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Abstract. This paper is related to open-dimension problems in the area
of cutting and packing. The problem we are interested in considers a set
of irregularly shaped items and a two-dimensional (2D) bin in which one
side is open. The objective is to pack all items in the bin and, in the
case of a bin with one opened side, we also want to minimize the length
of such a side. A packing cannot have items overlapping each other and
items extrapolating the bin’s dimensions. This problem appears in the
metal-mechanic, textile, leather, and other related industries to the cut-
ting of irregular pieces. We propose a variable neighborhood search-based
heuristic for such a problem. A solution is coded as a vector of items that
gives the sequence in which items will be packed. Neighborhood struc-
tures based on swap and insertion movements are considered in the local
search phase, while the shaking phase contains a single neighborhood
structure based on swap movements. Numerical experiments on bench-
mark instances show that the heuristic is competitive compared to other
literature methods, obtaining equal or better solutions for 90.90% of the
instances.

Keywords: Irregular cutting problems · Open dimension problems ·
Variable neighborhood search

1 Introduction

The problem of packing small objects inside one or more large objects appears in
many real-world applications. In the logistics area, for example, we have pallets
and boxes to be loaded into containers, trucks, trains, ships, or airplanes. This
problem is computationally hard in many of its variants and so mathematical
programming models and heuristics have been proposed in the literature. It is
important to mention that, from a theoretical point of view, it is equivalent to
cutting problems, which in turn requires the cutting of large objects to produce
small ones. In the textile and metal-mechanic industry, for example, fabric rolls
and metal plates are cut to produce pieces of products. For an overview of
packing and cutting problems, we refer to the book in [20].

In this paper, we are interested in problems where small objects can have
irregular shapes. We look for the packing (cutting) of all small objects (hereafter
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called items) in a single large object (hereafter called a strip). This problem is
known as the two-dimensional irregular strip packing problem [18]. As the strip is
assumed to have a fixed width, the objective is to minimize its opened length by
obtaining a feasible packing. Concerning irregularly shaped items, the guarantee
of a feasible packing can be obtained with geometric tools, such as the raster
method, the phi-functions, the direct trigonometry, and the no-fit polygons. For
these tools, we refer to the tutorial in [3]. We use the no-fit raster, a combination
of the raster method and the no-fit polygons [23].

In the literature on the two-dimensional irregular strip packing problem, we
may find different contributions, from simple mathematical programming models
to sophisticated heuristics. As this problem is NP-hard, most of the contributions
are related to heuristics. In [1], sequences of items are packed with the bottom-
left rule. In this rule, an item is translated to the bottom and then to the left in
the strip. This rule is also used in [15], where a genetic algorithm generates the
sequence of items; in [10], where a 2-exchange heuristic generates the sequence
of items; in [11], where simulated annealing is used for generating the sequence
of items; in [17], where a biased random key genetic algorithm generates the
sequence of items.

Other contributions are related to a constraint programming model in [4],
the integration of the cuckoo search with a guided local search in [7], and a tai-
lored branch-and-cut algorithm, where a variable neighborhood search heuristic
generates feasible solutions, in [22]. Integer linear programming models are pro-
posed in [5,8,16,19,23]. The model in [19] uses clique constraints to detect
infeasible packings. They improved most of the previous solutions presented in
the literature.

We propose a Variable Neighborhood Search (VNS) for the two-dimensional
irregular strip packing problem. The VNS’s neighborhood structures are based
on swap and insertion movements. The shaking phase consists of a single struc-
ture based on swap movements, while the local search consists of the variable
neighborhood descent (VND). The VNS generates the sequence of items, while
a function is used to transform the given sequence into a feasible packing. For
that, items are positioned in the strip by combining the bottom-left and top-
left placement rules. Results obtained with the VNS are compared with those
in [19,22], with better solutions for 27.27% of the instances and equal solutions
for 63.63% of the instances.

The remainder of this paper is organized as follows. In Sect. 2, we define
the problem and the geometric tools used to guarantee feasible packings. In
Sect. 3, we present the variable neighborhood search and how a sequence of items
is transformed into a problem solution. In Sect. 4, we perform computational
experiments on literature instances and compare the performance of the VNS
with the literature. In Sect. 5, we give some conclusions and directions for future
works.
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2 Problem Definition

This paper is about the Two-Dimensional Irregular Strip Packing Problem
(2ISP). We assume the strip is rectangular, while items are defined as (irreg-
ular) polygons without holes. Each item j has a set of vertices Vj , an area aj ,
and a reference vertex pj . We assume an item is positioned in the strip by its ref-
erence vertex, which in turn is defined as the vertex with the lowest y-coordinate
and, in the case of ties, with the lowest x-coordinate. A solution is built on the
Cartesian plane. The strip’s lower-left coordinates are at (0, 0) and its top-right
coordinates are at (∞,W ). We associate the opened length (∞) to the x-axis and
the width W to the y-axis. The problem’s objective is to minimize the opened
length while packing all items in the strip.

We assume the strip is discrete and then defined by a grid of points [2]. The
reference vertex of items is positioned on points of this grid. A feasible solution
(packing) is obtained when all items are packed inside the strip (i.e., there is
no part/area of any item extrapolating the strip’s dimensions) and items do not
overlap each other (i.e., there is no intersection between any two items when
positioned on the grid). To guarantee these two conditions to obtain a feasible
solution, we calculate the inner-fit raster of each item with the strip and the
no-fit raster between any two items. Figure 1 shows an example of irregularly
shaped items, a rectangular strip, and the no-fit raster between two items.

The inner-fit and no-fit rasters are calculated in a pre-processing step [23].
For the inner-fit raster, each item j is positioned by its reference vertex at the
lowest-left position on the grid, touching the strip’s borders where possible but
not extrapolating the strip’s dimensions. Then, this item is translated around the
strip always touching the strip’s borders. The inner-fit polygon that is generated
is next discretized according to the strip’s grid. Positions having value “1” mean
that such an item cannot be positioned there since it does not respect the strip’s
dimensions. For the no-fit raster, we consider each pair of items i and j. Item
i is fixed on the plane, while j is positioned in such a way that it touches i.
Then, item j is translated (by its reference vertex) around and touching i. The
no-fit polygon that is generated is next discretized according to the strip’s grid.
Positions having value “1” mean that item j cannot be positioned there since
such items will overlap each other.

3 Proposed Heuristic

We develop a VNS heuristic to the 2ISP. This heuristic has been applied to
solve many continuous and discrete optimization problems, obtaining very com-
petitive results compared to other literature methods [6,13]. Differently from
other literature contributions that applied VNSs to irregular cutting problems,
we consider the shaking phase defined on only one neighborhood structure, while
the local search phase is composed of three neighborhood structures. The idea
is to prioritize the local search phase to obtain high-quality solutions. As this
phase could require a large computational time, the VNS has the advantage of
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Fig. 1. Illustrative example for the 2ISP.

carrying the optimization over a single solution and thus helping on reducing
the computational effort. Algorithm 1 presents the proposed VNS.

In Algorithm 1, we code the solution x as a vector of integers. This is com-
monly adopted in the literature on irregular cutting problems [21,22]. Each inte-
ger represents the index of an item in the input instance. This means that x con-
tains the sequence in which items are packed in the strip’s grid. In the shaking
phase, we consider that only the neighborhood structure N1 is applied, where
positions i and j are randomly chosen. On the other hand, the local-search phase
considers three neighborhood structures, which are N1, N2, and N3. In detail,
the neighborhood structures are:
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– N1 (one-element swap): The elements of two given positions i and j are
swapped, i.e., i ↔ j;

– N2 (one-element insertion): Given two positions i and j, position i is inserted
immediately after position j;

– N3 (three-elements change): The elements of three given positions i, j, and u
are changed, i.e., i → j, j → u, and u → i. Notice that auxiliary variables are
used to avoid losing information.

Algorithm 1: VNS proposed to the 2ISP

1 x ← randomly generated solution
2 for a given number of iterations do
3 while true do

/*shaking phase*/
4 x′ ← random solution in the neighborhood structure N1(x)

/*local-search phase*/
5 k ← 1
6 while k ≤ 3 do
7 x′′ ← first solution in the neighborhood structure Nk(x′) that

is better than x′, if one exists
8 if F (x′′) < F (x′) then
9 x′ ← x′′; k ← 1

10 else
11 k ← k + 1

/*change of neighborhood*/
12 if F (x′) < F (x) then
13 x ← x′

14 else
15 break

The local-search phase in Algorithm 1 consists of the variable neighborhood
descent heuristic [12]. It starts by looking for the first solution in the neighbor-
hood structure Nk(x′), initially for k = 1, that is better than x′, the solution of
the shaking phase. If this is true, solution x′ is updated and the search continues
on the same neighborhood structure; otherwise, the search continues on the next
neighborhood structure. It is worth mentioning that all possibilities of positions
in N1, N2, and N3 are tested until finding the first improved solution if one
exists. After the local search, solution x′ is compared with the current solution
x. The latter is updated if x′ is better; otherwise, the while loop is broken.

The value of a solution x is determined by the function F () in Algorithm 2.
This function is based on the decoder proposed by [22]. The difference is that
we are using only one placement rule, which is a combination of the bottom-left
and top-left rules. The proposed placement rule divides the solution vector x
into two parts. The left half of vector x assumes that items are positioned by
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the bottom-left rule, while the right half part has its items positioned by the
top-left rules.

Algorithm 2: Cost of a solution x calculated by the function
F ()

1 if solution x is in the hash table then
2 return length L of the packing defined by x

3 S ← ∅
4 foreach item j in solution x do
5 if j is in the left half of x then
6 (a, b) ← the first point of the grid by the bottom-left rule that

gives a feasible packing for j
7 S ← S ∪ {j, (a, b)}
8 else
9 (a, b) ← the first point of the grid by the top-left rule that gives a

feasible packing for j
10 S ← S ∪ {j, (a, b)}
11 Save x and S in the hash table
12 return length L of the packing S defined by x

Figure 2 has an example of Algorithm 2 applied to a solution with four items
in the sequence {1, 4, 3, 2}. Items 1 and 4 are in the left half of x and then are
packed by the bottom-left rule. Items 3 and 2 are in the right half part and then
are packed by the top-left rule. The resulting packing has length L, which is the
cost of the solution returned by the function F ().

4 Computational Experiments

We coded all algorithms in the C++ programming language and performed com-
putational experiments on literature instances. The experiments are executed in
a computer with an Apple M2 processor, 8 GB of RAM, and macOS 13 as the
operating system. The proposed VNS has a single parameter to define, which
is the maximum number of iterations. We define it as a maximum time limit,
set to 120 s, to solve each instance. The VNS runs 5 times and the best solution
found among these is reported.
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Fig. 2. Example of packing obtained with the function F () for a solution x.

Table 1. Data of the 22 instances.

Instance name Authors Number of items Strip’s width (W )

blazewicz1 Toledo et al. [23] 7 15

blazewicz2 Toledo et al. [23] 14 15

blazewicz3 Toledo et al. [23] 21 15

blazewicz4 Toledo et al. [23] 28 15

blazewicz5 Toledo et al. [23] 35 15

dagli1 Rodrigues and Toledo [19] 10 60

fu Fujita et al. [9] 12 38

poly1a Hopper [14] 15 40

poly1b Rodrigues and Toledo [19] 15 40

poly1c Rodrigues and Toledo [19] 15 40

poly1d Rodrigues and Toledo [19] 15 40

poly1e Rodrigues and Toledo [19] 15 40

shapes2 Toledo et al. [23] 8 40

shapes4 Toledo et al. [23] 16 40

shapes5 Toledo et al. [23] 20 40

shapes7 Toledo et al. [23] 28 40

shapes15 Toledo et al. [23] 43 40

shirts1-2 Rodrigues and Toledo [19] 13 40

shirts2-4 Rodrigues and Toledo [19] 26 40

shirts3-6 Rodrigues and Toledo [19] 39 40

shirts4-8 Rodrigues and Toledo [19] 52 40

shirts5-10 Rodrigues and Toledo [19] 65 40

We consider 22 instances from the literature, which may be found on the
website of the EURO Special Interest Group on Cutting and Packing1. Table 1
1 https://www.euro-online.org/websites/esicup/data-sets.

https://www.euro-online.org/websites/esicup/data-sets
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has the instance name, the authors who proposed the instance, the total number
of items, and the strip width. Concerning the grid of points, we discretize the
strip, the inner-fit rasters, and no-fit polygons by one unit of distance according
to [19].

Table 2 has the results obtained with the proposed VNS and two other lit-
erature methods, i.e., the branch-and-cut algorithms in [19,22]. The algorithm
in [19] is not able to obtain the solution of two instances, namely shapes15
and shirts5-10. On the other hand, the VNS and the algorithm in [22] report a
solution to all instances. The proposed VNS obtains equal solutions for 14 out
of 22 instances. For the others, the VNS improves the solution of 6 instances,
namely poly1a, poly1b, shapes5, shapes7, shapes9, and shapes15. On the other
hand, the VNS is worse for instances shirts2-4 and shirts3-6, differing from one
unit in terms of length. The computing time of the VNS is not reported in the
table because it is used as the stopping criterion and is equal to 120 s for each
instance. In Fig. 4, we show the improved solutions obtained with the proposed
VNS.

Table 2. Comparing the VNS with two other literature algorithms.

Instance Proposed VNS Souza Queiroz and Andretta [22] Rodrigues and Toledo [19]

Length L Length L Time (s) Length L Time (s)

blazewicz1 8 8 7.43 8 0.01

blazewicz2 14 14 195.39 14 4.17

blazewicz3 21 21 3600.00 20 1139.96

blazewicz4 28 28 3600.00 27 3600.00

blazewicz5 35 35 3600.00 34 3600.00

dagli1 23 23 1.48 23 100.73

fu 34 34 3600.00 37 3600.00

poly1a 16 17 3600.00 17 3600.00

poly1b 19 20 3600.00 20 3600.00

poly1c 13 13 63.78 13 152.25

poly1d 13 13 3600.00 13 3600.00

poly1e 12 12 3600.00 12 3600.00

shapes2 14 14 2.10 14 1.09

shapes4 25 25 2431.50 25 3600.00

shapes5 30 31 3600.00 31 3600.00

shapes7 41 42 3600.00 45 3600.00

shapes9 48 49 3600.00 54 3600.00

shapes15 61 62 3600.00 – 3600.00

shirts1-2 13 13 0.03 13 0.02

shirts2-4 18 17 177.29 17 47.77

shirts3-6 25 24 3558.46 24 497.68

shirts4-8 33 33 3600.00 33 3600.00

shirts5-10 41 41 3600.00 – 3600.00
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Fig. 3. Solutions improved by the proposed VNS - part 1.
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Fig. 4. Solutions improved by the proposed VNS - part 2.
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5 Concluding Remarks

This paper is related to the two-dimensional irregular strip packing, an open-
dimension problem, for which the strip’s length is minimized while packing all
items. Besides being an NP-hard problem, it is found in many real-world appli-
cations. As the items to pack may have an irregular shape, we use geometric
tools such as the inner-fit raster and no-fit raster to guarantee feasible solutions.
The proposed VNS has the shaking phase defined over a single neighborhood
structure, while the local search as the VND has three neighborhoods based on
swap and insertion movements. Due to the solution representation, we define
a function to obtain the packing and so its length. In this function, items in
the given sequence are packed by a combination of the bottom-left and top-left
placement rules (Fig. 2).

The computational experiments on literature instances show the proposed
VNS is competitive, obtaining equal or better solutions for 90.90% of the
instances. For the other instances, the difference is one unit in the strip’s length,
which is relatively small. We notice that there is room for improvement in many
directions. One could be in the proposal of new ways to code and decode a
solution, as in the case of defining new placement rules. Further exploration of
the scale adopted to the grid could also be worthwhile to identify the trade-off
between solution quality and computing time. Another interesting direction is
the combination of heuristics and mathematical programming models. It could
be important to have a comparison between different paradigms, e.g., single
trajectory heuristics versus population-based ones. In terms of instances, one
direction could be to have items with holes and allow the rotation of items.
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