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Abstract. Currently, the robustness of most Wi-Fi sensing systems is
very limited due to that the target’s reflection signal is quite weak and
can be easily submerged by the ambient noise. To address this issue, we
take advantage of the fact that Wi-Fi devices are commonly equipped
with multiple antennas and introduce the beamforming technology to
enhance the reflected signal as well as reduce the time-varying noise. We
adopt the dynamic signal energy ratio for sub-carrier selection to solve
the location dependency problem, based on which a robust respiration
sensing system is designed and implemented. Experimental results show
that when the distance between the target and the transceiver is 7 m,
the mean absolute error of the respiration sensing system is less than
0.729 bpm and the corresponding accuracy reaches 94.79%, which out-
performs the baseline methods.
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1 Introduction

Internet of Things (IoT) technologies are increasingly used in smart homes,
smart cities, etc. Among these technologies, wireless sensing has attracted much
attention from both the academic and industrial fields, due to its advantages of
non-intrusive and privacy-preserving.

There are a variety of wireless signals in our daily life, among which Wi-Fi
is the most common one in indoor environments. Cisco Annual Internet Report
(2018–2023) shows that the number of public Wi-Fi hotspots will be nearly 628
millions by 2023, 4 times more than that in 2018. Therefore, wireless sensing
based on the Wi-Fi signal is promising to achieve truly seamless access, attracting
a great deal of research and leading to lots of breakthroughs. In 2000, Bahl et al.
[1] proposed to use RSS for indoor localization and implemented Radar based on
Wi-Fi for the first time. Youssef et al. [21] designed a high-precision positioning
system named Horus, whose average positioning error reached 0.6 m. However,
RSS is inaccurate and susceptible to multi-path effects, and thus cannot be used
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for fine-grained sensing. In 2011, Halperin et al. [3] released the CSI Tool, which
enables the extraction of CSI (i.e., Channel State Information) from commercial
Wi-Fi devices (e.g., the Intel 5300 NIC). Compared with RSS, CSI is more fine-
grained and sensitive to the environment, and has been widely used for human
behavior sensing, such as trajectory tracking [4,8,18,20,23], respiration sensing
[7,9–12,17,23–28], gait detection [13,15,19,22], gesture recognition [2,5–7,16].

However, most existing Wi-Fi sensing systems are still in the lab stage and
there are some major issues preventing their practical deployment. One of the
issues is that the sensing range of Wi-Fi based systems is very limited, not even
effectively cover a room, as the target’s reflection signal is quite weak. Another
issue is location dependency, i.e. the sensing performance degrades greatly once
the target’s location varies. Thereby, how to effectively overcome the above prob-
lems and implement a robust Wi-Fi sensing system is a prominent challenge.
To this end, we take advantage of the fact that Wi-Fi devices are commonly
equipped with multiple antennas and introduce beamforming to enhance the
target’s reflection signal, which help improve the system’s sensing ability in
long-range scenario. Meanwhile, to address the location dependency problem, we
propose an sub-carrier selection algorithm based on the dynamic signal energy
ratio.

The main contributions of this paper are as follows:

– We built a beamforming-based Wi-Fi sensing platform using commercial Wi-
Fi devices, based on which both delay and sum beamforming algorithms were
implemented.

– To address the location dependency problem, we proposed an optimal sub-
carrier selection algorithm based on the dynamic signal energy ratio.

– Based on the built Wi-Fi sensing platform, we implemented a robust respira-
tion sensing system, which outperforms the state-of-the-art baseline methods.

The rest of the paper is organized as follows. In Sect. 2, we discuss the relevant
work briefly. Then the beamforming algorithm and the respiration sensing system
are presented in Sect. 3 and Sect. 4, respectively. In Sect. 5, we evaluate the
performance of the proposed system. Finally, the paper is concluded in Sect. 6.

2 Related Work

This section presents recent advances in the field of respiration detection based
on wireless sensing.

Sensing Range: Generally, the solutions to the limited sensing range can be
divided into two categories according to the processing stage [14]. One is to
strength the signal at the source. For example, LoRa, a signal used for long-
range communication in the IoT, was used for sensing in [27]. The other is to
enhance the received signal with proper processing. For instance, FarSense [26]
assumed that the time-varying random phase shifts are similar at different anten-
nas on the same receiver, and eliminate the noise by dividing the CSI readings.
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However, the CSI obtained from either receiving antenna contains target motion
information, leading to the destruction of phase information after dividing. EMA
[23] proposed the sensing signal-to-noise ratio (SSNR) to measure the sensing
ability of received signal, and combined the CSIs on multiple antennas by the
optimal weight vector that maximize SSNR to enhance them.

Robustness: FullBreath [24] analyzed the widely existing location dependency
problem using only magnitude or phase information, and proposed to use the
complementary of magnitude and phase to solve the problem. Zhang et al. pre-
sented a new idea of using the curvature curve of target reflection signal to solve
the location dependency problem in [27], which also alleviated the problem of
insufficient spatial resolution due to the limited number of antennas. MultiSense
[25] took the difference of sensing ability of sub-carriers into account, and per-
formed a sub-carrier filtering and merging algorithm based on respiration energy
to improve the robustness.

3 Beamforming

Beamforming, also known as spacial filtering, is to adjust the amplitude and
phase of multiple signals so that the signals interfere with each other in the
desired direction to be enhanced or weakened. There are many ways to implement
beamforming, the most common of which is based on the antenna array.

3.1 Preliminary

Antenna array is a set of antennas arranged according to certain rules. The
simplest of them is the equally spaced line array (hereafter referred to as line
array) in which the array elements are arranged at equal intervals on a straight
line, as shown in Fig. 1.

Fig. 1. Application scenario and structure of equally spaced linear array.

Let the antenna interval of the n-element line array be d, the wavelength of
the signal be λ, and the angle of arrival be θ. In the far field, the received signals
can be expressed as
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y1 = δ(t)ejφ(t)(hs,1 + se−j
2π(1−1)d sin θ

λ + ε1)

y2 = δ(t)ejφ(t)(hs,2 + se−j
2π(2−1)d sin θ

λ + ε2)
...

yn = δ(t)ejφ(t)(hs,n + se−j
2π(n−1)d sin θ

λ + εn)

(1)

where hs,k is the static path signal, s and e−j
2π(k−1)d sin θ

λ are the complex coef-
ficient including amplitude and common phase, and the phase difference of the
target reflected signals, respectively, εk is the additive Gaussian white noise
(AWGN), δ(t) is the automatic gain noise (AGN), and φ(t) is the random phase
offset.

To facilitate the description, we have the following equation

Y = δ(t)ejφ(t)(Hs + As + N) (2)

where Y = [y1, y2, · · · , yn]T, Hs = [hs,1, hs,2, · · · , hs,n]T, N = [ε1, ε2, · · · , εn]T,
A = [1, e−j 2πd sin θ

λ , · · · , e−j
2(n−1)πd sin θ

λ ]T.

3.2 Delay and Sum Beamforming (DSB)

In order to enhance the signals, what we need to do is to find a proper weight
vector W = [w1, w2, · · · , wn]T to combine the CSIs. The most comprehensible
one is Delay and Sum Beamforming, which is based on the vector addition
principle i.e. | a + b |≤| a | + | b |, and the equal sign holds when and only
when a and b are in same direction. Therefore, in order to enhance the signal,
we need to perform the following steps: 1) align the signal; 2) sum them up.

Note that it is the target reflection signal that we want to enhance. As can
be seen from Eq. 2, the phase differences of the target reflection signals are
determined by A, so the simplest way to align them is to multiply them by AH.
Then all we need to do is sum them up. In general, we can take the weight vector
as

WDSB = e−jα · AH = e−jα · [1, ej 2πd sin θ
λ , · · · , ej

2(n−1)πd sin θ
λ ] (3)

The following is a simple example to illustrate the effect of the beamforming
algorithm. As shown in Fig. 2, two original CSIs are shown on the left and the
beamformed one is on the right, where green arrows are the static path signals,
red ones are the target reflection signals, and purple ones are the ambient noises.
The two CSIs on the left side are y1 = hs,1 + hd,1 + ε1 = (6 + 3i) + (−1 +
4i) + (−1.41 − 1.41i) and y2 = hs,2 + hd,2 + ε2 = (−4 − 8i) + (5 + i) + (2i),
where hd,2 and hd,1 has a phase difference of δφ = 92.7◦ = 1.61rad. According
to Eq. 2, we have the weight vector WDSB = [1, ej 2πd sin θ

λ ] = [1, ej 2πd sin 1.61
λ ],

which rotates the second CSI counterclockwise by 1.61 rad in the complex plane,
thus aligning the dynamic vectors of CSIs. Then we sum the vectors and get
ycomb = hs,comb+hd,bomb+εcomb = (14−0.61i)+(−2.24+8.95i)+(−3.41−1.51i),
where hd,comb is 2.24 times as large as hd,1, hs,comb is 2.08 times as large as hs,1
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Fig. 2. A simple example of Delay and Sum Beamforming. (Color figure online)

and εcomb is 1.87 times as large as ε1, respectively. Obviously, the dynamic
vector increases most significantly, which means that the dynamic path signal is
enhanced and our approach works.

3.3 Beam Nulling

As shown in Eq. 2, the actual CSI also contains time-varying random phase shifts
such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO), and
automatic gain noise, components that invalidate the sensing methods based
on CSI timing. FarSense [26] in which the CSI of the two antennas are divided
effectively eliminate these noises, but related studies [25,27] demonstrated that
the phase of the sensed signal is corrupted due to the dynamic information
contained in the denominator. In the following, we present a beamforming-based
method (hereinafter referred to as Beam Nulling) to eliminate the above noise
without destroying the phase information.

In the previous subsection, we used a weight vector to enhance the target
reflection signal by the DSB algorithm. Here, we can also use another weight
vector to achieve our goal, but note that here we are tring to nulling it instead
of enhancing. Therefore, we can describe the Beam Nulling problem as follows.

ynull = δ(t)ej(φc+φs)(WnullHs + WnullAs + WnullN)
s.t. WnullA = 0

(4)

Analytical solution of the above problem cannot be found because the
unknown dynamic path signal is only a part of the CSI and is unknown. However,
we can find an approximate solution instead. To obtain an approximate solution,
we introduce a metric named dynamic signal energy ratio as an indicator to solve
the problem using a stochastic optimization algorithm.
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Definition 1. Dynamic signal energy ratio (DSER) is the ratio of the energy
of the dynamic path signal to the total energy in the spectrum. The calculation
consists of two steps:

1. Perform Fast Fourier Transform (FFT) within a time window to obtain the
spectrum of different signal components;

2. Calculate the ratio of the energy of the dynamic components to the total
energy.

According to the above definition, the Beam Nulling problem can be trans-
formed into a dynamic signal energy minimization problem. The algorithm is
described as follows

Algorithm 1. Beam Nulling Algorithm
Input: CSI: CSIs of multiple antennas in one time window; fs: Sampling frequency;

fl: Dynamic component frequency lower bounds; fh: Dynamic component frequency
upper bounds;

Output: optimal Wnull
∗;

1: random initial W 0
nu ll ;

2: repeat
3: combine signals with weights Wk

nu ll , i.e. Y k = Wk
nu ll · CSI;

4: apply fast fourier transform to Y k to obtain the energies Ek of each component
and corresponding frequencies F ;

5: calculate dynamic signal energy ratio DSERk =

∑

fl≤Fi≤fh

Ek
i

∑
Ek

i

;

6: calculate the value of Wk+1
nu ll ;

7: until (
∣
∣
∣W

k+1
nu ll −Wk

nu ll

∣
∣
∣ < 10−5)

After obtaining the approximate most weight matrix Wnull
∗, a reference

signal without contain dynamic information and applied to eliminate random
phase shift and automatic gain noise, that is

y∗ =
ybeam

ŷref
=

�����δ(t)ejφ(t)(WHHs + WHAs + WHN)
�����δ(t)ejφ(t)(W ∗

nullHs + W ∗
nullN)

≈ WHHs

W ∗
nullHs

+
WHA

W ∗
nullHs

s +
WHN

W ∗
nullHs

(5)

3.4 Verification of Beamforming

After the above processing, we enhance the target reflection signal and eliminate
the random phase shift and auto gain noise to obtain a signal with higher sensing
ability. In this subsection, we verify the effectiveness of the beamforming and
beam nulling algorithms by a sliding experiment.
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Figure 3(a) and Fig. 3(b) are the experimental scenario and setting for slide
experiment, respectively. In this experiment, we put the slide with a length of
1 m on the vertical bisector of the transceiver at 5–6 m, and let the slider with
the thick metal plate move slowly and uniformly from 5 m to 6 m and collect CSI
packets. The change of the length of the reflection path Δx = 2× (

√
62 + 1.52 −√

62 + 1.52) = 1.929 m. According to the Fresnel zone model, it is known that
the metal plate theoretically crosses Δx

λ
2

= 74.4 boundaries of the Fresnel zone
and corresponding to a waveform with 37.2 periods, where the wavelength of the
5785 MHz signal is λ = 3×108

5785×106 = 0.0519 m. Then we take 1000 of the 5990 CSI
packets collected, which corresponding to a signal with 1000

5990 ×37.2 = 6.2 periods
theoretically, and process them with our proposed approach. Below we give the
experimental results.

Fig. 3. Experimental scenario (a) and setting (b) for slide experiment.

As shown in Fig. 4, it is obvious that the amplitude increases significantly
in Fig. 4(b) and Fig. 4(c), which indicates that the beamforming enhances the
intensity of the target reflected signal. In addition, the patterns of the signals in
Fig. 4(b) and Fig. 4(c) are identical to those in Fig. 4(a) and have 6 full periods
included, which is consistent with the theoretical value.

Fig. 4. Effect of beamforming on signal amplitude, (a), (b), (c) are the waveforms of
the amplitude of the original CSI, beamformed CSI and beam-nulled CSI, respectively.
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We also analyze the effect of beamforming on phase, as shown in Fig. 5. Unlike
the amplitude results, the phase waveforms of both the original and beamformed
signals are quite heterogeneous and do not reflect any motion pattern, but the
beam-nulled signal in Fig. 5(c) shows an obvious periodicity as amplitude wave-
form in Fig. 4(a).

Fig. 5. Effect of beamforming on signal phase, (a), (b), (c) are the waveforms of the
amplitude of the original CSI, beamformed CSI and beam-nulled CSI, respectively.

The above analysis leads us to the following conclusions. Our proposed beam-
forming algorithm can effectively enhance the target reflection signal while main-
taining the pattern and periodicity of the original signal. What’s more, the beam
nulling algorithm in this paper can recover the phase information of the signal
from the noisy original signal.

4 Respiration Sensing System

This section first introduces the mechanism and solution of position dependency,
and then introduces the respiration sensing system proposed in this paper.

4.1 Location Dependency

Currently, most of the respiration sensing algorithms are based on the amplitude.
Considering the original signal phase information in the previous section, this
phenomenon is not difficult to understand. However, this approach suffers from
a serious location dependency problem, i.e., the sensing ability of the signal
declines severely when the target is only at different locations which causes the
same signal change.

Figure 6 uncovers the reason for position dependency problem. Although both
the static path signal (green arrow) and target reflected signal (red or yellow
arrow) changes are the same in the above figure, but the amplitude of the fluc-
tuations of the synthesized signal (blue arrow) varies greatly. The amplitude
fluctuation of the synthesized signal is the smallest when the change range of
the target reflection signal is symmetric about the static path signal while the
amplitude fluctuation of the synthesized signal is the largest when the change



Robust Respiration Sensing Based on Wi-Fi Beamforming 11

Fig. 6. The mechanism underlying the location dependence problem. (Color figure
online)

range of the target reflection signal is symmetric about the vertical line of the
static path signal.

The fundamental reason is that the synthetic signal used for sensing is influ-
enced by the static path signal in addition to the target reflected one. Therefore,
a possible way to solve this problem is to remove the static path signal from
the synthesized signal. To remove the static component, we do band-pass fil-
tering in frequency domain, retaining only the frequency components in the
respiration band, thus solving the location dependency problem by using the
location-independent target reflected signal features.

4.2 Respiration Sensing

We depict the respiration sensing process in Fig. 7, which is divided into three
main steps, i.e. pre-processing, respiration feature extraction and target detec-
tion.

Fig. 7. The process of respiration sensing algorithm.

Pre-processing The purpose of pre-processing is to enhance the target reflec-
tion signal, reduce noise and select the optimal sub-carrier.

For each sub-carrier of the original CSI, a angle range from −80◦ to 80◦ is
scanned in steps of 1◦. At each scanning step, a weight vector of DSB algorithm is
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computed, and then the CSIs are weighted and summed to obtain the synthetic
signal. After that, we take 30 s as the time window, 0.1 ˜0.5 Hz as the respiration
belt, using Algorithm 1 to approximate the optimal weights and constructing a
reference vector to eliminate time-varying errors.

Breathing Feature Extraction. We found that the sensing ability of dif-
ferent sub-carriers are quite different through a large number of experiments.
Thus DSER is used as an indicator to select the sub-carrier with the strongest
respiration energy for the following steps to ensure the quality of respiration
features.

In order to extract the respiration features, we perform band-filtering on
the optimal sub-carrier, and only retain the energy of the components in the
respiration frequency band, so as to obtain the frequency-direction spectrum as
in Fig. 8(a) and the filtered signals. As Fig. 8(a) shown, there is a target in the
5◦ direction with a respiration frequency of 0.3 Hz.

Fig. 8. An spectrum example of respiration sensing. (Color figure online)

Target Detection. To avoid the effect of side lobes, our target detection algo-
rithm is divided into three steps, namely frequency scanning, direction scanning
and timing detection, which means that we simultaneously utilize the informa-
tion of three dimensions of frequency, space and time.

When scanning the frequency, we extract the maximum energy of a certain
frequency in all directions within the respiration range as the energy of the
frequency. Then a reasonable threshold that is calculated with the maximum and
minimum energies is set to filter out the energy peaks greater than it to obtain
candidate frequencies. For example, we get a candidate frequency of 0.3Hz in
Fig. 8(b), where the green line is the threshold.

For each candidate frequency, the next step is to scan each direction. We
extract the energy-direction curve from the direction-frequency spectrum and
perform the same way as frequency scanning to obtain candidate directions. We
get a candidate direction of 5◦ in Fig. 8(c).

For each candidate direction of each candidate frequency, we take out the
filtered signal and use the short-term auto-correlation function to obtain the
corresponding respiration rate.
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After performing the above steps, our system will output the target’s respi-
ration rate.

5 Evaluation

5.1 Experiment Setup

Our system uses a TP-Link wireless router as the transmitter, whose frequency
is set to 5785 MHz, the receiver is a PC equipped with an Intel 5300 NIC and
three omnidirectional antennas, and CSI Tool in [3] is used to collect CSI. During
the experiment, both the transmitter and receiver are at a height of 85cm, and
subject breathes naturally with a metronome.

The experimental parameters were set as follows unless otherwise specified.
The sampling frequency is set 100 Hz, the distance between transceiver is 3 m,
and the subject is located at 4 m on the vertical bisector of the transceiver. We
collect 150 s of CSI at each sampling point and process it in segments.

In order to evaluate the system, the indicators used are described here. Target
distance is half of the sum of the distance between the target and the transceiver,

i.e. x =
√

d2 + LoS
2

2
. The mean absolute error (MAE) is the average of the

absolute errors of the predicted respiratory rate for all segments, and accuracy
is (1 − MAE

BPMtruth
) × 100%.

5.2 Comprehensive Experiment

As Fig. 9 shown, in this set of experiments, let the target located at a distance
d, where d is taken as 3 m, 4 m, 5 m, 6 m, and 7 m. To evaluate our method, we
use the raw CSI, CSI quotient and beamformed CSI as inputs, respectively, and
calculate the subject’s respiration rate with the same period detection algorithm.
Finally, we have the following results.

Fig. 9. Experimental scenario and experimental setup for comprehensive experiment.
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From the Fig. 10, it can be seen that the MAE of both beamformed CSI and
CSI ratio is much lower (or the accuracy is much higher than that of original
CSI), indicating that our method is as effective as CSI ratio in enhancing signal
sending ability. The MAE of beamforming is 0.445 BPM (breath per minute)
when the target is located at 3 m on the vertical bisector of the transceiver,
Though, when the distance increases to 7 m, the MAE of the original CSI exceeds
1 BPM while that of beamforming in this paper is still far less than 1 BPM ans is
0.729 BPM, which well meet the accuracy requirements in application scenarios.

Fig. 10. Experimental results of comprehensive experiment

5.3 Other Experiments

We also set up experiments to investigate the effect of transceiver distance and
target orientation on sensing performance, and the experimental setup is shown
in Fig. 11(a) and Fig. 11(b).

Fig. 11. Experiment setup of different transceiver distances and target orientations

Effect of Transceiver Distance. In this set of experiments, we explore the
impact of LoS path signals on system performance by changing the transceiver
distance from 1.2 m to 3.6 m in steps of 0.6 m, as shown in Fig. 11(a).
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Fig. 12. Experimental results with different transceiver distances

As shown in Fig. 12, it can be seen that both MAE and accuracy tend to be
a random distribution, which means that the LoS signal strength does not affect
the performance of the sensing system. Such experimental results is consistent
with the analysis in [23].

Effect of Target Orientation. As shown in Fig. 13, the system has the small-
est average absolute error and the highest accuracy when the front of the body
faces the transceiver, while the MAE is relatively large (or the accuracy is slightly
lower) when the side and back face the transceiver. This result is expected
because the displacement of the front side of a human chest is the largest when
breathing, which leads to a more obvious variation on the signal, making the
accuracy higher; in contrast, the displacement of the back and side of the chest
is smaller, making the accuracy lower.

Fig. 13. Experimental results of target orientation

6 Conclusion

In this paper, to achieve robust respiration detection, we introduced the beam-
forming technology as well as a metric named dynamic signal energy ratio into
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the field of Wi-Fi sensing. Specifically, the commonly used delay and sum beam-
forming algorithm is implemented and its practical effects is verified, based on
which a Wi-Fi beamforming-based sensing system is developed. The performance
of the proposed system is evaluated with a number of experiments, and results
show that the system achieves high accuracy and robustness, compared with
baseline methods.
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