®

Check for
updates

Modeling Context-Aware Events
and Responses in an IoT Environment

Marc Vila"2®) @ Maria-Ribera Sancho'3®, and Ernest Teniente!

! inLab FIB, Universitat Politécnica de Catalunya, Barcelona, Spain
{marc.vila.gomez,maria.ribera.sancho,ernest.teniente}@upc.edu
2 Worldsensing, Barcelona, Spain
3 Barcelona Supercomputing Center, Barcelona, Spain

Abstract. The Internet of Things (IoT) involves the use of devices that
exchange information about the state of things in the real world. In IoT,
monitoring is regarded to be the most fully researched use case. However,
research on the use and manipulation of control and maintenance applica-
tions has not yet been fully addressed. An important step forward in this
direction may be provided by executing automatic context-aware actua-
tions. These may be achieved by delivering responses based on the con-
text gathered with components endowed in some device. In this paper, we
propose a solution that uses ontological knowledge for this purpose, thus
improving the interoperability of IoT devices. We focus on real-time data
collection to fully automate monitoring, context gathering, and appropri-
ate responses. Our proposal is illustrated via the lens of a railroad use case,
where maintaining track safety is critical to avoid accidents.

Keywords: Internet of Things - Interoperability -
Context-Awareness + Semantics + Cyber-Physical Systems

1 Introduction

The Internet of Things (IoT) comprises a large number of smart devices: physical
objects aimed at connecting and exchanging information with other devices,
entities, or systems via the Internet. IoT sensors generate data that can be used
for various purposes, such as monitoring, data analysis, or decision-making. IoT
actuating devices are typically used to convert a signal input into a physical
action or movement or to modify the logical state of an entity.

Physical infrastructures must be effectively monitored to ensure their reliabil-
ity, security, and performance, and to detect and resolve any possible difficulties
or problems. There are situations where entities, whether real or virtual, need to
be watched over and, if necessary, reacted to. When an informational condition
has to be taken into account, a responsive capacity is required; if it is urgent,
it has to be handled accordingly. This situational context is mostly gained by
employing IoT devices with sensors and logical entities, such as data transmission
information, depending on whether the state can be inferred from the outside

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Indulska et al. (Eds.): CAiSE 2023, LNCS 13901, pp. 71-87, 2023.
https://doi.org/10.1007 /978-3-031-34560-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34560-9_5&domain=pdf
http://orcid.org/0000-0002-5621-6543
http://orcid.org/0000-0002-5904-8709
http://orcid.org/0000-0001-8890-9638
https://doi.org/10.1007/978-3-031-34560-9_5

72 M. Vila et al.

world or from any value associated to software. This knowledge or ability, namely
“context-aware”, involves considering the data that the IoT devices gather and
allowing the system to understand its context. The system can then react since
it is aware of the situation where it is. Context awareness is a key aspect of
the IoT domain that enables systems to provide a more precise understanding
of the environment [24]. As a result, they can provide accurate responses to
events. For example, context-aware situations can be used in a factory to moni-
tor machinery performance and optimize production by considering factors such
as temperature, humidity, and energy consumption.

In TIoT, communication is straightforward when the systems are in the same
working environment. However, with entities from other companies or platforms,
communication becomes more complicated. This complexity is due to the fact
that two different environments must agree to establish communication. This
has implications for information properties, data structures, and communication
technologies. The Interoperability of Things aims to homogenize data communi-
cation between IoT devices so that software systems can provide generic solutions
to enable interoperability across applications, contexts, and domains [9].

In this paper, we contribute to the Interoperability of Things as follows:

— We propose an ontology for automatic monitoring using IoT devices. We
focus on the definition of context-aware entities that enable to specify the
responsive behavior to be taken when a certain situation is met. We allow for
defining the entities to be observed, receiving the measurement data from the
sensors, and also specifying the actions or response procedures to be taken
when a given event occurs.

— Our ontology is domain-independent, and it is based on existing ontologies
such as SSN/SOSA, GeoSPARQL, OWL-Time, and IoTMA. All software sys-
tems dealing with its components are able to handle different [oT installations
with almost no changes in the code. A small number of components might be
needed to update, for instance, how the various devices feed information to
the ontology or extend actuation procedures.

— We provide an implementation based on a rail-track safety monitoring sce-
nario, to show the feasibility of our approach.

Section 2 reviews related work. Section 3 highlights the key elements of the
ontology and compares them with previous work. Section 4 depicts our use case
and matches the proposed ontology with it. Section 5 shows the experimentation
carried out. The paper ends with our conclusions and further work.

2 Related Work

The term IoT was originally coined in 1999 for supply chain management by
Ashton [5] and was later used to encompass the devices aimed at exchanging
information with other elements on the Internet [11]. One of the most notorious
characteristics of IoT is the heterogeneity of the ecosystem, i.e. the Interoper-
ability of Things, one of the challenges to be solved. There is heterogeneity in

Modeling Context-Aware in an IoT Environment 73

the devices, not only from differences in capacity and features but also for appli-
cation requirements and information transmission [26]. This can also be seen in
the technologies used to communicate and in the information data structure.

According to Noura et al. [19], interoperability in IoT can be classified into
different levels. The device level is related to output capacity and communica-
tion protocols; the syntactic one to the data format, schemas, and interfaces;
networking to the network protocols; platform to the operating system, and pro-
gramming language; and semantic to the data and information models. Our work
aims at improving the interoperability of IoT devices at the semantic level in
the context-awareness domain. This allows for the abstraction of the particular
syntax and data formats, providing common semantics to all the managed data.

Context-awareness is known as the ability of software applications to discover
and react to changes in the environment in which they are situated. In the IoT
setting, this concept enables the contextualization of the information linked to
sensor data so that interpretations can be easily and meaningfully performed, as
stated Schilit et al. [27] in 1994. Some years later, Abowd et al. [1] provided a
more precise definition: “A system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on
the user’s task”. In 2004, contextual information began to be combined with
ontologies [13,28,31], in which human, machine, physical, and abstract things
are combined, using ontologies, modeling, and semantic reasoning.

In the general scope of context-awareness in the IoT, Perera et al. [23]
proposed an IoT context-aware architecture with the purpose of automatically
selecting sensor data from some user-based inputs. However, they focus on the
ability to select the most significant sensor for a particular task and do not
provide a middleware solution for managing its context. Kim et al. [17] devel-
oped a system to support an autonomous context-aware environment where they
proposed low complexity rules to execute if-else kind of rules. These rules are
useful in certain restricted contexts but they are not general enough since they
do not allow combining sensors for instance. Dobrescu et al. [7] proposed a mid-
dleware architecture for IoT context-aware field monitoring using environmental
and real-time sensors. However, it is not clear how they support the use of dif-
ferent sensors beyond the ones they already considered. Jiang et al. [16] stated
that context-awareness with semantics is a recent research area, and sketched an
ontology for the integration of several data sources to extract contextual infor-
mation. Gaur et al. [10] proposed a context-aware proof-of-concept framework,
but it is not clear how context actions can be incorporated and handled. In Zhang
et al. [33], authors propose an approach to capture events from sensor streams.
However, it is not clear how the data is structured in the sense of heterogeneity
of things. Dérndorfer et al. [8], developed a modeling tool that includes data
aggregation and definition for sensors, context, and decision outputs. It is not
clear how multiple context-aware rules can be defined, as it seems to remain in
the if-else theory.

Improving interoperability has also been achieved through ontology defini-
tion. Therefore, the Semantic Sensor Network Incubator Group developed the

74 M. Vila et al.

SSN [12] ontology in 2011 to specify sensors and sensor network resources. In
2017, the W3C Counsortium proposed the SOSA [15] ontology, an extension of
SSN, to be used when the Semantic Web and linked data technologies are needed.
Xue et al. [32] proposed a semantic sensor network but the proposal is not com-
plete as far as managing the network. Maarala et al. [18], examine the different
types of semantic reasoning and different data models for context-aware IoT
applications. They also propose an ontology for information contextualization.
However, they do not provide means to understand the sensing part of the pro-
cess. Alirezaie et al. [3] and Choi et al. [6] propose a context-aware system for
smart homes and cities. CAMeOnto [2] proposes a meta-ontology for modeling
context-awareness systems, including user, activity, time, device, services, and
location. Yet, they do not take into account the sensorization part, and the rela-
tionship between what is being observed and what is being controlled or acted
upon is not clear. MSSN-Onto [4] proposes an ontology that models sensors,
events, and their corresponding types. They use SOSA/SSN as a base ontology,
but do not go beyond its observation perspective.

In conclusion, context awareness with semantics and ontologies is a hot topic
that only recently began to receive significant attention. Previous work mostly
uses only a subset of features, among all those encompassed by the IoT. More-
over, finding proposals like ours that successfully combine context awareness
systems, ontologies for the IoT, and the modeling of sensors and actuators is
still a challenging issue.

3 Our Context-Aware Responsive Ontology

The ontology we present in this paper is aimed at enabling the monitoring of
real-world entities using IoT devices in computing continuum applications. The
context-aware responsive behavior of our ontology is based on two different con-
cepts: Actuation and ContextAwareRule. Context-aware rules specify the gen-
eral policies that will be applied when a certain situation is satisfied, such as
when a sensor detects a value that is higher than a certain threshold and takes
some action. These are the Actuations, which specify the specific corrections or
actions made after an event. In our approach, the designer can precisely specify
the events to be monitored, under which conditions, and the actions to be taken
when a condition is satisfied.

Our ontology, Context-Aware Responsive ontology (ConAwarloT) extends
the ToTMA ontology [29] by incorporating the specification of context-aware
events and responses to these events, which were not considered. Our proposal
includes two key concepts from IoTMA: Sensor, the element capable of making
measurements of a given feature; and Actuator, the executors of actions that
modify the state of a given feature. We extend these concepts here with the
new key concept ContertAwareRule, which allows users to specify the events to
monitor, conditions to apply and response procedures to execute.

Our ontology is defined in Fig. 1 by means of a UML class diagram, showing
the classnames and the relations between classes:

Modeling Context-Aware in an IoT Environment 75

1.2
Sensor Actuator
(iotma:Sensor) (iotma:Actuator) |1
sosa:madeBySensor |* 1..* | sosa:madeByActuator
\ Time
itime:hasStan (time:Instant)
sosa:madeObservation | 0..1 * (0.1 * [sosa:madeActuation
! * * >
. . a
5 Observation [ienasend| timehasend| Actuation ki
. . " N % » =
-afa’ (iotma:Observation) (iotma:Actuation) OEJ
s * * k]
1 [« N
§ T SEaRreR e E R ’ E
© time:hasStart c
&
ContextAwareRule 8
5
£
[}
- * =
L.*(T]1.:* £
=
has * * 0
EventRule ConditionRule | 0..2 s
(sosa:Procedure)
* ?0_2 * * *
ConAware 1 hasCondition hasCondition 1
=== Ontology
IoTMA EventRuleType ProcedureType
Original Proposal

Fig. 1. Overview of our Context-Aware Responsive ontology

We share with IoTMA the concepts Sensor, Actuator, Observation, Actu-
ation, and Time. This is because we want to stress that the definition and
treatment of responsive behavior require this information to be effective. In the
previous figure, ConAwarloT is the default namespace when none is provided.

3.1 Resource URIs

In our work, Classnames are expressed in the Uniform Resource Identifier (URI)
format, a unique sequence of characters that identifies a resource, to increase
the simplicity and manageability of systems. In Table 1 we show the URI addi-
tions defined in our ontology. The first column represents the classname of the
entity. The second is the URI, the format that follows the pattern defined below.
BASE _URI refers to the URL entry point located in a test domain. CLASS_NAME
indicates the name of the entity. CLASS_ID the identifier for each instance of an
entity. In addition to CLASS_PROPERTY N, which holds N properties of the entity:
{BASE_URT}: {CLASS_NAME}/{CLASS_ID}?{CLASS_PROPERTY 1}&{CLASS PROPERTY N}

3.2 Description of the Concepts for Our ConAwarloT

Context AwareRule. It states the rules or conditions that define how the sys-
tem reacts when some condition is met. If so, an ResponseProcedure is executed

76 M. Vila et al.

Table 1. Main URIs added in our Context-Aware Responsive Ontology

Class URI Patterns
ConAwarIoT:ContextAwareRule/{ContextAwareRuleName}?
ContextAwareRule | {EventRulesName }&{ConditionRulesName }&
{ResponseProceduresName }&{Executing}
ConAwarIoT:EventRule/{EventRuleName}?{ContextAwareRule-
EventRule Name }&{EventRuleTypeName }&{SensoriName }&{Sensor2Name }&
{ValueBoolean|ValueString|ValueInteger|ValueFloat}
ConAwarIoT:ConditionRule/{ConditionRuleName}?{Context-
AwareRuleName }&{EventRulelName }&{EventRule2Name }&

ConditionRul
onditionfitie {ConditionRulelName}&{ConditionRule2Name}&
{ConditionComparationType}
ResponseProcedure ConAwarIoT:ResponseProcedure/{ResponseProcedureName}?

{ContextAwareRuleName }&{ProcedureTypeName }&{ActuatorName}

via an Actuator’s Actuation. Context-aware rules hold metadata information
about sensor-actuator mechanisms and are made up of events (EventRule), con-
ditions (ConditionRule), and responses (ResponseProcedure). It is also possible
to state which sensors should be taken into account, for what reason, and what
to do when that occurs. In addition, these rules can be toggled, enabled, or dis-
abled, to enable all event detection and responses using the ezecuting attribute.
A simple example could be, when a certain EventRule is true, it executes a
certain ResponseProcedure action as a response, as can be seen in Fig. 2.

ConAwarloT:.ContextAwareRule/Rule01?EventRule01&RespProcedure01&True

W rdf:type j rdf:m

ConAwarloT:ContextAwareRule | ConAwarloT:EventRule

ConAwarloT:ResponseProcedure || ConAwarloT:Executing

Fig. 2. Example of a ContextAwareRule description

EventRule. It is used to check whether a sensor measurement complies with a
predefined criterion. Starting from a Sensor or a set of sensors, it allows defin-
ing in FventRule Type which comparison types should be made, either one sen-
sor compared to a constant (Value) or with another sensor (Sensor). In Even-
tRule Type, we assume the following comparison operators (EventRuleCompara-
tionType) available to compare among Sensors or against constant values:

— EQUALS or NOT_EQUALS: Numeric values such as INTEGER or FLOAT, also STRING
and BOOLEAN.

— LESS_THAN or MORE_THAN: Numeric values such as INTEGER or FLOAT.

— Mathematical operators such as the arithmetic mean, median, harmonic mean
or the standard deviation.

Modeling Context-Aware in an IoT Environment 77

As an example, Fig.3 represents an FEventRule, named EventRuleO1 that
compares a sensor Sensor01 against a constant ValueIntl. The comparison is
about two integers, and it is desired to know if the contents are equal or not.
And it could be similar to the comparison between a temperature sensor that is
being compared over being equal to a value, for example, 20 °C.

‘ ConAwarloT:EventRule/EventRule01?Rule01&SENSOR_CONSTANT&EQUALS&Sensor01&Valuelntl

rdM rdf:type& ﬁ:type erf:type

ConAwarloT:EventRule | [ConAwarloT:ContextAwareRule jotma:Sensor iotma:Value

rdf:type ¥ v rdf:type %rdf:type

ConAwarloT:EventRuleType || ConAwarloT:EventRuleComparationType [sosa:Sensor]

Fig. 3. Example of an EventRule description, comparing one sensor - one constant

ConditionRule. FventRules can be combined using ConditionRules. This is
required when two or more entities in the real world have to be checked together.
The operators we are able to deal with are AND, OR, NAND, NOR, and XOR. More-
over, ConditionRules can be linked, as components of the condition itself, to
take advantage of the possibility of specifying different conditions that handle
FEventRules. Two side operators are available: one operator to be FventRule and
one ConditionRule, as well as a couple of FventRule or a couple ConditionRule.
If more complex Rule are needed, they can be nested using this concept.

ResponseProcedure. Handles the definition of actions to be executed when
defined criteria are met. It contains the Procedure to follow and the predefined
steps to improve in the target scenario. It also allows the user to state which
type of actuation is needed, for instance, the HTTP + GET method in Fig. 4,
which means that when the Actuation is executed, an HTTP GET request will
be executed. The ProcedureType allows the designer to define other methods
as answers. Thus, the user is able to handle a diverse number of these types,
for instance, defining URLs for sending notifications via some local URL or a
cloud-based URL, depending on the urgency of the action; sending an email, etc.

‘ ConAwarloT:ResponseProcedure/Procedure01?Rule01&Actuator01&HTTP+GET+CLOSE_DOOR ‘

Mf:typ‘e/ rdf:typ% rdf:tyN

ConAwarloT:ResponseProcedure

iotma:Actuator

rdf:type

Fig. 4. Example of a ResponseProcedure description

ConAwarloT:ContextAwareRule

ConAwarloT:ProcedureType

78 M. Vila et al.

3.3 Relationship with Related Ontologies

ConAwarloT is based on several existing ontologies, making it compliant with
current standards and existing solutions. Most of the concepts are drawn from
SSN/SOSA, which in turn extends primarily from the JoTMA ontology. We also
use concepts from OWL-Time and GeoSPARQL in our ontology.

IoTMA - IoT Monitoring and Actuation ontology [29]. IoTMA, which is
a previous work of us, is aimed at understanding sensor-actuation contexts, thus
incorporating concepts of general monitoring and actuation terms. It incorpo-
rates basic semantics for reacting to predefined conditions, in the case of critical
events, although, it does not allow defining in a detailed way the conditions for
which events to apply and how the system should handle its responses.

Our main contribution in this paper is that of improving the expressiveness of
context-awareness rules in loTMA. This is achieved through the ContextAware-
Rule concept, which now allows the definition and treatment of more complex
and responsive behaviors as required by current IoT applications.

Semantic Sensor Network and Sensor-Observation-Sample-Actuator -
SSN/SOSA [15]. Provides a lightweight core for defining classes and prop-
erties of data managed in the IoT scenario. It supports sensing and actua-
tion device capabilities, for modeling interoperability. Here, we make use of the
sosa:Procedure for providing the steps for changing the state of the world via an
Actuator.

GeoSPARQL [21]. It is used to describe the location properties of entities. We
use geo:Location to describe the location of physical entities in the ontology.

OWL-Time [30]. It states temporal concepts and properties. Time is used to
define when there is an Observation and an Actuation (time:hasStart).

3.4 Research Methodology

We have followed the Design-Science Research methodology (Hevner et al. [14]):
“In this research methodology, a designer answers questions relevant to human
problems via the creation of innovative artifacts [...]. The designed artifacts are
useful and fundamental to understanding that problems.”

At some points of the ontology development, we also follow Noy et al. [20]
recommendation: the Knowledge-Engineering Methodology. They suggest there
is no single way to develop semantics, as domain modeling depends on sev-
eral factors, including the purpose of the system it supports. The modeling of
an ontology is an iterative process: Determine the domain and scope; sketch a
list of competency questions that should be answered; consider reusing existing
ontologies; enumerate important terms in the ontology; develop the ontology
(classes, hierarchy, properties, ...); and, lastly, validate the list of competency
questions. In case the outcomes are not as predicted, then return to the first
stage.

Modeling Context-Aware in an IoT Environment 79

4 Use Case Description

We focus on a railway use case as an illustration of a cyber-physical system
which is very relevant in the IoT scenario. However, it is worth mentioning that
the semantics endowed in our ontology are defined at an abstract level and can
be applied to different domains, other than railways.

There are several aspects of railway systems that can be improved. One of the
duties that must be automated using IoT devices is safety, which involves main-
taining the entire railway system. Rail tracks are one of the components in the
rail industry that need to be checked on a regular basis. Corrective maintenance
is currently carried out based on sparse data and no short-term vision. With
this use case, we pave the way for real-time data-based maintenance services,
the point at which predictive maintenance begins.

In tracks, certain important elements need to be monitored as they require
active maintenance. The geometry of the tracks is an extremely relevant area
for ensuring the safe operation of the railway infrastructure. Two of the most
important parameters to monitor are the cant and twist factors of these tracks.

Currently, ADIF!, the Spanish railway infrastructure manager, uses an aus-
cultation train to check various parameters of the track, including cant and twist
factors. The use of a train to monitor elements on the track has some drawbacks.
First, when this train is in use, the normal use of the track is affected, which
makes it necessary to take into account in case there is another train with the
need to circulate there, and it is usually run in the early hours of the morning.
The second is that these checks are run every few months, as due to the great
extension of the railway network, this train passes 1 to 2 times a year through
each section of the Spanish railway. This implies that if something happens
between the checks, no one will be warned about a possible failure.

Our method enables the provision of a viable solution to the aforementioned
issues, such as continuous monitoring of trains without service interruptions. We
consider using IoT devices to perform checks more frequently, and our method
is complementary to the train approach. When an anomaly is found, the area
becomes of interest, and when work is to be done in a nearby section or under-
neath the train track, our approach can be employed as a preventive measure.

The first characteristic to be checked, the cant factor (Fig. 5a), is the height
difference between the two parallel tracks. Using one sensor (tiltmeter?), placed
in the sleeper, we can provide the difference in angle from one track to the
other. The sensor provides information in microvolts for the angle and then,
through some calculations, converts it to degrees, and from there, knowing the
distance between tracks and basic trigonometry, we can establish the height of
the deviation in millimeters, as indicated in the ADIF guidelines.

Twist, i.e. the measurement of the rotation of the railway track, (Fig.5b) is
the second feature to monitor. It describes the variation in cross-level measured

! https://www.adif.es.
2 Tiltmeter: A sensitive inclinometer designed to measure very small changes from the
horizontal plane, either on the ground or in structures.

https://www.adif.es

80 M. Vila et al.

i

Imaginary plane
generated by 3 axles

Track plane

Outer rail

Horizontal plane

(a) Cant (Pombo et al. [25]) (b) Twist (Lee et al. [22])

Fig. 5. Usecase Ilustrations

across five sleepers along the track. This permits comparing the height between
each of the four points, resulting in a plane. It can be seen as two cant factors
at once. In this case, the use of at least two sensors (tiltmeters) is mandatory.

One of the causes of the cant factor is the temperature variation in tracks.
Tracks expand and contract according to temperature. To correlate this, a sensor
near the tracks is also added. Thus, two different sensors need to be monitored
at the same time. This is a derived factor from the other already existing one,
also contemplated in our use case.

There are several cant and twist values to compare in the ADIF' guidelines;
based on the measured value, a low-severity warning can be sent, while oth-
ers can result in high-severity alerts requiring quick action. These elements are
monitored in this use case to actuate when certain circumstances are reached.

4.1 Using Our Context-Aware Responsive Ontology

Our solution enables the definition of rules to keep track of the measurements
reported by the sensors. Rules can be understood as something simple, like
monitoring the events for one sensor, or something more sophisticated, as a
combination of different EventRules or chained ConditionRules. We refer to the
former as simple and the latter as complex to distinguish between them.

Supporting Single Events

In our system, measurements can be compared with other sensor measurements
or constants using ContertAwareRules. A case of a simple rule is that of the
cant factor. It is a feature that can be monitored using a single tiltmeter sensor.
This feature consists of using the last measurement to determine the state, and
each measurement provides one degree of inclination per axis. For this purpose,
Fig. 6 shows the visual representation of a sensor named TILTMETER_1 that is
compared to COMPARATOR_MORE_THAN against a constant CONSTANT_1.

Modeling Context-Aware in an IoT Environment 81

TILTMETER_1 CONTEXT_AWARE_RULE__CANT

|COMF’ARATOR7MORE7THAN| EVENT_RULE 1 —> RESPONSE_PROCEDURE_1

CONSTANT_1

Fig. 6. Representation of a ContextAwareRule with a simple use case - Cant

v

v

This evaluation is done in the EVENT_RULE_1 component, and if it is evaluated
as true, it will trigger the RESPONSE_PROCEDURE_1.

Supporting Multiple Events or Conditions

More complex rules are useful to model when an element to be monitored
depends on two or more variables, such as the twist factor, which must be mon-
itored with at least two sensors. One way to measure this factor is to use a pair
of tiltmeters and compare the measured values to determine whether each one
has a different rotation.

In our system, sensors report measurements from entities to be monitored. If
these values are compared with other sensor measurements, constants, or chain
conditions, they are called complex rules. Figure 7 shows the visual representa-
tion of a sensor named TILTMETER_1 compared to COMPARATOR_MORE_THAN against
a constant CONSTANT_1, evaluated in the EVENT_RULE_1 component. Addition-
ally, a sensor named TILTMETER_2 that is compared with COMPARATOR_MORE_THAN
against a constant CONSTANT_1, evaluated in the EVENT_RULE_2 component.

TILTMETER_1 —I—L CONTEXT_AWARE_RULE__TWIST

| COMPARATOR_MORE_THAN I EVENT_RULE_1

CONSTANT_1
COMPARATOR_AND CONDITION_RULE_1

TILTMETER_2 —l_L
|COMPARATOR7MORE7THAN | EVENT_RULE_2 J/

RESPONSE_PROCEDURE_1
CONSTANT_1 - -

Fig. 7. Representation of a ContextAwareRule with a complex use case - Twist

v

'F

v

v

Furthermore, the two FventRule are compared using a COMPARATOR_AND, so
if both are evaluated as true, it will trigger the RESPONSE_PROCEDURE _1.

Another complex example for our use case is to check the correlation between
the cant or twist factor and the temperature. For this, sensor values are
compared with other measurements or constants, using the combination of
EventRules and ConditionRules. Figure8 shows the visual representation of a

82 M. Vila et al.

sensor named TILTMETER_1 compared to COMPARATOR _MORE_THAN against a con-
stant CONSTANT_1, evaluated in EVENT RULE_1. Furthermore, a sensor named
TILTMETER_2 compared to COMPARATOR_MORE_THAN against a constant CONS
TANT_1, evaluated in EVENT_RULE_2. Additionally, a sensor named TEMPERATURE_1
that is compared with COMPARATOR_LESS_THAN against a constant CONSTANT_2,
evaluated in the EVENT _RULE_3. Then, EVENT RULE_1 and EVENT_RULE_2 are eval-
uated in CONDITION RULE_1 using a COMPARATOR_OR, and this condition is ana-
lyzed together with EVENT_RULE_3 in CONDITION_RULE_2. If both are evaluated
as true (COMPARATOR_AND), the RESPONSE_PROCEDURE_1 will be triggered.

CONTEXT_AWARE_RULE__ TEMPERATURE

TILTMETER_1 —l_L
>

| COMPARATOR_MORE_THAN I EVENT RULE_1

—>
CONSTANT_1
- L
COMPARATOR_OR CONDITION_RULE_1
—

TILTMETER_2 —l—L
—>

|COMPARATOR7MORE7THAN I EVENT_RULE 2 —

—>
CONSTANT_1

COMPARATOR_AND '—) CONDITION_RULE_2
TEMPERATURE_1 ‘|_L

|COMPARATOR_LESS_THAN | EVENT_RULE_3 J l

RESPONSE_PROCEDURE_1
CONSTANT_2

Fig. 8. Represent. of a ContextAwareRule with a complex use case - Temperature

v

v

5 Experimentation

We have performed some experiments to demonstrate the validity of our ontology
for incorporating context-aware entities to increase semantic interoperability in
the IoT. With this purpose in mind, we have established the foundation for
our studies on the interoperability of IoT devices in railways. Using the entities
provided in our ontology, we handle data interoperability for IoT devices, from
monitoring to actuating situations. Although our ontology is sufficiently generic
to be used in different domains, the experiment is focused on a specific use case.

Our experimentation is shown in Fig. 9 and aims to demonstrate the cant use
case. In this way, IoT sensors read information about railway tracks, monitor
it, and trigger emails as ResponseProcedure if ContertAwareRules are triggered.
With this, we enable another way to monitor safety on railways.

Modeling Context-Aware in an IoT Environment 83

Our setup consists of two Raspberry Pi 4B devices to monitor the railway
tracks. Each Raspberry reads one track tilt using a tilt sensor as a critical sensor.
On top of both Raspberry, there is a GrovePi Shield?, used to wire sensors to the
device. Both devices are capable of reaching the Internet using WiFi mechanisms
and submitting measurements to the Cloud server, using an HTTP API as the
communication method.

In the experiment, each Raspberry is taking measures (Observations) of the
track tilt and sending them to the server. We have defined entities to monitor in
the Cloud server for this purpose. At least two Things, one per Raspberry, with
two Sensors, one per tilt sensor. Also, the Actuator, with its module to send
emails, has been specified. In addition, the ContertAwareRules with its corre-
sponding FEventRules and ResponseProcedures have also been set. The defined
Procedure is to communicate with an Actuator to send an email as a warning.

Internet

Internet

Actuator

o))))
—
oo g

E‘-O
. 2 1
1i

(a) Setup in the Lab (b) Conceptual View

Fig. 9. Experimentation setup for showcasing the twist scenario

We have developed a context-aware engine in addition to the code that sup-
ports the ontology. This engine periodically queries the state of the system in
terms of ContextAwareRules. If there are some that have the executing flag
active, the engine checks the FventRules it has, and together with the Condi-
tionRules, it identifies whether any ResponseProcedure has to be performed. If
this is the case, it sends it to execution.

In Fig. 10 we see the Observations received from a Sensor named TiltSensor.
The tilt sensor of the Raspberry is located on the train track, and the spikes
that are seen in the graph represent movements in height of the track, which
could be understood as the cant factor value in millimeters when the train runs.

3 GrovePi Shield for Raspberry Pi: https://www.seeedstudio.com/GrovePi.html.

https://www.seeedstudio.com/GrovePi.html

84 M. Vila et al.

Observations for TiltSensor

16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 17:50 18:00

Fig. 10. Our Grafana frontend showing the Observations of the TiltSensor

For the graph, we have used Grafana, an open-source data visualization tool.
In Grafana we performed an SQL query to the database, where all the exper-
imental information is stored. The observation table is where all the metadata
information about the Observations is stored, and obs_integer to store Observa-
tions that are integers.

SELECT observation.time_start as"time",
obs_integer.value as "value"

FROM observation

INNER JOIN obs_integer ON obs_integer.ID=observation.ID

WHERE observation.sensor_name = ’TiltSensor’

In this work, we include a functional code of the ontology, available in https://
github.com/worldsensing/conawariot-modelling-context-aware. This code is
composed of a backend made in Python Flask and PostgreSQL together with
Grafana for visualization. In addition, there is also a first implementation of the
context-aware client for the rules, which this ontology supports. As well as the
code that supports sensing the Observations from the Raspberry Pi.

Our Cloud setup consists of a GCP E2-small instance that has 1 vCore and 2
GB of RAM under Debian 11 Linux. In this instance, we have deployed our own
server code. The setup handles the incoming measurements and the context-
aware rules. It also maintains the state of the entities using our ontology.

Lessons Learnt: The experiments we have performed in this paper have
allowed us to learn some lessons from the approach we have proposed in this
paper. They are the following:

— We have been able to show the feasibility of our approach in the sense that
we have declaratively and semantically handled the responses to the critical
events related to the real-time measurement of the cant and twist factors.

— With our ontology, we have been able to abstract from the technological
aspects of IoT devices, thus being able to concentrate on the specification of
the responses to the context-aware events.

— The software solution we have implemented in our experiments is able to
provide the response to our particular scenario, but it could be easily applied,

https://github.com/worldsensing/conawariot-modelling-context-aware
https://github.com/worldsensing/conawariot-modelling-context-aware

Modeling Context-Aware in an IoT Environment 85

without having to change any single line of code, to other railway system
characterizations, provided that their IoT infrastructure is specified in terms
of our ConAwarloT ontology.

6 Conclusions and Future Work

With a large number of IoT devices being used, the need to homogenize the infor-
mation that is being manipulated is acknowledged. This work contributes to this
homogenization by proposing an ontology for context awareness in the sensing and
actuation domains, using IoT devices. The proposed ontology builds upon con-
cepts of well-known ontologies and specifies the knowledge required by context-
aware rules for defining the possible reactions to some events if they occur thus
enabling the users to define in detail the events needed to be monitored and the
actions that modify real-world elements when the conditions are met.

With the proposed railway use case, we enable the possibility of manipulating
data in real time in settings where sensors and their potential reactions must
be monitored. This use case has been demonstrated using an experiment to
showcase the functionality enabled by the proposed ontology. With that, a ready-
to-use system is provided, including the backend orchestrated components. In
addition, a client code is provided that handles the observations, as well as the
context-aware engine code the status and actuations to be executed by Actuators.

In future work, we plan to develop a framework that combines the work pre-
sented in this article with actual Worldsensing IoT devices that use LoRaWAN
or related technologies like NB-IoT. Also, other than sending emails when an
actuation is desired, introducing more options such as MQTT, emails, and so
forth. Further work can go down the Machine Learning path to perform predic-
tive maintenance using the real-time data that is being sent.

Acknowledgments. This work is partially funded by Industrial Doctorates from Gen-
eralitat de Catalunya (2019 DI 001), the SUDOQU project, PID2021-1264360B-C21
from MCIN/AEI, 10.13039/ 501100011033, FEDER, UE, and the Grup de Recerca
Consolidat IMP, 2021-SGR-01252. We thank Ignasi Garcia-Mila for his help in the
definition of the use case and to the anonymous reviewers for their valuable comments.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.)
HUC 1999. LNCS, vol. 1707, pp. 304-307. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48157-5_-29

2. Aguilar, J., Jerez, M., Rodriguez, T.: Cameonto: context awareness meta ontology
modeling. Appl. Comput. Inform. 14(2), 202-213 (2018)

3. Alirezaie, M., Renoux, J., et al.: An ontology-based context-aware system for smart
homes: E-care@home. Sensors 17(7), 1586 (2017)

4. Angsuchotmetee, C., Chbeir, R., Cardinale, Y.: MSSN-Onto: an ontology-based
approach for flexible event processing in multimedia sensor networks. Futur. Gener.
Comput. Syst. 108, 1140-1158 (2020)

https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1007/3-540-48157-5_29

86

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Vila et al.

Ashton, K.: That internet of things thing. RFID J. 22(7), 97-114 (2009)

Choi, C., Esposito, C., et al.: Intelligent power equipment management based on
distributed context-aware inference in smart cities. IEEE Commun. Mag. 56(7),
212-217 (2018)

Dobrescu, R., Merezeanu, D., Mocanu, S.: Context-aware control and monitoring
system with IoT and cloud support. Comput. Electron. Agric. 160, 91-99 (2019)
Dérndorfer, J., Hopfensperger, F.; Seel, C.: The SenSoMod-modeler - a model-
driven architecture approach for mobile context-aware business applications. In:
Cappiello, C., Ruiz, M. (eds.) CAiSE 2019, pp. 75-86. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21297-1_7

Elkhodr, M., Shahrestani, S., Cheung, H.: The internet of things: new interop-
erability, management and security challenges. Int. J. Netw. Secur. Appl. 8(2),
85-102 (2016)

Gaur, S., Almeida, L., et al.: CAP: context-aware programming for cyber physical
systems. In: 24th IEEE International Conference on Emerging Technologies and
Factory Automation, pp. 1009-1016. ETFA (2019)

Gubbi, J., Buyya, R., et al.: Internet of things (IoT): a vision architectural elements
and future directions. Future Gener. Comput. Syst. 29(7), 1645-1660 (2013)
Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard
specifying the semantics of sensors, sampling, and actuation. Semant. Web (2018)
Henricksen, K., Indulska, J.: Modelling and using imperfect context information.
In: IEEE Annual Conference on Pervasive Computing and Communications Work-
shops, pp. 33-37. PerCom (2004)

Hevner, A., Chatterjee, S.: Design Research in Information Systems: Theory and
Practice. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-5653-8
Janowicz, K., Haller, A., et al.: SOSA: a lightweight ontology for sensors, observa-
tions, samples, and actuators. J. Web Semant. 56, 1-10 (2019)

Jiang, S., Angarita, R., Chiky, R., Cormier, S., Rousseaux, F.: Towards the integra-
tion of agricultural data from heterogeneous sources: perspectives for the French
agricultural context using semantic technologies. In: Dupuy-Chessa, S., Proper,
H.A. (eds.) CAIiSE 2020. LNBIP, vol. 382, pp. 89-94. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-49165-9_8

Kim, G., Kang, S., et al.: An MQTT-based context-aware autonomous system in
oneM2M architecture. IEEE Internet Things J. 6(5), 8519-8528 (2019)

Maarala, A.I., Su, X., Riekki, J.: Semantic reasoning for context-aware internet of
things applications. IEEE Internet Things J. 4(2), 461-473 (2017)

Noura, M., Atiquzzaman, M., et al.: Interoperability in internet of things: tax-
onomies and open challenges. Mob. Netw. Appl. 24, 796-809 (2019)

Noy, N.F., McGuiness, D.L.: Ontology development 101: a guide to creating your
first ontology. Technical report, Knowledge Systems - Stanford University (2001)
OGC - GeoSPARQL: A Geographic Query Language for RDF Data (2012).
https://www.ogc.org/standards/geosparql. Accessed 02 Nov 2022

Park, JJW., Lee, K.C., et al.: Traffic safety evaluation for railway bridges using
expanded multisensor data fusion. Comput.-Aided Civil Infrastruct. Eng. 31(10),
749-760 (2016)

Perera, C., Zaslavsky, A., et al.: CA4IOT: context awareness for internet of things.
In: IEEE International Conference on Green Computing and Communications, pp.
775-782. GreenCom (2012)

Perera, C., Zaslavsky, A., et al.: Context aware computing for the internet of things:
a survey. IEEE Commun. Surv. Tutor. 16(1), 414-454 (2014)

https://doi.org/10.1007/978-3-030-21297-1_7
https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.1007/978-3-030-49165-9_8
https://www.ogc.org/standards/geosparql

25.

26.

27.

28.

29.

30.

31.

32.

33.

Modeling Context-Aware in an IoT Environment 87

Pombo, J., Ambrésio, J.: General spatial curve joint for rail guided vehicles: kine-
matics and dynamics. Multibody Syst. Dyn. 9, 237-264 (2003)

Razzaque, M.A., Milojevic-Jevric, M., et al.: Middleware for internet of things: a
survey. IEEE Internet Things J. 3(1), 70-95 (2016)

Schilit, B., Theimer, M.: Disseminating active map information to mobile hosts.
IEEE Network 8(5), 22-32 (1994)

Sheng, Q., Benatallah, B.: ContextUML: a UML-based modeling language for
model-driven development of context-aware web services. In: International Con-
ference on Mobile Business, pp. 206-212. ICMB (2005)

Vila, M., Casamayor, V., Dustdar, S., Teniente, E.: Edge-to-cloud sensing and
actuation semantics in the industrial internet of things. Pervasive Mob. Comput.
87, 101699 (2022)

W3C - OWL-Time: Time Ontology in OWL (2020). https://www.w3.org/TR/owl-
time/. Accessed 02 July 2022

Wang, X., Zhang, D., et al.: Ontology based context modeling and reasoning using
OWL. In: IEEE Annual Conference on Pervasive Computing and Communications
Workshops, pp. 18-22. PerCom (2004)

Xue, L., Liu, Y., et al.: An ontology based scheme for sensor description in context
awareness system. In: IEEE International Conference on Information and Automa-
tion, pp. 817-820. ICIA (2015)

Zhang, Z., Liu, C., Li, X., Han, Y.: A service-based declarative approach for cap-
turing events from multiple sensor streams. In: Pahl, C., Vukovic, M., Yin, J., Yu,
Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 255-263. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03596-9_17

https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
https://doi.org/10.1007/978-3-030-03596-9_17

	Modeling Context-Aware Events and Responses in an IoT Environment
	1 Introduction
	2 Related Work
	3 Our Context-Aware Responsive Ontology
	3.1 Resource URIs
	3.2 Description of the Concepts for Our ConAwarIoT
	3.3 Relationship with Related Ontologies
	3.4 Research Methodology

	4 Use Case Description
	4.1 Using Our Context-Aware Responsive Ontology

	5 Experimentation
	6 Conclusions and Future Work
	References

