00 0.5 ± 0.03 0.50 ± 0.00

MLP 0.50 ± 0.00 0.47 ± 0.03 0.50 ± 0.00 0.49 ± 0.02 0.55± 0.05 0.52± 0.02 0.42 ± 0.06 0.54 ± 0.07

RF 0.46 ± 0.04 0.49 ± 0.01 0.52 ± 0.03 0.55± 0.07 0.42 ± 0.06 0.41 ± 0.06 0.36 ± 0.06 0.43 ± 0.05

XGBoost 0.55± 0.02 0.48 ± 0.02 0.52 ± 0.03 0.50 ± 0.04 0.52 ± 0.02 0.52 ± 0.03 0.38 ± 0.07 0.5 ± 0.05

AdaBoost 0.48 ± 0.06 0.49 ± 0.04 0.53± 0.05 0.50 ± 0.03 0.53 ± 0.06 0.51 ± 0.05 0.43 ± 0.05 0.64± 0.05

QDA 0.54 ± 0.06 0.5 ± 0.00 0.49 ± 0.01 0.45 ± 0.06 0.49 ± 0.01 0.51 ± 0.04 0.51± 0.07 0.55 ± 0.04

KNN 0.53 ± 0.04 0.53± 0.05 0.44 ± 0.04 0.51 ± 0.03 0.50 ± 0.07 0.45 ± 0.03 0.41 ± 0.1 0.45 ± 0.03

GP 0.48 ± 0.02 0.49 ± 0.01 0.5 ± 0.01 0.45 ± 0.04 0.50 ± 0.04 0.49 ± 0.11 0.45 ± 0.1 0.47 ± 0.1

RG 0.39 ± 0.10 0.62 ± 0.04 0.44 ± 0.09 0.62 ± 0.06

a-priori 0.50 ± 0.0 0.50 ± 0.0 0.50 ± 0.0 0.5 ± 0.0

of the models diminishes when using the whole sleep session, compared to smaller
window sizes. The results also suggest that there is no real advantage between
models trained with data from Oura ring or E4 wristband, with all window
experiments achieving accuracies higher then 0.7 with at least one model (best
baseline 0.61). From the experiments, we can conclude that both devices achieve
comparable performance in the sleep quality recognition task. With our results
in Sect. 4 and Subsect. 5.2, these classification task supports that the devices
used are interchangeable with respect to heart rate data. We also find that it is
better to adopt a windowed data, as opposed to using the whole night session,
when performing sleep quality recognition. However, it is worth noting how,
given the limited amount of data, the standard errors evaluated are quite large.
This means that no result is statistically significant with respect to the a-priori
baseline, increasing the available data would allow to mitigate this problem.

6 Limitations and Future Work

The main limitation of our work is the small number of participants in the
dataset (five). We also only collected an average of 16 nights per participants.
In future work, performing a data collection with more participants and for
more nights could lead to further insights. This is especially true for the Polar
chestbelt, since we do not use in the subjective sleep recognition task given the
limited number (18) of sleep sessions collected with this device. The use of more
HR tracking wearable devices could be explored. As suggested by [2], the use of
a subjective sleep quality score can also hinder a machine learning task, as such
we are considering exploring the devices performance compared to an additional
objective measure.
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Table 3. Average balanced accuracy, with standard errors, for three devices in sleep
quality recognition task using different window size and Leave One Session Out cross
validation. The a-priori baseline always predicts the positive class, while the Random
Guess (RG) uses a uniform distribution to make predictions.

Window size
Device/
Model

5 mins 10 mins 60 mins whole night

Oura E4 Oura E4 Oura E4 Oura E4

DT 0.62 ± 0.05 0.71 ± 0.05 0.71 ± 0.05 0.71 ± .05 0.74 ± 0.05 0.68 ± 0.05 0.53 ± 0.05 0.60 ± 0.05

NB 0.71 ± 0.05 0.68 ± 0.05 0.71 ± 0.05 0.68 ± 0.05 0.60 ± 0.06 0.66 ± 0.05 0.54 ± 0.05 0.63 ± 0.05

SVM 0.50 ± 0.06 0.53 ± 0.06 0.42 ± 0.06 0.53 ± 0.06 0.51 ± 0.06 0.44 ± 0.06 0.52 ± 0.05 0.55 ± 0.05

MLP 0.57 ± 0.06 0.64 ± 0.05 0.56 ± 0.06 0.59 ± 0.06 0.59 ± 0.06 0.72± 0.05 0.55 ± 0.05 0.65 ± 0.05

RF 0.69 ± 0.05 0.72± 0.05 0.72± 0.05 0.74± 0.05 0.74 ± 0.05 0.65 ± 0.05 0.61 ± 0.05 0.66± 0.05

XGBoost 0.66 ± 0.05 0.72± 0.05 0.72± 0.05 0.72 ± 0.05 0.76± 0.05 0.65 ± 0.05 0.60 ± 0.05 0.63 ± 0.05

AdaBoost 0.72± 0.05 0.72± 0.05 0.72± 0.05 0.72 ± 0.05 0.64 ± 0.05 0.72± 0.05 0.51 ± 0.05 0.63 ± 0.05

QDA 0.64 ± 0.05 0.64 ± 0.05 0.59 ± 0.06 0.62 ± 0.05 0.50 ± 0.06 0.64 ± 0.05 0.50 ± 0.05 0.52 ± 0.05

KNN 0.66 ± 0.05 0.70 ± 0.05 0.71 ± 0.05 0.68 ± 0.05 0.66 ± 0.05 0.65 ± 0.05 0.52 ± 0.05 0.59 ± 0.05

GP 0.70 ± 0.05 0.72 ± 0.05 0.71 ± 0.05 0.71 ± 0.05 0.70 ± 0.05 0.55 ± 0.06 0.64± 0.05 0.59 ± 0.05

RG 0.61 ± 0.05 0.57 ± 0.06 0.39 ± 0.05 0.41 ± 0.05

a-priori 0.61 ± 0.05 0.61 ± 0.06 0.61 ± 0.05 0.59 ± 0.05

7 Conclusion

We run a data collection campaign for 30 nights to collect HR data during
sleep using Oura ring, Empatica E4 wristband and Polar chestbelt, in the wild,
along with self reports about sleep behaviour. We provide the dataset to other
researchers upon request to extend our data analysis. Then, we investigate the
interchangeability of HR data collected from these wearables. To this goal, we
run an extensive data analysis. We find that there is a high positive correlation
between the HR data from the three devices based on Spearman’s correlation
coefficient. Using bias analysis, we also estimate that the Oura ring’s HR signal
has less variations with respect to the ECG-based Polar chestbelt, compared to
data from the E4 wristband. We also assess the difference between time-domain
features extracted from the three devices for different windows sizes, finding
them negligible or small in most cases. Finally in order to evaluate the impact
of such small differences, we employ these features in a machine learning task
to predict subjective sleep quality. We find that, when testing on a new sleep
session, there is not appreciable difference between models trained on features
extracted from Oura ring’s or E4 wristband’s HR signals. We also find that
a higher performance is achieved when separating the sleep session into non-
overlapping windows, as opposed to using the whole night’s data. In conclusion,
our results suggest interchangeability among the devices. Even with the outlined
limitations of our study, we believe that the three devices can be used in broader
settings, e.g., health tracking, with similar outcomes.

Acknowledgement. This contribution is supported by the Swiss National Science
Foundation (SNSF) through the grant 205121 197242 for the project “PROSELF:
Semi-automated Self-Tracking Systems to Improve Personal Productivity”. Shkurta
Gashi is supported by an ETH AI Center postdoctoral fellowship.



30 N. Abdalazim et al.

References

1. Alchieri, L., et al.: On the impact of lateralization in physiological signals from
wearable sensors (2022)

2. Alecci, L., et al.: On the mismatch between measured and perceived sleep quality.
In: Proceedings of the 2022 UbiComp (2022). https://doi.org/10.1145/3544793.
3563412

3. Altini, M., et al.: The promise of sleep: a multi-sensor approach for accurate sleep
stage detection using the oura ring. Sensors 21(13) (2021)

4. Armstrong, R.A.: When to use the B onferroni correction. Ophthalmic Physiol.
Opt. 34(5) (2014)

5. Assaf, M., Rizzotti-Kaddouri, A., Punceva, M.: Sleep detection using physiolog-
ical signals from a wearable device. In: Inácio, P.R.M., Duarte, A., Fazendeiro,
P., Pombo, N. (eds.) HealthyIoT 2018. EICC, pp. 23–37. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-30335-8 3

6. Barika, R., et al.: A smart sleep apnea detection service. In: 17th International
Conference on CM. The British Institute of NDT (2021)

7. Bland, J.M., et al.: Measuring agreement in method comparison studies. Stat.
Methods Med. Res. 8(2) (1999)

8. Breiman, L.: Random forests. Mach. Learn. 45(1) (2001)
9. Brodersen, K.H., et al.: The balanced accuracy and its posterior distribution. In:

20th ICPR. IEEE (2010)
10. Buysse, D.J., et al.: The Pittsburgh sleep quality index: a new instrument for

psychiatric practice and research. Psychiatry Res. 28(2), 193–213 (1989)
11. Cakmak, A.S., et al.: An unbiased, efficient sleep-wake detection algorithm for a

population with sleep disorders: change point decoder. Sleep 43(8) (2020)
12. Carlozzi, N.E., et al.: Daily variation in sleep quality is associated with health-

related quality of life in people with spinal cord injury. Arch. Phys. Med. Rehabil.
103(2) (2022)

13. Chawla, N.V., et al.: Smote: synthetic minority over-sampling technique. JAIR 16
(2002)

14. Chee, N.I., et al.: Multi-night validation of a sleep tracking ring in adolescents
compared with a research actigraph and polysomnography. Nat. Sci. Sleep 13
(2021)

15. Chinoy, E.D., et al.: Performance of four commercial wearable sleep-tracking
devices tested under unrestricted conditions at home in healthy young adults. Nat.
Sci. Sleep 14 (2022)

16. Cliff, N.: Dominance statistics: ordinal analyses to answer ordinal questions. Psy-
chol. Bull. 114(3), 494 (1993)

17. Cole, C.R., Blackstone, E.H., Pashkow, F.J., Snader, C.E., Lauer, M.S.: Heart-rate
recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med.
341(18), 1351–1357 (1999)

18. Conover, W.J.: Practical Nonparametric Statistics, vol. 350. Wiley, Hoboken (1999)
19. Cortes, C., et al.: Support-vector networks. Mach. Learn. 20(3) (1995)
20. Duda, R.O., et al.: Pattern Classification and Scene Analysis, vol. 3. Wiley, New

York (1973)
21. Field, A., et al.: How to Design and Report Experiments. Sage (2002)
22. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

https://doi.org/10.1145/3544793.3563412
https://doi.org/10.1145/3544793.3563412
https://doi.org/10.1007/978-3-030-30335-8_3


Heart Rate During Sleep Measured 31

23. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stati. (2001)

24. Gardner, M.W., et al.: Artificial neural networks (the multilayer perceptron)—
a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15)
(1998)

25. Gashi, S., et al.: Using unobtrusive wearable sensors to measure the physiological
synchrony between presenters and audience members. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 3(1), 1–19 (2019)

26. Gashi, S., et al.: The role of model personalization for sleep stage and sleep quality
recognition using wearables. IEEE Pervasive Comput. 21, 69–77 (2022)

27. Ghorbani, S., et al.: Multi-night at-home evaluation of improved sleep detection
and classification with a memory-enhanced consumer sleep tracker. Nat. Sci. Sleep
14 (2022)

28. Gilgen-Ammann, R., et al.: RR interval signal quality of a heart rate monitor and
an ECG Holter at rest and during exercise. EJAP 119 (2019)

29. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, Heidelberg
(2009)

30. Hellhammer, J., et al.: The physiological response to trier social stress test relates
to subjective measures of stress during but not before or after the test. Psychoneu-
roendocrinology 37(1), 119–124 (2012)

31. Hernandez, J., Morris, R.R., Picard, R.W.: Call center stress recognition with
person-specific models. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C.
(eds.) ACII 2011. LNCS, vol. 6974, pp. 125–134. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24600-5 16

32. Imtiaz, S.A.: A systematic review of sensing technologies for wearable sleep staging.
Sensors 21(5) (2021)

33. Joshi, A., et al.: Likert scale: explored and explained. Br. J. Appl. Sci. Technol.
7(4) (2015)

34. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for
Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT
Press (2020)

35. Kendall, M.G., et al.: The Advanced Theory of Statistics. The Advanced Theory
of Statistics, 2nd edn (1946)

36. Kromrey, J.D., et al.: Analysis options for testing group differences on ordered cat-
egorical variables: an empirical investigation of type I error control and statistical
power. MLRV 25(1) (1998)

37. Mehrabadi, M.A., et al.: Sleep tracking of a commercially available smart ring
and smartwatch against medical-grade actigraphy in everyday settings: instrument
validation study. JMIR mHealth uHealth 8(11) (2020)

38. Miller, D.J., et al.: A validation study of a commercial wearable device to auto-
matically detect and estimate sleep. Biosensors 11(6) (2021)

39. Min, J.K., Doryab, A., Wiese, J., Amini, S., Zimmerman, J., Hong, J.I.:
Toss‘n’turn: smartphone as sleep and sleep quality detector. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 477–486
(2014)

40. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12 (2011)
41. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)
42. Raskovic, D., et al.: Medical monitoring applications for wearable computing. Com-

put. J. 47(4), 495–504 (2004)

https://doi.org/10.1007/978-3-642-24600-5_16


32 N. Abdalazim et al.

43. Reinhardt, T., et al.: Salivary cortisol, heart rate, electrodermal activity and sub-
jective stress responses to the Mannheim Multicomponent Stress Test (MMST).
Psychiatry Res. 198(1), 106–111 (2012)

44. Roberts, D.M., et al.: Detecting sleep using heart rate and motion data from mul-
tisensor consumer-grade wearables, relative to wrist actigraphy and polysomnog-
raphy. Sleep 43(7) (2020)

45. Sano, A., et al.: Recognizing academic performance, sleep quality, stress level, and
mental health using personality traits, wearable sensors and mobile phones. In: Pro-
ceedings of the IEEE 12th International Conference on Wearable and Implantable
Body Sensor Networks (BSN 2015). IEEE (2015)

46. Sano, A., et al.: Multimodal ambulatory sleep detection using LSTM recurrent
neural networks. IEEE J. Biomed. Health Inform. 23(4), 1607–1617 (2019)
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