
Lessons Learned in Model-Based Reverse
Engineering of Large Legacy Systems

Laura García-Borgoñón1(B) , Miguel Angel Barcelona1 , Armando J. Egea2,
German Reyes2, Alejandro Sainz-de-la-maza2, and Adolfo González-Uzabal2

1 Instituto Tecnológico de Aragón, Av/ María de Luna 7, 50018 Zaragoza, Spain
{laurag,mabarcelona}@itainnova.es

2 NTT Data Spain Soluciones Tecnológicas SLU, Pl. de Antonio Beltrán Martínez 1,
50002 Zaragoza, Spain

{armando.javier.egea.moneva,german.reyes.munoz,
alejandro.sainz.de.la.maza.sainz.de.la.maza,

adolfo.gonzalez.uzabal}@nttdata.com

Abstract. Large technologies companies that offer software moderniza-
tion and maintenance services for legacy software applications in diverse
sectors such as banking, insurance, healthcare and public sector, face
a significant challenge. Legacy systems were usually developed in old
programming languages, often have outdated documentation and the
processes used for software development were immature. Modernization
and maintenance projects include tasks such as source code analysis with
high effort and time costs, and an important risk of misunderstanding.
In the literature, model-driven reverse engineering (MDRE) approaches
promise to address these challenges successfully, but most of existing
proposals are focused on a concrete technological stack. This paper aims
to present the preliminary results and lessons learned when adopting
MDRE in a large multinational company, providing a series of reflec-
tions and open issues to reduce the gap between academia and industry.
It introduces STRATO, a corporate solution that proposes a MDRE
approach focused on a high flexibility to incorporate new programming
languages. It reads source code and through model-to-model transforma-
tions convert it into platform independent conceptual, persistence and
business logic models. Preliminary outcomes, lessons learned and open
issues concerning MDRE industry adoption are presented.

Keywords: Model Based Reverse Engineering · Large Legacy
Systems · Industrial application

1 Introduction

NTT Data is a large multinational technology company that offers to its clients
comprehensive business solutions covering all aspects of the value chain, from
business strategy to systems implementation. It operates in the Telecommunica-
tions, Banking, Healthcare, Industry, Insurance, Media, Public Sector and Utili-
ties sectors. Within its activities, the maintenance of legacy information systems
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Indulska et al. (Eds.): CAiSE 2023, LNCS 13901, pp. 330–344, 2023.
https://doi.org/10.1007/978-3-031-34560-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34560-9_20&domain=pdf
http://orcid.org/0000-0001-9352-4230
http://orcid.org/0000-0001-8785-2350
https://doi.org/10.1007/978-3-031-34560-9_20


Lessons Learned in Model-Based Reverse Engineering 331

is an important line of business due to enterprises from all sectors have many
applications which were developed in the past and are still operated today. Mod-
ernization and maintenance tasks of such legacy systems are complex because
the applications were usually developed in old programming languages, docu-
mentation is often outdated and poor, and software processes used to develop
them are not easily repeatable. That is the reason many organizations outsource
modernization and maintenance services.

Model-driven engineering (MDE) is a development paradigm that uses high-
level models and model transformations in order to produce software applica-
tions [1]. The Object Management Group (OMG) [2] establishes that "a model
of a system is a description or specification of that system an its environment
for certain purpose". MDE is the general term for all model-based principles
and techniques that can be applied to both forward and reverse engineering
[3]. In [4] authors define reverse engineering as the process of comprehending
software and producing a model of it at a higher abstraction level than source
code. The application of MDE principles and techniques in reverse engineering
is called Model-Driven Reverse Engineering (MDRE) [4].

This paper aims at sharing our experience by creating and using a MDRE
approach to systematize the modernization and maintenance services. After ana-
lyzing existing solutions and considering the needs of a multinational company
that must cover a wide technological spectrum, we have developed a corporate
solution, called STRATO, which focuses on facilitating extensibility when incor-
porating new programming languages. As a proof of concept we have evaluated
it on real customer legacy systems. The main contribution of this article is to
present the preliminary results and lessons learned when adopting MDRE in a
large multinational company, providing a series of reflections and open issues to
reduce the gap between academia and industry.

The paper is organized as follows. Section 2 reports the motivation of fac-
ing to the challenge of the MDRE in NTT Data real environments. Section 3
shows the related work and background in this research. Section 4 describes the
conceptual approach proposed. STRATO platform as a tool is shown in Sect. 5.
Section 6 exposes results with real legacy systems as a proof of concept evalua-
tion. Section 7 summarizes lessons learned. Finally, Sect. 8 presents conclusions
and future work.

2 Motivation

One of the business areas of the multinational NTT Data is the maintenance
of large legacy applications, accounting for up to 40% of the business volume.
Although the service offering covers all sectors, banking and utilities are the
main ones in which there is a group of clients that maintain the core of their
business with software developed decades ago. Sometimes these systems have
gone through evolutions, carried out by various companies over the years, so
estimating the effort required to understand and know how to evolve or correct
these systems is a very complex task without having time to evaluate its source
code.



332 L. García-Borgoñón et al.

Generally, these systems were developed with old technological stacks and
the associated documentation is either non-existent or is not a true reflection of
how the software has evolved, so the first task of the maintenance team is to
be able to understand how a system was built by reading the source code. This
work, although it is carried out by technical experts in the specific technologies,
requires a great effort and entails a time period of several weeks and, in turn, is
subject to potential errors caused by the manual work of reading, interpreting
and documenting the software.

From the Innovation and Strategic Investments (ISI) area, in charge of leading
corporate assets that allow the company to innovate and change the business, we
have set ourselves the challenge of automating this first phase of discovering large
legacy systems, based on MDRE principles, working on abstract models instead
on source code. For this reason, we consider the creation of a technological
platform that automates parsing source code and transforming it into models, to
improve the productivity of technical teams during early stages of large legacy
systems maintenance projects.

Although there may be some specific solutions that perform automatic code
conversion from one language to another, this scenario is in practice very little
demanded by clients, since in the modernization process there are always changes
in functionality or change requests not to drag errors accumulated in the evolu-
tion of code for years. Additionally, our approach must meet two characteristics:
i) be easily extensible to several languages, due to the great variability of clients
and sectors that means that even for the same programming language we find
more than 10 versions, and; ii) be a web-based collaborative platform in which
large teams can work simultaneously on the same project.

Consequently, our hypothesis is that through an MDRE solution, we will
be able to improve early stages of maintenance or modernization projects of
large real legacy systems in a practical way, automating acquisition, generating
technical documentation and guiding the team to identify problems and propose
solutions. In this way we could reduce the effort and time required to maintain an
existing system, increasing our competitiveness and being proactive in reducing
its technical debt, which sums up our motivation from a business perspective.

3 Background and Related Work

In the field of MDRE there are some initiatives aimed at obtaining descriptive
models from existing systems that have previously been developed [5], generally
structured in two steps: i) obtaining a view, a model, of the legacy system ana-
lyzed from source artifacts, and; ii) the exploitation of the model to achieve a
specific objective, for example, to document or re-engineer a system.

Regarding languages for reverse engineering, OMG Architecture-Driven Mod-
ernization (ADM) [6] initiative defined different models with the aim of sup-
porting reverse engineering activities: i) the knowledge discovery metamodel
(KDM) [7], which aims to define a shared and complete representation expe-
rience capable of guaranteeing the interoperability of different tools, efficiently



Lessons Learned in Model-Based Reverse Engineering 333

supporting maintenance, evolution, evaluation and activities of modernization;
ii) the Abstract Syntax Tree (AST) Metamodel (ASTM) [8], which represents
the AST of virtually any programming language, allowing parsing tools to target
the metamodel rather than the specific language AST. The metamodel defines
the generic AST, with definitions that can be applied recurrently to most pro-
gramming languages, but also allows extensions, known as specialized ASTM,
to be able to include the specific characteristics of a specific programming lan-
guage; iii) the Consortium for Information and Software Quality contributed to
the definition of metamodels integrated with ADM standards, adding the rep-
resentation of different quality measures, for example, maintainability with the
Automated Source Code Maintainability Measure (ASCMM) [9]; iv) the meta-
model for the definition and description of patterns as used in the architecture,
design and implementation of software systems, working with software flaws or
security problems, and any situation in which a pattern is appropriately applied,
known as Structured Patterns Metamodel Standard (SPMS) [10], and; iv) the
metamodel to support the representation of software metrics applied to existing
models (Structured Metrics Metamodel, SMM) [11], which defines the way to
represent measurement information related to any structured information model,
being extensible to exchange both measurements as measurement information
about artifacts contained or expressed by structured models. In 2017 a system-
atic literature review (SLR) [3] of MDRE presented 15 different initiatives, sup-
porting several programming languages (java, cobol, structured query language
(SQL), javascript, php or delphi among others), as well as metamodels and tools
created from scratch or extending existing frameworks as MODISCO [12].

Regarding case studies, in 2007 Tonella et al. [13] performed a review of
empirical studies in reverse engineering and identified the need to adopt a com-
mon framework for the execution of experiments. In 2019Pa Pascal developed
a study on the practical adoption of MDRE approaches [14] with these conclu-
sions: i) MDRE for general purpose languages such as java was currently still a
myth, and; ii) even when there were generic tools such as MODISCO, they were
far from being able to raise understanding to an abstract level such as architec-
ture. A SLR of automatic software refactoring was conducted in 2019 by Baqais
and Alshayeb [15] including 41 primary studies with these conclusions: i) most
research was done at code level (78%) so they encourage to do more research at
model level; ii) there was a lack of tool support (only 29% of studies included a
tool chain).

Regarding existing tool chains, there are several with a MDRE approach
that proposes their own metamodels: i) Spoon [16] is an open source library
for parsing, rewriting, and transforming java source code; ii) COALA with
its CoAST (Universal and language-independent abstract syntax tree) meta-
model [17] is a universal AST that makes it easy to analyze every programming
language, and; iii) Grammar to Model Language (Gra2Mol) [18] is a domain-
specific transformation language for defining relationships between grammar ele-
ments and metamodel elements. To build an MDRE solution from the defini-
tion of domain-specific languages, whether textual or graphical, we have also



334 L. García-Borgoñón et al.

reviewed the existing tools. Iung et al. conducted a systematic mapping study
in 2020 [19] where 59 tools were exposed. To support web based interaction we
have developed some proof of concepts using Web Generic Modeling Environ-
ment (WebGME) tool [20], AToMPM [21], Pyro [22], EMF in cloud [23] with
different graphical modeling extensions like Sirius [24] or Graphical Language
Server Platform (GLSP) [25], and finally using Theia [26] or reproducing exist-
ing solutions for data modeling [27]

After analyzing the state of the art we have evidenced that: i) there is no
solution to automate reverse engineering for any programming language; ii) there
are several metamodel proposals to follow an MDRE approach; iii) ASTM seems
to be the OMG standard that would allow to cover the platform independent
perspective we are pursuing; iv) there is not much practical evidence of the
application of reverse engineering in industry in real cases to compare with.

4 Conceptual Approach

This section introduces conceptual MDRE approach proposed. Figure 1 shows
a schematic of the general reverse engineering process, according to a bottom-
up approach, in which top services are based on platform independent models,
reducing the effort required to incorporate new languages. The new solution
must be applied to various programming languages and technologies, but we
have started with java, cobol and relational databases due to the volume of
existing maintenance legacy systems in our business.

At the bottom there is the legacy systems layer. The information available
from the legacy systems is used, whether they are java or cobol solutions, which
can be accessed via a local folder, a compressed file with the sources, git repos-
itory credentials, or compiled code. Additionally, if the system stores persistent
data, the Open Database Connectivity (ODBC) connection or the SQL of the
relational database schema may be provided.

Then there is the discovery layer. In this phase, the source code is parsed
using lexical and syntactic analyzers, according to concrete programming lan-
guages grammars, and their respective ASTs are obtained. Next, a model-to-
model (M2M) conversion is carried out towards a platform independent AST
model (PIM ASTM) that allows the rest of the functionalities and transforma-
tions to be reused independently of the Platform Specific Models (PSM). This
way, the possibility of extending the MDRE coverage towards new languages is
simplified because the rest of the upper layers would not require modifications.

The objective of the understanding layer is to transform the information
from the ASTM to a set of more representative models of an information system.
The solution includes three PIM metamodels: i) the domain model includes
conceptual elements with attributes and relationships; ii) the persistence model
includes the relational database schema with tables, columns and relationships;
iii) the business logic model includes functions, services, their statements and
relations to domain and persistence models.



Lessons Learned in Model-Based Reverse Engineering 335

At the top there is the diagnostic and transformation services layer.
Once all the information of a legacy system is defined in the domain, persistence
and business logic metamodels, there are services for technological debt diagnosis
and automatic M2M transformation to reduce it.

Fig. 1. Conceptual architecture for reverse engineering process

5 STRATO Platform

This section exposes the new corporate platform that, following MDRE princi-
ples, automates the discovery and understanding of legacy systems. At technical
level, it is created as an extension on top of WebGME. The solution is composed
by new metamodels and services for discovery, understanding, diagnosis, docu-
mentation and technical debt reduction. WebGME tool has been extended in
functionality, some plugins have been developed and a new system architecture
based on micro-services has been created as it is shown in the Fig. 2.



336 L. García-Borgoñón et al.

Fig. 2. Technical architecture of services

Fig. 3. View of ASTM meta visualizer in WebGME

The conceptual approach requires the generation of four platform indepen-
dent metamodels: i) a domain conceptual metamodel for complex data struc-
tures, composed by 35 elements; ii) a persistence metamodel for relational
databases that includes 39 metaelements; iii) a business logic metamodel for
actions, services, statements and expressions, formed by 81 elements and; iv)
an extension of the OMG ASTM standard composed by 196 metaelements. As
the size of the metamodels is large and with WebGME we experienced prob-
lems when applying changes, we decided to create them using Essential Meta
Object Facility (EMOF) [28]. We developed a tool to automate their transfor-
mation from ecore to WebGME. Figure 3 shows a view of ASTM source package
metaelements into meta visualizer of WebGME.

Discovery services are responsible for parsing source code and convert it to
ASTM model. It is the architecture layer closest to the concrete technology
and the one that requires specific adaptation for each possible programming



Lessons Learned in Model-Based Reverse Engineering 337

language. These services are built from the AST obtained after parsing the spe-
cific grammar of each language, using the antlr4 tool [29], as Spring Boot based
java services. When we want to include a new programming language, we need
to have its grammar and build the service that reads its AST and transforms it
into the ASTM model.

Once the ASTM model is filled, all transformations and analysis are done on
top of abstract models, so that adding new languages requires no changes. Under-
standing services are in charge of transform ASTM information into domain,
persistence and business logic models. At the beginning they were developed
using WebGME plugins, but due to the huge size of ASTM models, we expe-
rienced performance and memory issues, so that they were developed in java
and interacts with models using a new Representational State Transfer (REST)
Application Program Interface (API) created on top of existing core API [30].
Since ASTM is an intermediate step between the code and the abstract models,
we implemented its integration into the platform for demonstration purposes,
but in its current version the transformation is performed without the need to
dump the extensive information into MongoDB which is used by WebGME.

Fig. 4. Auto-generation of technical documentation from persistence model

The rest of features are implemented on the diagnostic and transformation
services layer, launched by user as javascript plugins but all logic is included in
external micro-services, so that we reduce the coupling with the WebGME tool
and these services may be reused from different client tools. The first function-
ality is focused on the automated generation of technical documentation that
allows visualizing the internal structure of a system and its call map, as an agile
way of navigating between the components visually, but being able to access
the developed code at the same time. This documentation may be generated in



338 L. García-Borgoñón et al.

several formats like word, powerpoint, pdf or html, and there are templates for
analysis and design. Figure 4 shows an example of documentation design profile
which is created from the domain model in html.

The second feature is a system quality analyzer service that identifies tech-
nological debt based on unused variables, repeated code blocks, lack of control
in the possible passage of null parameters or exception handling blocks without
content, among others. This detail of the quality is extended through a static
analyzer of a system, always based on the models and not from the source code,
which allows to graphically analyze how maintainable a system is and the main
risks detected in the face of evolution or modernization, creating the equivalent
to a model-based Sonarqube [31] dashboard panel. Figure 5 shows an analysis
model with hyperlinks to the erroneous elements as well as a dashboard panel
to quickly get an idea of its technological debt.

The third functionality is a technical debt reduction service that realizes a set
of changes on business logic model according to various transformation patterns
that can help to maintain the system more easily, among others: i) deletion of
unused variables, function blocks, domain or persistence elements; ii) control of
datatypes in parameter binding; iii) normalization of naming; iv) initialization of
variables, and; v) conversion from complex data structures to equivalent domain
model elements. Finally there is a service to export all models to json so that
this models may be used by external code generators.

Fig. 5. Model based sonar and QA diagnosis from models

6 Evaluation

For the development of the platform we have followed an iterative and incremen-
tal methodology. We have started from a simplified set of legacy systems from
real clients to validate each of the stages of the MDRE cycle during its devel-
opment. According to the different potential purposes of a reverse engineering



Lessons Learned in Model-Based Reverse Engineering 339

empirical study [13], our main motivation was to evaluate the feasibility of the
technical proposal with real large legacy systems, so that our evaluation method
is a proof of concept. To validate the proposal, a set of real maintenance projects
of large legacy systems have been used. In some of them we have not achieved
100% coverage of the source code because discovery services have limitations
such as: i) Spring framework annotations are ignored ; ii) third party libraries
are parsed only when included in maven pom.xml and accessible by maven cen-
tral repository, or; iii) cobol code cannot include sql sentences. This way we
only expose a summary of relevant pilot projects in which reverse engineering
coverage was 100% without manual work and are shown in Table 1:

Table 1. Most relevant real projects used for validation.

Project Legacy Source Size

P1 Banking transactional Cobol 636 lines
P2 Banking batch Cobol Micro Focus 603 lines + 17 functions
P3 Integration platform Java 6 400 classes
P4 Online ecommerce Java 6 110 classes
P5 Management system Dump script SQL 1379 tables

Table 2 shows a summary of the reverse results obtained. The process time
is detailed, which includes the reading and parsing of the grammar, its conver-
sion to ASTM and its subsequent conversion to the domain, business logic and
persistence models. Additionally, figures of the size of these models, expressed
in metaelements, including all the nodes and the connections between them, are
shown.

Table 2. Process time and model size generated from source code.

Project Reverse process time Domain Size Business Logic Size Persistence Size

P1 0:00:59 864 71283 0
P2 0:01:06 1062 92693 0
P3 0:04:39 444080 5124307 0
P4 0:03:09 1400 1319600 0
P5 0:02:08 0 0 1612781

Once the transition to technology independent models has been made, in all
of them we have been able to: i) perform automatic generation of documentation
in less than one minute in any format; ii) perform the analysis of the technological
debt, both detailed and sonar panel, in less than two minutes; iii) generate a new



340 L. García-Borgoñón et al.

model that reduces the technological debt in less than three minutes. Due to
confidentiality agreements with clients, we do not include details on the existing
technical debt in the projects, but we do include details on the value that the
solution provides to our maintenance teams. To this end, we have performed an
analysis of the reduction in time and effort required to understand and document
a legacy system, comparing it with the historical data available at the corporate
level, as it is shown in Table 3:

Table 3. Summary of the effort and time reduction obtained.

KPI Method Average Value

Reduction of effort in
analyzing a legacy
system

Person hours required with STRATO
vs
Person hours required in historical data for
similar size and complexity projects

75%

Reduction of time in
analyzing a legacy
system

Working period (days) required with STRATO
vs
Working period (days) required in historical
data for similar size and complexity projects

87%

Reduction of effort for
generating technical
documentation

Person hours required with STRATO
vs
Person hours required in historical data for
similar size and complexity projects

99%

7 Lessons Learned

In this section we are going to share some of the lessons learned when running
this applied research project in a corporate environment with large real legacy
systems. These thoughts are divided into four perspectives: industrial, techno-
logical, academic and finally we write down some reflections and open questions
for the MDE community.

From a business perspective: 1) pilot projects have validated there is imme-
diate business value when maintaining the same code base and a potential dif-
ferential factor in the market: i) an average saving of 75% of the effort needed
to understand how a legacy system is built and technological debt analysis,
compared to historical maintenance team data; ii) elimination of interpretation
errors when creating the legacy system documentation, which reduces the risk
of misinterpretation when creating the work plan; iii) more than 40% of clients
interviewed perceive added value in maintaining their legacy systems using these
kind of automation tools, especially in banking sector. 2) the proposal is valid
for any technology but depending on the project it may not be profitable. It is
necessary to evaluate the cost of developing the discovery service of a technology
stack when not only the grammar changes but also when there are proprietary
libraries that condition the technical debt analysis. For example, when there is a



Lessons Learned in Model-Based Reverse Engineering 341

proprietary library that manages a transactional and should only be used from
certain components. This requires new validation rules beyond the interaction
between logical blocks and requires changes on current analyzers; 3) customers
interviews have confirmed that business case for reverse engineering is not in
automating technology modernization. They want to know how a legacy system
was built so they can best incorporate it when building a new solution, not sim-
ply transform a system from one programming language to another, and; 4) in
some projects a static analysis of the code is not enough, it is necessary to com-
bine it with usage based logs to understand and improve its dynamic behavior.
The lack of this functionality has been a barrier to its use in some pilots.

From a technological perspective: 5) we believe that it is feasible to perform
a layered MDRE process using PIM ASTM, although it is necessary to perform
a set of interpretations of how to map certain elements of each specific language,
for example a Cobol DISPLAY statement, to the ASTM metaelements. We
have not found a standard guide on how to map PSM AST to PIM ASTM; 6)
although there are web-based MBSE tools like WebGME, their mechanisms for
M2M transformations are not valid for very large systems. We have experienced
memory or timeout issues when processing models with hundreds of thousands
of nodes, so we have modified the architecture adding external services outside
of the tool to ensure its scalability, and; 7) the effort to adapt the solution to
new grammars is assumable, but to be able to analyze the technical debt at
the architecture level, it is necessary to extend the business logic metamodel
to be able to characterize the semantics of certain blocks, their relationships
and constraints, as well as to be able to analyze runtime data or functional
programming languages. We have not found any standard or existing technical
approach for these needs.

At an academic level, understood by the ability to understand and reuse
research results: 8) although we have extended the OMG ASTM standard, its
formal specification in XSD format contains form errors and is not consistent
with the official document specification, which has led us to question whether
we are the first company to approach a real project with all the metaelements of
the standard without reducing its scope; 9) one of the conclusions of the review
done by Tonella et al. [13] was the need to adopt a common framework for
the execution of experiments in reverse engineering. Many years later, we have
not found a way to analyze and measure the value of reverse engineering or to
compare with other academic or industry initiatives; 10) we have detected a gap
between academia and industry, in the sense that many of the publications or
open research projects are far from the possibility of being used in a practical
way for real cases, due to the fact that the scope of the investigations is generally
limited. As an example, we have not been able to parse complex java expressions
with most of the existing proposals reviewed in the state of the art, and; 11) the
existence of research articles that summarize and systematically analyze the
publications or tools has allowed us to quickly obtain a global vision of the state
of the art, so from the industry we highly value this type of contributions that
allow us to identify research status and pending challenges. We have not been



342 L. García-Borgoñón et al.

able to find the same level of reviews at a practical level, who has tested what,
how they have done it and what they have obtained, in order to have a summary
at the level of research projects applied to the industry.

Finally, we write down a series of open questions for the community: 10) in
our platform the code is transformed to models under three perspectives, the
business logic, the database and the domain model, but the interactions among
them are shown by the interconnections between metaelements. The component
or block diagrams that can represent an architecture are not applicable to these
monolithic systems either, so this question arises: what is the best graphic rep-
resentation to express how a legacy system is built?; 11) at academic level there
are many publications on the subject but they generally do not use real scenarios
and the scope of the proposals is generally limited to hypothetical situations that
are far from the problems that occur in the industry, so we ask ourselves: why
validation cases in scientific publications are far from real scenarios? How can
the industry contribute to raising the problems and needs to align the research
results to the industry?; 12) at the standards level, OMG ASTM seems to be the
most ambitious proposal to propose a systematic way for reverse engineering,
but in our opinion it has remained at a theoretical level. In other areas, such as
the specification of REST services, there are standards such as openAPI [32] that
are complemented by a set of tools [33] that facilitate their practical adoption.
Would it make sense that standards were complemented by the industry and
the academy with tools that facilitate their use at a practical level?; 13) there
are three areas in which we have not found any existing metamodel standard:
i) is there any initiative to describe visual elements of interaction with the user
independently of the technology?; ii) just as there are class diagrams for domain
or relational diagrams for persistence, is there any standard to describe busi-
ness logic independently of technology?, and; iii) is there any way to describe
architectural constraints for a technological debt analysis?.

8 Conclusion and Future Work

In this article we have presented the experience of a multinational when address-
ing the technical approach to resolve the need to automate the process of under-
standing and maintaining large legacy systems. After analyzing the research
results published by academia and the existing tools, we have concluded that
there was no MDRE solution that can cover a variety of technology stacks and
was designed for extensibility.

For this reason we have developed our own solution, created on top of
WebGME but with an external micro-services architecture for transformations,
which incorporates platform independent domain, persistence and business logic
metamodels. Additionally, our proposal differs from other existing tools because
the usage of an extension of the OMG ASTM standard, which allow us to sep-
arate the discovery phase from the rest of the layers to facilitate the future
extension to new languages and technology stacks.

The use of this proposal in real projects has allowed us to confirm that: i)
we can reduce the effort and time needed to understand a legacy system, by



Lessons Learned in Model-Based Reverse Engineering 343

automating the generation of documentation; ii) we are able to improve system
maintenance by automatically detecting optimizations and improvements; iii) it
allows us to approach technological transformation processes in a systematized
and model-based manner, with a higher level of abstraction than code, and; iv)
at the business level, clients have shown their interest in being able to undertake
more ambitious modernization projects by being able to shorten deadlines and
costs.

As lines of future work we have identified: i) the extension of the coverage of
languages supported in the discovery layer, including new grammars and their
transformation to the ASTM; ii) the inclusion of automatic code generation
services to regenerate the code in various technologies based on the modified
models, closing a technological modernization service; iii) the integration of code
related to interaction with the user or semantics for architectural debt analysis;
iv) the application of artificial intelligence techniques to automatically obtain a
textual description of what a functional block does from its source code or its
ASTM representation, and; v) the potential usage of software experimentation
methods [34] to achieve a systematic evaluation of its value in real projects.

Acknowledgements. This work was supported in part by Centro para el Desar-
rollo Tecnológico Industrial (CDTI) under Grant IDI-20210948 (STRATO, nuevaS
herramienTas para la modeRnizAción de sisTemas heredadOs).

References

1. Ruiz, F.: An approach for model-driven data reengineering (Doctoral dissertation,
PhD dissertation, University of Murcia) (2016)

2. Object Management Group, Inc. Object Management Group (2012). http://www.
omg.org

3. Raibulet, C., Fontana, F.A., Zanoni, M.: Model-driven reverse engineering
approaches: a systematic literature review. IEEE Access 5, 14516–14542 (2017)

4. Rugaber, S., Stirewalt, K.: Model-driven reverse engineering. IEEE Software 21(4),
45–53 (2004)

5. Favre, J.M.: Foundations of model (Driven)(Reverse) engineering: models-Episode
I: stories of the fidus papyrus and of the solarus. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2005)

6. Object Management Group, Inc. Arquitecture Driven Modernization Task Force
(2022). https://www.omg.org/adm/

7. Pérez-Castillo, R., de Guzmán, I.G.-R., Piattini, M.: Knowledge discovery
metamodel-ISO/IEC 19506: a standard to modernize legacy systems. Comput.
Stand. Interf. 33(6), 519–532 (2011)

8. Object Management Group, Architecture-Driven Modernization: Abstract Syntax
Tree Metamodel (ASTM), OMG document number: formal/2011-01-05 (2011)

9. Object Management Group, Automated Source Code Maintainability Measure TM
(ASCMM TM), OMG document number: formal/2016-01-01 (2016)

10. Object Management Group, Structured Patterns Metamodel Standard (SPMS),
OMG document number: formal/2011-01-05 (2017)

11. Object Management Group, Structured Metrics Metamodel (SMM), OMG docu-
ment number: formal/2018-03-01 (2018)

http://www.omg.org
http://www.omg.org
https://www.omg.org/adm/


344 L. García-Borgoñón et al.

12. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

13. Tonella, P., Torchiano, M., Du Bois, B., Systä, T.: Empirical studies in reverse
engineering: state of the art and future trends. Empirical Softw. Eng. 12, 551–571
(2007)

14. Pascal, A.: Case studies in model-driven reverse engineering. In: Proceedings of the
7th International Conference on Model-Driven Engineering and Software Devel-
opment, pp. 256–263. SCITEPRESS-Science and Technology Publications, Lda
(2019)

15. Baqais, A.A.B., Alshayeb, M.: Automatic software refactoring: a systematic liter-
ature review. Softw. Q. J. 28(2), 459–502 (2020)

16. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a
library for implementing analyses and transformations of java source code. Softw.
Pract. Experience 46(9), 1155–1179 (2016)

17. coAST coala Abstract Syntax Tree https://github.com/coala/coAST
18. Izquierdo, J.L.C., Cuadrado, J.S., Molina, J.G.: Gra2MoL: a domain specific trans-

formation language for bridging grammarware to modelware in software modern-
ization. In: Workshop on Model-Driven Software Evolution, pp. 1–8 (2008)

19. Iung, A., et al.: Systematic mapping study on domain-specific language develop-
ment tools. Empirical Softw. Eng. 25(5), 4205–4249 (2020). https://doi.org/10.
1007/s10664-020-09872-1

20. Maróti, M., et al.: Next generation (meta) modeling: web-and cloud-based collab-
orative tool infrastructure. MPM@ MoDELS 1237, 41–60 (2014)

21. AToMPM: a tool for multi-paradigm modeling. (n.d.). https://atompm.github.io/
22. Pyro: a collaborative, meta-model-driven, Web-based and graphical modeling envi-

ronment. (n.d.). https://pyro.scce.info/
23. Eclipse foundation. (n.d.). Eclipse modeling framework in cloud. https://www.

eclipse.org/emfcloud/
24. Eclipse foundation. (n.d.). Sirius web. https://www.eclipse.org/sirius/sirius-web.

html
25. Eclipse foundation. (n.d.). Graphical language server platform for building web-

based diagram editors. https://github.com/eclipse-glsp/glsp
26. Theia - cloud and desktop IDE platform. (n.d.). https://theia-ide.org/
27. Glaser, P.L.: Developing sprotty-based modeling tools for VS code (2022)
28. Object management group, Meta object facility (MOF) Core specification, version

2.5.1. OMG document number: formal/2019-10-01 (2016)
29. Parr, T.: The definitive ANTLR 4 reference. In: The Definitive ANTLR 4 Refer-

ence, pp. 1–326 (2013)
30. ISIS/Vanderbilt university, WebGME Documentation, Release 1.0.0 (2022)
31. Campbell, G.A., Papapetrou, P.: SonarQube in action. Manning Publications Co,

Shelter Island (2013)
32. OpenAPI initiative, OpenAPI specification v3.1.0 (2021). https://spec.openapis.

org/oas/v3.0.1
33. OpenAPI initiative, OpenAPI tools (2022). https://openapi.tools/
34. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.

Springer Science & Business Media (2013)

https://github.com/coala/coAST
https://doi.org/10.1007/s10664-020-09872-1
https://doi.org/10.1007/s10664-020-09872-1
https://atompm.github.io/
https://pyro.scce.info/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/sirius/sirius-web.html
https://github.com/eclipse-glsp/glsp
https://theia-ide.org/
https://spec.openapis.org/oas/v3.0.1
https://spec.openapis.org/oas/v3.0.1
https://openapi.tools/

	Lessons Learned in Model-Based Reverse Engineering of Large Legacy Systems
	1 Introduction
	2 Motivation
	3 Background and Related Work
	4 Conceptual Approach
	5 STRATO Platform
	6 Evaluation
	7 Lessons Learned
	8 Conclusion and Future Work
	References




