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Abstract. Waiting times in a business process often arise when a case
transitions from one activity to another. Accordingly, analyzing the
causes of waiting times of activity transitions can help analysts to identify
opportunities for reducing the cycle time of a process. This paper pro-
poses a process mining approach to decompose the waiting time observed
in each activity transition into multiple direct causes and to analyze the
impact of each identified cause on the cycle time efficiency of the pro-
cess. An empirical evaluation shows that the proposed approach is able
to discover different direct causes of waiting times. The applicability of
the proposed approach is demonstrated in a real-life process.
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1 Introduction

Waiting time is a common source of waste in business processes [6]. Although it
is impractical to completely eliminate waiting times in business processes, there
are various approaches to reduce them [11]. Waiting times typically arise during
transitions between activities, i.e. when the execution of a case moves from one
activity to another. There are different reasons why waiting times occur during
activity transitions. For instance, when two consecutive activities in a case are
executed by different resources (a.k.a. a handoff [22]), the processing of the case
is put on hold until the next resource becomes available to execute it. In this
scenario, the cause of the waiting time is resource contention, i.e. a resource is not
available to execute an activity instance because they are busy executing other
activity instances [7]. Waiting times may also be caused by data exchanges [17],
coordination issues [18], or synchronization points [18].

Process mining techniques allow us to analyze data generated by business pro-
cess executions, a.k.a. event logs, to unveil performance and conformance issues,
and associated improvement opportunities [1]. In particular, process mining tech-
niques support the discovery of sources of waste, including waiting times [1].
However, while existing process mining techniques enable analysts to visualize
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activity transitions with high waiting time (i.e. bottlenecks), they provide limited
support for identifying the causes of waiting times and how to reduce them.

To tackle this gap, this paper addresses the following research questions:
(RQ1) “What causes of waiting times between pairs of activity instances can be
identified from event logs?”, (RQ2) “How can these causes of waiting time be
identified from event logs?”, and (RQ3) “How can improvement opportunities,
expressed as inefficiencies due to waiting times, be identified from event logs?”

The contribution of the paper is two-fold. First, we conceptualize the causes
of waiting time arising from activity transitions. Second, we propose a process
mining approach to (1) discover waiting times associated with activity transi-
tions; (2) identify their causes; and (3) analyze their impact w.r.t. a well-known
measure of temporal efficiency called Cycle Time Efficiency (CTE): the ratio of
processing time to cycle time in a process [7].

The proposed approach has been implemented as a software tool and empir-
ically evaluated to verify its ability to discover different causes of waiting time
using synthetic event logs. In addition, the applicability of the approach has
been tested by applying it to a real-life event log.

The rest of the paper is structured as follows. Section 2 introduces background
and related work. Section 3 presents the proposed approach. Section 4 describes
the empirical evaluation, and Sect. 5 concludes the paper.

2 Background and Related Work

In this section, we introduce relevant conceptual foundations and notations from
the fields of business process management and process mining, and position our
contribution w.r.t. existing approaches to discover and analyze waiting times.

2.1 Business Processes and Temporal Performance Measures

A business process is a collection of events, activities, and decisions that lead
from a customer need to an outcome that is of value to this customer [7]. Each
execution of a business process is called a case. A common measure of temporal
performance of a business process is its cycle time: the time between the moment
a case of the process starts, and the case ends, aggregated to the level of the set
of cases of a process observed during a period of time. The cycle time of a process
consists of processing time (the time during which a case is being processed) and
waiting time (the time when a case waits to be processed) [7].

Waiting time may be caused by resource contention, i.e. no suitable resource
is available to execute an activity instance [11]. Other causes of waiting time
include: synchronization between resources within a process [18] or across mul-
tiple processes [7], coordination between resources executing different activi-
ties [18], data transfer [7], batching [12], handoffs [18], and external inputs [2].

The temporal efficiency of a process can be measured by its CTE: the ratio
of processing time to cycle time. When CTE is close to 1, there is relatively little
waiting time. Conversely, if the CTE is close to 0, the waiting times are longer
relative to processing times and there are opportunities to improve the CTE by
reducing waiting times [7].
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2.2 Event Logs and Activity Instance Logs

Modern IT systems record and store process execution data in event logs, i.e. sets
of timestamped events capturing the execution of the activities in a process [7].
An event log contains information about state changes of each activity instance
(e.g. enablement, start, end, or cancellations of activity instances). In this paper,
we use the concept of activity instance log to represent the execution of a set
of cases in a process. An activity instance log is an event log in which each
entry contains information about the start time and end time of an activity
instance [16]. Below, we introduce several notations used in the paper, leading
to a definition of an activity instance log.

We consider a business process that involves a set of activities A. We denote
each of these activities with α. An activity instance ε = (ϕ,α, τe, τs, τc, ρ) denotes
one execution of activity α, where ϕ identifies the process case to which this
execution belongs to, τe, τs, and τc denote, respectively, the instants in time in
which this activity instance was enabled, started, and completed, and ρ identifies
the resource that processed the activity. Accordingly, we use ϕ(εi), α(εi), τe(εi),
τs(εi), τc(εi) and ρ(εi) to denote, respectively, the process case, the activity, the
enablement time, the start time, the completion time, and the resource associated
with the activity instance εi. We use (τi, τj) to denote the time interval between
τi and τj . We write ω(εi) = (τe(εi), τs(εi)) to denote the waiting time of εi,
representing the interval since εi became available for processing (τe(εi)), until
its recorded start (τs(εi)). The processing time of εi is pt(εi) = (τs(εi), τc(εi)).
We use (τi, τj) ∈ (τk, τl) to denote that the interval (τi, τj) is contained in (τk, τl),
i.e. τi ≥ τk and τj ≤ τl. With (τi, τj) ⊥ (τk, τl) we denote that both intervals
(partially or fully) overlap, i.e. ∃(τm, τn) ∈ (τi, τj) | (τm, τn) ∈ (τk, τl).

Given the above, an activity instance log L is a collection of activity instances
recording the data of the execution of a set of cases of a business process. Table 1
shows an example of 10 activity instances from an activity instance log, whereas
Fig. 1 depicts the corresponding process model.

Table 1. Fragment of an activity instance log composed of 10 activity instances.

Case ID Activity Enabled Time Start Time End Time Resource

...

510 Register invoice 08:30:12 08:30:12 11:30:00 Jack

511 Notify acceptance 09:10:11 09:10:11 10:01:01 Carolyn

511 Post invoice 09:10:11 09:10:11 10:14:15 Sarah

512 Post invoice 10:25:45 10:25:45 10:30:00 Sarah

513 Post invoice 10:34:15 10:34:15 12:00:00 Sarah

514 Post invoice 09:10:11 11:30:00 13:00:00 Jack

515 Register invoice 12:08:10 12:08:10 13:00:00 Sarah

512 Pay invoice 10:30:00 15:55:50 17:00:11 Jack

513 Pay invoice 12:00:00 17:00:11 17:55:40 Jack

511 Pay invoice 10:14:15 17:55:40 18:30:15 Jack

...
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Fig. 1. Process model example corresponding to the event log of Table 1.

2.3 Related Work

Process mining is a family of techniques that support the discovery of process
models from data as well as the analysis of business processes with respect to
efficiency, quality, and compliance. Some of these techniques address the question
of how to discover and analyze waiting times in specific application domains. For
instance, Uysal et al. [21] present a case study where process mining is used to
identify bottlenecks and reduce the cycle time in a production process. Similarly,
Erdogan et al. [8] apply process mining techniques to identify waiting times in
a hospital emergency process, while Yampaka & Chongstitvatana [24] describe
an application of process mining combined with a queuing system to analyze
and improve temporal performance in a healthcare process. Similarly, Antunes
et al. [3] combine process mining with discrete event simulation to optimize wait-
ing time in an emergency department. However, none of these domain-specific
studies considers the question of how to attribute waiting times to their causes,
which is the focus of this paper.

Ferreira & Vasilyev [9] present a technique to identify why some cases in a
process take longer time to complete. They identify case characteristics corre-
lating with higher delays, e.g., when a given activity occurs in a case, or when a
given resource is involved, the case is likely to have higher waiting time. Likewise,
De Leoni & van der Aalst [5] combine some of the existing correlation analy-
sis techniques to identify how different process characteristics correlate with the
process performance, e.g. if process deviations cause delays. Similarly, Hompes et
al. [10] propose an approach based on time series analysis to detect cause-effect
relations between process characteristics and performance indicators, e.g., if the
waiting time for the receipt of payment depends on the time of day. Toosinezhad
et al. [20] introduce an approach to detect event patterns that frequently precede,
i.e. lead to, dynamic bottlenecks. While these studies take a correlation-based
approach to analyze waiting times, we classify the causes of waiting times and
consider their impact on process performance.

Some process mining techniques support the identification of waiting times
caused by queuing effects, i.e. when activity instances wait in a queue until a
resource becomes available [19]. Similarly, in [12], the authors present an app-
roach to discover waiting times caused by batch processing. However, these tech-
niques focus on identifying a singular cause of waiting time. In contrast, in the
present paper, we seek to decompose the observed waiting time into multiple
causes.
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Fig. 2. Overview of the proposed approach.

3 Waiting Time Discovery and Analysis

In this section, we describe our approach to discover and analyze waiting times
in a business process. The approach takes an event log as input and, as a result,
produces a report comprising the causes of waiting times and their impact on
the CTE. Figure 2 depicts an overview of the three main steps of the approach.

In the first step, we discover the transitions between activities and their
characteristics – total frequency, case frequency, and total waiting time – from
the event log. In the second step, we identify the causes of waiting time of each
transition. In the third and final step, we analyze the impact of each cause on
the temporal efficiency of the process.

3.1 Activity Transition Discovery

The first step of our approach is to discover transitions between activities and
their waiting times. We define an activity transition instance as a pair of activity
instances 〈a1, b1〉 in a single case, such that the completion of a1 enables b1,
i.e. b1 cannot be executed before a1 is completed. We call the first element of
an activity transition instance the source activity instance, while the latter is
the target activity instance. An activity transition is a set of activity transition
instances with the same source and target activities, where the source activity is
the activity executed in all its source activity instances, and the target activity
is the activity executed in all its target activity instances. For example, the
activity transition 〈a, b〉 is composed of the set of activity transition instances
{〈a1, b1〉, 〈a2, b2〉, . . . 〈an, bn〉}. For simplicity, we refer to activity transitions as
transitions and to activity transition instances as transition instances.

As input, we require an activity instance log as defined in Sec. 2.2, where the
resources sharing the same role are considered separately, and the enabled time
of each activity instance is optional. If this latter element is missing, we estimate
it as follows. In a sequential process, each activity instance of a case is enabled
by the completion of the preceding activity instance. However, concurrency is
common in real-life processes. For example, Fig. 3 shows the execution of a case
with concurrency between two activities. The order of the activity instances is
“Register invoice”, “Post invoice”, “Notify acceptance”, and “Pay invoice”. How-
ever, “Post invoice” and “Notify acceptance” are enabled when the activity
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Fig. 3. Waiting time in a case with concurrent activity instances.

instance “Register invoice” completes. In the same way, “Pay invoice” is enabled
only when “Post invoice” is completed. Accordingly, there are only three activ-
ity transitions in this example, namely 〈RegisterInvoice,NotifyAcceptance〉,
〈RegisterInvoice, PostInvoice〉, and 〈PostInvoice, PayInvoice〉. In this way,
we consider each activity instance to be enabled by its closest non-concurrent
preceding activity instance. We assume that once an activity instance is enabled,
it remains enabled until its processing starts.

To detect concurrent activities (e.g. if activities “Post invoice” and “Notify
acceptance” are concurrent), we use the concurrency oracle of the Heuristics
Miner [23]. This method computes, for each pair of activities related via a
directly-follows relation, a coefficient indicating whether these activities are in a
concurrent relation or not. This coefficient is computed based on the percentage
of times the two activities directly-follow each other in either order, e.g. “Post
invoice” followed by “Notify acceptance” versus “Notify acceptance” followed by
“Post invoice”. The concurrency oracle then determines which pairs of activities
are concurrent based on certain thresholds.

Once the transition instances are discovered, we calculate their duration, i.e.
the waiting times they induce. The waiting time of a target activity instance in a
transition instance is the interval between its enablement and its start time. For
example, in Fig. 3, the waiting time in the transition 〈PostInvoice, PayInvoice〉
corresponds to the interval (tenabled_pay, tstart_pay). In this way, we identify the
waiting time of each target activity instance per transition.

Finally, we compute the following characteristics for each identified transition
(composed of all its transition instances): Case frequency illustrates the propor-
tion of process cases from the total number of cases where this transition is
observed. Total frequency indicates the number of occurrences of this transition
in the process. Total duration is the sum of the waiting times of all transition
instances. The output of this step is a report depicting all identified transitions
and their characteristics, sorted by total duration in descending order. Based on
this information, the analysts can see what transitions cause the highest waiting
times and how frequently they are executed.

3.2 Waiting Time Cause Discovery

Once the activity transitions and their characteristics are discovered, we analyze
the waiting time of each transition instance and identify their causes. In this



180 K. Lashkevich et al.

section, we define the proposed causes of waiting times (RQ1) and describe how
they can be identified from an event log (RQ2).

Given the event log information, we consider that an enabled activity instance
can wait for i) other activity instances to be enabled (so they are processed
together) or ii) the assigned resource to become available. Below, we analyze
each of these situations and we relate them to direct causes of waiting time.
i) When an activity instance waits for another activity instance to be enabled,
we observe a batch processing behavior, and thus, waiting time due to batching.
ii) If an activity instance is not waiting for this reason, it might wait for the
assigned resource. The assigned resource might be busy processing other activity
instances, enabled before or after the waiting activity instance. Thus, we observe
waiting times due to resource contention or due to prioritization, respectively.
If the resource is not busy, they might be unavailable due to working schedules,
causing waiting time due to resource unavailability. Finally, if there is waiting
time that cannot be explained by any of the above causes, we consider the cause
to be due to extraneous factors, i.e. causes that cannot be identified from the log.
Accordingly, we propose to target five causes of waiting time: batching, resource
contention, prioritization, resource unavailability, and extraneous factors.

The waiting time within a given transition instance may stem from one or
multiple causes –e.g. the resource was busy performing another activity instance
during half of this waiting time, while the resource was off-duty (outside their
working hours) during the other half. If there are multiple waiting time causes for
a given transition instance, we decompose this waiting time into non-overlapping
time intervals and attribute each interval to one cause using the decision pro-
cedure in Fig. 4. According to this decision procedure, we first identify if any
intervals of the transition duration are caused by batching. Then we look for
intervals of waiting time caused by resource contention and prioritization, fol-
lowed by resource unavailability and extraneous factors. This order is determined
by the dominance relations between these causes. Batching dominates resource
contention, prioritization, and unavailability, because regardless of the availabil-

Fig. 4. Overview of the waiting time cause discovery process and their definitions.



Data-Driven Analysis of Waiting Times in Business Processes 181

Fig. 5. Waiting time due to batching.

ity status of any given resource, an activity instance that is part of a batch is not
ready to be assigned (and started) until the batch is ready. Resource contention
and prioritization dominate resource availability, because if a resource has a work
queue, they cannot start an activity instance until the latter reaches the front
of the queue, or until this activity instance has the highest priority among all
activity instances in the queue, regardless of the resource’s availability status.
Extraneous factors are dominated by all other causes, as they act as a “catch-all”
cause for any waiting time that cannot be attributed to other causes.

Note that since each interval of waiting time is attributed to a single cause,
this approach ensures the identified waiting time are additive, i.e. the sum of the
waiting time causes is equal to the total waiting time of the transition instance.

Below, we define each waiting time cause in turn, and we specify how it is
discovered within an activity instance log.

Waiting Time Due to Batching. The first cause that we identify is waiting
time due to batching. Batch processing occurs when a set of instances of the
same activity are accumulated to be processed together (either simultaneously
or one after the other) [12]. In this context, a batch is a set of activity instances
Eb ⊆ L, such that all εi ∈ Eb record the execution of the same activity, performed
by the same resource, and processed as a batch (i.e. all of them were enabled
before any of them started, and they were processed as a group). We use the
technique proposed in [12] to identify batch processing. In batch processing,
when an activity instance is enabled and ready to be processed, it can wait for
other instances of the same activity until the batch is accumulated, i.e. until all
instances that are part of a batch are collected. Accordingly, when the target
activity instance of a transition instance is detected as part of a batch, the
waiting time interval from its enablement time to the batch accumulation time
is classified as waiting time due to batching. The waiting time due to batching
of an activity instance is then defined as follows:

Definition 1 (Waiting Time Due to Batching). Given an activity instance
log L, a batch Eb ⊆ L, and an activity instance εi ∈ Eb, the waiting time due
to batching of εi is ωba(εi) = (τe(εi), τbc) | τbc = max({τe(εj) | εj ∈ Eb}), i.e.
the interval of time between the enablement of εi and the last enablement of the
activities in the batch.

Consider the transition instance between “Post invoice” and “Pay invoice” of
case 511 in the running example (Fig. 5) with a waiting time between 10:14:15
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and 17:55:40. The activity “Pay invoice” is a batch-processed activity where the
resource accumulates instances and then processes them one by one (sequential
batch processing) [16]. The batch is accumulated until the last activity instance of
“Pay invoice” is enabled, i.e. case 513 is ready to be processed (tenabled = 12:00:00).
Therefore, if we analyze the transition instance 〈PostInvoice, PayInvoice〉 of case
511, its waiting time due to batching corresponds to the interval between 10:14:15
and 12:00:00.

Waiting Time Due to Resource Contention. There are situations where
the resources that have to process a certain activity are busy processing other
activity instances that were enabled earlier than the waiting one, and thus, it’s
understood that they start processing them before the current one (following a
first-in-first-out order).1 When this situation occurs, we classify as waiting time
due to resource contention those intervals in which the resource that performed
the activity instance was working in other activity instances enabled before it.
Therefore, the waiting time due to resource contention of an activity instance is
defined as follows:

Definition 2 (Waiting Time Due to Resource Contention). Given an
activity instance log L, and an activity instance εi ∈ L, the waiting time due to
resource contention of εi is Ωrc(εi) = {(τi, τj) | τi = max(τe(εi), τs(εj)) ∧ τj =
min(τs(εi), τc(εj)) ∧ εj ∈ L ∧ εj �= εi ∧ ρ(εj) = ρ(εi) ∧ τe(εj) ≤ τe(εi) ∧ pt(εj) ⊥
ω(εi)}, i.e. the set of intervals of processing time of all εj of L (executed by the
same resource as εi, and enabled before it) overlapping with the waiting time of
εi.

Coming back to the running example, during the transition instance between
“Post invoice” and “Pay invoice” of case 511, the resource works on case 514 that
has an earlier enabled instance of “Post invoice” (see Fig. 6). Therefore, there is
waiting time due to resource contention between 12:00:00 and 13:00:00.

Waiting Time Due to Prioritization. However, the resources might not
always follow the FIFO policy. In some situations, the resources might give
priority to certain activity instances over others. We call this behavior prioriti-
zation, meaning that an activity instance is processed out of turn w.r.t. a FIFO
policy, thus causing other activity instances to wait longer. When this situation
occurs, we classify as waiting time due to prioritization those intervals in which
the resource that performed the activity instance was working in other activity
instances enabled after it. Therefore, the waiting time due to prioritization of an
activity instance is defined as follows:

Definition 3 (Waiting Time Due to Prioritization). Given an activity
instance log L, and an activity instance εi ∈ L, the waiting time due to prioriti-
zation of εi is Ωprior(εi) = {(τi, τj) | τi = τs(εj)∧ τj = min(τs(εi), τc(εj))∧εj ∈
1 We assume that resources work only on one activity at a time, i.e. there is no

multitasking. Thus, we foresee that the proposed estimation technique will not be
suitable for event logs with a high proportion of multitask activity instances.
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Fig. 6. Waiting time due to resource contention and due to prioritization.

L ∧ εj �= εi ∧ ρ(εj) = ρ(εi) ∧ τe(εj) > τe(εi) ∧ pt(εj) ⊥ ω(εi)}, i.e. the set of
intervals of processing time of all εj of L (executed by the same resource as εi,
and enabled after it) overlapping with the waiting time of εi.

In Fig. 6, when the resource starts processing the batch of cases 511-513,
instead of processing cases in their order of enablement, he prioritizes cases 512
and 513 over 511. Waiting time due to prioritization then corresponds to the
interval between 15:55:50 and 17:55:40.

Waiting Time Due to Resource Unavailability. The fourth cause of waiting
time that we propose to consider is resource unavailability, which corresponds to
the intervals in time in which the resource is not available to work due to their
working schedules. To identify this waiting time, we need to first discover the
working schedules of the resources. We propose to use the technique presented
in [14] to discover calendars over time granules not fully described by the input
data. This technique analyzes the instants in time when each resource interacted
with the system (i.e. the start and end of each activity instance) to build a
weekly working calendar composed of time intervals in which there was enough
evidence, based on given support and confidence values, that the resource is
working.2 Given the weekly calendars of each resource, we transform them to
absolute time intervals to compare them with the waiting times observed in
the log. Then, we classify as waiting time due to resource unavailability those
intervals where the resource is not available for working. Therefore, the waiting
time due to resource unavailability of an activity instance is defined as follows:

Definition 4 (Waiting Time Due to Resource Unavailability). Given
an activity instance log L, an activity instance εi ∈ L, and being calav(ρ) =
{(τavs, τavc)} a resource availability calendar with the set of time intervals in
which the resource is available to work, the waiting time due to resource unavail-
ability of εi is Ωunav(εi) = {(τi, τj) | (τi, τj) ∈ ω(εi) ∧ �(τk, τl) ∈ calav(ρ(εi)) |
(τi, τj) ⊥ (τk, τl)}, i.e. the set of intervals of the waiting time of εi that do not
overlap with the availability calendar of the resource ρ(εi) that executed εi.

2 Although we use this resource calendar discovery algorithm, the approach can be
applied with other calendar discovery algorithms or with manually defined calendars.
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In the running example (Fig. 7), the resource executing “Pay invoice” does
not work between 13:00:00 and 15:00:00. Thus, in the transition instance of case
511, the respective waiting time interval is due to resource unavailability.

Fig. 7. Waiting time due to resource unavailability and due to extraneous factors.

Waiting Time Due to Extraneous Factors. The last cause of waiting time
that we propose to consider is “extraneous factors”. We propose to classify as
waiting time due to extraneous factors the waiting time intervals caused by the
external effects that cannot be identified from the event log – e.g. the resource
is working on another process, the activity instance cannot start until some
unrecorded event has occurred, fatigue effects, or context switch In Fig. 7, the
interval between 15:00:00 and 15:55:50 cannot be explained by the data available
in the log and is considered due to extraneous factors. Thus, the waiting time of
an activity instance due to extraneous factors is defined as follows:

Definition 5 (Waiting Time Due to Extraneous Factors). Given an
activity instance log L and an activity instance εi ∈ L, the waiting time due
to extraneous factors of εi is Ωextr(εi) = {(τi, τj) | (τi, τj) ∈ ω(εi) ∧ �(τk, τl) ∈
({ωba(εi)}

⋃
Ωrc(εi)

⋃
Ωprior(εi)

⋃
Ωunav(εi)) | (τi, τj) ⊥ (τk, τl)}, i.e. the set of

intervals within the waiting time of εi that does not overlap with waiting times
due to batching, resource contention, prioritization, or resource unavailability.

3.3 Waiting Time Analysis

The final step is to analyze how much each waiting time cause contributes to
the temporal performance of the process and their impact on the CTE. With
that purpose, we propose to compute the percentage of time that each cause
induces in the CTE of the process. In this context, we measure the CTE as the
processing time divided by the sum of the processing and the waiting time (PT +
WT), where PT is the sum of the processing time of all activity instances in the
process, and WT is the sum of their waiting time. The impact of waiting times
per cause is calculated as the difference between the original process CTE and
the CTE if a particular waiting time is eliminated. In this way, we can measure
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(1) the impact that each waiting time cause has on the process CTE, (2) the
impact that each transition has on the process CTE, and (3) the impact that
each waiting time cause has in each transition. These metrics can indicate the
potential CTE improvement if a particular cause of waiting time is addressed.

As a result, we can analyze the discovered waiting time causes and their
impact on CTE. With this information, process analysts can identify where the
inefficiencies due to waiting times are localized, choose which transitions and/or
waiting time causes to address, and which redesign alternatives to apply.

4 Evaluation

In this section, we present the evaluation of our approach. We evaluate the
approach by addressing two evaluation questions: (EQ1) To which extent is the
technique able to detect the presence or absence of certain waiting time causes?,
(EQ2) To what extent is the technique able to correctly quantify the amount of
waiting time waste per each cause? In this experimentation, we use synthetic
data to validate the ability of the technique to accurately discover transitions,
their waiting times and the waiting time causes known to be present in the event
logs. Then, we demonstrate the approach’s applicability on a real-life event log.
The approach implementation, the event logs and experiment results are all
available on GitHub.3

4.1 Evaluation on Synthetic Data

To answer EQ1, we used a business process simulation model (BPS model) of a
loan application process to simulate a set of event logs with different combina-
tions of waiting time causes. To simulate waiting time due to resource contention,
we set a low number of available resources in the BPS model, so that in some
cases, there were no resources available to process an enabled activity instance.
To create waiting time due to resource unavailability, we set resource working
calendars so that some resources worked from Monday to Wednesday, and others
from Thursday to Friday. To simulate waiting time due to extraneous factors, we
added timer events before some of the activities in the BPS model, thus delaying
their start. Waiting time due to batching and prioritization cannot be injected
by modifying the simulation parameters, as current BPS engines do not support
them. Therefore, in batching, we added a set of new cases delaying the start
of some activity instances so that they are processed as a batch. To simulate
prioritization, we added a set of new cases changing the order of execution of
some activity instances, so they are processed following a prioritization order.
Combining these modifications, we simulated a set of 32 event logs with all the
combinations of causes of waiting time and measured the performance using
precision and recall. True positives and false positives stand for the discovery of

3 https://github.com/AutomatedProcessImprovement/waiting-time-analysis/tree/
caise2023.

https://github.com/AutomatedProcessImprovement/waiting-time-analysis/tree/caise2023
https://github.com/AutomatedProcessImprovement/waiting-time-analysis/tree/caise2023
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a waiting time cause that, respectively, was and was not injected in the event
log. True and false negatives denote an undiscovered waiting time cause that,
respectively, was not and was injected.

Table 2. Results for the simulated event logs with all waiting time causes, depicting
the true positives with ’✓‘, the false positives with ’✗‘, and the true negatives with an
empty cell (there are no false negatives).

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16

Batching ✓ ✓ ✓ ✓ ✓ ✗

Prioritization ✓ ✓ ✓ ✓ ✓ ✗ ✗

Res. Contention ✓ ✓ ✓ ✓ ✓

Res. Unavailability ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Extraneous factors ✓ ✓ ✓ ✓ ✓

S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32
Batching ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Prioritization ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Res. Contention ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Res. Unavailability ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Extraneous factors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2 depicts the results for the simulated event logs used to evaluate EQ1.
Our approach discovered the injected waiting time causes in all the event logs
(no false negatives) resulting in a recall of 100%. However, due to the influ-
ence that some waiting time causes have between them, the results contain 17
false positives (precision of 83%). False positives in waiting time due to resource
unavailability (S06, S10, S13, S15, S19, S21, S24, and S28) are caused by the
presence of extraneous waiting time, combined with limited data for the discov-
ery of resources’ working calendars. To simulate these logs, we set 24/7 working
calendar for all resources (high availability). However, when a resource has low
occupation (executes few events), there is not enough data for the calendar
discovery to identify a 24/7 calendar and some intervals are interpreted as non-
working time. When these non-working intervals overlap with extraneous waiting
time, the tool classifies them as waiting time due to resource unavailability. This
limitation is inherent to the discovery of the resource calendar, if there is no
data showing that a resource was active during a period of time, it cannot be
assumed that they were working.

The injection of waiting time due to extraneous factors also induced false pos-
itives of prioritization (S15, S21, S26, S30). When an activity instance is enabled
but waiting due to extraneous factors, the resource might execute other activities
enabled after the waiting one, being detected as waiting time due to prioritiza-
tion. These false positives are due to the absence of an explicit indicator of the
extraneous factors (i.e. extraneous waiting time is only detected when no other
causes are identified). False positives due to batching (S14, S23, S26, S31) are
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caused by the appearance of a batch processing behavior that was not intention-
ally added. To create waiting time due to resource contention and unavailability,
in some scenarios, we assigned working calendars with low resource availability.
In such cases, while instances were waiting until the resource became available,
they were collected and processed by the same resource. This resulted in an
unassigned but correctly discovered batch processing behavior.

EQ2 aimed at assessing if our approach is able to correctly identify waiting
time intervals and their causes. We could not use the set of event logs used for
EQ1 to answer EQ2, as the logs were created through stochastic business process
simulation – we know we have introduced a certain cause of waiting time, but
we don’t know to what extent. Therefore, we manually created a set of 5 event
logs with activity transitions having different waiting time causes. Due to the
low number of events per resource, we manually defined the resource working
calendars for this experiment. We ran our technique over these logs and obtained
accurate waiting time intervals and their causes. The input and results for the
EQ2 experiment are available on GitHub.

4.2 Evaluation on a Real-Life Log

To evaluate the applicability of the proposed approach in a real-life scenario,
we used an event log of a manufacturing production process [13]. The event log
has 225 cases recording the execution of 24 activities in a total of 4,503 activity
instances, executed by 46 resources.

First, we discovered the transition instances – 91 transitions with 3,421 tran-
sition instances (i.e. executions of each transition) –, and their characteristics –
case frequency, total frequency, and total duration (i.e. total waiting time).

Then, we discovered the waiting time causes, producing a report that cap-
tures to what extent each cause (per transition) contributes to the total waiting
time of the process. The highest waiting times originated from the self-loop tran-
sitions, i.e. when the same activity is executed twice in a row. For instance, the
self-loop of “Turning & Milling Q.C.” induced a total waiting time of 1,101 days,
2 h, and 54min (see Fig. 8), being the greatest contributor to the total waiting
time. The largest portion of the waiting time in this transition (54.74%) was
caused by resource unavailability (602 days, 19 h, and 59min).

Finally, we analyzed to what extent each waiting time cause contributes to the
total waiting time of the process, and how they affect the CTE. Resource unavail-
ability was the primary source of waiting time (as it caused 57% of the total wait-
ing time), followed by batching (22%), prioritization (9%), extraneous (8%), and
resource contention (4%). Then, we measured the impact of the waiting times
by cause on the process CTE (CTE = 6.81%). The highest CTE increase (up
to 14.62%) can be achieved if the waiting time due to resource unavailability is
eliminated. Regarding individual transitions, addressing the “Turning & Milling
Q.C” self-loop is the highest improvement opportunity. If the waiting time in
this transition is addressed, the CTE could increase to 7.69%.
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Fig. 8. Waiting time causes in activity transitions of the production process.

5 Conclusion

This paper outlines a process mining-based approach for identifying causes of
waiting times and their impact. To address research question RQ1, we propose
a method to attribute the waiting time of activity transitions to one of five
causes: batching, resource contention, prioritization, resource unavailability, and
extraneous factors. To address RQ2, we outline how these five causes of waiting
time can be discovered, for each activity transition, from an event log. Finally,
we propose to measure the impact of each waiting time cause on the CTE of a
process, to help analysts to prioritize opportunities to reduce these waiting times
(RQ3). The empirical evaluation shows that our approach can accurately classify
the waiting times in a process into the five causes, in (synthetic) event logs where
the causes of waiting time are known. Finally, we illustrated the applicability of
our approach using an event log of a production process.

In its current form, the proposed approach only considers waiting times in
transitions between activity instances. Yet waiting times may also arise in at
least two other settings: (i) between case creation and start of the first activ-
ity instance; and (ii) within an activity instance due to interruptions (e.g. the
resource interrupts their work and resumes it later). The first of these waiting
times could be analyzed by applying methods that estimate the inter-arrival time
of each case [4,15]. The second requires new methods for modeling and inferring
interruptions, possibly using additional attributes of the log or other additional
data. Another limitation of the approach is that it does not consider multitask-
ing. This could be addressed by inferring multitasking patterns from the log,
and using this data to estimate at what point in time a resource would normally
have started an activity instance, given their past multitasking behavior.

In future work, we plan to develop a method for discovering business process
simulation models from event logs, which considers the causes of waiting times
considered in this paper. Such simulation models could be used to support ana-
lysts in identifying combinations of redesign options to optimize CTE, while also
considering other performance dimensions (e.g. cost).
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