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Abstract. This paper deals with the Delivery Territory Design Problem
(DTDP), in which n points have to be allocated to p territories, such that
balancing and path connectivity requirements are satisfied, while mini-
mizing the maximum diameter over the created territories. The model is
inspired by tactical planning situations faced by delivery companies. We
propose two best improvement local search procedures and a Basic Vari-
able Neighborhood Search algorithm following the LIMA paradigm. The
results suggest that our algorithm is able to find high-quality solutions
within a relatively low time.
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1 Introduction

The territory design problem (TDP), sometimes referred to as the districting
problem or territory alignment problem, is the problem of grouping small geo-
graphical units called basic units BU s into larger geographical clusters, named
territories, according to relevant planning criteria. Typical applications of the
territory design problem include sales territory design [1], political districting [2],
school districting [3], and public services districting [4,5]. TDP and its vari-
ations have been researched since the 1960s [6], using a variety of models and
algorithms. The territory design problem is NP-Hard [7] and thus metaheuristics
were used in order to solve this problem. For state-of-the-art models, algorithms,
and applications to the territory design problem we refer the reader to [8].

An essential criterion in the TDP is the compactness of districts. One way
to achieve this is by minimizing a dispersion measure. A common dispersion
measure used in classical problems such as p-median and p-center, is the distance
to the centroid of the district. Using a center based measure has some limitations
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for problems where it is not clear how to define possibly “good” centers. In
such cases, a dispersion measure based on the diameter of a territory is more
appropriate [9].

In this paper, we address a special version of the TDP, called the Delivery
Territory Design Problem (DTDP). DTDP aims to design a set of p territories
such that the maximum diameter of a territory is minimized, while satisfying sev-
eral planning requirements such as disjoint territories, and balancing in terms of
three attributes: driver workload, commodity demand, and number of customers.
Unlike in the TDP, we allow two nodes to be assigned to the same territory as
long as there exists a path between them, not necessarily fully contained in the
district. The problem is motivated by real-world applications from delivery com-
panies, where a driver can be assigned two serve two BUs as long as there is a
street between them.

The rest of this paper is structured as follows; In Sect. 2, we discuss the
related works to the territory design problems and their applications. In Sect. 3,
we describe the problem and provide the mathematical model of the TDP, while
in Sect. 4 we outline the VNS heuristic and its components. We present compu-
tational experiments and results in Sect. 5 and conclude our findings in Sect. 6.

2 Related Work

The problem studied in this paper is related to the commercial territory design
problem (CTDP) which was proposed by Rios-Mercado and Escalante [7]. CTDP
seeks to maximize a compactness criterion of p territories subject to planning
criteria such as disjoint districts, attribute balancing, and district connectivity.
In their paper, compactness is measured by the distance of a node from the
center it is assigned to. The authors propose a GRASP algorithm consisting of
three phases: construction, adjustment, and local search. The algorithm produces
good quality solutions, however that comes at a high computational cost. Rios-
Mercado et. al. [9] expanded upon the CTDP with a new model that makes use
of a diameter-based dispersion measure instead of its center-based counterpart.
They used the GRASP metaheuristic in combination with path relinking to solve
instances of 500 nodes and p = 10 districts. The algorithm provides good results
in terms of the dispersion measure however they are computationally expensive.

In this paper, we propose to solve the DTDP by a Variable Neighborhood
Search (VNS) algorithm. The core paradigm behind VNS is to systematically
change neighborhood structures to prevent plateaus at local optima [10]. Over
the years, VNS has been extensively researched and now boasts a wide array
of extensions [11]; General VNS, Variable Neighborhood Descent, and Reduced
VNS to name a few.

VNS has been successfully used to solve related problems to TDP. Mladenovic
et al. [12] proposed a Basic VNS metaheuristic with vertex substitution local
search to solve the p-center problem. Their results show that VNS, on average,
outperforms Tabu Search, whereas Tabu Search is better for a small p.
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Hindi and Fleszar [13] proposed to solve the capacitated p-median problem
by a VNS metaheuristic based on the generalized assignment problem. They
test their results on five standardized sets of benchmark instances and show
that the proposed heuristic finds the best known solutions as well as it improves
a previously best-known solution.

Brimberg et. al. [14] showed that Skewed General VNS performs well for
the capacitated clustering problem. They showed that evaluating moves prior
to accepting inferior solutions is preferable to random shaking procedures. The
authors tested the algorithm on the largest set of instances (MDG2000). The
Skewed General VNS showed to be the fastest procedure out of the tested meta-
heuristics with up to 1.55% improvement over other metaheuristics.

Mladenovic et. al. successfully used the Basic VNS to solve the obnoxious
p-median problem in the Less-is-more approach (LIMA) [15]. They proposed a
simple facility best improvement local search that lies in between the first and
best improvement strategies. They found new best solutions for four instances
and ties with 133 instances out of a set of 144 benchmark instances.

Contribution: In this work we propose a VNS based meta-heuristic for solv-
ing the DTDP problem, with relaxed connectivity criteria. To the best of our
knowledge, this technique has not been previously applied to this problem. Via
numerical experiments, we show that the VNS procedure outperforms the algo-
rithm of [9] by 6.35% on average.

3 Problem Description and Mathematical Model

The input to the DTDP is a graph G = (V,E), where the nodes are the set
of basic units (BU) and the edges represent the streets between BUs. For each
node, we are given a set of attributes A such as number of customers, product
demand, and workload. The value of attribute a ∈ A of BU i ∈ V will be denoted
by wi

a.
We denote a p-partition of the set V by X = (X1, ...,Xp) where Xm ⊂ V is

called a territory of V. The size of the territory Xm with respect to attribute
a ∈ A is denoted by wa(Xm) =

∑
i∈Xm

wa
i .

We call a partition X balanced w.r.t an attribute a, if the size of each territory
Xm in X satisfies wa(Xm)

μa ∈ [1 − τa, 1 + τa], where μa is the average of attribute
a over all the nodes. Here, τa is a tolerance parameter that is prespecified by
the user.

The goal of DTDP is to find a balanced p− partition w.r.t. each attribute,
that minimizes the maximum diameter over the territories created. Moreover,
we require that any two BUs in a territory are connected by a path in G.

We denote the collection of all the p-partitions of the set V by Π. The TDTP
can be formulated as a combinatorial optimization as follows:
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min
X∈Π

max
m∈M

max
i,j∈Xm

{dij} (1)

s. t.
wa(Xm)

μa
∈ [1 − τa, 1 + τa] m ∈ M,a ∈ A (2)

Gm = G(Vm, E) is connected m ∈ M (3)

The formulation in this paper is based on the mathematical model outlined
for the CTDP (see Rios-Mercado and Escalante [9]). The objective function (1)
minimizes the maximum diameter in a p−partition X. Constraints (2) requires
that the p−partition should be balanced in each attribute a ∈ A. Constraints (3)
stipulate that each node of a district must be connected by a path in graph G.

4 Variable Neighborhood Search Procedure

We propose to solve the DTDP by a Basic VNS (BVNS) procedure, in the spirit
of the LIMA paradigm [15]. One of the reasons the BVNS is used is that it
does not require high computational resources and provides high-quality solu-
tions. Using this variant, we are able to diversify the solution through random
neighborhood structures and intensify it through the deterministic neighborhood
structures. By doing so, we are able to avoid plateauing at local optima.

The next subsections will outline the construction of the initial solution, the
Basic VNS procedure, the local search variants, and the shaking procedure.

4.1 Initial Solution

To generate the initial solution, we use the construction phase of the GRASP
algorithm outlined in [9] once. The construction phase starts with a set of p
randomly chosen seeds in V . The algorithm then greedily assigns nodes i ∈
V to the p seeds while attempting to maintain the balancing criteria. If it is
not possible to maintain the balancing constraints, the unassigned nodes are
allocated to the closest seed. We denote the solution obtained by Xin.

4.2 Basic Variable Neighborhood Search

Consider a p-partition X = (X1, ...,Xp). We define a neighborhood Sk(X) as
the set of solutions obtained by reallocating k nodes from a territory Xm1 to a
territory Xm2 .

To evaluate the quality of a solution X = {X1, . . . , Xp}, the VNS procedure
uses the function Ψ(X) introduced in [9] and defined as a linear combination
between a function related to the maximum diameter and a measure of the
infeasibility of X. More precisely

Ψ(X) = λF (X) + (1 − λ)G(X),
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where

F (X) =
(

1
dmax

)

max
m∈M

max
i,j∈Xm

{dij},

dmax = max
i,j∈V

{dij},

and

G(X) =
p∑

m=1

∑

a∈A

ga(Xm),

where,

ga(Xm) =
1
μa

max{wa(Xm) − (1 + τa)μa, (1 − τa)μa − wa(Xm), 0}.

Furthermore, λ is a user specified parameter that controls whether the objective
function or the infeasibility is more favored in the cost function calculation.

A general outline of the Basic Variable Neighborhood Search (BVNS) proce-
dure is given in Algorithm 1. The BVNS uses a shake procedure and two local
search procedures, called LS-NBI and LS-DBI, that will be described in Sect. 4.3.

Algorithm 1. BVNS(Xin, kmax, βmax)
1: β ← 1
2: X ← Xin

3: while β ≤ βmax do
4: k ← 1
5: while k ≤ kmax do
6: X

′ ← Shake(X, k)

7: X
′′ ← LS − NBI(X ′)

8: if Ψ(X ′′) < Ψ(X) then
9: k ← 1

10: X ← X
′′

11: else
12: k ← k + 1
13: end if
14: end while
15: end while
16: X ← LS − DBI(X)

The BVNS takes in as input the initial solution Xin, the maximum number of
neighborhoods used in the shaking procedure kmax, and the maximum number of
repetitions βmax. While the number of repetitions is not reached, the algorithm
executes a shake procedure followed by the the local search procedure LS-NBI
(lines 6–7). If the value of Ψ is improved, the algorithm performs a sequential
neighborhood change step (lines 8–13). Lines (14–15) lead to repeating the BVNS
procedure if kmax is reached. Finally line (16) applies the second local search
variant, LS-DBI.
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4.3 Local Search and Shaking Procedures

The BVNS uses two best improvement local search procedures: Node Best
Improvement Local Search (LS-NBI) and District Best Improvement Local
Search (LS-DBI).

In both procedures, a move(m, i) is defined as re-allocating a node i ∈ V \
{Xm} to territory Xm.

Node Best Improvement Local Search (LS-NBI). A pseudo-code for Node
Best Improvement (LS-NBI) is given in Algorithm 2. The LS-NBI procedure
iterates over all the territories of a solution X. For each territory m, move(m, i),
i ∈ V \{Xm} that leads to the best improvement in Ψ is performed (lines 5–11).
LS-NBI terminates either when the maximum number of moves is reached (line
3) or no improved solution is found (lines 12–18).

Algorithm 2. LS-NBI(X)
1: nmoves ← 0
2: optima ← False
3: while nmoves < max moves and optima = False do
4: improvement ← False
5: for all m ∈ {1, . . . , p} do
6: Find move(m, i) that leads to best improvement of Ψ
7: if Ψ is improved then
8: Perform move(m, i)
9: improvement ← True

10: end if
11: end for
12: if improvement ← True then
13: nmoves = nmoves + 1
14: optima = False
15: else
16: optima = True
17: end if
18: end while

District Best Improvement Local Search (LS-DBI). Algorithm District
Best Improvement (LS-DBI) is similar to LS-NBI with the main difference being
that it iterates over all nodes i ∈ V instead of territories. For each node i,
it performs the best move(m, i), where district m is such that i /∈ Xm. The
procedure terminates either when the maximum number of moves is reached or
when no improved solution is found. We refer to Algorithm 3 for the detailed
pseudo-code.
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Algorithm 3. LS-DBI(X)
1: nmoves ← 0
2: optima ← False
3: while nmoves < max moves and optima = False do
4: improvement ← False
5: for all i ∈ V do
6: Find move(m, i) that leads to best improvement of Ψ
7: if Ψ is improved then
8: Perform move(m, i)
9: improvement ← True

10: end if
11: end for
12: if improvement ← True then
13: nmoves = nmoves + 1
14: optima = False
15: else
16: optima = True
17: end if
18: end while

Shaking Procedure. The shake procedures serves to diversify the search space.
Shake(X, k) chooses two random territories X1,X2 of the current solution X and
moves k random nodes from X1 to X2.

Algorithm 4. Shake(X, k)
1: Choose two random districts X1, X2 ∈ X
2: Choose a set K of random nodes in X1, |K| = k
3: Remove K from X1 and re-allocate the nodes in K to X2

5 Computational Experiments

In this section, we present the results of the numerical experiments we have
performed in order to test the proposed algorithms. The algorithms discussed in
this section were coded in Python 3.9, and all of the experiments were run on
IntelR© Xeon X5650 2.67GHz with 72GB RAM.

The computational experiments were performed on randomly generated pla-
nar graphs consisting of 500 nodes. We started with a grid graph of 30 × 30
nodes, divided into 7 regions as in Fig. 1. We generated three types of graphs;
Graph Type Center, Graph Type Diagonal, and Graph Type Corners (G-C, G-
D, G-CN) by randomly removing 900 − n nodes where n = 500 from certain
regions while maintaining the connectivity of the nodes in the graph.

We remove � 3
4 (900 − n)� nodes from the regions R3, R4, and R5 for G-C;

R1, R4, and R7 for G-D; R1, R2, R6, and R7 for G-CN. Finally, we remove
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� 1
4 (900 − n)� from the remaining regions for each graph type. When a node is

removed, its adjacent edges are also removed.

Fig. 1. Graphical representation of the regions of the graph.

Each node in a graph G has three attributes: demand, workload, and number
of customers. The attributes were generated from a uniform distribution in the
ranges of [15, 400], [15, 100], and [4, 20] respectively [7]. Furthermore, to simulate
real-world scenarios, we generated a distance attribute for edges from a uniform
distribution in the range of [5, 20]. The value of the parameters was chosen as
follows. For the cost function Ψ(X), parameter λ was set to λ = 0.7. Furthermore,
p = 10, βmax = 5, mmax = 4, and max moves = 100.

5.1 Impact of Local Search on Initial Solution

In Table 1, the columns LS-NBI and LS-DBI refer to the algorithms in which
the initial solutions are improved by applying the respective local search once.
Furthermore, the column labeled with “GRASP-LS” refers to the local search
procedure described in [9].

The average improvement of LS-NBI, LS-DBI, and GRASP in terms of the
objective function value over the initial solutions was 4.00%, 4.32%, and 1.59%
respectively. Table 1 shows the average percentage improvement of the local
search variants on each graph type. We note that LS-DBI outperformed the
rest of the variants over graph types G-CN and G-D at 5.26% and 3.81% respec-
tively. While LS-NBI, outperformed the rest of the variants for graph type G-C
at 4.72%.
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Table 1. Local search procedures percentage improvement over the initial solution.

Graph LS-NBI LS-DBI GRASP-LS

Graph-Type Measure

G-C Max 14.29% 9.13% 5.34%

Average 4.72% 3.88% 1.18%

Min 0% 0% 0%

G-D Max 9.53% 12.61% 7.16%

Average 2.97% 3.81% 2.43%

Min 0% 0% 0%

G-CN Max 14.56% 14.56% 4.98%

Average 4.31% 5.26% 1.15%

Min 0% 0% 0%

We observe that the local search variants LS-NBI and LS-DBI have a different
impact based on the graph type that the variant was performed on. Furthermore,
we notice that both local search procedures had a high variance in graph type
G-CN. This suggests that this particular graph type is difficult to improve upon.

We note that the local search variant LS-DBI outperformed LS-NBI and
GRASP-LS for graph types G-D and G-CN at 3.81% and 5.26% respectively.
On the other hand, LS-NBI outperformed all other variants in graph type G-C
at 4.72%. Due to the different performance of both LS-NBI and LS-DBI based
on the graph type, we used both local search variants in BV NS(X, kmax, βmax).

5.2 Computational Experiments on BVNS

We compared the results of the proposed BVNS algorithm on all graph types
with the results of the static Path-Relinking (PR) algorithm presented in [9].

Figure 2 shows an example solution and a comparison between BVNS and
PR. Figure 2(a) shows the BVNS solution of that particular instance while
Fig. 2(b) shows the PR solution where each have ten distinct districts. We can see
that due to the shaking procedure of the BVNS algorithm, the solution was able
to escape local optima regardless of the graph structure and provide significant
improvements.

Table 2. Objective Function Percentage Improvement of BVNS over PR.

Graph Min Max Average

G-C 0.95% 18.62% 6.42%

G-D 0% 13.20% 5.21%

G-CN 0% 20.86% 7.42%

Average 6.35%
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Fig. 2. Example comparison of BVNS and PR.

Table 2 summarizes the results of the objective function improvement of
BVNS over PR. We show the minimum, maximum, and average improvement
of BVNS over PR for each graph type. On average, BVNS outperforms PR by
6.35% over all graph types with a maximum improvement of 20.86% for G-CN.
On average, BVNS outperformed PR by 6.42% for graph type G-C, 5.21% for
graph type G-D, and by 7.42% for graph type G-CN. We note that BVNS out-
performed PR for 27 out of the 30 graphs. PR outperformed BVNS for 3 out of
the 30 graphs in terms of objective function value. We note that 2 out of the 3
graphs where PR outperformed BVNS occurred in graph type G-D.

Figure 3 shows the box plot of the percentage improvement of the relative
infeasibility of BVNS over PR. We can see that the relative infeasibility of BVNS
has shown consistent improvements over PR with the certain outliers in each
graph type. This indicates that using the BVNS procedure with LS-NBI and
LS-DBI led to improvements of the infeasibility of the solution compared to PR,
on average by 21.7%. The relative infeasibility in graph type G-CN has been the
most unstable where 3 out of the 6 instances show PR outperforming BVNS in
terms of relative infeasibility.

Furthermore, Fig. 3 along with the results presented for the average objective
function improvement, suggest that the graph type G-D is difficult to improve
for both algorithms.

5.3 Running Times

The average running time of BVNS was 394.49 s over all graph types. Among
the local search procedures, LS-DBI was less time consuming, with an average
of 13.17 s, followed by LS-NBI with an average running time of 17.24 s. Thus,
the time difference between the two local search procedures is negligible and
provides great benefit in tackling different types of graphs with considerable
improvements.
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Fig. 3. Relative Infeasibility of BVNS and PR.

To examine the scalability of the algorithm, we tested BVNS on graphs with
nodes V = {500, 600, 700} with 10 graphs for each graph type. Table 3 shows
the CPU time (in mins.) and the standard deviation of every graph type at a
different number of nodes.

Table 3. CPU Time (in sec.) and the Standard Deviation of Each Graph Type.

Graph 500 Nodes 600 Nodes 700 Nodes

Graph Size CPU Time

G-C Mean 405.12 821.50 941.52

SD 103.49 444.32 243.47

G-CN Mean 369.77 843.76 869.22

SD 75.55 242.31 227.85

G-D Mean 408.58 627.08 1117.42

SD 125.19 169.98 363.40

As expected, the running time increases as the problem size grows larger at
V = 100 increments. We note that for graph sizes V = 500 and V = 700, graph
type G-CN had the lowest mean and standard deviation in their respective graph
sizes. On the other hand, for graph size V = 600, graph type G-D had the lowest
mean and standard deviation.

Furthermore, we can see that in the first increment between V = 500 and
V = 600, the mean CPU time increased at a higher rate that between V = 600
and V = 700 for graph types G-C and G-CN. This suggests that graph types
G-C and G-CN scale well as the problem increases in size. In addition, we note
that for graph type G-D, the mean and standard deviation had their lowest rate
of increase between graph sizes V = 500 and V = 600. This suggests that for
this particular graph type, scaling the problem size up to V = 600 would not
present significant increases in run time and that the algorithm would provide a
solution in an adequate timeframe.
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We note that the high mean and standard deviation for graph type G-D in
graph size V = 700 can be attributed to the high convergence time caused by
relatively small improvements in the balancing constraints for certain instances
in this graph type.

6 Concluding Remarks

In this paper, we studied the DTDP, a districting problem often occurring in
delivery operations, in which balancing and connectivity constraints are taken
into account while minimizing the maximum diameter. We proposed two local
search procedures that improve the objective function value and lower the rela-
tive infeasibility of a given solution. We used a Basic VNS following the LIMA
paradigm under which we used both the local search variants and a simple shake
procedure. We conducted computational experiments on graphs of V = 500
nodes and p = 10 districts with a competitive running time and average improve-
ment at 6.35% over all graph types and a maximum improvement of 20.86%.
Furthermore, we conducted computational experiments on graphs of V = 600
and V = 700 to showcase the scalability of the algorithm.

There are several areas of future research that arise from this problem. One
promising area of research, given the results of the Basic VNS, is exploring other
variants of VNS such as the General VNS.

Furthermore, applying different local search neighborhoods in conjunction
with different neighborhood change steps could allow for further diversification
and intensification of the solution space.
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10. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

11. Hansen, P., Mladenovic, N., Todosijevic, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5, 423–454 (2016)

12. Mladenovic, N., Labbe, M., Hansen, P.: Solving the p-center problem with Tabu
search and variable neighborhood search. Networks 42(1), 48–64 (2003)

13. Hindi, K.S., Fleszar, K.: An effective VNS for the capacitated p-median problem.
Eur. J. Oper. Res. 191, 612–622 (2008)

14. Brimberg, J., Mladenovic, N., Todosijevic, R., Uroševic, D.: Solving the capacitated
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