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Abstract. An effective way of limiting the diffusion of viruses when vac-
cines are unavailable or insufficiently potent to eradicate them is through
running widespread “test and trace” programmes. Although these have
been instrumental during the COVID-19 pandemic, they also lead to sig-
nificant increases in public spending and societal disruptions caused by
the numerous isolation requirements. What is more, after the health mea-
sures were relaxed across the world, these programmes were unable to
prevent substantial upsurges in infections. Here we propose an alterna-
tive approach to conducting pathogen testing and contact tracing that is
adaptable to the budgeting requirements and risk tolerances of regional
policy makers, while still breaking the high risk transmission chains. To
that end, we propose several agents that rank individuals based on the
role they possess in their interaction network and the epidemic state over
which this diffuses, showing that testing or isolating just the top ranked
can achieve adequate levels of containment without incurring the costs
associated with standard strategies. Additionally, we extensively com-
pare all the policies we derive, and show that a reinforcement learning
actor based on graph neural networks outcompetes the more competitive
heuristics by up to 15% in the containment rate, while far surpassing
the standard random samplers by margins of 50% or more. Finally, we
clearly demonstrate the versatility of the learned policies by appraising
the decisions taken by the deep learning agent in different contexts using
a diverse set of prediction explanation and state visualization techniques.

Keywords: epidemic-control · target-test-and-trace ·
reinforcement-learning

1 Introduction

The recent pandemic caused by the SARS-CoV-2 virus has fundamentally shaped
the way we plan for and respond to the spread of highly-infectious pathogens.
Drastic control measures like imposing general lockdowns proved to be particu-
larly damaging to the global economy and the wellbeing of the population [42],
causing widespread discontent among all social strata.1 As such, less restrictive

1 COVID-19 Attitudes Survey by YouGov: https://tinyurl.com/yougov-attitudes.
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health interventions were introduced in lieu to curb dangerous infection rates,
such as educating the public to socially distance, deploying large-scale testing
schemes and quarantining contacts through different tracing mechanisms [21].
Despite the advent of highly effective vaccines [3,12], financing and support for
these measures continued for several months in the majority of the Western world,
fueled by evidence of their continued efficacy [63,83]. However, with the emer-
gence of seemingly milder variants [91], concerns about the limitations [67] or the
societal impact [15,60] of the aforementioned interventions, and growing evidence
of reduced public compliance [18], several administrations decided to significantly
reduce the resources allocated for these programmes. In the United Kingdom, for
example, the new “living with COVID” strategy meant appreciable cost reduc-
tions could be achieved [61], while heavy disruptions like the recent “pingdemic”
could be entirely avoided [76,81]. Unfortunately, blindly scaling down the pub-
lic health efforts to break transmission chains has proven unsuccessful as cases
across the country soared yet again within a relatively short timeframe,2 trend
that has been replicated across Europe [34]. With the vaccine protection waning
over time [24,55], and with demand for further doses decreasing among healthy
adults [94,97], similar surges could reoccur henceforth.

In this work, we propose a major shift in the implementation of “test and
trace” programmes that is adaptable to a country’s budget and risk tolerance,
while minimizing the burden of viral infection chains. To achieve this, we study
different types of targeted policies for conducting testing and isolating contacts in
an epidemic under fixed budgeting requirements, and show that a reinforcement
learning agent can derive powerful and generalizable policies that outperform
all baselines considered in terms of infection reach. We validate our results on
several epidemic, budget and interaction network configurations, illustrating the
versatility of our proposed method. Moreover, we demonstrate that even static
non-learning agents significantly outcompete customary untargeted strategies.

The contributions in this paper are threefold:
1. We put forward a novel way of operating public health interventions in a

realistic scenario where economic and societal disruptions are to be mini-
mized: restricting the testing and tracing efforts to higher-risk individuals.
To that end, we derive highly-effective policies using different agents, in-
cluding centrality-based, neighborhood-based and learning-based, comparing
them against more traditional approaches, such as random, acquaintance or
frequency-based sampling. Our reinforcement learning agent, backed by a
Graph Neural Network (GNN) adapted from the recent development of [65],
is shown to outperform the other methods in both tasks across numerous
configurations, despite being trained using a simple test prioritization setup
with partial observable information.

2. Aside from presenting the numerical results and epidemic curves resulted
from running our control policies over multiple simulations, we also study
what the learning-based agent chooses to focus on while making its deci-
sions. For such a system to be deployed in the real world, policy makers

2 COVID-19 Infection Survey by ONS: https://tinyurl.com/ons-covid19.
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need to be reasonably confident the model produces sensible outputs. At the
same time, testing or isolation decisions have to be explainable and verifiable
when audited or contested. Here, we explore a perturbation-based technique
for explaining the policy derived by an agent’s GNN module, GraphLIME
[39], putting into perspective the former’s superior adaptability. Moreover, we
propose visualizations for the inferred node embeddings that can be used to
direct community-wide interventions or scrutinize the model’s performance.

3. We apply our framework to several scenarios featuring COVID-specific spread-
ing models, including a multi-site mean-field [40,83] and an agent-based
model, with parameters obtained from [20], and show that our agents consis-
tently perform well across a diverse set of experimental setups.

2 Related Work

2.1 Epidemic Modelling

Traditionally, simulating epidemics has been accomplished using either equation-
based or agent-based models. The first of these is possibly the most common,
owing its appreciable success to early work by [45], where the modelled popula-
tion was said to transition between disease-specific compartments according to a
system of ordinary differential equations. Recent years, however, have seen agent-
based approaches become more popular, partly due to their superior granularity
and ability to assess a system’s behavior at the individual level [98]. Government-
advising groups in the United Kingdom employed this paradigm during the initial
waves of the COVID-19 pandemic to assess the effects of public health interven-
tions [25,35]. Others used such formulations to study the combined effects of
manual tracing with digital solutions at various application uptakes, employing
parameters fitted to infection data from several regions [1,83]. In this study, we
simulate viral epidemics using a modified version of a recently-proposed multi-
site mean-field model [83], which relies on the SEIR compartmental formulation
but retains the capacity to leverage an individual’s locality information through
contact graphs and mean effects [23,40]. For completeness, we also investigate our
policies in a purely agent-based setup, similar in spirit to the network-based ap-
proaches proposed in recent works [1,65]. In both cases, we employ the COVID-
specific dynamics parameters inferred by [20], and allow all disease-unrelated
events to be time-discretized (i.e. selecting an action or updating the active links
set takes place every tu days, with tu=1).

2.2 Graph Neural Networks and Reinforcement Learning

A few years back, graph neural networks became one of the de facto machine
learning tools for processing graph-structured information [27,110]. The earliest
studies in this space defined a GNN as a set of two functions: transition fθ and
output oθ [30,86]. The former expresses the dependence between a node i and
its vicinity, while the latter controls the space spanned by the model output.
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These functions form the basis of what later came to be known as the message-
passing paradigm [29], which quickly became dominant in the field due to its
effectiveness and computational efficiency [11]. After graph convolutional net-
works (GCN) were first introduced [48], many GNN successes followed course
[11,32]. Motivated by the accomplishments of attention mechanisms in natural
language processing [19,104] and computer vision [4,46], authors soon enhanced
GNNs with attention capabilities, often increasing their performance (e.g. GAT
[105], GATv2 [10]). Expressive power bounds for the message passing algorithm
were later noted by [108], who then proposed an architecture that reaches the
upper limit of the widely-used Weisfeiler-Lehman heuristic (1-WL): the Graph
Isomorphism Network (GIN). Efforts to break node symmetries and surpass this
upper bound have been significant ever since, with many approaches currently
existing: augmenting the nodes with random features [85], modifying the message
passing rule [6], or changing the input graph structure itself [71]. Additionally, is-
sues such as feature oversmoothing [36,74] and bottlenecks [2] have been identified
as common reasons for underperforming message passing systems, with proposed
solutions ranging from maintaining a low layer count and connecting all nodes
in the last layer to ease information flow, to augmenting the message exchange
routine (e.g. Neural Sheaf Diffusion [8]). Our framework leverages ideas from
GATv2 and GIN to attain expressive power and computational efficiency, while
reducing the impact of the above problems by using randomised node features
and a small number of GNN layers, with a final fully-adjacent layer to mitigate
the over-squashing of long-range dependencies.

A widely-used approach for explaining predictions in deep learning involves
perturbing the inputs and fitting local explainable models to each data point
and its corresponding perturbations. LIME [80] and SHAP [58] are two popular
examples of this methodology. Although the above are directly applicable to
GNNs, they do not possess the capability to leverage structural information from
graph data or capture nonlinear relationships between the inputs and the outputs.
To solve these limitations, GraphLIME was proposed [39]. GraphLIME replaces
the local perturbations matrix with stacked node features selected from a node’s
neighborhood, fitting nonlinear interpretable models using HSIC Lasso [109].

Among many other domains, GNNs have also been extensively used in the
context of epidemiology. From the literature dedicated to COVID-19, we note
here several noteworthy efforts: infection forecasting [44,75], full population state
estimation [102], finding “patient 0” [90], and controlling public interventions,
such as testing [65] or vaccination policies [41].

Sequential decision processes are often modelled via Markov Decision Pro-
cesses (MDPs) of the form (S, A, P, R) [78], where S is a state space, A is an
action space, P is a transition probability matrix, while R is a reward function
for the state-action pairs. Agents sample actions from their policy at ∼ π(a|st; θ),
with a ∈ A and θ a parametrization, then execute them, transitioning to different
states st+1 and earning rewards Rt, according to the environment’s P andR. The
goal of reinforcement learning (RL) is to solve MDPs by predicting and maxi-

mizing the γ-discounted returns of future rewards Gt =
∑T

i=1 γ
i−1
t+i Rt+i [100].
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This is routinely achieved through supervision using a w-parameterized model
V (st|w) that predicts Gt, and the returns or some intermediary estimates as tar-
gets. The first of these approaches is called the Monte Carlo (MC) algorithm, and
is known to be effective despite presenting several drawbacks: slow offline learn-
ing and high variance [99,100]. For example, a variation of MC featuring search
trees was used to derive competitive policies in 2-player board games [92,93]. In
contrast, the online temporal difference (TD) learning method casts the sum of
the current estimate of the next-step return Gt+1 = V (st+1|w) and Rt+1 as a
regression target, lowering the variance and speeding up training [103]. The lat-
ter constitutes the basis for many RL algorithms to date, such as the on-policy
SARSA [82,100] and the off-policy Q-learning [106], which proved successful in
multiple problem instances: reaching or outperforming human-level performance
in games [69,70], autonomous car driving [49], and many others.

Approaches that directly optimize both θ and w are called actor-critics [52],
and have become the preferred algorithmic choice when faster convergence rates
are sought after and sample efficiency is not required. Recent years have seen
actor-critic methods like the Proximal Policy Optimization (PPO) [88] and Deep
Deterministic Policy Gradient (DDPG) [56] achieve state-of-the-art results across
a wide range of challenging tasks [54,88]. Although online implementations are
possible, these agents have traditionally been trained using MC.

Learning policies in environments with combinatorial action spaces such as
ours has generally been considered a difficult undertaking. In spite of this, RL
methods proved to be effective in instances like multiple item [96] or thread pop-
ularity selection [33]. In the context of epidemics, an RL system based on multi-
armed bandits and demographics data was recently introduced by the Greek
authorities to prioritize the COVID-19 testing allocations at border control [5].
For classic combinatorial problems, such as the travel salesman (TSP) and its
vehicle routing variants, RL approaches have also been shown to perform well
[7,53]. Incorporating graph embeddings into the RL agents have generally lead
to improved solvers, outcompeting other learning methods [17,43].

2.3 Influencing Graph Dynamics

The problem of influencing diffusion processes over networks has been studied
in many different settings before, most notably for solving influence maximiza-
tion [73], optimizing immunization strategies [77], and targeting pathogen testing
[66]. It has been long established that random vaccination policies tend to be sub-
optimal, and even simple heuristics like acquaintance sampling can outperform
them [16,68]. Centrality-based strategies were also explored in this context, with
PageRank [14], eigenvector [62] or betweenness centrality [84] becoming popular
choices. For influence maximization, degree-based strategies were shown to ren-
der competitive results (e.g. LIR [57], degree discount [13]). Over time, however,
multiple authors have identified problem instances where any centrality measure
used by itself can lead to suboptimal results [9,77]. The question of which heuristic
to use for what problem has since become a focal point in many application do-
mains. As an alternative, reinforcement learning techniques have been proposed
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for mixing different heuristics in an optimal manner, thus reducing the impact of
the aforementioned drawbacks [65,101]. Node targeting for detecting the state of
a spreading process is a slightly less explored use case of control in the literature,
but efficient heuristics that exploit the known state of a vertex’s neighborhood
instead of centrality-derived information have proven to be successful [66]. The
domain of prioritizing contact tracing, however, remains largely uninvestigated
to date, but recent work suggests that isolating subsets of individuals based on
the frequency of appearing in the vicinity of positive cases can lead to similar
levels of containment as naively isolating every contact [51].

Meirom et al. introduce a reinforcement learning model that can derive gen-
eral control policies for diffusion processes over networks, using test prioritization
and influence maximization as illustrations [65]. A GNN-based controller, cast in
an actor-critic framework, learns effective policies using simulated data, integrat-
ing local and long-distance information over time. The elegance of the approach
stems from the fact that the training process is not conditioned on having the full
epidemic state made available to the agent. The work also shows that it is possi-
ble to learn a policy on small networks (e.g. 1000) and deploy it on larger graphs
with similar statistics (e.g. 50000, the size of a small city). Our study builds
on top of this versatile control framework, but differs from the aforementioned
work in several key aspects: First, we extend the problem formulation to cover
prioritizing both testing and tracing, amending the framework to accommodate
ranking nodes from eligible subsets. The latter also enables us to add a simple ex-
tension to all our agents which empirically improves performance: restricting the
action space to exclude recently-tested negative individuals. Second, we analyze
the control outcomes more thoroughly, looking at longer evaluation episodes than
25 days, plotting epidemic curves, and interpreting the agents’ decisions using a
perturbation-based explainability technique designed for graphs, GraphLIME.
Third, we employ COVID-specific spreading parameters and analyze the behav-
ior of the policies beyond agent-based modelling. Finally, we perform a range
of algorithmic changes in our implementation to improve efficiency: using boot-
strapping and eligibility traces to mitigate the memory cost of the offline PPO
routine, a shared network between the actor and the critic [88] to enrich the graph
embeddings, a GATv2 layer in the diffusion module to enable a better tracking
of the point-to-point spreading process, multiple GIN layers followed by a final
fully-adjacent one in the information module to increase its expressive power, as
discussed above, and standard scaling for bounding the exploding node hidden
states instead of L2 normalization or GRU-based transformations.

3 Methodology

3.1 Simulating Epidemics

We simulate several epidemics using the SEIR compartmental model together
with COVID-specific parameters obtained from [20]: a base infection rate of
b = 0.0791 and an average exposed duration of e = 3.7 days. In order to remove
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stochastic artefacts that may conceal performance differences, most of our setups
assume that nodes remain infectious for the whole duration of the episode unless
they get isolated (i.e. recovery rate ρ = 0). Intuitively, the impact of this assump-
tion becomes significant only when the problem becomes oversaturated (i.e. the
testing budget k and/or the recovery rate ρ are large enough for any agent to
achieve containment). For completeness, however, we also present results when ρ
is varied (see Section 4.1).

The viral infection diffuses over different interaction network configurations,
with events getting generated by either a multi-site mean-field (see [83]) or
an agent-based model. These configurations correspond to both common arti-
ficial generation methods, such as Erdős–Rényi [22], dual Barabási-Albert [72] or
Holme-Kim [38], and real interaction patterns. In practice, the graph connections
needed for conducting such fine-grained control would have to be inferred from a
monitoring system, like a digital tracing mechanism [65] or human mobility track-
ing via GPS [89], process which requires careful data anonymization. We assign
a transmission weight wj ∼ U(0.5, 1) to every edge j in our graphs, calculating
an interaction’s transmission probability by scaling wj with the base factor b. In
the multi-site mean-field simulations, stochasticity is ensured by the events sam-
pling procedure, which is efficiently performed using Gillespie’s algorithm [28].
In contrast, the agent-based model relies on sampled exposed-state and recovery
durations for each node, di ∼ N (e, 1), ri ∼ N ( 1ρ , 1), and the wj weights to induce
variability among individuals. For further details, please consult Appendix A.2.

3.2 Control Setup

Each epidemic is allowed to progress until at least ca days have passed since the
simulation began and a minimum of ci nodes become infected before the agent
commences its interventions. In the first day of control, the agent is informed
at random about the status of a proportion ck of the infected population, after
which it is only allowed to test k individuals and isolate kc contacts of recently-
detected positive nodes (i.e. in the previous 6 timestamps) per day. As the actor
is not aware of a node’s state unless it is a part of ck or it got tested recently,
the environment is partially observable. In this work, we fix ca = 5, ci = 5% and
ck = 25%, while the budgets are varied between experiments. A block diagram of
our framework, which includes the agents’ class hierarchy, is provided in Fig A1.

During evaluation, each agent is asked to select the top-k nodes to test and
the top-kc contacts to isolate every day, according to their appraisal of the epi-
demic and graph states. Consequently, this constitutes an instance of the subset
selection problem [79], where nodes that are traced by the system or found to
be positive are marked as isolating, becoming incapable of infecting other nodes.
In principle, those individuals remain disconnected from the graph, yet we allow
messages to continue flowing through their connections during the training phase
of the learning-based agents. Importantly, the process of tracing is assumed to
be carried with delays shorter than a day, which usually implies that a contact
tracing application is already deployed and functioning [26,107]. To evaluate the
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efficacy of each policy, we analyze the fraction of nodes kept healthy through the
entire epidemics and the corresponding infection curves.

3.3 Baseline and Learning Agents

In this study, we consider a wide variety of baseline agents for controlling the vi-
ral diffusion that leverage separate heuristics: Random samplers (or randag); Ac-
quaintance samplers (or acq); Centrality-based (e.g. Degree or deg, Eigenvector or
eig, PageRank or prank, Closeness, Betweenness); Neighborhood state-based (or
neigh). The latter is the only baseline that uses information about the epidemic
state, targeting the nodes that have the highest number of positively-detected
neighbors in their 2-hops vicinity via lexicographical ordering [66].

Aside from the above, when ranking the contacts of positives, additional in-
formation can be exploited through heuristic methods: the frequency with which
nodes appear in the neighborhood of detected cases. We derive two baselines from
the above: Frequency, which randomly samples nodes with probabilities propor-
tional to the individual frequencies (equivalent to the tracing mechanism studied
in the multi-site mean-field approach of [83]), and Backward, which greedily picks
the nodes with the highest frequencies (as per [51]).

We also propose a simple yet powerful extension to these baselines: recollec-
tion of recent negative test results. This effectively restricts the action space to
untested nodes in the past tn days, speeding up the network exploration. We set
tn = 3, an appropriate timeline for COVID-19 [95], which renders good results
empirically.

Our learning-based agents are inspired by the recent publication of [65], lever-
aging multiple GNNs due to their proven efficacy for targeting testing campaigns.
The abstract structure of our models remains similar to the previous work, with a
single-layered diffusion module and a long-range information module, followed by
two multi-layer perceptrons (MLPs), one that computes the node hidden states
hi, and another that defines the output space. However, our proposed solution fea-
tures several improvements or simplifications: First, we utilize two output MLPs
to produce a score for each vertex and a full state score from the same model,
thus sharing the embedding space between the two. Second, we employ a GATv2
layer in the diffusion module to leverage attention when aggregating information
from the immediate neighborhood of each node, and 3 GIN layers followed by a
fully-adjacent layer in the information module to improve the expressivity and
long-range information flow. Finally, after experimenting with different normal-
ization schemes to mitigate the issue of the exploding hidden states hi (problem
also outlined in the aforementioned study), we propose the usage of standard
scaling, which leads to stable training behaviors.

In addition to the above, we carefully scrutinised different combinations of
node features, choosing the following final set for training our policies: the degree
and eigenvector centralities, the number of infected vertices in the 1-hop and
2-hop neighborhoods, 5 random features that break structure symmetries, and 4
test-state features: a one-hot vector of size 3, marking the test status of node i
at the previous timestamp (untested, negative or positive), and a binary value
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marking whether the vertex has ever tested positive. To allow for the hidden states
to incorporate information from these features before the training commences,
we disable gradient updates for the first 11 passes.

The ranking of nodes can be performed by both a supervised learning (SL) and
a reinforcement learning (RL) agent, with little to no changes to the underlying
neural network architecture. The SL agent is trained as a simple node classifier
by optimizing a binary cross-entropy loss on the infection status of each vertex,
with the output space representing the next-step infection likelihood. In contrast,
our RL agent gets optimized via a surrogate PPO objective, which only needs
access to the total number of infected at each time point (for more details, refer
to Appendix A.3), ultimately solving for the criterion below, where E(t), I(t) and
R(t) are the number of individuals in each compartment at time t:

min

∞∑
t=t0

γt−t0(E(t) + I(t) +R(t)) (1)

Here, two reward functions can be used: negative of the number of infected or
the number of susceptible vertices at time t (corresponding models denoted as rl
and rlpos, respectively). The performance between the two varies due to numer-
ical reasons, but the differences are small (see Fig A5). Consequently, Section 4
features only the former in the summary tables.

To ensure sufficient exploration during training, the RL agent passes the raw
outputs of the ranking model through a softmax function that features a decaying
temperature, starting from ϵ = 0.5. Note that other strategies are also possible
here, including the transforms proposed in [64] and [65], but our simple alternative
proved sufficiently effective at exploring the state space. During evaluation, the
sampling process is turned off, greedy actions are taken instead, and the edges
connected to positively-identified vertices are masked before being fed to the
information module, limiting feature oversmoothing. In contrast, we allow the
single-layer diffusion GNN to utilize to the aforementioned links such that the
positive-related node features can pass through to their neighbors.

By comparing the training behavior of the SL and RL agents with the con-
tainment achieved by the centrality-based actors with recollection, we observe a
clear distinction between the two, as reflected by Fig 1. While the RL policy out-
performs all baselines in several episodes, despite not entering evaluation mode
as of yet (i.e. when exploration would be turned off), the SL policy struggles to
compete. Further evidence of the SL agent’s underperformance can be seen in the
plots of Fig A2, as well as in the extensive comparison previously conducted by
[65]. Consequently, we focus our main analysis in Section 4 on the policies derived
by the RL actors, comparing them against the rest of the baseline agents.
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Fig. 1. The learning agents’ training behavior. Results obtained by the centrality-
based agents and the random tester are plotted for comparison.

4 Results and Discussion

4.1 Prioritizing COVID Testing in Static Graphs

We first explore our agents’ policies in the context of targeted testing campaigns.
To that end, we investigate the fraction of nodes kept healthy throughout various
epidemics triggered across different network models when the budget of daily
testing k is fixed, while kc is set to 0. Once tested positive by the framework, a
node gets isolated and eventually acquires immunity, thus remaining uninfectious
until the end of the simulation. As stated previously, most of our setups assume
nodes do not spontaneously become uninfectious (i.e. ρ = 0), but for completeness
we present results for different full-recovery rates in Table 1.

Despite being trained for only 50 episodes on a single epidemic configuration
spanning a preferential attachment network of 1000 nodes, our reinforcement
learning agent consistently outperforms the other baselines across a range of
different network sizes (see Table 2), budgets (see Fig A4), and wiring configura-
tions (see Fig A5). Interestingly, as previously hinted by [65], the learning-based
agents poses a great generalization capability when the daily budgets scale with

Table 1. Fraction kept healthy with budget k = 1% and different recovery rates.
Average over 5 seeded runs for each of the considered 5 realizations of Barabási-Albert
networks with N = 1000 nodes and a mean degree of approximately 3. “w/R” denotes
agents with recollection of recent negative test results.

Agents ρ = 0 ρ = 0.01 ρ = 0.02 ρ = 0.03

Degree 0.555 ± 0.027 0.616 ± 0.034 0.662 ± 0.039 0.697 ± 0.039

Degree (w/R) 0.744 ± 0.032 0.769 ± 0.028 0.801 ± 0.028 0.847 ± 0.025

PageRank (w/R) 0.720 ± 0.026 0.755 ± 0.023 0.792 ± 0.037 0.834 ± 0.039

RL 0.822 ± 0.033 0.846 ± 0.026 0.876 ± 0.026 0.897 ± 0.026
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Table 2. Fraction kept healthy with budget k = 1% and different population sizes.
Average over 5 seeded runs for each of the considered 5 realizations of Barabási-Albert
networks with a mean degree of approximately 3. “w/R” denotes agents with recollection
of recent negative test results. Here, a single model is trained for 50 episodes on a
network of size 1000, but its policy is able to generalize to appreciably larger graphs.

Agents N = 500 N = 1000 N = 2000 N = 5000 N = 20000

Degree 0.533 ± 0.037 0.555 ± 0.027 0.552 ± 0.017 0.567 ± 0.027 0.557 ± 0.005

Degree (w/R) 0.731 ± 0.031 0.744 ± 0.032 0.736 ± 0.027 0.737 ± 0.025 0.746 ± 0.009

PageRank (w/R) 0.709 ± 0.019 0.720 ± 0.026 0.724 ± 0.021 0.729 ± 0.021 0.725 ± 0.008

RL 0.817 ± 0.032 0.822 ± 0.033 0.811 ± 0.024 0.821 ± 0.025 0.803 ± 0.026

Table 3. Fraction kept healthy for 1000 nodes. Results are averaged over 5 runs for
each of the 5 realizations of a configuration model built using real tracing statistics.

Agents k = 20 k = 50

Acquaintance (w/R) 0.465 ± 0.086 0.736 ± 0.085

Degree (w/R) 0.406 ± 0.020 0.746 ± 0.025

Eigenvector (w/R) 0.186 ± 0.013 0.409 ± 0.026

PageRank (w/R) 0.363 ± 0.016 0.668 ± 0.039

RL 0.506 ± 0.029 0.831 ± 0.047

the number of nodes, making possible a deployment into larger networks, irre-
spective of the training graph size and artificially without losing efficacy.

Several epidemic curves corresponding to prioritizing testing in 5000 nodes
graphs are shown in Fig A3. We note the random approaches perform strikingly
poorer than all our informed policies, while the impact of recollection is apparent.
Moreover, in spite of using recollection, the heuristics considered remained inferior
to the RL policy in terms of the average containment rate.

4.2 Prioritizing Testing in Dynamic Graphs

In the previous section, we analyzed scenarios in which the connections between
nodes remain fixed for the entire simulation. However, in practice, the interaction
patterns change over time. In Fig 2, we present boxplots of the percentage of
nodes kept healthy obtained by different agents on several preferential attachment
networks whose active edges are sampled every day (a uniform random fraction is
sampled daily from U [0.4, 0.8]). The reinforcement learning agent was retrained to
accommodate this dynamic context, allowing the model to pass messages through
the most recent edges only. The top performing policies were also evaluated on
dynamic networks built using statistics from a real contact tracing network [65],
the resulting average containments being displayed in Table 3.

4.3 Targeted Test and Trace Programmes

Next, we investigate the extent to which different combinations of agents tasked
with conducting testing and contact tracing under the constraints of a fixed
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Fig. 2. Infection control performance on different dynamic network architec-
tures. The uncertainties are shown as boxplots.

Fig. 3. Averaged epidemic curves and their standard deviations during test
and trace control. These are for 5000 nodes Barabási-Albert networks featuring a
mean degree of approximately 3, with a daily testing budget of k = 1% and no tracing
on the left, and k = 10 with a limit of kc = 25 traced contacts on the right. Two RL
agents are displayed: one trained for 50, and the another for 200 episodes.

budget can reduce the spread of a pathogen. For this problem, we train an RL
agent for 200 episodes on the same testing task as before, and compare the
resulting policy against the other baselines. Tables 4 and 5 confirm the RL tester
improves the overall quality of the test and trace programmes, irrespective of the
chosen tracer. That being said, employing the same agent to perform the ranking
of contacts as well generally improves the containment.

We also inspect the averaged epidemic curves associated with these targeted
test and trace campaigns when N = 5000. The results obtained by each agent
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Table 4. Percentage of nodes kept healthy for graphs of size 1000 and an approximate
mean degree of 3, with budgets k = 2, kc = 5. Averages over 5 runs for each of the
considered 5 realizations of the following: dual Barabási-Albert with m1 = 5, m2 = 1
(BA 5-1) and m1 = 10, m2 = 1 (BA 10-1), Holme-Kim (PC), and Erdős–Rényi (ER).

Agents (Test + Trace) BA 5-1 BA 10-1 PC ER

Random + Random 0.389 + 0.044 0.446 ± 0.060 0.131 ± 0.023 0.199 ± 0.023

Random + Frequency 0.387 ± 0.033 0.465 ± 0.059 0.202 ± 0.030 0.195 ± 0.022

Acquaintance (w/R) + Random 0.541 ± 0.054 0.657 ± 0.054 0.212 ± 0.031 0.215 ± 0.017

Acquaintance (w/R) + Frequency 0.582 ± 0.055 0.674 ± 0.059 0.228 ± 0.040 0.217 ± 0.021

Acquaintance (w/R) + Backward 0.591 ± 0.056 0.769 ± 0.080 0.213 ± 0.039 0.208 ± 0.019

Acquaintance (w/R) + RL 0.644 ± 0.048 0.806 ± 0.058 0.248 ± 0.038 0.217 ± 0.018

Degree (w/R) + Degree 0.764 ± 0.038 0.915 ± 0.032 0.528 ± 0.053 0.333 ± 0.037

RL + Random 0.818 ± 0.034 0.882 ± 0.026 0.542 ± 0.050 0.438 ± 0.043

RL + Frequency 0.832 ± 0.035 0.890 ± 0.033 0.567 ± 0.054 0.448 ± 0.048

RL + Backward 0.849 ± 0.033 0.923 ± 0.023 0.590 ± 0.058 0.434 ± 0.047

RL + Degree 0.853 ± 0.034 0.928 ± 0.014 0.614 ± 0.055 0.453 ± 0.039

RL + RL 0.876 ± 0.025 0.936 ± 0.009 0.620 ± 0.050 0.451 ± 0.039

Table 5. Percentage of nodes kept healthy when controlling epidemics over a dynamic
real interaction network of 74 vertices, derived from the Social Evolution dataset [59].
Averages over 5 runs for each of the considered 5 infection seeds. Test budget is k = 2.

Agents (Test + Trace) kc = 2 kc = 4

Random + Frequency 0.511 ± 0.130 0.659 ± 0.114

Acquaintance (w/R) + Frequency 0.494 ± 0.113 0.649 ± 0.089

Acquaintance (w/R) + Backward 0.522 ± 0.115 0.654 ± 0.126

Neighborhood (w/R) 0.620 ± 0.108 0.704 ± 0.107

Degree 0.614 ± 0.107 0.741 ± 0.084

Degree (w/R) 0.636 ± 0.104 0.750 ± 0.084

RL 0.711 ± 0.089 0.773 ± 0.069

is shown on the second column of Fig 3, with the first serving as a test-only
reference (i.e. values from Fig A3). As stated before, heuristics with recollection
bring large improvements over random policies, yet the RL agents outcompete
them in most setups. Note the performance of k = 50 tests is similar to k = 10
tests, but tracing up to kc = 25 contacts daily. While the balance between these
will depend on various factors, the results highlight the effectiveness of tracing.

4.4 Agents Interacting with Different Spreading Dynamics

To assess the ability of the agents to generalize to other spreading dynamics, we
compare their achieved containment rates recorded with both a multi-site mean-
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Table 6. Fraction kept healthy for 2000 nodes and an average degree of 3. Results
represent averages over 5 runs for each of the considered 5 instances of a dual Barabási-
Albert model (m1 = 10, m2 = 1). Testing budget is k = 2 and no tracing is conducted.

Agents Multi-site Agent-based

Random 0.164 ± 0.037 0.195 ± 0.034

Acquaintance (w/R) 0.251 ± 0.033 0.263 ± 0.035

Degree 0.390 ± 0.032 0.394 ± 0.029

Degree (w/R) 0.443 ± 0.032 0.457 ± 0.034

RL 0.468 ± 0.035 0.477 ± 0.034

Table 7. Fraction kept healthy for 2000 nodes and an average degree of 3. Results
represent averages over 5 runs for each of the considered 5 instances of a dual Barabási-
Albert model (m1 = 10, m2 = 1). Budgets are k = 2 and kc = 10.

Agents (Test + Trace) Multi-site Agent-based

Random + Random 0.372 ± 0.035 0.371 ± 0.042

Acquaintance (w/R) + Backward 0.633 ± 0.046 0.627 ± 0.053

Degree (w/R) + Degree 0.841 ± 0.034 0.809 ± 0.028

RL + Backward 0.867 ± 0.029 0.851 ± 0.030

RL + Degree 0.889 ± 0.026 0.856 ± 0.025

RL + RL 0.911 ± 0.020 0.882 ± 0.018

field and an agent-based model run with similar hyperparameters. The RL agent
retains all the learned parameters inferred from the previous experiments.

Despite the fact that the control mechanism in the mean-field case relies
on discretizing a continuous-time process, we observe minor differences between
the two simulation approaches (Tables 6 and 7). This confirms that the agents
continue to perform well irrespective of the underlying dynamics.

4.5 Explaining and Visually-Inspecting the Learning Agent’s Policy

To derive explanations for the decision taken by our reinforcement learning pol-
icy, we employ the GraphLIME algorithm, fitting multiple interpretable models
to the raw action-values the model outputs. Fig 4 presents the feature impor-
tances derived by GraphLIME for a given day in the early stages of an epidemic,
highlighting that the RL agent preferentially attends to the centrality features
when it does not possess enough information about the diffusion state. As soon
as the tester records positive individuals in the vicinity of a vertex, the rank of
the latter increases. After neighborhoods become filled with known infections, the
agent targets the affected sectors by focusing on the epidemic state features (see
Fig 5). As previous results also suggest, the degree remains an effective predictor
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for a node’s importance throughout the process. Interestingly, the untested flag
is often correlated with the action scores, which may indicate the agent favors
exploring unknown sectors or reinforcing testing in recently-targeted regions. To
put into perspective the significance of adaptability, we show in Fig 6 an example
where an RL tester starts by targeting the same node as a degree-directed policy,
but then quickly changes its behavior to also test bridging vertices. The ability
to plan ahead and adapt to potential threats leads in this case to a successful

Fig. 4. Explaining early predictions on a 200 nodes network using the β
importances from GraphLIME. Initially, the agent does not possess information
about the epidemic state, and as such, it focuses on the centrality features. Top row
displays each node’s feature values, while neighborhood averages are shown underneath.

Fig. 5. Explaining later predictions on a 200 nodes network using the β
importances from GraphLIME. During the later stages of an outbreak, the agent
shifts its focus towards the epidemic state features, like the previously untested and
positive flags, or the number of infected neighbors. Numbers in the the first row represent
each node’s feature values, while the second row displays the neighborhood averages.
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containment of the pathogen to the first cluster, while the degree agent is unable
to stop the infection of every community. We note the RL infers that bridges are
important transmission vehicles in spite of never computing the time-consuming
betweenness centralities (also see Appendix A.1). Considering the promising re-
sults exhibited by our RL policy, we hypothesize that useful patterns emerge
within the ranking model’s hidden states hi. To verify our assumption, we plot
t-SNE mappings and dendrograms for these embeddings across different days
(refer to Fig A6). The detected positives (colored in blue) have a tendency to be
grouped together, while new infections (red) get pushed to a handful of clusters
within the same region. Such visualizations could be used for scrutinizing the
actions of an agent or deriving effective community-wide health interventions.

(a) Degree w/ R: a high degree node is targeted. (b) Degree w/ R: all communities get infected.

(c) RL: a high degree node is targeted. (d) RL: only first community stays infected.

Fig. 6. Visualization of the spread for the Degree w/R and the RL agents.
This corresponds to a stochastic-block network [37] with three communities. Suscepti-
bles are green, exposed yellow, infectious orange, and detected blue. In the first day, the
two policies are identical, but later on the RL agent preferentially targets the bridges.
(Color figure online)

5 Conclusion and Future Work

In this study, we show how policies for controlling an epidemic through testing
and tracing in a resource-limited environment can be learned using expressive
graph neural networks that can integrate both local and long range infection
dynamics. Across many different scenarios, a policy inferred by a reinforcement
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learning agent outperforms a wide range of ad-hoc rules drawing from the connec-
tivity properties of the underlying interaction graph, achieving containment rates
of up to 15% higher than degree-based solutions with recollection, and more than
50% higher than random samplers. Interestingly, our agent also exhibits strong
transferability, with one model trained on small preferential attachment networks
being able to control the viral diffusion on several graphs of tens of thousands
of vertices and diverse linkage patterns. While building on previous efforts [65],
we explore the role of contact tracing, compare different ways of modelling the
infection spread (multi-mean-field versus individual agent-based), and scrutinize
a varied set of heuristics. Exploring further epidemic configurations and assessing
the proposed test and trace framework on real region-level data would constitute
natural extensions to this work.

Additionally, we demonstrate how orderings derived by the deep learning
model can be interpreted using the node features, as well as propose visualization
strategies for the cluster structures that arise in the latent space of the ranking
module. We believe future work could expand on the aforementioned ideas to
derive more effective public health interventions and decision-making appraisals.

Acknowledgements. We thank Dr Eli Meirom for correspondence clarifying certain

aspects from their study. MN was funded by EPSRC grant EP/S000356/1 Artificial

and Augmented Intelligence for Automated Scientific Discovery. AR was funded by the

EPSRC via a scholarship from the University of Southampton.

A Appendix

A.1 Performance Analysis

We compare the mean total elapsed time for running epidemics using each of
our testing agents in Table A1. These results corresponds to the wall clock time
recorded on an average Windows machine equipped with an Intel i7-7700 CPU,
an NVIDIA RTX 3060 GPU and 32GB of random access memory.

Table A1. Average wall clock time per epidemic during evaluation. Configuration:
Barabási-Albert networks of 2000 nodes, an average degree of approximately 3, and a
daily testing budget of k = 2.

Agents Wall time (s) Agents Wall time (s)

Random 1.12 Acquaintance (w/R) 1.12

Degree 3.23 Degree (w/R) 3.19

Closeness (w/R) 787.33 Betweenness (w/R) 1176.32

Eigenvector (w/R) 7.8 Pagerank (w/R) 6.39

Neighborhood (w/R) 1.49 RL/SL 15.92
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A.2 Epidemic Modelling

All our epidemic models rely on the SEIR compartmental formulation, but the
diffusion process remains bound by the interaction network configuration.

The multi-site mean-field models considered in this work rely on exponential
waiting times sampled via Gillespie’s algorithm to obtain subsequent events, with
the state transition probabilities defined as follows:

p(S → E) = bwj△t

p(E → I) = e−1△t

p(I → R) = ρ△t,

(2)

where b is the base transmission rate, wj are time-dependent edge weights, e is
the exposed state duration, ρ is the recovery rate, while △t is a time interval.

In contrast, the agent-based model loops through every node i at every time
step, executing the appropriate transition events when one of the normally-
distributed samples (di or ri) decreases to 0. Concurrently, every edge j is visited
to check whether an infection event occurs over that connection, according to the
transmission probability defined in Eq 2.

A.3 Algorithmic Details for the Proximal Policy Optimization

We start by reminding the reader about some general reinforcement learning
quantities and relations:

Â
(γ,0)
t (at; θ) = δγt (θ) = Rt + γV (st+1; θT )− V (st; θ)

Â
(γ,1)
t (at; θ) = Gγ

t − V (st; θ)

Â
(γ,λ)
t (at; θ) =

T∑
l=0

(γλ)lδγt+l(θ)

rORIG
t (θ) =

π(at|st; θ)
π(at|st; θk)

rSARSA
t (θ) =

π(at|st+1; θ)

π(at|st; θk)

(3)

In Eq 3, Rt is the reward obtained by the agent after taking action at ∼
π(a|st; θk) and transitioning from state st to st+1. The value of a given state
s is approximated using a neural network V (s, θ), which, together with Rt and
the discount factor γ, determines the TD-error δγ ; θk parameterizes the acting
policy, θT is a delayed state of θk that parameterizes the regression target in
online learning [69], rORIG

t (θ) denotes the ratio between a policy parameterized
by a given θ and the acting policy, while rSARSA

t (θ) represents an alternative
formulation for the latter that replaces the numerator with the policy of θ evalu-

ated at the next state st+1. Finally, the Â
(γ,λ)
t terms represent different forms of

the advantage function, as given by [87], with the special cases λ = 0, when the
advantage is equal to the TD-error, and λ = 1, when the minuend of the RHS
equation is the discounted return of the episode, Gt.
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We rewrite the Proximal Policy Optimization (PPO) equations in terms of
the quantities above in Eq 4, where E , c1 and c2 are hyperparameters, clip(.) is
a function that clips its argument to the specified range, transform(.) is a func-
tion that modifies the gradient descent update according to a specific optimizer
(e.g. Adam [47]), while Ht(θ) is an entropy regularizer [31]. In contrast to the
original formulation, Eq 5 describes our proposed modification of PPO to allow
for optimizing the objective in a memory-efficient online manner. In particular,

we rewrite the loss terms using the one-step advantage function Â
(γ,0)
t (at; θ),

and introduce an intermediary operation that accumulates the gradients of our
modified loss using a unified eligibility trace [100], in a similar fashion to the
methodology employed by [50], obtaining a backward-view approximation of the

generalized advantage estimate Â
(γ,λ)
t in the process [87]. We note that, by setting

rt = rSARSA
t , we can eliminate the requirement of storing st in memory for the

subsequent timestamp, while retaining the benefits of ratio clipping. This works
well empirically since major shifts between st+1 and st are not common in our
environment. Based on previous work and our own assessment, we set γ = 0.99,
λ = 0.97, E = 0.2, c1 = 0.5, c2 = 0.01, and update the target value network every
5 episodes across all our experiments.

LCLIP
t (θ) = min[rt(θ)Â

(γ,λ)
t (at; θ), clip(rt(θ), 1− E , 1 + E)Â(γ,λ)

t (at; θ)]

LV F
t (θ) = [Â

(γ,1)
t (at; θ)]

2 Ht(θ) = −
∑
a∈A

π(a|st; θ) log π(a|st; θ)

LPPO
t (θ) = Et[−LCLIP

t (θ) + c1LV F
t (θ)− c2Ht(θ))]

θk+1 = argmin
θ
LPPO
t (θ)

(4)

LOCLIP
t (θ) = min[rt(θ)Â

(γ,0)
t (at; θ), clip(rt(θ), 1− E , 1 + E)Â(γ,0)

t (at; θ)]

LOV F
t (θ) = [Â

(γ,0)
t (at; θ)]

2 Ht(θ) = −
∑
a∈A

π(a|st; θ) log π(a|st; θ)

LOPPO
t (θ) = −LOCLIP

t (θ) + c1LOV F
t (θ)− c2Ht(θ)

Et = γλEt−1 +
∇θkLOPPO

t (θk)

s
, with s = δγt (θk) or s = 1

∆θk = transform(δγt (θk)Et)

θk+1 = θk −∆θk

(5)
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A.4 Supporting Figures

Fig.A1. Block diagram of our control framework. The Agent is passed as a
parameter to the Simulator, and every time the latter samples enough events for the
conditions to be met, a call to the control(.) method of the first is performed. The afore-
mentioned function performs some preprocessing steps, and then calls control test(.) and
control trace(.), which are responsible for the actual node ranking and are specific to
each type of agent. Combinations of agents can be selected with the MixAgent.

Fig.A2. Infection control performance on different network architectures of
1000 nodes and a daily testing budget of k = 2. Uncertainties shown as boxplots.
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Fig.A3. Epidemic curves for different network and epidemic seeds. These
correspond to multiple 5000 nodes Barabási-Albert networks featuring a mean degree
of 3, with a testing budget of k = 1%. Here, two versions of the RL agent are displayed:
one trained for 50, and one trained for 200 episodes. The y-axis limit is set to 3200 to
facilitate the comparisons, yet the random agents perform poorer than this level.
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Fig.A4. Infection control performance on different static network architec-
tures with varying budgets. The uncertainties are shown as boxplots.
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Fig.A5. Infection control performance on different static network architec-
tures and sizes, with a budget of k = 2. Uncertainties are shown as boxplots.
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Fig.A6. t-SNE plots of the node hidden states and dendrogram correspond-
ing to their hierarchical clustering into 10 groups. As can be observed, the agent
mostly groups detected (blue) nodes in a region of the space, while the new undetected
infections (red) are predicted to appear within the risk regions on the right. Recent
negative results are plotted as dark green. The dendrogram on the right displays the
cardinality and the infection probability associated with each cluster.
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A.5 Control Framework

The logic behind our epidemic control framework in the continuous-time sim-
ulation scenario is outlined in Algorithm 1. The class hierarchy of the agents,
together with their logic, can be consulted in Algorithm 2. Refer to Table A2 for
details about the variables involved in these.

Table A2. Legend for the control framework pseudocode.

Name(s) Description(s)

R GNN-based ranking model (shared across all epidemics).

Econf Episode configuration. Consists of tuples mapping an episode ID (eid) to its
exploration-control variable eϵ.

Sconf Simulation configuration. Enum that defines the maximum network, infec-
tion and event seeds, which in turn control the range of the loops over each
seeded configuration.

snet, sinf , sev Interaction network, infection and event seeds.

Np, Sp, Ap Interaction network, simulator and agent hyperparameters. Ap contains the
sampling strategy st and learning rate lr.

N , S, A Interaction network, simulator and agent main objects.

ic, iu Iterators for time-discretized events: dynamic control and edge-updating in-
teraction events.

e, t Interaction event enum and its corresponding time value.

ktst, kct Daily budgets for testing and contact-tracing isolations.

ctst, cct Sensible candidates to rank for testing and tracing.

ntst, nct Nodes chosen by the agent for testing and tracing.

d Boolean that determines whether the action is sampled or greedily taken
from top-k ranking.

st Sampling strategy employed by the RLAgent. This can be one of the follow-
ing: ’softmax’, ’escort-transform’ [64], ’nvidia-explore’ [65].

m Node ranking scores computed by a specific agent.

v Epidemic state score computed by the GNN ranking model.

B Replay buffer for the offline RLAgent.

L Last step information required by the online RLAgent.

a, log πa Sampled action and its corresponding log of probability.

rt−1 Reward of previous action taken (i.e. for action sampled and executed at
time t− 1).
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Algorithm 1 Epidemic control framework

1: global variables
2: R ▷ GNN ranking model
3: end global variables
4: procedure run epidemic(Econf , Sconf , Np, Sp, Ap)
5: for each (eid, eϵ) ∈ Econf do ▷ Episode ID and ϵ
6: for snet ∈ {0, . . . , Sconf .max net seed} do
7: ▷ N keeps in memory the edges over all timestamps
8: N ← init net(Np, snet)
9: for sinf ∈ {0, . . . , Sconf .max inf seed} do

10: S ← init simulator(Sp, sinf , N)
11: A← init agent(Ap, R, eid, eϵ)
12: ic ← 0 ▷ Iterator for control timestamps
13: iu ← 0 ▷ Iterator for edge-update timestamps
14: for sev ∈ {0, . . . , Sconf .max event} do
15: e← S.sample next event()
16: t← e.time
17: S.run event(e, N)
18: if S.should control(N , t, ic) then
19: ic ← ⌊t⌋ ▷ Floor function
20: (ntst, nct) ← A.control(N , ic)
21: S.update states(N , ntst, nct)
22: ic ← ic + 1
23: end if
24: if S.should update edges(N , t, iu) then
25: iu ← ⌊t⌋
26: N .update edges(iu)
27: iu ← iu + 1
28: end if
29: end for
30: ▷ Logging & offline parameter updates (if any)
31: A.finish(N)
32: end for
33: end for
34: end for
35: end procedure
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Algorithm 2 Control agents’ hierarchy

36: struct Agent
37: ktst, kct ▷ Budget for testing and contact tracing
38: procedure control(N , ic)
39: ctst ← candidates test(N , ic)
40: ▷ Calls control both by default; can be overridden
41: ntst ← control test(N , ctst, ktst)
42: cct ← candidates trace(N , ic, ntst)
43: ▷ Calls control both by default; can be overridden
44: nct ← control trace(N , cct, kct)
45: return (ntst, nct)
46: end procedure
47: end struct
48: struct MeasureAgent(Agent)
49: d ▷ Boolean controlling if sampling or top-k ranking
50: procedure control both(N , c, k)
51: ▷ Compute score for each node in c; RL samples k nodes
52: m← compute measures(N , c, k)
53: if d then
54: return c[argtopk(m, k)] ▷ Heap sort top-k ranking
55: else
56: return m
57: end if
58: end procedure
59: end struct
60: struct SLAgent(MeasureAgent)
61: lr ▷ Learning rate; if 0, evaluation mode is assumed
62: procedure compute measures(N , c, k)
63: if lr > 0 then
64: (m, v) ← R.forward(N) ▷ Message passing
65: backprop loss(N , m) ▷ BCE on infection status
66: else
67: (m, v) ← R.forward(subgraph(N , c))
68: end if
69: return m
70: end procedure
71: end struct
72: struct RLAgent(MeasureAgent)
73: lr ▷ Learning rate; if 0, evaluation mode is assumed
74: st ▷ Action sampling strategy (e.g. softmax)
75: eϵ ▷ Sampling noise (i.e. ϵ-greedy, softmax temperature)
76: B ▷ Replay buffer; if null, conduct online learning
77: L ▷ Keep last step information for online learning
78: procedure compute measures(N , c, k)
79: if lr > 0 then
80: ▷ Reward of previous action
81: Rt−1 ← −N .num infected()
82: (m, v) ← R.forward(N) ▷ Message passing
83: (a, log πa) ← sample(m, k, st, eϵ) ▷ Sample action
84: ▷ Existence of B determines training online/offline
85: if B is null then
86: ▷ Compute online RL objective
87: ▷ Using m, {st−1, at−1} ∈ L to compute log πat−1

88: backprop loss(Rt−1, L, m, v)
89: L.clear()
90: ▷ Add (st, at, log πat , Vt) to one-step buffer

91: L.add(N , a, log πa, v) ▷ log πa used for rSARSA
t

92: else
93: ▷ Add (Rt−1, st, at, log πat , Vt) to replay buffer
94: B.add(Rt−1, N , a, log πa, v)
95: end if
96: else
97: (m, v) ← R.forward(subgraph(N , c))
98: end if
99: return m
100: end procedure
101: end struct
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