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Preface

This volume edited byAndrei Sleptchenko,Angelo Sifaleras, andPierreHansen contains
peer-reviewed papers from the 9th International Conference on Variable Neighborhood
Search (ICVNS 2022) held in Abu Dhabi, United Arab Emirates (UAE), during October
25–28, 2022.

The conference follows previous successful meetings that were held in Puerto de la
Cruz, Tenerife, Spain (2005); Herceg Novi, Montenegro (2012); Djerba, Tunisia (2014);
Malaga, Spain (2016); Ouro Preto, Brazil, (2017); Sithonia, Halkidiki, Greece (2018);
Rabat, Morocco (2019); and Abu Dhabi, UAE (2021 online).

This edition was initiated by Nenad Mladenović and Andrei Sleptchenko from
Khalifa University (UAE), together with Angelo Sifaleras, from the University of
Macedonia (Greece). Unfortunately, Prof. Nenad Mladenović passed away on Saturday
7 ofMay 2022 after being hospitalized at the ClevelandClinic inAbuDhabi. Prof. Nenad
Mladenović and Prof. Pierre Hansen were the founders of the Variable Neighborhood
Search (VNS) metaheuristic in 1997. Nowadays the series of International Conferences
on Variable Neighborhood Search (ICVNS) is dedicated to the VNS method and orga-
nized on a regular basis. Members of both the program and the organizing committee
express their sincere condolences to the family of Prof. Nenad Mladenović.

Like its predecessors, the main goal of ICVNS 2022 was to provide a stimulating
environment in which researchers coming from various scientific fields could share and
discuss their knowledge, expertise and ideas related to the VNS Metaheuristic and its
applications. Due to post-pandemic restrictions, ICVNS 2022 was organized in hybrid
(online and offline) mode with the help of the Office of Marketing and Communications
of Khalifa University.

The following three plenary lecturers shared their current research directions with
the ICVNS 2022 participants:

– Panos M. Pardalos, from the Center for Applied Optimization, Department of
Industrial and Systems Engineering, of the University of Florida, USA,

– Said Salhi, from the Department of Operational Research/Management Science at
the Kent Business School, UK,

– Angelo Sifaleras, from the Department of Applied Informatics, University of
Macedonia, Greece.

Around 60 participants took part in the ICVNS 2022 conference, and a total of 24
papers were accepted for oral presentation. A total of 11 long papers were accepted
for publication in this LNCS volume after thorough, single-blind, peer-reviewing (three
reviews per submission) by themembers of the ICVNS 2022 ProgramCommittee. These
papers describe recent advances in methods and applications of Variable Neighborhood
Search.

The editors thank all the participants in the conference for their contributions and for
their continuous effort to disseminateVNS, and are grateful to the reviewers for preparing
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excellent reports. The editors wish to acknowledge the Springer LNCS editorial staff for
their support during the entire process of making this volume. Finally, we express our
gratitude to the organizers and sponsors of the ICVNS 2022 meeting:

– The Research Center for Digital Supply Chains and OperationsManagement, Khalifa
University,

– The Office of Marketing and Communications of Khalifa University,
– The Abu Dhabi Convention and Exhibition Bureau,
– The EURO Working Group on Metaheuristics (EWG EU/ME).

Their support is greatly appreciated for making ICVNS 2022 a great scientific event.

March 2023 Andrei Sleptchenko
Angelo Sifaleras

Pierre Hansen
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A Metaheuristic Approach for Solving
Monitor Placement Problem

Alejandra Casado1(B) , Nenad Mladenović2 , Jesús Sánchez-Oro1 ,
and Abraham Duarte1

1 Universidad Rey Juan Carlos, Tulipán s/n., 28933 Móstoles, Spain
{alejandra.casado,jesus.sanchezoro,abraham.duarte}@urjc.es

2 Khalifa University, Zone 1, Abu Dhabi, UAE
nenad.mladenovic@ku.ac.ae

Abstract. There are several hard combinatorial optimization problems
that, in the context of communication networks, must be solved in short
computing times since they are solving real-time critical tasks. This work
is focused on the monitor placement problem, whose objective is to locate
specific devices, called monitors, in certain nodes of a network with the
aim of performing a complete network surveillance. As a consequence of
the constant evolution of networks, the problem must be solved in real
time if possible. If a solution cannot be found in the allowed comput-
ing time, then a penalty is assumed for each link of the network which
remains uncovered. A Variable Neighborhood Search algorithm is pro-
posed for solving this problem, comparing it with a hybrid evolutionary
algorithm over a set of instances derived from real-life networks to eval-
uate its efficiency and efficacy.

Keywords: monitor placement problem · basic variable neighborhood
search · local search · metaheuristics

1 Introduction

Nowadays, communications are a key part of almost every task, from profes-
sional to personal issues: streaming, banking, shopping, security, etc. In their
origins, the security of those networks was not relevant. However, the appear-
ance of cyber-attacks and the necessity of data protection has highlighted the
relevance of having secure networks. Therefore, every modern company requires
to have their communication networks totally surveyed, even in the case of those
networks which are in continuous evolution.

A. Casado, J. Sánchez-Oro and A. Duarte research was funded by “Ministerio de Cien-
cia, Innovación y Universidades” under grant ref. PID2021-125709OA-C22, “Comu-
nidad de Madrid” and “Fondos Estructurales” of European Union with grant refs.
S2018/TCS-4566, Y2018/EMT-5062. N. Mladenović has been partially supported by
the Science Committee of the Ministry of Education and Science of the Republic of
Kazakhstan, Grant No. AP08856034.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Sleptchenko et al. (Eds.): ICVNS 2022, LNCS 13863, pp. 1–13, 2023.
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The main objective of most of the cyber-attacks to networks is to have an
important economic impact in the company suffering the attack, which may
eventually lead to an economic crisis. However, some services are considered as
critical, since the society cannot be maintained without them: transportation,
healthcare, defense, among others. A successful attack over one or more of these
services can be critical, resulting in humanitarian crisis [1].

With the increase in the number of cyber-attacks, and the rising concerns
about privacy on the Internet, every company and institution are continuously
working on improving their security systems. The main objective is to minimize
the security breaches, thus reducing the number of attacks. Even more, in the
case of suffering an attack, the faster the reaction, the smaller the probabilities
of success [13].

The most extended types of cyber-attacks are Denial of Service (Dos) and its
distributed variant (DDoS). This is mainly because a successful DoS or DDoS
usually results in completely disabling a network. Even more, if the network
under attack has several services that directly depend on it, the attack normally
results in a cascade failure, damaging a large number of services [5].

The main efforts of researchers and practitioners in increasing security are
focused on the early detection of potential threats: loss of nodes in the network,
unauthorized access to some parts of the network, malware spreading, etc. In
order to protect the network from those threats, they must be detected in almost
real time. Otherwise, it would be impossible to perform a counterattack to disable
the effects of the threat.

The first and one of the most important phases of network protection is
the surveillance of the network. A good surveillance guarantees monitoring the
complete network, allowing the administrators to provide a fast and efficient
reaction to any kind of potential threat. In most of the networks, the process
of monitoring consists of deploying a special type of device called monitor in
certain nodes of the network. These devices are able to analyze and survey all
the traffic that goes through them. Then, the administrators are able to gather
and analyze the information recovered from the monitors to detect potential
threats, thus helping them to protect the most critical nodes.

Taking this into account, it is easy to see that a network is completely mon-
itored if a monitor is deployed in every node of the network, since it guarantees
that any communication in the network will be analyzed. However, the cost of
deploying a monitor in a network is too high to afford the deployment of one
of these devices in each node of the network. Even more, deploying a monitor
not only has an associated cost, but also implies an overhead in the network
performance derived from capturing all the communications that go through
them. Then, it is interesting to survey the network with the minimum number
of monitors.

This problem is named Monitor Placement Problem (MPP), and it has been
widely studied in the literature from both theoretical and practical points of
view. The research on MPP has discovered several variants that consider new fea-
tures of the networks under surveillance. Traditional approaches consider static
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networks, where changes over its original design are not common. However, this
is not a realistic situation, so this research is focused in those networks that are
in continuous evolution. The constant changes in the network force the admin-
istrators to select the nodes to deploy a monitor in short computing times to
avoid affecting the performance of the network.

This problem is a generalization of the well-known vertex covering problem,
which has been proven to be NP-complete [12]. Then, exact approaches are
not able to solve instances derived from real-life scenarios, due to the inher-
ent complexity of those networks. Even more, the MPP is still NP-complete
for approximations within a factor smaller than 1.36 [6]. As a consequence, the
MPP and related problems have been mainly tackled from a heuristic point
of view. The minimum vertex cover, as well as the maximum independent
set, were firstly solved using evolutionary algorithms [2,8]. Then, a combina-
tion of a branch and bound procedure and several heuristics were proposed for
dealing with random graphs in the context of minimum vertex cover [14,15].
After that, different approaches were presented for solving that problem, such
as genetic algorithms [11], hierarchical Bayesian algorithms [21], or simulated
annealing [10], among others. The generalized vertex cover was tackled by a
new genetic algorithm [16], considering a weighted network in both nodes and
links. More recently, a parallel design of evolutionary algorithm was presented [4],
which is able to take advantage of the hardware architecture by using distributed
computation.

Several approaches have considered evolutionary algorithms for solving MPP,
including a population injection method [17], or a hybrid evolutionary algorithm
for the dynamic variant of the problem [18]. Even more, the best approach for
solving the MPP found in the literature is also a hybrid search heuristic [19],
which is an evolution of the population injection method originally proposed
in [17], but focusing on the diversification of the search.

This research proposes a Variable Neighborhood Search (VNS) algorithm
for dealing with the MPP. A constructive method is proposed to provide a high
quality starting point for the search, as well as an intelligent local search method
to reach a local optimum. Additionally, an intensified shake procedure is pre-
sented to guide the search during the diversity phase of VNS. The remaining of
the paper is structured as follows. Section 2 describes the MPP, Sect. 3 presents
the algorithm proposed for solving the MPP, Sect. 4 shows the computational
experiments performed to test the proposal, comparing it with the best method
found in the literature and, finally, Sect. 5 draws some conclusions derived from
this research.

2 Problem Definition

A network is modeled as a non-directed graph G = (V,E) where the set of nodes
is represented by V , with |V | = n, and the links between nodes in the network,
E (with |E| = m) are represented by tuples (u, v) that indicate that there exists
a communication between nodes u and v, with u, v ∈ V . Let us introduce a
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vertex cover Λ of a network, defined as a subset of vertices Λ ⊆ V satisfying the
constraint that, for every edge (u, v) ∈ E, either u ∈ Λ or v ∈ Λ. A minimal
vertex cover is a vertex cover with the minimum size. Then, the Minimum Vertex
Cover Problem is formally defined as:

MVCP(G) = min
Λ∈C

|Λ|

where C is the set of all existing vertex covers for the network G under consider-
ation. Notice that a network can have several different minimum vertex covers,
so the MVCP consists of finding one of those vertex covers.

Having defined the MVCP, the MPP is a variant of the MVCP with direct
application in communication networks and, therefore, there are some additional
constraints that must be satisfied. The first constraint refers to the computing
time available to solve the problem, which is drastically reduced when solving
real-life networks when comparing it with the traditional MVCP. This reduction
is directly related with its practical application: as it was aforementioned, in
order to defend the network from an attack, it is required to detect it as soon as
possible, allowing the administrators to carry out the corresponding measures
to avoid the attack. However, in some cases it is not possible to find a solution
that monitors the complete network in the available computing time, and then
the objective is to find the solution which maximizes the number of connections
controlled in the network. Since not all the connections have the same relevance,
it is important to prioritize the connections to be surveyed [3].

In the context of MPP, a network is considered securized if and only if all
the communications between nodes are covered by a monitor (at least). Then,
a solution is considered optimal if it monitors the complete network with the
minimum impact in its performance. In other words, the MPP tries to find a
solution which monitors the complete network with the minimum number of
monitors deployed in it. Without loss of generality, in the variant tackled in this
research a monitor can be placed in any node of the network.

The link priority is totally related to the network nature and the relevance
given by the administrators: the bandwidth of the link, the traffic flow through
the link, a special type of relevance related to the nodes conforming the link,
etc. Several studies have been performed to choose the correct priority for every
link of the network [20,24]. These link priorities are the key when comparing
MPP with MVCP. In the original MVCP, the priorities are not considered, so
the model needs from an adaptation. In particular, the priorities are usually
included in the model [19] by defining a priority function p : E → N which assigns
a certain penalty to each link not monitored in a solution. This adaptation allows
algorithms to compare solutions with the same number of monitors, considering
the penalty of the uncovered links.

Following the definition of the penalty, the objective function for the MPP is
divided into two different parts: the number of monitors deployed in the network,
and the total penalty of the links which are not surveyed. Let us define S as a
solution for the MPP which contains the nodes in which a monitor is deployed
(naturally, S ⊆ V ). The objective function of the MPP is then formally defined as:
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MPP(S) = |S| +
∑

e∈E′
p(u, v)

with E′ being the set of links which are not covered by any of the selected
monitors, i.e., E′ = {(u, v) ∈ E : u /∈ S ∧ v /∈ S}. The problem then seeks to
find a solution S� with the minimum objective function value. In mathematical
terms,

S� = arg min
S∈S

MPP(S)

where S models the set of all feasible solutions for the MPP. Since, in the context
of MPP, any subset of nodes is a feasible solution (assuming the corresponding
penalty), the solution space is conformed with all the possible subsets of nodes
that can be conformed with V . Hence, the two trivial solutions where a monitor
is deployed in every node, i.e., S = V , and the one in which no monitors are
deployed, i.e., S = ∅, are also considered.

Two factors are then considering when evaluating a solution: the number of
monitors deployed and the total penalty for those uncovered links. The litera-
ture shows different ways of calculating the penalty, but in this work the same
approach as in the best previous method found in the literature [19] is followed.
In particular, a static linear distance penalty function is considered, which will
be later described in Sect. 4.

3 Algorithmic Approach

Most of the works related to the MPP found in the literature considers evolu-
tionary algorithms as the main approach for solving the problem. This research
proposes a different point of view where a trajectory-based metaheuristic is con-
sidered, instead of a population-based metaheuristic such as evolutionary algo-
rithms. The main difference is that trajectory-based metaheuristics performs the
search by maintaining a single solution which is iteratively modified trough out
different phases, while population-based metaheuristics are based on maintain-
ing a complete population of solutions with the aim of combining it during the
search.

In particular, Variable Neighborhood Search (VNS) metaheuristic is consid-
ered, whose success is based on performing systematic changes of neighborhoods
to improve the quality of the solutions obtained without being a resulting in
a computationally demanding procedure. VNS is in continuous evolution, as it
can be seen in the large variety of schemes proposed, which usually differ in
how the neighborhoods are explored. We can highlight Basic VNS, which com-
bines both deterministic and stochastic neighborhood changes, Reduced VNS,
which is focused on stochastic neighborhood exploration, and Variable Neighbor-
hood Descent, whose success relies on deterministic changes of neighborhoods.
Notwithstanding, VNS researchers have proposed several new variants in the last
decades: General VNS, Variable Neighborhood Decomposition Search, Variable
Formulation Search, Less Is More Approach VNS, etc. [9].
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The proposed algorithm for the MPP follows the Basic VNS (BVNS), which
is able to balance diversification and intensification with a perturbation method
and a local improvement phase, respectively. Algorithm 1 shows the pseudocode
of Basic VNS.

Algorithm 1. BVNS(S, kmax, kstep)
1: k ← 1
2: while k ≤ kmax do
3: S′ ← Shake(S, k)
4: S′′ ← Improve(S′)
5: if MPP(S′′) < MPP(S) then
6: k ← 1
7: S ← S′′

8: else
9: k ← k + kstep

10: end if
11: end while
12: return S

The method requires from three input parameters: the initial solution S (see
Sect. 3.1 for more details), the maximum neighborhood to be explored during
the search kmax, and the value of each step of the algorithm kstep. The algorithm
starts with the first neighborhood (step 1) and, then, it iterates until reaching
the largest predefined neighborhood kmax (step 2–11). In each neighborhood,
the solution is perturbed following the shake procedure described in Sect. 3.3
(step 3). The perturbed solution S′ is then improved using the method described
in Sect. 3.2 to find a local optimum in the current neighborhood (step 4). Finally,
BVNS performs the neighborhood change stage. In particular, if the improved
solution S′′ outperforms the best solution found so far (step 5), the method
restarts the search from the first neighborhood (step 6), updating the best solu-
tion found (step 7). Otherwise, the algorithm continues with the next neighbor-
hood (step 9). BVNS ends when k ≥ kmax returning the best solution found
during the search (step 12).

Our proposal is formed by different components, all of them detailed here-
inafter. However, as a summary, the algorithm starts with an initial greedy
solution. A local optimum is found from that initial solution by executing the
local search. After that, the whole BVNS algorithm, showed in Algorithm 1, is
executed δ times, which value is defined in Sect. 4.

3.1 Initial Solution

The initial solution required by VNS can be generated either at random or
with a specific constructive procedure. Recent works on VNS have shown that
providing VNS a good starting point usually results in a more robust and efficient
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algorithm, in terms of quality and/or computing time [23]. As a consequence,
this research proposes a new constructive procedure to start the search from a
promising region of the search space.

A simple yet effective greedy procedure is proposed in Algorithm 2 which,
starting from an empty solution, is able to iteratively deploy new monitors until
all the links are covered.

Algorithm 2. GreedyConstructive(G)
1: S ← ∅
2: UL ← {(u, v) ∈ E : u /∈ S ∧ v /∈ S}
3: C ← V
4: while UL 
= ∅ do
5: c ← arg max

u∈C

∑
(u,v)∈E

v∈C

p(u, v)

6: S ← S ∪ {c}
7: C ← C \ {c}
8: UL ← UL \ {(c, x) : ∀x ∈ N(c)}
9: end while

10: return S

The algorithm starts from an empty solution S (step 1). Then, the list of
uncovered links UL is created with every edge in the graph which is not covered
by any monitor (step 2). The candidate nodes to host a monitor are all the nodes
of the instance (step 3). The method now iterates until covering all the links in
the network (steps 4–9). In each iteration, the next candidate node is selected
as the one which is able to minimize the penalty that affects to the solution
under construction (step 5). In other words, we only consider (by summing up
the corresponding penalty) edges whose both endpoints belong to C.

The selected candidate c is then added to the solution (step 6), updating the
set of candidates (step 7), removing from the set of uncovered links UL all edges
in which c is involved (step 8). Notice that N(c) refers to the adjacent nodes
to c. The method ends returning a solution S where all the links are covered
(step 10).

3.2 Improvement Method

The intensification part of VNS relies in the local improvement method used for
reaching a local optimum with respect to a certain neighborhood. Notice that,
although some works have proposed a complex metaheuristic in this phase [7,22],
leading to successful researches, the MPP requires from a fast local search
method since the time constraints are usually hard. Then, in this work a fast
local search is proposed, which is conformed with three main elements: the move
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operator used in the method, the neighborhood of solutions that can be gener-
ated through the given move operator, and the strategy selected to explore the
neighborhood.

The first element that needs to be defined is the move operator, which indi-
cates how a solution will be modified in each step. A good move operator should
be designed for reducing the number of monitors deployed without increasing
the penalty caused by the uncovered links. In this work, the move operator Swap
is proposed, which removes a monitor already deployed, replacing it with a new
one. More formally,

Swap(S,u,v) ← (S \ {u}) ∪ {v}
Notice that this move operator will never lead to an improvement by itself, since
the number of monitors will never be reduced and the penalty may eventually
increase. However, the new monitor deployed will eventually make some of the
other monitors unnecessary, covering the same links. Then, if the deployment of
a new monitor results in, at least, one new redundant monitor, its removal will
result in an improvement. This procedure, named as purge, basically consists
of traversing all the deployed monitors, checking if all edges still covered after
removing each monitor. If the objective function value decreases after applying
this method, then an improvement has been found in the local search.

This move operator allows us to define the second key part of a local search:
the neighborhood of a given solution S. In the context of MPP, the neighborhood
Nswap is defined as all the solutions that can be reached after performing a single
Swap move. In mathematical terms,

NSwap(S) ← {S′ ← Swap(S, u, v) : ∀u ∈ S̄ ∧ v ∈ (V̄ \ S̄)}

Finally, it is necessary to indicate the strategy followed to traverse the neighbor-
hood. Two main strategies are usually considered in the literature: first improve-
ment and best improvement. The former performs the first move that leads to
an improvement, while the latter performs the best move found in the neigh-
borhood. Notice that best improvement methods are usually slower than first
improvement ones, since they require to evaluate the complete neighborhood in
each iteration, while a first improvement approach stops whenever an improve-
ment is found. Since MPP requires from fast procedures, we select first improve-
ment as neighborhood exploration strategy in the proposed local search. In order
to avoid biasing the search, the neighbor solutions are explored at random in
each iteration, increasing the diversification of the search. It is worth mentioning
that the purge procedure is applied over each neighbor solution to validate if an
improvement is found.

3.3 Shake

The shake procedure is responsible for the diversification part of the algorithm to
avoid getting trapped in local optima during the local search phase. In particular,
this method perturbs the solution under exploration by randomly applying the
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move operator, instead of focusing on those movements that leads to an improve-
ment. The size of the perturbation is controlled by parameter k, indicating that
k random Swap moves will be performed.

When no improvement is found, the value of the parameter is increased,
since more diversification is needed by the local search method to find more
promising regions of the search space. On the contrary, when an improvement is
found, the perturbation starts again from the minimum size, to avoid performing
an extremely large perturbation of the incumbent solution which may lead the
algorithm to miss high-quality solutions.

The move operator used in the perturbation phase is the same as in the local
search method, Swap. However, in this case, the node to be removed is selected
completely random while the new monitor deployed is selected at random among
its adjacent nodes, to assure that the resulting solution has no additional penalty.
It is important to remark that the perturbation phase will not consider any move
that lead to an increase in the penalty.

4 Computational Results

Once the algorithmic proposal has been presented, it is necessary to validate its
efficiency and efficacy, as well as to select the best value for the input parameters
of the proposed algorithm. This section is designed for tuning the parameters of
the Basic VNS algorithm proposed, as well as to perform a competitive testing
with the best method found in the literature for the MPP.

All the algorithms have been implemented in Java 11 and the experiments
have been conducted in an AMD EPYC 7282 (2.8 GHz) and 72 GB RAM. We
have considered the same set of instances as the ones presented in the related
literature, where the best algorithm for the MPP is introduced [19]. Unfortu-
nately, due to hardware constraints, instances delaunay n17, delaunay n18,
delaunay n19 and delaunay n20 cannot be considered, since the available hard-
ware does not have enough memory to store them. However, the results obtained
will show that, with the appropriate hardware, the method would be able to
provide good results as a consequence of its scalability. Then, a total set of
instances conformed by 35 networks is considered, of which 10 representative
instances have been selected to configure the proposed algorithm in order to
avoid overfitting.

All the experiments report the following metrics: Avg., the average objec-
tive function value obtained by each algorithm; Time (s), the computing time
required by each algorithm to finish, measured in seconds; Dev (%), the average
deviation with respect to the best solution found during the experiment; and #
Best, the times that the algorithm reaches the best solution of the experiment.

The first experiment analyze the quality obtained changing the values of the
input parameters of BVNS. The algorithm needs just two parameters: δ, which is
the number of complete BVNS iterations, and kmax, the maximum neighborhood
to be explored in each complete iteration. The values tested for the largest
neighborhood are kmax = {0.1, 0.2, 0.3, 0.4, 0.5} (percentage of the number of
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nodes in the solution), where each value represents a percentage of the number
of nodes of the instance to guarantee the scalability of the proposal. We do not
consider larger values of kmax since perturbing more than half of the solution will
result in a completely different one, which is against the philosophy of the VNS
framework. Regarding the number of iterations, we test δ = {1, 10, 20, 30, 40}.
The value of kstep is fixed to 0.05 (5% of the number of nodes in the solution).

Since modifying one of the parameters might affect to the other one, we have
decided to show the results obtained in two heat maps, where the worst values
are colored in red and the best values in green, interpolating the values between
them using a color gradient. Table 1 shows the results obtained.

Table 1. Heat map of the computing times (left) and average deviation (right) when
considering different values of δ and kmax.

δ

kmax 0.1 0.2 0.3 0.4 0.5

1 0.20 0.26 0.57 1.15 2.04
10 0.19 0.99 3.15 6.05 12.74
20 0.20 1.89 5.75 11.79 22.25
30 0.23 2.56 8.50 17.91 33.51
40 0.24 3.22 10.93 27.10 45.64

δ

kmax 0.1 0.2 0.3 0.4 0.5

1 0.36 0.34 0.32 0.12 0.12
10 0.36 0.17 0.07 0.11 0.06
20 0.36 0.09 0.03 0.11 0.06
30 0.33 0.09 0.03 0.10 0.06
40 0.33 0.09 0.03 0.10 0.03

Analyzing the heat map of computing times (left), as expected, it grows
with the number of iterations and maximum neighborhood explored, being two
orders of magnitude slower in some cases. If we simultaneously analyze the heat
map of average deviation (right), we can clearly see that the best values are
obtained when considering small values of kmax, specifically kmax = 0.2, and the
number of iterations stagnates when reaching 20. Since the computing time of
kmax = 0.2 and δ = 20 is also one of the smallest in the experiment, we select
these parameter values.

Having defined the best parameter values for kmax and δ, it is necessary to
compare the performance of each component of the final algorithm to the quality
of the generated solutions. To that end, we compare the constructive method
isolated, then coupled with the local search method and, finally, the complete
BVNS algorithm. Table 2 shows the results obtained in this experiment.

Table 2. Analysis of the contribution of each component of the proposed algorithm.

Algorithm Avg Time (s) Dev. (%) #Best

GreedyConstructive 1837.80 3.14 0.41 1
GreedyConstructive+LS 1834.10 17.90 0.27 1
BVNS 1829.40 42.45 0.00 10
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Although the constructive method isolated and the coupled with LS allows
the algorithm to find 1 best solution in the instance frb35-17-1, BVNS is the
one able to reach all the best solutions. It is worth mentioning that, although
the constructive procedure and the local search are not able to reach more than
one best solution, the small deviation indicates that they provide a promising
starting point for the BVNS without being computationally demanding methods.

Finally, the BVNS is compared with the best method found in the literature
for MPP, a hybrid search evolutionary algorithm, named (LS+PI) EA [19], which
proposes an effective hybrid search heuristic but leveraging the combination of a
greedy local search method with evolution-based heuristics. In this experiment
the complete set of 35 instances is considered, and the results are depicted in
Table 3.

Table 3. Comparison of the hybrid search evolutionary algorithm (LS+PI) EA and
the proposed BVNS for each instance type.

Algorithm Avg Time (s) Dev. (%) #Best

BVNS 4724.09 444.77 0.02 33

(LS + PI) EA 5472.54 155.29 8.92 3

In this case, BVNS is able to reach 33 out of 35 best solutions, which high-
lights the efficiency of BVNS, while (LS+PI) EA is able to reach just 3 best solu-
tions. Regarding the computing time, it can be seen that (LS+PI) EA requires
less computing time, but BVNS is still satisfying the MPP constraint of requir-
ing short computing times. The average deviation shown by BVNS indicates
that, in the 2 instances in which the best solution is not found, it still remains
really close to it. On the contrary, (LS+PI) EA presents a deviation of almost
9%, indicating that it is not close to the best solution. Finally, it is important to
remark that the largest differences in deviation are obtained in the most complex
instances, highlighting the scalability of our proposal. Analyzing these results,
we can conclude that the proposed BVNS is a competitive algorithm for solving
the MPP.

5 Conclusions

This research presents a BVNS approach for solving the Monitor Placement
Problem (MPP) efficiently. Due to the practical applications of this problem, it
is necessary to provide high quality solutions in short computing times. To that
end, a BVNS algorithm is presented, where each component of the final algorithm
is carefully designed to avoid being extremely computationally demanding. The
specific design of the constructive procedure, the local search method and the
shake procedure, allows the algorithm to be completely scalable as it can be seen
in the results obtained.
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A greedy constructive procedure is proposed to produce a promising initial
solution. The GreedyConstructive starts from scratch and constructs a solution
by locating monitors in those nodes which minimize the penalty in each step.
Then, a local search method, coupled with a purge procedure to remove redun-
dant monitors is proposed. The experimental results show how every component
of the proposed algorithm has a positive effect in the final results, emerging
BVNS as a competitive method for solving the MPP. Even more, the construc-
tive procedure coupled with the local search method provides a high quality
starting point which can be considered in those cases that require real-time per-
formance.

Future lines of research comprehend the optimization of the local search and
the shake movement, and discarding nodes that will not improve the solution,
trying to design a faster algorithm preserving the quality achieved in this work.
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Abstract. This paper presents a variable neighborhood search based
heuristic to minimise the number of resources for the single-processor
scheduling problem with time restrictions which is known to be NP-
complete problem. In particular, we study the performance of the Basic
Variable Neighborhood Search algorithm (BVNS) under the use of differ-
ent initial solutions. The obtained results were compared with an exact
method published in the literature. Computational results show that the
proposed algorithm is efficient and effective as it can obtain optimal
solutions in 95.55% of the cases in a reasonable amount of time.

Keywords: Scheduling · Mixed integer programming · Variable
neighborhood search · Single server

1 Introduction

The present work studies the minimisation of the number of resources for the
single-processor scheduling problem with time restrictions (problem (B)). This
problem differs from the single-processor scheduling problem with time restric-
tions (problem (P)) that was studied first in [5]. In fact, in the problem (P),
there are several jobs to be scheduled on one processor shared among multiple
identical resources. The processor can execute one job at a time such that during
any time interval with length α > 0 the number of jobs being executed is less
than or equal to the number of external resources B. The objective is to find
an optimal sequence of the jobs that minimises the makespan or Cmax, which
is the most studied objective function for (P). This problem was shown to be
NP-hard, independently, by Zhang et al. [19] and Benmansour et al. [4]. We
underline here that it has been shown that (P) is a particular case of another
scheduling problem which is called the parallel machine scheduling problem with
a single server (see [4,6]). An application of the problem can be found in logis-
tics: In this situation, the processor represents a loading server in a supplier’s
central depot with several identical trucks. The processing time pi of each job
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will be equivalent to the loading time of the client’s order i. The parameter α
will represent the time it takes for a truck to reach this customer, unload the
goods and return back to the central depot to make another delivery. Other
applications of this problem can be consulted here [7,12,18].

In the problem (B) the desired goal is to minimize the number of identical
resources used to obtain a perfect scheduling (i.e., a schedule without idle time
on the shared processor). Note that in a perfect schedule the makespan is equal
to the sum of the processing times of the jobs. Consequently the problem to be
addressed in this paper is to determine both the minimum value of B and a
sequence of the jobs such that the processor works constantly until the comple-
tion of the last job. Since (B) is NP-complete problem [2], it is often useful to
solve it by metaheuristics, especially if the exact methods struggle to give sat-
isfaction. In this work, a Variable Neighborhood Search (VNS) based algorithm
[8] is proposed to solve (B) as the proposed exact method in [2] was not able to
solve optimally all the instances. Several scheduling rules are proposed to gener-
ate initial solutions for our VNS algorithm. In order to assess the performance
of the algorithm, computational experiments are conducted on randomly gener-
ated instances that was previously solved by a mixed integer linear programming
(MIP) formulation [2].

The remaining of this work is organized as follows. In Sect. 2, a formal defi-
nition of the studied problem is proposed. The proposed VNS-based algorithm
and its various components are presented in Sect. 3. Section 4 is devoted to the
presentation and the analysis of the results. Finally, Sect. 5 aims to conclude this
work and discuss future research directions.

2 Description of the Problem

The problem (B) can be formally described as follows. We are given a set of n
jobs, n ∈ N = {1, 2, . . . , n}, and each job i has a processing time pi > 0. All the
jobs must be processed on a single processor shared between several identical
resources (their number B is to be determined). During its execution on the
processor, the job i requires the use of one of the available resources throughout
the duration of its processing. Once the resource is released by the job i, it
becomes unavailable for α > 0 units of time (e.g., for maintenance purposes).

The objective is to determine the perfect schedule that minimizes the number
of external resources used among the available resources. This problem can be
of practical interest in the following situations:

– The main processor should not be stopped: Scheduling with no-idle time
constraint can arise in real situation when the processor idle time cost is
extremely high or when the processor cannot be easily started and stopped
due to technological constraints [10,17].

– Setup costs of using external resources may be very high [1]. Therefore, using
more external resources than necessary - to achieve the same result - is an
obvious underperformance.
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A Mixed Integer Linear Programming (MIP) formulation was proposed in [2]
to solve optimally this problem. The MIP model was able to solve part of the
problem instances optimally. In this paper we consider that B is a decision
variable to be determined. It is obvious that B should be greater or equal to 2
in order to have a feasible schedule without idle times on the main processor.
We assume also that there are as many resources as available jobs since, in the
worst case, it would take n resources to execute all the jobs without idle time
on the processor.

The problem considered in this paper was motivated by the following obser-
vation: In the problem (P), the makespan (Cmax) is a non-increasing function
of the number of resources B used in the schedule. In other words, the optimal
solution value of the problem (P) decreases when the number of resources B
increases. The following example is given for better illustration.

Illustrative Example: Let us consider an instance of the problem (P) with
10 jobs. Each job i has a deterministic processing time pi and let α = 100 (see
Table 1). We denote by SP the sum of the processing times of all the jobs. The
example instance has been solved for different values of B. The MIP model given
in [3] was used to solve these problems. The resulting objective function values
are connected and plotted in Fig. 1.

Table 1. Example instance for n = 10.

Job i 1 2 3 4 5 6 7 8 9 10

pi 7 14 19 71 25 27 49 31 38 38

B

Cmax

1 2 3 4 5 6 7 8

319

350

400

450

500

550

600

Fig. 1. The variation of Cmax as a function of B.
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From Fig. 1, we observe that for a fixed number of jobs, the value of optimal
makespan decreases with the value of external resources B until it reaches the
value SP = 319. This is an expected result since SP is a lower bound on Cmax

and the time restrictions constraint becomes no restrictive as B increases: In the
extreme case where there are as many resources as there are jobs (i.e., B = n),
a perfect schedule can be obtained by using a different resource for each job (for
example the resource i can be used to process job i, ∀i ∈ N).

Figure 2 shows the optimal solution of the same instance with B = 4 which
is the minimum number of external resources needed to get a perfect schedule.

Fig. 2. A perfect schedule for the considered instance with B = 4.

3 The Proposed VNS-Based Algorithm

In 1997, Mladenovic and Hansen proposed a new metaheuristic method based on
systematic changes in neighborhood structure. This method was called Variable
Neighborhood Search (VNS) [15]. The main goal of this method is to solve
complex optimization problems. Due to the few parameters it requires and its
simplicity of implementation, several variants of VNS have been proposed in
the literature [9]. VNS algorithm has been applied successfully to solve several
problems in the literature [11,13,14,16]. Basically VNS consists of three major
components: i) local search, ii) shaking procedure and iii) neighborhood change.
VNS also needs an initial solution to start the search.

In this work a Basic Variable Neighborhood Search (BVNS) algorithm is
proposed to solve problem (B). The algorithm performs local searches to reach
local optimum in addition to a shaking procedure to avoid getting trap in local
optimum. In this work a local search procedure with best improvement strategy
is used [9]. In following sections, the main components of the proposed BVNS
algorithm are described.

3.1 Initial Solution

In the proposed BVNS algorithm, a solution for (B) is represented by permu-
tation π = (π1, π2, . . . , πn), where πi ∈ N is the job executed in position i ∈ N ,
and pπi

is its corresponding processing time on the processor.
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To generate an initial solution we first tested some simple scheduling rules
such as Shortest Processing Time (SPT), LPT (Longest Processing Time) and
First Come First Served rule (FCFS) (i.e. in the order of appearance of the
jobs in the instance). In a second time we proposed and tested another rule
which we called Wave Sort or WS for short. The WS rule is by far the most
efficient one. Hence to generate an initial solution X of a good quality for the
problem (B) we used the WS rule: First we sort the jobs in an increasing order
of their processing times. Then we store the result in a vector V . Without loss
of generality, we assume that we have a vector V = [π1, π2, . . . , πn] such that
pπ1 ≤ pπ2 ≤ . . . ... ≤ pπn

. According to [2] (cf. Theorem 2), in an optimal
solution, job with processing time pπ1 will be the first to be executed and job
with processing time pπ2 will be the last to be executed. Thus we place, π1

and π2 respectively in the first and the last position of the vector X. There-
after, we will fill - starting from left - the even (respectively odd) positions of
the vector X from the beginning (from the end) of the vector V . As an exam-
ple consider an instance with n = 11 jobs and the following processing times:
1, 5, 4, 8, 9, 3, 11, 6, 7, 2, 10. Then V = [1, 10, 6, 3, 2, 8, 9, 4, 5, 11, 7] and the initial
solution X = [1, 6, 7, 3, 11, 2, 5, 8, 4, 9, 10]. Note that the jobs in X correspond
respectively to the processing times: 1, 3, 11, 4, 10, 5, 9, 6, 8, 7, and 2.

3.2 Evaluation Function

In order to evaluate a solution π, the Algorithm 1 is proposed. Given a solu-
tion π = (π1, π2, . . . , πn), the algorithm below returns the value of the minimal
external resources B needed in order to satisfy the no-idle time constraints. We
define L as the final list of the external resources used in each solution.

Algorithm 1: Algorithm to compute optimal number B given a sequence
of jobs π

Data: A sequence of jobs π = (π1, π2, . . . , πn).
Result: Minimal number of resources B to obtain a perfect schedule given π.
Initialization: B = 2, L = {1, 2} ;
Schedule job π1 on the processor using resource 1;
Schedule job π2 on the processor using resource 2;
for i=3 to n do

if a resource r ∈ L is available at time t =
∑i−1

s=1 pπs then
Use resource r to process the job i on the processor;

end
else

B ← B + 1 ;
L ← L ∪ {B} // add a new resource to the list L

end

end
return B;
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Initially we set B = 2 and L = {1, 2} as there is always idle times on the
processor with one external resource. We schedule the jobs π1 and π2 on the
processor using respectively resources 1 and resource 2. For the following jobs
πi, i ≥ 3, if there exists a resource available at time t =

∑i−1
s=1 pπs

, then we should
use this resource to process the job πi on the processor. Otherwise we should
add a new resource to the list L to avoid idle time on the processor. Finally the
algorithm returns B.

3.3 Neigborhood Structure

A neighborhood structure is designed to move from one solution to another
through the execution of a set of elementary operations. In scheduling problems
we are mainly interested in changing the order of the execution of the jobs from
one solution to another. We define herein the two neighborhood structures used
in our algorithm. These neighborhood structures are defined by their correspond-
ing operators. For the sake of simplicity, a neighborhood structure will also be
referred to by the name of its corresponding generating operator.

– The insertion operator (N1): For a given solution, the insertion neighborhood
can be obtained by removing a job from its current position and inserting it
into another position at random.

– The swap operator (N2): The neighborhood set consists of all solutions
obtained by swapping two jobs at random in the current solution.

3.4 Shaking and Local Search

In Algorithm 2, the initial solution is generated according to WS rule. In order to
escape from local optima, the shaking procedure Shake is used to randomly gen-
erate a neighboring solution π′ from the kth neighbourhood of π. We apply, in the
intensification phase, the best improvement local search procedure (LSearch)
to the perturbed solution and save the best found solution to π′′. The function
NChange compares the new value of the solution π′′ with the value of the
solution π. If solution π′′ is better than π, then NChange keeps this solution
instead of π (i.e. π ← π′′) and k is returned to its initial value 1; otherwise, it
further perturbs the current incumbent solution π using the k + 1th neighbour-
hood (i.e. k ← k + 1). In this paper the Shake procedure is based on insertion
operator (N1) whereas the local search procedure LSearch is based on swap
operator (N2). In order to run the BVNS algorithm, we need to assign values
to two parameters kmax and tmax. This last parameter was chosen as follows:
tmax = 30×n. Thus, more time was given to larger instances, which are the most
difficult to solve by CPLEX. The value of the second parameter kmax was empir-
ically selected: four values (5, 10, 30 and 50) were tested in solving 9 instances
of various sizes. As a result, the value of kmax was set to 5. The pseudo code of
the proposed BVNS is presented in Algorithm 2.
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Algorithm 2: BVNS Algorithm
Data: π, kmax, tmax

Result: Solution π
Generate an initial solution π using WS rule;
repeat

k ← 1 ;
repeat

π′ ← Shake(π, k);
π′′ ← LSearch(π′);
NChange(π, π′′, k);

until k = kmax;
t ← Current CPU Time ;

until t > tmax;
return π;

4 Computational Experiments

This section reports the computational experiments performed to compare the
performance of the proposed BVNS algorithm with the MIP model proposed
in [2]. The BVNS algorithm was implemented using C language on a laptop
with configuration of Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz
with 16.00 GB RAM. The instances on which the tests were carried out are
the same as those used in [2], and can be found here. The number of jobs n was
chosen from the set {10, 50, 100}. The processing times pi (i ∈ N) were generated
from integer uniform distributions in [1, α], where α ∈ {10, 100, 1000}. For each
combination of n and α 10 instances were randomly generated.

In the following tables we present the results obtained by the MIP model
and the BVNS algorithm. In each table (Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10),
I represents the instance identifier (1 ≤ I ≤ 10), lb is the lower bound on the
objective function value as reported in [2], and fMIP is the value returned by
CPLEX solver after solving the MIP model, CPUMIP is the execution time of
the MIP. The remaining columns, Fbest, Favg and CPUavg represent respectively
the best solution value, the average solution value and the CPU time of 30 runs
of BVNS algorithm for instance I.

A diamond ♦ in the forth column (i.e. fMIP values) indicates that the value
obtained is not necessarily optimal because it represents the value returned by
CPLEX at the end of the time limit (which is 3000 s). For BVNS the time limit
was set to tmax = 30 × n, where n is the number of the jobs in the considered
instance.
N.B.: Contrary to what is published in [2], the value of the optimal solution for
the instance with n = 50, α = 100 and I = 5 is fMIP = 3 (and not 4). This
value is identified by the symbol ∗∗ in Table 6.
Note that, in order to take advantage of the calculated lower bounds lb another
stopping condition was added to the BVNS algorithm. Indeed, the algorithm is

https://data.mendeley.com/datasets/2zn9jymfc7/1
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stopped once the value of the incumbent solution is equal to the lower bound lb
of the considered instance or the time limit tmax is reached.
From the results obtained we can make the following comments:

– The BVNS algorithm finds the same optimal solutions as CPLEX, in less
amount of time in the majority of cases.

– The lower bound is tight because in 84% of cases the value of the lower bound
lb is equal to the value of the optimal solution (76 cases out of 90). In the
remaining cases, the BVNS algorithm exhausts the time allocated searching
for better solutions.

– Following the use of BVNS seven new best-known solutions (in bold in the
fBV NS-column) and 83 ties are claimed in testing the set with 90 instances.
The seven new best-known solutions are optimal solutions.

– The quality of lb and WS rule values contribute to the performance of BVNS.
– The optimal value for each instance is either 3 or 4 resources. This can be

explained easily as follows. In any feasible solution of the problem (B), the
sum of the processing times of each consecutive B − 1 jobs must be greater
of equal to α (cf. [2]). Given that pi ∈ [1, α] for each i ∈ {1, 2, . . . , n}, then,
on average, the sum of the processing times of the B − 1 consecutive jobs is
equal to S = (B − 1) × (α−1)

2 . Hence in order to have S ≥ α, the value of B
should be greater or equal to 1 + 2 2α

(α−1) . Numerically, and given the chosen
intervals [1, 10], [1, 100] and [1, 1000], the value of B must be minimal and
respectively equal to at least 3.222, 3.020 and 3.002.

Finally we can conclude that the proposed BVNS algorithm is efficient to
solve the proposed instances. This is not the case of the MIP model which strug-
gles to solve several instances, in an optimal way, even after 3000 s. The efficiency
of BVNS algorithm also due to the quality of the initial solution and to the kind
of instances considered (generated according to the uniform distribution).

Table 2. Results obtained for instances with n = 10 and α = 10.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 0.01 3 3 0

2 3 3 0.03 3 3 0.0001

3 3 3 0.02 3 3 0

4 3 3 0.02 3 3 0

5 3 3 0.02 3 3 0

6 3 3 0.02 3 3 0

7 3 3 0.02 3 3 0

8 4 4 0.08 4 4 0

9 3 3 0.01 3 3 0

10 3 4 0.02 4 4 300
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Table 3. Results obtained for instances with n = 10 and α = 100.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 0.03 3 3 0

2 3 4 0.02 4 4 10

3 3 3 0.02 3 3 0

4 3 4 0.03 4 4 10

5 3 3 0.01 3 3 0

6 3 4 0.11 4 4 10

7 3 3 0.02 3 3 0

8 3 3 0.02 3 3 0

9 4 4 0.03 4 4 0

10 4 4 0.06 4 4 0

Table 4. Results obtained for instances with n = 10 and α = 1000.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 0.01 3 3 0

2 3 3 0.01 3 3 0

3 3 3 0.01 3 3 0

4 4 4 0.02 4 4 0

5 3 3 0.02 3 3 0

6 3 3 0.01 3 3 0

7 3 3 0.02 3 3 0

8 3 3 0.01 3 3 0

9 3 3 0.01 3 3 0

10 4 4 0.02 4 4 0

Table 5. Results obtained for instances with n = 50 and α = 10.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 1.58 3 3 0.0014

2 3 3 19.41 3 3 0.001

3 3 3 2.2 3 3 0.001

4 3 3 7.61 3 3 0.0012

5 3 3 2.61 3 3 0.001

6 3 3 3.59 3 3 0.0009

7 3 3 3.48 3 3 0.0011

8 3 3 3.69 3 3 0.0009

9 3 3 3.3 3 3 0.0009

10 3 4 0.75 4 4 1500
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Table 6. Results obtained for instances with n = 50 and α = 100.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 8.27 3 3.1 0.001

2 3 3 235.03 3 3 0.001

3 4 4 0.03 4 4 0.001

4 3 3 1.77 3 3 0.0005

5 3 3∗∗ 443.28 3 3 0.001

6 4 4 0.08 4 4 0.001

7 3 4 36.66 4 4 1500

8 3 4 11.02 4 4 1500

9 4 4 0.06 4 4 0.001

10 3 4 38.39 4 4 1500

Table 7. Results obtained for instances with n = 50 and α = 1000.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 1182.61 3 3 0.0007

2 3 4♦ 3000 4 4 1500

3 3 3 734.09 3 3 0.0006

4 4 4 0.06 4 4 0.001

5 4 4 0.03 4 4 0.0007

6 3 3 5.77 3 3 0.0003

7 3 4 6.86 4 4 1500

8 4 4 0.06 4 4 0

9 4 4 0.08 4 4 0.0007

10 3 4♦ 3000 3 3 0.0007

Table 8. Results obtained for instances with n = 100 and α = 10.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 3 12.89 3 3 0.0055

2 3 4 3.78 4 4 3000

3 3 3 17.28 3 3 0.006

4 3 3 22.14 3 3 0.006

5 3 3 741.95 3 3 0.006

6 3 3 26.99 3 3 0.006

7 3 3 20.8 3 3 0.006

8 3 3 104.28 3 3 0.0065

9 3 3 17.78 3 3 0.006

10 3 3 38.58 3 3 0.006
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Table 9. Results obtained for instances with n = 100 and α = 100.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 4♦ 3000 3 3 0.0076

2 4 4 0.23 4 4 0.0068

3 4 4 0.13 4 4 0.0062

4 4 4 0.2 4 4 0.0056

5 3 4♦ 3000 3 3 0.0054

6 3 4 568.3 4 4 3000

7 3 4♦ 3000 3 3 0.007

8 3 4♦ 3000 3 3 0.007

9 3 4♦ 3000 4 4 3000

10 3 4♦ 3000 4 4 3000

Table 10. Results obtained for instances with n = 100 and α = 1000.

I lb MIP BV NS

FMIP CPUMIP Fbest Favg CPUavg

1 3 4♦ 3000 4 4 73.0017

2 4 4 0.22 4 4 0.0061

3 4 4 0.2 4 4 0.0062

4 3 3 50.45 3 3 0.0058

5 3 4♦ 3000 3 3 0.0059

6 3 4♦ 3000 3 3 0.0062

7 3 3 24 3 3 0.0056

8 3 4♦ 3000 4 4 73.0024

9 3 4 4.7 4 4 73.0014

10 4 4 0.22 4 4 0.0069

5 Conclusion

We introduce a new problem related to the single processor scheduling problem
with time restrictions. In this problem the objective is to find the minimum
number of external resources in order to have a perfect schedule on the server. We
propose a VNS-based heuristic to solve large instances of the problem. Also we
compared the results obtained with those previously published in the literature
and obtained thanks to the resolution of a MIP model. In the light of the results
obtained, it appears that BVNS algorithm is by far more efficient than the
exact MIP model in terms of time and quality of the solution. However, we
believe that this experimental study is insufficient and partial. For this reason,
we believe that it is necessary to study other instances, of larger size and possibly
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generated according to other probability distributions, in order to draw more
general conclusions on the efficiency of the proposed algorithm.
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Abstract. Nowadays, social networks are one of the most important
sources of information available on the Internet, since new users and
relationships between them emerge every day in this type of networks.
For this reason, it is important to have procedures and mechanisms to
obtain, process and analyze the information extracted from them and
transform it into useful data. This situation has given rise to new hard
combinatorial optimization problems related to social networks, such as
influence analysis, sentimental analysis or polarization. All these topics
are grouped under the research field of Social Networks Analysis (SNA).
In this paper, we focus on one of these topics: the Community Detection
Problem (CDP). Specifically, we will deal with a variant of the CDP
known as the Overlapping Community Detection Problem (OCDP), in
which the same user can be assigned to more than one community simul-
taneously, which cannot occur in the classical Community Detection
Problem. The problem is approached from a heuristic point of view,
applying a Greedy Randomized Adaptive Search Procedure (GRASP)
combined with a Basic Variable Neighborhood Search (BVNS) algorithm.
The proposal is compared with the best method found in the literature, a
Density Peaks based algorithm. Synthetic instances are used to evaluate
the performance of the proposal. To analyze the quality of the obtained
solutions, an evaluation metric that has been adapted from the well-
known modularity metric has been used: the overlapping modularity.

Keywords: GRASP · VNS · Overlapping Community Detection ·
Heuristics · Optimization

1 Introduction

In recent years, the information that can be found in Internet has exponentially
grown. Every day individual users and companies obtain part of this informa-
tion to use it in their own profit. Social networks (SN) are one of the biggest
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sources of information that can be used today in the Internet. Every day, new
users and relations among them born in the context of social networks. These
users are typically very different among them in terms of gender, age or prove-
nance, providing a high volume of information from different social spectra. This
characteristic has attracted the interest of researchers from different knowledge
areas, such as psychology, marketing or data science.

The problems derived from the study of social networks can be summarized
into the Social Network Analysis (SNA) research field. This field groups different
real life problems that are related to the social network context. One of the most
interesting problems is the analysis of the relations among different users of
certain social network with the aim of grouping them into communities. In this
work, the Community Detection Problem (CDP) is tackled. More specifically,
the studied variant is the Overlapping CDP (OCDP), in which a user can be
assigned to more than one community simultaneously. This problem models a
more realistic behavior than the classical CDP, given that in modern social
networks a user can be grouped in different communities depending on different
aspects, such as its interests, the people that it is related to, the places that it
visits, etc.

To solve this problem, our proposal consists of an approach that applies
Greedy Randomized Search Adaptive Search Procedure (GRASP) [6] as a con-
structive method to provide initial solutions to the Basic Variable Neighborhood
Search (BVNS) [10] framework. These are two well-known metaheuristics that
have been proven to be useful for solving different NP-hard problems.

The rest of the work is organized as follows: Sect. 2 contains the formal
description of the problem to be addressed, as well as the metric that is applied
to evaluate the quality of a given solution. In Sect. 3 the algorithmic approach
applied for solving the problem is explained. Section 4 summarizes the experi-
ments performed, devoted to evaluate the quality of the proposal. Finally, Sect. 5
enumerates the conclusions derived from the work, as well as the future work
lines.

2 Problem Description

A graph G = (V,E) can be used to model a Social Network. In this repre-
sentation, the set of vertices V corresponds to the users of the network (with
|V | = n), while the set of edges E is conformed with tuples (u, v) ∈ E, with
u, v ∈ V , representing that there exist a relationship between users u and v. In
this work, if there exists a relation between user u and user v, then it is assumed
that the relation between user v and user u is also given, it is, the relations are
bidirectional.

The main difference between the Overlapping Community Detection Problem
(OCDP), tackled in this work, and the classical CDP is that, in the present
variant, a user can be assigned to more than community at once.

A community can be defined as a subset of users (and their relationships),
it is, a subgraph of the original one. More formally, a community Ck is defined



BVNS for Overlapping Community Detection 29

as Ck = (Vk, Ek), where Vk ⊂ V is the set of users assigned to the community
and Ek is the set of the relations between users in Vk. Mathematically, Ek can
be defined as Ek = {(u, v) ∈ E : u, v ∈ Vk}.

The task to be solved in the context of OCDP is to assign users to one or
more communities. There exists different metrics that evaluates the quality of
a given community, but all of them have a common goal: to produce subgraphs
whose nodes are densely connected among them and sparsely connected to nodes
in other subgraphs.

A solution S for the OCDP is modeled as a set of k communities, it is, S =
{C1, C2, ..., Ck}, where 1 ≤ k ≤ n, indicating the number of found communities.
In this problem, the value of k is not fixed, so it must be determined by the
developed algorithm. A feasible solution is reached when all nodes in the network
are associated to, at least, one community. As it has been stated, in the OCDP
a user can belong to more than community at the same time. It means that
certain node u can be simultaneously in community Ci and community Cj , with
1 ≤ i, j ≤ k.

The overlapping feature makes the most extended metrics used in the CDP
context not suitable for the OCDP. However, they can be modified to meet the
particular circumstances of the OCDP. In this sense, modularity [19] is one of
the most extended metrics in the context of CDP. To evaluate and compare the
solutions obtained for the OCDP, an adaptation of this metric proposed in [15]
is used. In this adaptation, the fact that a node can belong to more than one
community at the same time is taken into account. For a single solution, the
value of the modularity is calculated as the average sum of the modularity of
each detected community. More formally,

MO(S) =

I∑

i=1

MO(Ci)

I (1)

where I is the number of detected communities in a solution. For a certain
community Ci = (Vi, Ei), the overlapping modularity MO(Ci) is evaluated as:

MO(Ci) =
1

|Vi|
∑

u∈Vi

|ECi←(u)| − |ECi→(u)|
du · su

· |Ei|
|Vi|·(|Vi|−1)

2

(2)

where ECi←(u) represent the set of edges that connect nodes belonging to the
same community (intra-community edges) with an endpoint in u, ECi→(u) is
the set of edges connecting nodes belonging to different communities with an
endpoint in u, du denotes the degree of node u and su represents the total number
of communities which node u is assigned to. Since the size of each community
could be rather different, the difference between intra and inter-community edges
is multiplied by the ratio between the number of edges that are actually present
in the community (|Ei|), and the number of edges that an ideal community
represented by a complete graph would have ( |Vi|·(|Vi|−1)

2 ).
For the sake of clarity, in Fig. 1a an example network with 8 nodes and 10

edges is shown.
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(a) Example network (b) Solution S1 (c) Solution S2

Fig. 1. Example network with 8 nodes and 10 edges and two different feasible solutions
for the OCDP. Figure 1a shows a network with 8 nodes and 10 edges. Figure 1b depicts
a solution S1 conformed with three communities and one overlapping node. Figure 1c
exposes a different solution S2 consisting of three communities and two overlapping
nodes.

Figure 1b shows a solution S1 with three communities with defined as S1 =
{C1, C2, C3}, where C1 = {A, B, C}, C2 = {D, E, F} and C3 = {F, G, H}.

In this solution, only the node F is overlapped. It means that it belongs
to more than one community at the same time. The modularity value for this
solution is calculated as the sum of the modularity values for each community,
divided by the number of found communities. Then, the modularity for each
community is MO(C1) = 0.19, MO(C2) = 0.34, and MO(C3) = 0.52, resulting
in a total modularity of the solution MO(G,S1) = 0.35.

Figure 1c depicts a solution S2 defined as S2 = {C1, C2, C3}, where C1 =
{A, B, C, D}, C2 = {D, E, F} and C3 = {F G, H}, with three different communities
and two overlapping nodes: D and F.

Similarly, the modularity value of this solution is evaluated as MO(C1) =
0.52, MO(C2) = 0.41, and MO(C3) = 0.52, resulting in MO(G,S2) = 0.48.

In terms of modularity, it can be said that solution S2 is better than solu-
tion S1, given that the higher value of modularity, the better, because a larger
modularity value indicates a better community structure in the reached solution.

The goal in the OCDP context is to find a solution S� that maximizes the
objective function value, i.e., a solution with the maximum MO(S�) value. In
mathematical terms,

S� ← arg max
S∈S

MO(G,S) (3)

where S is the set of all possible solutions that can be reached by solving the
OCDP for a certain network G.

In recent years, the relevance of social networks has become increasingly
evident in our society. Every day more and more users connect to these kind of
services To socialize, spend leisure time or get informed. In social networks can
be found not only individual users, but also companies that have included these
services in their business models. This results in a huge amount of data that can
be analyzed to obtain relevant information.
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For this reason, researchers from different knowledge areas has shown interest
in social networks and the extraction of knowledge from them. The research area
dedicated to studying and extracting knowledge from social networks is known
as Social Network Analysis (SNA) [1]. The processes and methods included in
this field has been demonstrated to be applicable to different domains, such as
cybersecurity [7], marketing [26] or politics [13].

In the context of the OCDP [28], several approaches have been proposed.
Most of them are adaptations of algorithms that solve the classical Community
Detection Problem to deal with the operlapping possibility. Example of these
adaptations can be found at [14], where a Clique-Percolation-Method (CPM)
has been adapted. Another work that adapts a classical algorithm to solve the
OCDP is found in [9], where the well-known Label Propagation algorithm is
adapted. Other approaches apply greedy algorithms [27] or non-negative matrix
factorization [30].

In the context of heuristics and metaheuristics, the best proposal found is
the one proposed by Xu et al. [29], where an extended adaptive version of the
Density Peak algorithm [23], named EADP, is applied to solve the OCDP. This
algorithm takes into account the distance between any pair of nodes (computed
as the sum of nodes between each node) to detect overlapped communities. The
algorithms tries to find the center of the communities using the Density Peak
algorithm.

3 Algorithmic Approach

In CDP, there exist a real necessity of develop fast algorithms that process all the
amount of information extracted from social networks. This is because these kind
of networks are continuously evolving, which implies that, if an algorithm takes a
long time to provide results, maybe these results are outdated with respect to the
current status of the network. This casuistry causes the exact algorithms not to
be suitable when dealing with real-life networks, mainly due to the large extent of
the solution space. In this context, heuristic algorithms emerges as a good option
to deal with this kind of problems, by sacrificing the guarantee of optimality
in favor of a reduced computing time. Heuristic algorithms have another main
disadvantage: they can eventually get trapped in local optimum when exploring
a region of the solution space. To avoid this problem, metaheuristic algorithms
are developed with the aim of guiding heuristics during the traversal of the
solution space in a more intelligent way. In this work, the Variable Neighborhood
Search (VNS) metaheuristic [10] is applied for solving the OCDP. VNS is able to
escape from local optima by performing systematic neighborhood changes until
no improvement is found after a certain number of changes. This metaheuristic
has been previously applied for solving different NP-hard problems, obtaining
successful results in them. Examples of its application can be found at [2,16,18,
21,22].

The success of this methodology has lead to several variants that can be
classified attending to the balance between intensification and diversification of
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the obtained solutions. If we focus on intensification, Variable Neighborhood
Descent (VND) [4,24] performs deterministic neighborhood changes. If diversifi-
cation is a better option for the incumbent problem, Reduced VNS (RVNS) [12]
is a good choice, given that it performs stochastic neighborhood changes, provid-
ing more diverse solutions. Alternatively, if what is sought is a balance between
intensification and diversification, Basic VNS (BVNS) [3] provides a good frame-
work that combines stochastic and deterministic neighborhood changes, arising
a compromise between intensification and diversification. New variants of the
methodology have been proposed by researchers in recent years, such as Variable
Neighborhood Decomposition Search (VNDS) [11], General VNS (GVNS) [25]
or parallel approaches such as [8].

In this work, we apply the BVNS variant for solve the OCDP. The compro-
mise between intensification and diversification in the context of OCDP allows
to explore more regions of the solution space without loss of quality regarding at
the objective function, as it will be experimentally tested in Sect. 4. Algorithm 1
shows the pseudo-code of the BVNS framework.

Algorithm 1. BVNS(S, kmax)
1: k ← 1
2: while k ≤ kmax do
3: S′ ← Shake(S, k)
4: S′′ ← Improve(S′)
5: k ← NeighborhoodChange(S,S′′, k)
6: end while
7: return S

The algorithm starts from an initial solution denoted with S. In the VNS
framework, this initial solution can be generated in different ways. It can be gen-
erated totally at random, using a greedy approach or apply algorithms that con-
struct solutions in a more sophisticated way. In this work, the initial solution is
generated by using a whole metaheuristic: Greedy Randomized Adaptive Search
Procedure (GRASP). This initial construction phase is explained in Sect. 3.1.
The BVNS algorithm receives a second input parameter, kmax, that indicates
the maximum neighborhood that is going to be explored during the search. This
parameter is typically small, with the aim of avoiding the exploration of totally
different solutions in each iteration of the algorithm, degenerating in a multi-
start approach.

Starting from the first neighborhood, k = 1 (step 1), BVNS iterates until the
last neighborhood (defined by kmax) is reached (steps 2–6). In each iteration,
a shake method is applied to the solution S, generating a perturbed solution
S′. This shake procedure is explained in detail in Sect. 3.2. Once the perturbed
solution is generated, an improvement method is applied to S′ with the objective
of reaching a local optimum of the perturbed solution. In this work, a local search
procedure is applied to the solution. The solution S′′ resulting after applying
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the local search procedure is passed as a parameter to the Neighborhood Change
method (step 5). This method is in charge of selecting the next neighborhood to
be explored.

More specifically, if an improvement is found, then the neighborhood change
method restarts the search from the first neighborhood (k = 1). Otherwise, the
next neighborhood is explored, and the search continues from k = k + 1. The
algorithm stops when no improvement is found in any of the neighborhoods, it
is, when kmax is reached, returning the best solution found during the search.

3.1 Initial Solution Generation

As it was aforementioned, the initial solution for the BVNS algorithm is gen-
erated using a whole metaheuristic: GRASP [5,6]. This metaheuristic consists
of two well differentiated phases: the construction and the improvement phase.
In the former, a high quality solution is generated from scratch. In the latter,
the objective is to reach a local optimum with respect to certain neighborhood,
starting from the constructed solution.

To generate a high-quality initial solution, it is mandatory to define a crite-
rion that drives to select the most appropriate nodes to conform a community. In
this sense, GRASP makes use of a greedy criterion that allows to assign a punc-
tuation to each node. In this work, the selected greedy criterion is the PageR-
ank [20] metric. This metric was originally proposed with the aim of ranking
the relevance of a web page on the Internet, using their incoming links. In the
context of OCDP, the larger the PageRank value, the more relevant the node is.
Given that the networks that are being solved in this work are static ones, the
PageRank value associated to a node only needs to be calculated once, consid-
erably reducing the computational effort. Algorithm 2 shows the pseudo-code of
the proposed constructive procedure.

The algorithm starts from an empty solution S (step 1) in which the nodes
are not assigned to any community. Then, a candidate list CL is built. This
list is composed by all the nodes belonging to the network G (step 2). GRASP
algorithm is executed until the constraint of the OCDP is satisfied: all nodes must
be assigned to, at least, one community. It means that the algorithm iterates until
there are no more nodes available to be selected in the CL (steps 3–13).

The next node to form a new community is selected in each iteration. To
do this, every node u in the graph is evaluated following the PageRank function
g(u), in order to determine the convenience of starting the community from node
u. Attending to this metric, the minimum (gmin) and maximum (gmax) values are
computed (steps 4–5). These two values allow to calculate a threshold μ (step 6)
that is in charge of limiting the minimum value of PageRank that must have
associated a node to be considered in the Restricted Candidate List (RCL). This
RCL is devoted to provide certain randomness to the method, since the RCL
will include not only the best candidate, but a group of high quality candidates.
These candidates are conditioned by an α parameter that ranges from 0 to 1.
The closer the value to 0, the more random the algorithm is, given that more
candidates are included into the RCL. On the contrary, the closer the value to
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Algorithm 2. Construction(G = (V,E), α)
1: S ← ∅
2: CL ← V
3: while CL �= ∅ do
4: gmin ← minv∈CL g(v)
5: gmax ← maxv∈CL g(v)
6: μ ← gmax − α · (gmax − gmin)
7: RCL ← {v ∈ CL : g(v) ≥ μ}
8: v ← Random(RCL)
9: L ← DMF(v, G)

10: CL ← CL \ L
11: C ← InducedSubgraph(L, G)
12: S ← S ∪ {C}
13: end while
14: return S

1, the more greedy algorithm is, given that only nodes with a PageRank value
near to gmax are included in the RCL.

Once the RCL is built, a node u is randomly selected from it (step 8), and this
node is considered the new community origin. To determine which nodes must be
assigned to the community under construction the DMF (Dynamic Membership
Function) algorithm is applied. Its implementation is explained in detail in [17].
Fundamentally, the algorithm is based in a breadth-first search, and iteratively
adds nodes to the community under construction in such a way that included
nodes improve the ratio between intra-community and inter-community edges.
The traversal stops when there are no new nodes that satisfies this condition.
Given that a node already included in a certain community can also be added to
a different one if it improves the aforementioned ratio. This feature makes the
algorithm suitable to provide an initial solution for the OCDP. Nodes that will
be included in the new community are removed from the CL, with the aiming of
not taking them into account as starting nodes for new communities (step 10),
as this may cause the algorithm to cycle. Then, the community C conformed
by the induced graph formed with the selected vertices (and the edges with an
endpoint in them) is generated (step 11) and included in the solution S (step 12).
Finally, the constructed solution S is returned (step 14).

After an initial solution is built, an improvement procedure is applied to reach
a local optimum with respect to the explored neighborhood. The improvement
procedure applied in this work is a local search procedure.

The move operator considered in the search corresponds to the addition of a
vertex v to a new community Cj different from the original community that the
node belongs to (Ci). At the same time, it is evaluated the profit of removing the
vertex from its current community and the one obtained if it is maintained in
both of them (producing an overlapping state for the current node). To decide if
a node v is maintained or removed from its original community, the percentage of
inter-community and intra-community edges with respect to its community are
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compared. Specifically, the movement is performed if and only if the percentage
of inter-community edges minus the percentage of intra-community edges of
node u in the current community is greater than a given threshold τ , which is a
parameter of the local search (see Sect. 4 for a detailed analysis of the effect of
this parameter in the procedure). Otherwise, u stays in the current community
Ci but it is also incorporated in Cj . Given the definition of a good community
structure, if a node has more edges to other communities than to nodes in the
same one, then it should not belong to that community, since it is more related
to nodes in other groups. The proposed movement is based on that idea. More
formally, the move operator can be defined as:

Move(u,Ci, Cj , τ) =

⎧
⎪⎪⎨

⎪⎪⎩

Ci ← Ci \ {u}
Cj ← Cj ∪ {u} if E→(u,Ci)

du
− E←(u,Ci)

du
> τ

Cj ← Cj ∪ {u} otherwise

(4)

The neighborhood that will be explored by the local search procedure is con-
formed with all solutions that can be reached by making a single move starting
from S. Mathematically,

N(S) = {S′ ← Move(u,Ci, Cj , τ) ∀u ∈ V, ∀Ci, Cj ∈ S : u ∈ Ci ∧ u /∈ Cj}
(5)

Another element required to define a local search is the manner in which the
neighborhood is going to be explored. Traditionally, two main strategies have
been considered: best and first improvement. Following a best improvement
strategy, the whole neighborhood is explored, performing the best movement
found, it is, the movement that leads to the solution with the best objective
function value in the neighborhood under exploration. When a first improve-
ment strategy is followed, the movement performed is the first one that leads to
a better solution in the incumbent neighborhood. In the context of OCDP, the
evaluation of a solution after a move has been performed is a time-demanding
task. For this reason, a first improvement strategy is selected, with the aim of
reducing the computing time that the local search procedure requires.

In each iteration of the algorithm, a solution is replaced by other if and only
if a neighbor improves the objective function value. It is, the acceptance criterion
to move to a new solution is that it has been improved, or, in other words, when
a local optimum is reached.

3.2 Shake Method

Once a local optimum is reached in the context of VNS framework. a pertur-
bation method (known as Shake method) is executed to escape from the local
optimum found. To do this, the method performs modifications over the found
solution, reaching a different one in its neighborhood. These modifications can
be defined by a movement. In the context of the OCDP, the movement consists
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of a removal process in which a node is unassigned from all communities that it
belongs to. Then, the move is defined as:

Move(S, u,Ci) = Vi ← Vi \ {u} and Ei ← Ei \ {(u, v) ∈ Ei : v ∈ Vi},

for 1 ≤ i ≤ I : u ∈ Vi

(6)

This move allows to define the neighborhood of a solution, that is compound by
the set of solutions that can be reached by performing it. More formally,

N(S) = {S ← Move(S, u,Ci) : ∀v ∈ V \ Ci ∧ 1 ≤ i ≤ I} (7)

Given this definition, the neighborhood Nk(S) is conformed with all solutions
that can be reached when performing k consecutive movements over S. It is
important to note that generated solutions are not feasible at this point, given
that there exists nodes that are not assigned to any community. To solve this, a
post-processing method is needed to be applied with the aim of recovering the
feasibility of the perturbed solutions. To do this, a greedy approach is followed,
selecting the most suitable community for a node. To decide which community
is better for a node, the communities are traversed, finding the one with has a
higher ratio of common edges / degree of node under evaluation. Then the node
is assigned to this community.

It is important to remark that the solutions obtained after the application of
Shake and reparation methods are not necessarily local optima. In fact, they are
usually worse in terms of the objective function than the original one. Never-
theless, the main objective of Shake method is to escape from local optima and
explore a different region of the search space. For this reason, the local search
procedure defined in Sect. 3.1 is applied to locally optimize all the perturbed
solutions.

3.3 Neighborhood Change

In order to select the next neighborhood that must be explored, the Neighbor-
hood Change method is executed. This method usually takes three input param-
eters: the current neighborhood being explored (k), the best solution found so
far and the candidate solution to be evaluated. The pseudo-code of the Neigh-
borhood Change method is shown in Algorithm 3. Initially, if the candidate
solution outperforms the best one, the latter is replaced by the former, and the
search is restarted from the first neighborhood (steps 1–3). Otherwise, the next
neighborhood is explored (step 5).

The whole VNS framework is executed until the Neighborhood Change
method returns a k value equal to kmax, moment in which the algorithm is
considered finished.
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Algorithm 3. NeighborhoodChange(S�, S, k)
1: if MO(S�) < MO(S)) then
2: S� ← S
3: k ← 1
4: else
5: k ← k + 1
6: end if
7: return k

4 Experiments and Results

In this section, the experiments carried out to evaluate the quality of the proposal
are presented. In these experiments a set of 57 synthetic LFR networks have been
solved. All the algorithms have been executed in an AMD Ryzen 5 3600 AM4
core (3.6 GHz) with 16 GB RAM. The proposed algorithm is implemented using
Java 9 while the source code of the state-of-the-art method [29] is implemented
in Matlab. For the experimental phase, the experiments have been divided in
two different steps: preliminary and final experiments. Preliminary experiments
are devoted to adjust the parameters of the proposal, while the final ones make
a comparison with the best method found in the literature.

For all the experiments, the following metrics are reported: Avg., the average
overlapped modularity obtained with the algorithm in the experiment; Dev.(%),
the average deviation with respect to the best solution found in the experiment;
Time (s), the total computing time required by each algorithm measured in
seconds; and #Best, the number of times that an algorithm matches the best
solution found during the experiment.

4.1 Preliminary Experiments

In this phase, the experiments are performed over a subset of instances (30 out of
57) with the aim of avoiding the overfitting of the algorithm. The first experiment
is performed to evaluate the best value of the α parameter in GRASP algorithm
(Sect. 3.1). Specifically, the tested values have been 0.25, 0.50, 0.75 and RND,
where RND represents a random value in the range [0,1] for each iteration of
the algorithm. The idea behind the selection of these values is to traverse the
whole range of possible behaviors of GRASP: from a mostly greedy approach to a
mostly random one. The constructive algorithm is executed for 100 independent
iterations, retrieving the best solution found for each instance under evaluation.
Table 1 exposes the obtained results for each α value. As it can be seen, the
configuration with an alpha value α = 0.25 is able to obtain the best results in
a low computing time. It means that the more greedy approach, the better. The
α = 0.5 configuration is the second best configuration. These two configurations
obtain the lower value of average deviation, which means that they are close to
the best value when they are not able to reach it. Therefore, it can be derived that
the configuration with α = 0.25 is the best one for the constructive procedure.
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Table 1. Comparison of the average results obtained by the GRASP algorithm with
different α parameter values. Best results are highlighted with bold font.

α Avg Dev. (%) Time(s) #Best

0.25 0.3282 1.58 33.25 21

0.50 0.3258 1.84 33.79 8

0.75 0.3147 5.20 34.70 11

RND 0.3241 2.82 34.14 10

The second performed experiment is devoted to test the best value to the
τ parameter in the context of the local search procedure (see Sect. 3.1). Table 2
shows the obtained results.

Table 2. Comparison of the average results obtained by the local search procedure
with different values for the τ parameter. Best results are highlighted with bold font.

τ Avg Dev. (%) Time (s) #Best

0.2 0.3328 0.43% 33.60 28

0.3 0.3327 0.45% 33.70 24

0.4 0.3326 0.85% 34.90 18

0.5 0.3321 1.10% 35.04 18

As it can be seen, the best configuration corresponds to the configuration with
a τ = 0.2 value. It implies that, the lower difference between intra-community
and inter-community edges in a community, the better. This configuration of the
algorithm reaches the best solution in 28 out of 30 instances, with a low value
of deviation in average (0.43%) when it is not able to find the best solution.

Finally, the last experiment is devoted to select the best value of kmax for
the BVNS algorithm. The constructive algorithm with an α value of 0.25 and
a τ value of 0.2 has been used to build the initial solutions for BVNS. Table 3
shows the obtained results with different values of kmax.

As it can be seen, the best value is obtained when the kmax value is set to 0.5.
Nevertheless, the required computing time is lower when a kmax = 0.4 value is
set, obtaining an average deviation value of 0.21%, which is assumable in favour
of lower computing times required in the context of the OCDP.

4.2 Final Experiments

In this section, the proposed algorithm is compared against the best method
found in the literature [29]. This method proposes an adaptation of the Density
Peaks clustering algorithm [23] in an evolutionary context to solve the OCDP.
These experiments has been performed over the whole set of 57 instances. The
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Table 3. Comparison of the average results obtained by the BVNS algorithm with
different values of kmax. Best results are highlghted with bold font.

τ Avg Dev. (%) Time (s) #Best

0.1 0.3478 0.58% 39.57 17

0.2 0.3523 0.43% 40.60 19

0.3 0.3672 0.33% 45.72 20

0.4 0.3696 0.21% 50.91 20

0.5 0.3821 0.13% 55.04 24

report table shows the results for different instances sizes, that have been divided
in four groups depending on the number of nodes: from 1 to 2500, from 2500
to 5000, from 5000 to 7500 and from 7500 to 10 000 (Table 4). For the sake of
fairness, both algorithms, BVNS and EADP, have been executed in the same
machine. The first one has been executed with the best configuration exper-
imentally found, and the second one with the configuration suggested by the
authors.

Table 4. Comparison of Basic Variable Neighborhood Search (BVNS) and EADP
configured as stated in [29] for the synthetic LFR networks.

BVNS EADP

Avg. Dev (%) Time (s) #Best Avg. Dev (%) Time (s) #Best

1 ≤ n < 2500 0.219 3.399 5.501 13 0.216 34.855 0.507 2

2500 ≤ n < 5000 0.283 1.565 27.736 15 0.238 37.061 3.243 0

5000 ≤ n < 7500 0.237 1.792 48.293 18 0.236 37.102 10.781 0

7500 ≤ n ≤ 10000 0.237 1.537 87.124 9 0.234 37.171 36.943 0

Average 0.264 2.073 42.164 55 0.231 36.547 12.869 2

Regarding at these results, it can be said that the BVNS proposal is slightly
better in terms of the objective function values than the EADP algorithm. The
EADP algorithm provides a better performance in terms of the computing time
required to solve the networks under evaluation, but it only reaches the best
solution in 2 out of 57 instances, which suggest that the BVNS algorithm is able
to find better solutions in an average of 42.164 s, that is a reasonable computing
time for the problem.

5 Conclusions and Future Work

In this paper, a new metaheuristic method for overlapping community detection
in social network is proposed. It is based on Basic Variable Neighborhood Search
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(BVNS) framework, using a Greedy Randomized Adaptive Search Procedure
(GRASP) as constructive method for initial solutions. The modularity adapted
to the context of the OCDP is used as evaluation metrics.

The performed experiments show that the proposed algorithm is able to
produce high quality solutions in terms of Overlapping Community Detection
Problem (OCDP), slightly better than the best method found in the literature,
which is based on an adaptation of Density Peaks Clustering algorithm (EADP,
Extended Adaptive Density Peaks).

In future works, it would be interesting to analyze the performance of the
approach in real-world instances, as well as improve the quality of the proposal
in terms of computing time and objective function values.
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Abstract. We study cross-training policies in a single multi-skill, multi-
server repair facility with an inventory of ready-to-use spare parts. The
repair facility has an inventory facility for different spare parts. If avail-
able, the failed spare parts are immediately replaced with new ones from
inventory. Otherwise, the spare parts are backordered with penalty costs.
This paper proposes a model to optimize skill assignments to minimize
the system’s total cost, including servers, training, holding, and backo-
rder costs. We develop a simulation-based variable neighborhood search
approach, where we use discrete event simulation to evaluate backorder
and holding costs under stochastic demand and service times. The simu-
lation model is integrated with the optimization model to find the opti-
mal skill distribution between servers. We tested the performance of our
proposed framework by comparing its results with optimal solutions for
small-size cases obtained using brute-force optimization. Also, we com-
pared the performance of the proposed VNS algorithm to GA.

Keywords: Variable Neighborhood Search · Multi-skilled repair
servers · Spare parts inventory · Cross-Training · Simulation-Based
Optimization

1 Introduction

Cross-training is the strategy where servers are trained to do more than one task
in the workplace. Training servers to do different tasks help improve the work-
place’s agility in various conditions, as servers will be better at handling multiple
tasks and adapting new skills. Servers with various skills also help the workplace
handle sudden demand surges that could lead to short-staffed departments while
others are overstaffed [2]. Cross-training can also benefit the workplace in deal-
ing with external challenges like increased competition in the global economy,
difficult recessions, and technological advancements [1]. Companies might down-
size their business during challenging economic crises. Multi-skilled servers can
help their business weather the storm and adapt to the new business structure.
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Fig. 1. Optimized Cross-training with different cost parameters [26].

Cross-training can be applied to human servers or machines. Training human
servers can be in the form of adding skills to make them able to handle different
tasks, while in the case of machines, cross-training means upgrading the software
of machines to add more capabilities.

While cross-training has many benefits to the business, there are inevitable
costs and drawbacks to training human servers. In addition to the psychological
effects of cross-training, training human servers to do different tasks takes time,
and money [2]. Moreover, there is a cost of planning how many servers to train
and what skills they should have to reduce the cost or increase the system’s
service level.

Qin et al. in [21] listed the different levels of cross-training. The authors
categorized cross-training into four levels: no cross-training, chaining, pooling,
and full cross-training. No cross-training means that each worker will have no
more than one dedicated task. Chaining is when each server will be assigned
two tasks following each other. Pooling is when there are clusters of similar
jobs, and each server in a cluster can perform all the tasks of the cluster but
cannot perform any of the tasks of other clusters. In full cross-training, servers
can perform any of the tasks, which is the most flexible level of cross-training.
In our case, however, we are looking for fully optimized assignments, as certain
cross-training patterns will be suboptimal. For example, in the particular cases
presented in Fig. 1, the optimized cross-training does not follow any pattern, and
as the skill costs increase, servers become more and more specialized. For more
details on the experiments on optimized cross-training please refer to [26].

Cross-training servers can benefit various fields, such as cross-training main-
tenance servers, call center operators, and healthcare workers. However, there is
a trade-off between adding skills to servers and the total cost of operations.

In this project, we focus on maintenance operations. Efficient maintenance
aims to prevent the loss of value incurred to the systems during their lifetime,
whether it is preventative maintenance, corrective maintenance, or condition-
based maintenance [4]. One of the maintenance goals is to reduce an asset’s
downtime. Increased asset downtime can be due to the availability of spare parts
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in the inventory [29]. Reducing the total cost of operations is one of the main-
tenance’s objectives. The maintenance cost can be between 15 % and 70 % of
the total production expenses [30]. For example, the cost of maintaining US
Navy equipment exceeds 200 billion dollars per annum [9]. The cost of mainte-
nance operations can be divided into two categories: the cost of holding spare
parts in inventory and the cost of the maintenance operations, including the
cost of servers. Therefore, having a fully flexible system is not always the most
efficient [7]. There is a trade-off between adding repair servers and increasing
inventory capacity [23].

This paper will aim to optimize the assignment of skills to different servers
to minimize the cost of corrective maintenance operations, including the cost of
servers, training, holding costs of spare parts, and expected backorder costs. We
propose a simulation-based approach to optimize skill-server assignments using
Variable Neighborhood Search.

The rest of the paper is organized as follows in Sect. 2, we discuss different
models in the literature related to cross-training servers. In Sect. 3, we discuss
the proposed mathematical model of our system. In Sect. 4, we present our
simulation-based framework. The experiments used for benchmarking and tuning
our model are discussed in Sect. 5. In Sect. 6, we present the conclusion and
future research areas.

2 Literature Review

This section summarizes some cross-training models in various fields like health-
care, call centers, production, and maintenance. In healthcare, Paul and Mac-
Donald [20] developed a model to find the number of regular and cross-trained
nurses that will meet the required service levels at a minimum cost. Their objec-
tive was to minimize costs, including the staffing cost (salaries) and the expected
staff shortage costs, which was the cost of hiring temporary staff. They used evo-
lutionary algorithm and search algorithm as their optimization heuristic. They
analytically evaluated the service level under stochastic demand, as their model
only considered two departments.

Munoz and Bastian [19] developed a discrete event simulation model to eval-
uate a call center’s cost and capacity under different cross-training conditions.
They compared the different configurations based on their cost, including the
cost of training and the operators’ salaries. They concluded that cross-training
could help reduce the cost of service.

Agnihothri et al. [2] modeled a simple service system with multi-servers and
two job types in a service workshop environment. Some of the servers are multi-
skilled and can perform the two jobs. Their objective was to minimize the mean
service cost and delay cost per time. They used a simulation model to investigate
different parameters like the utilization and efficiency of servers.

Schober et al. [22] modeled the effect of cross-training and different qualifica-
tion profiles on flow shops’ quality and service levels with two production lines in
a production environment. They used a multi-objective genetic algorithm-based
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simulation to find the optimum solution of minimizing the sum of skills and
maximizing the service levels of the flow shop. Depending on the service level
required, cross-training policies can be identified. Low and medium service lev-
els can be identified with line-wise and stage-wise cross-training, as high service
levels can only be reached with complete cross-training.

Altendorfer et al. [5] built on the same model and added the concept of
stochastic absence of employees to the model. They found that stochastic absence
reduces the service level of the flow shop and cross-training was the way to reduce
the effect of the problem of stochastic absence.

Several studies in the literature concerning optimizing the assignment of skills
to servers to minimize the cost of the system, including the cost of servers,
cross-training, and inventory cost [3,25–27]. Sleptchenko et al. [25] developed
a simulation-based optimization framework using Particle Swarm Optimization
(PSO) as the optimization heuristic. Sleptchenko et al. [26] used Genetic Algo-
rithm (GA) instead of PSO, and extensive numerical analysis was done on real-
life size problems. Cross-training was found to help reduce the cost of the system
by 84%.

Al-Khatib et al. [3] studied the modular architecture of repair facilities.
The authors used simulation-based optimization with PSO as their optimiza-
tion heuristic. They did an experimental analysis of the finding and how each
cost parameter affected their optimal solution. Turan et al. [27] modeled pooled
system design instead of full cross-training to mitigate the system’s risk. The
authors used a discrete event simulation model integrated with improved reduced
variable neighborhood search (IRVNS).

3 Problem Statement

This study focuses on a multi-server, multi-skill service workshop with full cross-
training shown in Fig. 2. The repair facility has an inventory facility of different
ready-to-use spare parts. In the event of a failure, the failed part is sent to the
repair facility. A new one is supplied from the inventory facility to meet the
demand. If the failed part is unavailable, the demand is backordered, and a new
part is supplied as soon as possible.

3.1 Model Assumptions

The following assumptions were made to model the service repair facility men-
tioned above:

– The arrival rates of failed parts are modeled using a Poisson distribution
with constant rates. This assumption is quite realistic according to previous
research [26].

– The servers’ repair times are mutually independent and modeled using an
exponential distribution.

– The inventory holding costs are linear in the initial inventory levels (initially
acquired inventory).
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Fig. 2. Service workshop architecture for two spare parts types, three Servers, and
partial flexibility [26].

– Backorder costs happen when the failed spare part is not available, and they
are calculated for every time unit for every unavailable part.

– Cross-training costs happen when an operational server has two or more skills,
and they are calculated based on the additional skills of the servers.

– the expected backorder costs are evaluated using steady-state probabilities
on an infinite time planning horizon.

3.2 Variable Definition

Index Sets:

N : number of distinct types of repairable parts.
M : number of different servers in the repair facility.

Decision variables:

Si: initial inventory level for repairable part of type i, (i = 1, . . . , N),
yj : binary variable denoting that server j has assigned any skills, (j =

1, . . . ,M),
xij : binary variable indicating that server j can repair any part of type i.
αij : Percentage of parts i assigned to server j (i = 1, . . . , N j = 1, . . . ,M)

Problem parameters:

λi: failure rates of repairable part of type i, (i = 1, . . . , N),
μi: service rates of repairable part of type i, (i = 1, . . . , N),
hi: the holding cost for repairable parts of type i per time unit (i = 1, . . . , N),
b: the backorder penalty cost per time unit per part (e.g., downtime costs due

to a lack of spare parts),
f : the operational cost of a server per time unit (e.g., annual salary),
ci: the cost of training servers to have the skill to repair failed part i per time

unit, (i = 1, . . . , N).
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3.3 Mathematical Model

In this study, the mathematical model aims to optimize skill assignment to mini-
mize the total operational cost of the repair facility, including holding, backorder,
servers, and cross-training costs.

min
Si,X,yj

⎡
⎣

N∑
i=1

hiSi +
M∑
j=1

fyj +
N∑
i=1

M∑
j=1

cixij + b
N∑
i=1

EBOi (Si,X)

⎤
⎦ (1)

The cost terms in the objective function (1) are per unit of time. The holding,
servers, and cross-training costs are linear in the decision variables Si, X, and
yj . However, the expected backorder cost is estimated given the skill server
assignment matrix X and the initial inventory level Si. The expected backorder
is a nonlinear function and cannot be evaluated analytically [25,26].

The mathematical model is subjected to sets of constraints presented below:

M∑
j=1

αij = 1, i = 1, . . . , N (2)

N∑
i=1

αij
λi

μi
≤ (1 − ε), j = 1, . . . , M (3)

αij ≤ xij , i = 1, . . . , N, j = 1, . . . ,M (4)
xij ≤ yj , i = 1, . . . , N, j = 1, . . . ,M (5)
xij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . ,M (6)
yj ∈ {0, 1}, j = 1, . . . , M (7)
αij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M (8)
Si ∈ No, i = 1, . . . , N, i = 1, . . . , N (9)

Constraints (Eq. 2) ensures that all failure types are assigned to servers, while
Constraints (Eq. 3) ensures that the servers are not over-utilized. Constraints
(Eq. 4) ensure that any server can fix only the type if they have the necessary
skill.

4 A Simulation Based Variable Neighborhood Search
Approach

Because of the complexity of the problem stated in [26] and the non-linearity
in evaluating the expected backorder costs, a simulation-based VNS is used to
optimize skill assignments. Simulation-based optimization is a technique used
for solving large-scale stochastic optimization problems. Recent reviews of simu-
lation optimization and its applications can be found in [6,8,10]. Variable neigh-
borhood search has been applied previously in simulation-based optimization
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frameworks in [11,12]. Mladenovic and Hansen first introduced Variable Neigh-
borhood Search (VNS) in 1997 [18]. VNS has many variants and applications
presented in [13–15]; however, basic VNS is used in this study, and it is modeled
as in Algorithm 1. A flow diagram of the simulation-based VNS approach is
shown in Fig. 3.

Algorithm 1: BASIC VNS ALGORITHM
Result: BasicV NS (Kmax, x, N)
x ← InitialSolution;
K ← 1;
for K ≤ Kmax do

y ← shake(x, a, b,K);
y′ ← localsearch(y, a, b);
if y’ is better than x then

x ← y′;K ← 1;
end

end
return x;

4.1 Initial Solution

The first step of Basic VNS is to generate a feasible initial solution. In our study,
we generate two starting initial solutions. The first solution is obtained by solving
an LP problem that minimizes the number of skills in the skill assignment matrix
with objective function (10). On the other hand, the second solution is obtained
by solving an LP problem that minimizes the number of servers using objective
function (11). Both LP solutions must satisfy constraints (2-8). We then evaluate
the total cost of the generated two solutions, and the solution with the lowest
cost is our VNS framework’s starting solution.

min
X

N∑
i=1

M∑
j=1

xij (10)

min
X

M∑
j=1

yij (11)

4.2 Local Search

In the local search step, we explore the feasible solutions given the neighborhood
structure to improve our incumbent solution. In our framework, we use hamming
distance as our neighborhood structure. In other words, we change one element in
the assignment matrix from zero to one or vice versa (To add or remove a skill
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Fig. 3. Simulation-based VNS framework for optimizing skill server assignment.

from a server). Each solution’s objective function is evaluated by calculating
the holding, server, and cross-training costs. The expected backorder cost is
evaluated through a simulation model as seen in Fig. 3. The local search step
aims to find a solution with the best objective function value of feasible solutions
in the defined neighborhood. An illustrative example of a local search using
hamming distance is shown in Fig. 4.
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Fig. 4. Local search illustration using hamming distance.
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4.3 Evaluating Solutions

As stated in the previous section, we use a discrete event simulation model to
evaluate any solution. After checking the feasibility of the solution, we run the
simulation model for 35 replications, each with 100,000 arrivals. We use sample
average approximation (SAA) to rank different solutions based on the simulation
results meaning we average the results of the 35 replications, and the solution
with the higher mean is selected. For more details about SAA and other ranking
techniques, please refer to [16,17].

To reduce the algorithm’s running time, we use an internal database to share
the simulation results between runs, as seen in Fig. 3. At first, the database is
checked for simulation model results with the same skill assignment matrix. If
there are no previous simulation results, we run the simulation model to evaluate
the total cost of a given solution.

4.4 Shaking

Shaking is the part of VNS that is responsible for diversifying the search space
to escape the local minimum. In shaking, our approach randomly changes k
elements in the skill assignment matrix according to the neighborhood structure.
Shaking allows the framework to expand the search space by exploring solutions
whose local minimum may differ from the incumbent solution’s local minimum.
The procedure is repeated until a max number of K is reached. An illustration
of the shaking procedure used in our approach is shown in Fig. 5.
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Fig. 5. Example of shaking when k = 2.

5 Computational Experiments

5.1 Tuning Data Sets

One of the advantages of the VNS-based framework presented in the last section
is that it has only one parameter to tune, the maximum number of neighborhoods
(Kmax). To find the value for Kmax that will give us better results, we use the
dataset in [24]. We use the dataset to compare the performance of our framework
with different Kmax values. In these experiments, we use only small cases where
the optimal solution can be found using total enumeration techniques. In other
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words, for the small cases, the number of possible skill assignments was limited
to 3000. Table 1 shows the number of feasible skill assignments for the selected
cases.

Table 1. Number of feasible skill assignments (shaded in grey) for different numbers
of skills and servers in the small cases.

Number of Skills

Number of Servers 2 3 4 5 6

2 4 13 38 117 356

3 12 62 404 - -

4 17 165 - - -

5 24 446 - - -

6 46 1193 - - -

For the tuning experiments, we changed the value of Kmax between 6, 8,
10, and 12. We also changed some cost parameters in the experiments, like the
minimum holding cost and the cost of servers. The minimum holding cost has
a value of either 1 or 100, and the cost of a server is either 10000 or 100000.
Changing the cost parameters and the value of Kmax results in 16 experiments,
and we have 840 small cases. The total number of experiments is 16×840 = 13440
experiments. Table 2 shows the design factors and levels of the experiments.

Table 2. Design factors for tuning DOE.

Factors Levels

Maximum number of neighborhoods (Kmax) [6, 8, 10,12]

Machine costs [10000, 100000]

Minimum holding cost [1, 100]

Total Experiments 16 × 840 = 13440

5.2 Tuning Results

After comparing the results of the VNS framework with the brute force procedure
results, the model’s average error was (0.0107 %) in the 13440 experiments. The
average number of iterations was (303.4) per experiment. The model has two
cases where the error was more than (2.5%); the VNS objective function values
were 2.51% and 2.69% more than the optimal solution. A histogram of the
relative error for different values of Kmax is shown in Fig. 6. Figure 6 shows that
the relative error decreases with the increased number of Kmax. The average
error, iterations, and the number of cases where the optimal solution was found
are shown in Table 3.
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Table 3. Performance of VNS algorithm using different Kmax values.

Kmax Average Error Max. Error Average iterations Optimum was found

6 0.021% 2.69% 200.51 3142 (93.5 %)

8 0.01% 2.51% 269.39 3223 (95.9%)

10 4.52 × 10−3 % 1.01% 338.39 3268 (97.2 %)

12 6.62 × 10−3 % 2.2% 405.43 3278 (97.5 %)
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Fig. 6. Histograms of relative error for each value of Kmax in logarithmic scale.

We also analyzed the model’s speed for each value of Kmax. In the box plot
shown in Fig. 7, we can see that increase in Kmax would increase the number
of iterations. Another point of interest to the study was how fast the model
converges to the optimal solution. Figure 8 shows how fast the model reaches
the optimal solution. The figure shows the number of iterations at which each
model run reaches a certain percentage of error from the optimal solution.

To study the effect of our initial solution, we repeated the same experiments
twice with two frameworks where the initial solutions are obtained by solving an
LP with (10) and (11) as their objective functions. The three models had similar
relative errors and number of iterations. However, the convergence of our model
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Fig. 7. Number of iterations of different cases for each value of Kmax.

was better than the other two models. Our model had 75% of the cases converge
to 1% error in less than 100 iterations, and 75% of the cases converge to 0.1%
error in less than 200 iterations. Figure 8 shows how fast our model converges to
the optimal solution compared with the other two models.

Fig. 8. Comparison of the convergences of different models using different initial solu-
tions.
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5.3 VNS vs. GA

In this subsection, we analyze the proposed VNS framework’s performance
against the Genetic Algorithm (GA) presented in [28]. We compared two cases;
one is when VNS has Kmax = 15, while GA has (crossover probability = 0.7,
mutation rate = 0.5, gene mutation probability = 0.3, population = 100, the
number of GA iterations = 25). The other case is when VNS has Kmax = 10,
while GA has (crossover probability = 0.7, mutation rate = 0.5, gene muta-
tion probability = 0.3, population = 50, the number of GA iterations = 25).
The average error of the two cases and the number of cases where the optimum
solution was found are shown in Table 4.

Figure 9 shows a histogram of the two scenarios’ relative error of GA and
VNS. The figure shows that VNS has a smaller (more converged) error in the first
case and a similar error in the second case in fewer iterations. This shows that
VNS converged faster to the optimum solution than GA, as the computational
time of one iteration (evaluating a solution using the DES model) of VNS and
GA was the same.

Table 4. Comparison of the VNS framework to GA’s.

VNS GA

Kmax = 10 Kmax = 15 50 populations,
25 generations

100 populations,
25 generations

Max. iterations 1188 2214 1250 2500

Avg. Error 4.52 × 10−3 % 2.52 × 10−3 % 0.01 % 3.2 × 10−3 %

Optimum was found 3278 (97.5 %) 3314 (98.63 %) 3189 (94.91 %) 3312 (98.57 %)

Fig. 9. Relative error of VNS against GA for different configurations.
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6 Conclusion and Future Work

This paper proposed a simulation-based Variable Neighborhood Search frame-
work for optimizing skill-server assignment in a service repair facility with full
cross-training. The framework’s objective is to minimize the system’s total cost
under stochastic failure rates and service times, including the cost of servers,
cross-training, holding, and backorder costs. The proposed framework was tested
using the Design of Experiments to measure its performance under different cost
factors and Kmax values. The experiments used small cases that can be solved
using brute force procedures. The model showed promising results with an aver-
age error of (0.0107 %) of the optimal solution and an average number of iter-
ations of (303.4). The performance of the proposed algorithm was compared to
GA and was found to have a less relative error in fewer iterations.

For future studies, we want to extend the work and test our proposed frame-
work for large cases or realistic-size problems. We also want to investigate the
effect of different prioritization policies on the system.
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Abstract. Search-Based Software Engineering is a research area that
aims to tackle software engineering tasks as optimization problems.
Among the problems in this area, we can find the Software Module Clus-
tering Problem (SMCP). This problem, which has been proved to be
NP-hard, focuses on finding the best organization of a software project
in terms of modularity. Since modular code is easier to understand,
the result is an increase of the quality of software projects and thus
a reduction of the costs associated to their maintenance. To tackle the
SMCP, software projects are often modeled as graphs that represent the
dependencies between different components. In this work, we study two
well-known multi-objective approaches for the SMCP: the Maximizing
Cluster Approach (MCA) and the Equal-size Cluster Approach (ECA).
Each of these variants is composed of 5 different objectives. We propose
a heuristic algorithm based on the Multi-Objective Variable Neighbor-
hood Descent (MO-VND) schema to tackle the aforementioned variants
and we introduce three neighborhoods to be explored within the algo-
rithm. Finally, we compare the performance of our proposal with the
performance of NSGA-III over a dataset of real software projects. The
results show that the proposed algorithm is competitive when tackling
the MCA, and some ideas are given to increase its efficiency when tack-
ling the ECA.

Keywords: Software Module Clustering · Search-Based Software
Engineering · Modularization Quality · Heuristics · Multi-Objective
Optimization

1 Introduction

Software systems are developed and maintained following a well-known Software
Development Life-Cycle, which contains several activities. These activities are
performed in different phases, such as planning, analysis, design, implementa-
tion, testing, operation, and maintenance. Among them, the most costly phase is
maintenance, which is frequently responsible for up to 75 % of the total costs [4].
Interestingly, most efforts in this phase are dedicated to comprehending the exis-
tent software. Without a proper understanding of the code base, its maintenance
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is costly and prone to error. To ease this task, the code is usually divided into
several components, facilitating the understanding of each one in a separate way.
Moreover, these components are then organized in different modules to ease the
understanding of each module. This organization follows the principle of modu-
larization, trying to maximize the “software attributes that provide a structure of
highly independent components” [11]. That is, a structure is said to be modular
when its components are highly independent of others. This is, components in
the same module are strongly related (high cohesion), and components in dif-
ferent modules are loosely connected (low coupling). The concept of a software
component can be understood in different ways (e.g., a class, a file, a folder, etc.)
and it is also frequent to see that the terms “module” and “component” are used
interchangeably [11]. For the sake of understandability, in this work we will use
the term “component” for atomic units (e.g., classes and source code files) and
the term “module” for groups of components (e.g., folders and packages).

Search-Based Software Engineering is a research area that focuses on tack-
ling software engineering problems as optimization problems [6]. In this area,
the Software Module Clustering Problem (SMCP) is an optimization problem
which objective is to maximize the modularity of software systems. Although
the overall objective of the SMCP is clear, the simple dogma of increasing cohe-
sion and decreasing coupling does not seem to work [22]. If it was taken to
the extreme, the best organization for any software project would have a sin-
gle module containing all components. As such a trivial solution is not useful
for easing maintainability, other variables, like the number of modules, must
also be considered. Accordingly, one of the first and most used objective func-
tions in the literature, Modularization Quality (MQ), computes the value of the
modularity as a tradeoff between coupling and cohesion while implicitly consid-
ering the number of modules [14]. Two variants of this metric, BasicMQ and
TurboMQ, were later proposed [16,17]. These metrics have been widely used
in the literature [10,25,28] and have served as the basis for alternative objec-
tive funtions [21]. However, by learning from previous work in the SMCP, some
researchers have come to realize that software engineers usually organize their
projects considering different context variables in a subjective way, which results
in a process that is not necessarily systematic and repeatable [22]. Therefore,
a multi-objective approach seems more pertinent for the SMCP than a mono-
objective one since: i) different conflicting objectives might represent the mod-
ularity of software systems better than a single metric; and ii) presenting a set
of good solutions according to different metrics allows end users to introduce
their subjective experience in the process, by deciding on the best one from
their viewpoint. Among the different multi-objective approaches proposed for
the SMCP [18,24], perhaps the most popular are two of the first ones introduced
in the literature: the Maximizing Cluster Approach (MCA) and the Equal-size
Cluster Approach (ECA) [26]. These approaches, which combined five different
objectives each, were later widely used and extended [1,2,5,27]. Interestingly,
the MQ metric was included as one of the five objectives in both approaches.
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Regardless of the objective functions considered, the combinatorial nature of
the problem makes it impracticable to evaluate all possible solutions for most
software projects. Indeed, the SMCP has been proven to be NP-hard [3]. As a
consequence, exact methods are not suitable for this problem. Instead, approxi-
mate search-based methods are needed to tackle the SMCP [9,29]. Historically,
evolutionary approaches, which are a subset of bioinspired search-based algo-
rithms, have been remarkably popular in the literature to solve the SMCP [29].
However, some works have recently proposed the use of trajectory-based algo-
rithms, which progressively improve a given solution through small modifica-
tions, until a local optimum is found, achieving better results than previous evo-
lutionary algorithms [20,23,30]. In the context of multi-objective optimization,
evolutionary approaches have been traditionally favored, since they naturally
work with a set (population) of solutions. Following this trend, some authors
have proposed approaches to tackle the SMCP based on genetic algorithms [12],
Artificial Bee Colony methods [5], or well-known evolutionary algorithms such
as PESA [1] or NSGA-III [18].

In this paper, we propose a Multi-Objective Variable Neighborhood Descent
(MO-VND) method to tackle the SMCP problem in a multi-objective context,
using a trajectory-based metaheuristic. In particular, we study the Maximiz-
ing Cluster Approach and the Equal-size Cluster Approach sets of objectives.
The MO-VND algorithm proposed explores three different neighborhoods to
obtain high-quality solutions in short computing times. We then compare the
results obtained by our proposal with those obtained by the well-known Non-
dominated Sorting Genetic Algorithm III (NSGA-III) over a dataset of 14 real
world software projects. The proposed method is shown to be competitive, and
some improvements are highlighted based on the obtained results.

2 Problem Definition

In the SMCP, the software projects are often modeled in a graph structure,
where components are represented as vertices, dependencies between components
are represented as edges, and modules are represented as clusters or groups of
vertices. More formally, a software can be modeled as an undirected weighted
graph G = (V,E,W ), where V is the set of vertices, E is the set of edges,
and W is the set of weights associated to the edges in E. In related literature,
this structure is commonly named a Module Dependency Graph (MDG). Then,
a solution for the SMCP can be defined as a partition of the MDG, which
represents the software architecture. That is, a set M of disjoint subsets of V ,
such that M = {m1,m2, ...,mk}, where k represents the number of modules
(1 ≤ k ≤ |V |) and each mi, with 1 ≤ i ≤ k, is a disjoint subset of V . As it can
be seen, there exist two trivial solutions: i) a solution in which each vertex forms
an isolated module (k = |V |) and ii) a solution in which every vertex is assigned
to the same module (k = 1).

To evaluate the quality of the solutions, we study the SMCP based on dif-
ferent conflicting objectives:
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1. Maximize cohesion.
2. Minimize coupling.
3. Maximize the number of modules.
4. Maximize the Modularization Quality (MQ).
5. Minimize the number of isolated modules.
6. Minimize the difference between the maximum and minimum number of ver-

tices in a module.

The cohesion of an architecture (first objective) is calculated as the sum of
the weights of edges that connect vertices belonging to the same module. In
contrast, the coupling (second objective) of the solution is calculated as the sum
of the weights of edges that connect vertices belonging to different modules.
The number of modules (third objective) is calculated as the count of groups
of vertices (k). For each module, its size corresponds to the number of vertices
that belong to that module. Therefore, a module is said to be isolated (fifth
objective) if it contains only one vertex and the difference in size between two
modules (sixth objective) is equal to the difference in the number of vertices
that belong to each module. Finally, to evaluate the MQ (fourth objective), we
must calculate the Modularization Factor (MFi) of each module mi. Specifically,
given a solution x:

MFi(x) =

{
0, if μi = 0

2μi

2μi+εi
, if μi > 0

(1)

where μi and εi are the cohesion and coupling values of module mi, respectively.
Then, the value of the objective function MQ is calculated as the sum of the
MFi of each module mi. In mathematical terms:

MQ(x) =
k∑

i=1

MFi. (2)

This calculation of the MQ metric is known as TurboMQ [17], which is a variant
of the original MQ metric proposed in [14]. For a more in-depth explanation of
this metric, we refer the reader to related works [30].

The aforementioned objectives were proposed in [26] to form two distinct
sets of objectives: MCA and ECA. Both approaches have a set of five conflicting
objectives. In particular, the MCA approach is formed by objectives 1, 2, 3, 4,
and 5, whereas the ECA approach is formed by objectives 1, 2, 3, 4, and 6. As
it can be noticed, the difference between both approaches is located in the fifth
objective: MCA proposes the minimization of the number of isolated clusters,
while ECA proposes the minimization of the difference in size between the largest
and the smallest modules.

3 Algorithmic Proposal

To tackle the SMCP, we propose an algorithm based on the Variable Neigh-
borhood Search (VNS) methodology, a general framework to solve hard com-
binatorial and global optimization problems [19]. The main idea behind this



62 J. Yuste et al.

methodology is to systematically explore different neighborhood structures until
a local optimum within all the explored neighborhoods is found. Although VNS
was originally designed for mono-objective problems, it was later extended by
A. Duarte et al. to tackle optimization problems in multi-objective contexts [7].
In the Multi-Objective VNS (MO-VNS) methodology, the term solution is used
to denote a Pareto front, whereas the elements of the Pareto front are denoted
as efficient points. This terminology allows the authors to naturally extend the
original methodology for multi-objective contexts, since an improvement is now
considered as the inclusion of a new efficient point in the solution. Among the
variants proposed, we select to implement here an algorithm based on the Multi-
Objective Variable Neighborhood Descent (MO-VND) schema described in [7].
This variant explores both the objectives and the neighborhoods given in a sys-
tematic order.

The proposed algorithm needs to generate a set of initial efficient points.
These efficient points will be later improved by the MO-VND method. In this
case, we propose to generate the initial solutions by using a random constructive
procedure. This method starts by creating a set of |V | modules, where V is the set
of vertices in the current instance. Then, every vertex is inserted into an existent
module. This operation is performed randomly, meaning that every vertex has
an equal probability to be inserted in each of the existing modules (1/|V |).
Once all vertices have been allocated in a module, the remaining empty modules
are removed. The resulting efficient point is included in the initial solution. We
repeat this process 100 times to construct the initial set of efficient points.

Once an initial solution (i.e., a set of efficient points) has been constructed,
the MO-VND method is responsible for improving the set of efficient points
according to the objective set tackled. The pseudocode of MO-VND is shown in
Algorithm 1. This method receives three parameters: a set of efficient points E,
a number of neighborhoods kmax, and a number of objectives r. First, a set of
exploited points Si is initialized for each objetive (step 2) and variable i is set
to 1 (step 3). Then, the algorithm tries to improve the solution E while i is less
than r (step 4). In each iteration, each non-exploited efficient point x ∈ E \ Si

is improved within a VND-i method (steps 5–9). Notice that the set of efficient
points explored in the VND-i procedure is added to Si at each iteration in order
to avoid exploring efficient points that have already been exploited (step 8). If
an improvement has been made in the previous stages, then i is reset to 1 and
solution E is updated to include the new efficient points generated (steps 10–12).
Otherwise, the value of i is incremented by one (step 14). Finally, once all the
efficient points in the solution E have been unsuccessfully explored in regards to
each objective i, the algorithm returns the solution E (step 17).

In this schema, a different Variable Neighborhood Descent (VND-i) method
is used to improve each objective separately. However, in contrast to the original
design of VNS where we only needed to check if the final point obtained improved
upon the incumbent point, in this context every point visited in the search must
be checked for its possible inclusion in the solution. The pseudocode of VND-i is
shown in Algorithm 2. This method receives two parameters: an efficient point x
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Algorithm 1. Pseudocode of MO-VND
1: procedure MO-VND(E ,kmax ,r)
2: S1 ← ∅, S2 ← ∅, . . . , Sr ← ∅
3: i ← 1
4: while i < r do
5: while |E \ Si| > 0 do
6: x ← Select(E \ Si) � Random selection among the non-exploited

points
7: Ei ← VND-i(x, kmax)
8: Si ← Si ∪ Ei

9: end while
10: if MO-Improvement(E, E′) then
11: i ← 1
12: E ← Update(E, E′)
13: else
14: i ← i+1
15: end if
16: end while
17: return E
18: end procedure

and the maximum number of neighborhoods kmax. First, the variable k is set to
1 (step 2) and a set of efficient points E is initialized to contain the incumbent
efficient point x (step 3). Then, while the value of k is less than kmax (step 4),
the efficient point x is improved (step 5) and the result is added to the set E
(step 6). If the resulting efficient point x′ is not better than the previous solution
x (step 10), then k is incremented (step 11). Otherwise, the new solution x′ is
saved as the current solution x (step 8) and k is reset to 1 in order to restart
the exploration of all the neighborhoods (step 9). Once all neighborhoods have
been unsuccessfully explored for a particular solution, the procedure returns the
constructed set of efficient points E (step 14).

For the VND-i component of the MO-VND schema, we propose three differ-
ent neighborhoods to be explored:

– The first neighborhood proposed (N1) is defined by an insertion operator.
This operator removes a vertex from its current module and inserts it into a
different module.

– The second neighborhood (N2) is defined by a destruction operator. This
operator removes one module from the efficient point and reinserts the
affected vertices, one by one, into other modules.

– The third neighborhood (N3) is defined by an extraction operator. This oper-
ator selects some vertices from one or more modules and creates a new module
with the selected vertices.
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Algorithm 2. Pseudocode of VND-i
1: procedure VND-i(x ,kmax )
2: k ← 1
3: E ← {x}
4: while k < k ′

max do
5: x ′ ← argmin

y∈Nk(x)

zi(y) � Find the best neighbor in Nk(x)

6: Update(E, Nk(x))
7: if zi(x

′) < zi(x ) then
8: x ← x ′

9: k ← 1
10: else
11: k ← k+ 1
12: end if
13: end while
14: return E
15: end procedure

4 Experimental Results

In this section, we present the experimental results obtained in this research.
In Sect. 4.1, we describe the set of instances used in the experimentation. In
Sect. 4.2, we present the parametrization of the proposed algorithm. Finally, in
Sect. 4.3, a comparison of the proposed algorithm and NSGA-III is presented.

4.1 Dataset

For the experiments described in this section, we use a set of 14 real soft-
ware systems introduced by the community in [20]. Varying in size, these
instances range from a minimum of 14 vertices and 20 edges to a maximum
of 626 vertices and 2421 edges, with an average of 166 vertices and 876.79
edges. Particularly, the instances contained in this dataset are the follow-
ing: apache ant taskdef, gae plugin core, javacc, joe, jscatterplot, jtreeview, jxl-
sreader, lwjgl-2.8.4, mod ssl, net-tools, nmh, regexp, star, wu-ftpd-1.

4.2 Order of the Neighborhoods

The VND-i method explores the given neighborhoods in a systematic way. After
exploring each neighborhood, the method returns to the first neighborhood if an
improvement has been made in the efficient point. Else, the method continues to
explore the next neighborhood. This process is repeated until all neighborhoods
have been explored without improving the incumbent efficient point. There-
fore, the order in which the neighborhoods are explored is important, since the
first neighborhood is frequently explored more times than the following. In this
experiment, we use the irace software package [13], designed to automatically
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configure the parameters of an algorithm. Specifically, we compare the perfor-
mance of the algorithm, when exploring the neighborhoods in different orders, in
terms of hypervolume and CPU time. After running the described experiment,
irace reports that the best configuration found explores the neighborhoods in
the following order: N2, N3, and N1.

4.3 Comparison with State-of-the-Art Algorithms

In this section, we present a comparison of the experimental results obtained
with the proposed MO-VND and NSGA-III. We compared both algorithms over
a preliminary dataset of 14 real instances made publicly available by the com-
munity [20]. All experiments were run on an Intel Xeon Processor (Cascadelake),
with 64 cores and 124 GB RAM. The Operating System used was Ubuntu 22.04
LTS. Our proposal was coded in Java 17.0.5 and using the Metaheuristic Opti-
mization framewoRK (MORK) project v0.12 [15]. For the comparison, we used
the NSGA-III implementation publicly available in jMetal v5.11 [8].

When comparing algorithms in a multi-objective context, there exist several
metrics to compare the sets of efficient points generated by the methods under
evaluation. Most of these metrics, additionally, need to know a reference front
to evaluate the efficiency of the solutions. However, the reference front, which
ideally is the set of efficient points that cannot be dominated by any feasible
solution in the current objective space, is often unknown. In this case, since
the reference front for each instance is unknown, we construct an approximate
reference front as the union of the reference fronts generated by the algorithms
under evaluation. That is, for each instance, we consider the reference front to be
the union of the efficient points generated by both the MO-VND and NSGA-III
methods.

Regarding the metrics used in this work, we focus our attention on Hypervol-
ume, Coverage, Inverted Generational Distance Plus, and Generalized Spread.
First, we analyze the Hypervolume (HV) of the generated fronts, which evalu-
ates the volume of the given set in the objective space. The larger its value, the
better. Second, we report the Coverage (Cov.) of each set, which indicates the
number of efficient points in the solution that are dominated by the reference
front. The smaller the value of Coverage, the better the solution. In third place,
we consider the Inverted Generational Distance Plus (IGD+) metric, which mea-
sures the distance between a given set of efficient points and a reference front.
In the case of IGD+, the smaller its value, the better the solution. Last but not
least, we consider the Generalized Spread (G. Spread) metric, which measures
the range of values covered by the efficient points in a given solution (i.e., the
diversity of the solution). The smaller the spread, the better the solution.

In Table 1, we present the results obtained by MO-VND and NSGA-III over
the set of objectives described in MCA. For each method, we report the aver-
age Hypervolume (Avg. HV), the average Coverage (Avg. Cov.), the average
IGD+ (Avg. IGD+), and the average G. Spread (Avg. Spread) of the gener-
ated solutions. Additionally, we report the average CPU time consumed by each
method to generate the solutions in seconds (CPUt (s)). As it can be observed,
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Table 1. Comparison of the results with the algorithm presented in this work (MO-
VND) and NSGA-III over the objective set proposed in MCA.

Method Avg. HV Avg. Cov Avg. IGD+ Avg. G. Spread Avg. CPUt (s)

MO-VND 0.0877 0.3589 0.1586 0.6708 263.51

NSGA-III 0.0796 0.0029 0.0493 0.5613 257.21

Table 2. Comparison of the results obtained with the algorithm presented in this work
(MO-VND) and NSGA-III over the objective set proposed in ECA.

Method Avg. HV Avg. Cov Avg. IGD+ Avg. G. Spread Avg. CPUt (s)

MO-VND 0.0672 0.3132 0.3019 0.8657 155.08

NSGA-III 0.0864 0.0025 0.0894 0.7495 269.71

MO-VND achieves better values in terms of Hypervolume, while NSGA-III has
better values in terms of Coverage, IGD+, and Spread on average. Regarding
the CPU time used in the process, it can be seen that NSGA-III is a bit faster
than MO-VND, although the difference (about 6 s) is small.

In Table 2, we present the results obtained by MO-VND and NSGA-III over
the set of objectives described in ECA. Again, we report, for each method, the
average Hypervolume (Avg. HV), the average Coverage (Avg. Cov.), the average
IGD+ (Avg. IGD+), and the average G. Spread (Avg. Spread) of the generated
solutions, in addition to the average CPU time consumed by each method to
generate (CPUt (s)). In this case, NSGA-III obtains better results in terms of
quality. Interestingly, the CPU time consumed by MO-VND is significantly lower
(42.51 %) than the time consumed by NSGA-III.

5 Conclusions

In this work, we have presented an algorithm based on the VNS methodology
to tackle the SMCP problem in a multi-objective context. In particular, we
proposed a Multi-Objective Variable Neighborhood Descent method with three
different neighborhoods. The proposed approach was compared with the well-
known NSGA-III for two distinct sets of objectives: MCA and ECA. The results
showcase that MO-VND appears to be competitive with NSGA-III in terms
of quality of the solutions and computing time. Multi-objective optimization
problems in general and the SMCP problem in particular have traditionally
been tackled with evolutionary approaches. However, these results indicate that
trajectory-based approaches are viable and might be competitive in this context.

The experiments performed to evaluate the algorithmic proposal were carried
over a small dataset. Although the instances used were real software projects,
a larger dataset is needed to obtain more robust conclusions about the perfor-
mance of the different methods. This issue will be tackled in future research.
Additionally, the results obtained with the ECA objective set suggest that the
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algorithmic proposal needs new mechanisms to explore the search space. In this
regard, another possible extension of this work would be to explore new neigh-
borhoods or to introduce a shake procedure.
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Abstract. This paper deals with the Delivery Territory Design Problem
(DTDP), in which n points have to be allocated to p territories, such that
balancing and path connectivity requirements are satisfied, while mini-
mizing the maximum diameter over the created territories. The model is
inspired by tactical planning situations faced by delivery companies. We
propose two best improvement local search procedures and a Basic Vari-
able Neighborhood Search algorithm following the LIMA paradigm. The
results suggest that our algorithm is able to find high-quality solutions
within a relatively low time.

Keywords: Territory design · Basic VNS · Less-is-more approach

1 Introduction

The territory design problem (TDP), sometimes referred to as the districting
problem or territory alignment problem, is the problem of grouping small geo-
graphical units called basic units BU s into larger geographical clusters, named
territories, according to relevant planning criteria. Typical applications of the
territory design problem include sales territory design [1], political districting [2],
school districting [3], and public services districting [4,5]. TDP and its vari-
ations have been researched since the 1960s [6], using a variety of models and
algorithms. The territory design problem is NP-Hard [7] and thus metaheuristics
were used in order to solve this problem. For state-of-the-art models, algorithms,
and applications to the territory design problem we refer the reader to [8].

An essential criterion in the TDP is the compactness of districts. One way
to achieve this is by minimizing a dispersion measure. A common dispersion
measure used in classical problems such as p-median and p-center, is the distance
to the centroid of the district. Using a center based measure has some limitations
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for problems where it is not clear how to define possibly “good” centers. In
such cases, a dispersion measure based on the diameter of a territory is more
appropriate [9].

In this paper, we address a special version of the TDP, called the Delivery
Territory Design Problem (DTDP). DTDP aims to design a set of p territories
such that the maximum diameter of a territory is minimized, while satisfying sev-
eral planning requirements such as disjoint territories, and balancing in terms of
three attributes: driver workload, commodity demand, and number of customers.
Unlike in the TDP, we allow two nodes to be assigned to the same territory as
long as there exists a path between them, not necessarily fully contained in the
district. The problem is motivated by real-world applications from delivery com-
panies, where a driver can be assigned two serve two BUs as long as there is a
street between them.

The rest of this paper is structured as follows; In Sect. 2, we discuss the
related works to the territory design problems and their applications. In Sect. 3,
we describe the problem and provide the mathematical model of the TDP, while
in Sect. 4 we outline the VNS heuristic and its components. We present compu-
tational experiments and results in Sect. 5 and conclude our findings in Sect. 6.

2 Related Work

The problem studied in this paper is related to the commercial territory design
problem (CTDP) which was proposed by Rios-Mercado and Escalante [7]. CTDP
seeks to maximize a compactness criterion of p territories subject to planning
criteria such as disjoint districts, attribute balancing, and district connectivity.
In their paper, compactness is measured by the distance of a node from the
center it is assigned to. The authors propose a GRASP algorithm consisting of
three phases: construction, adjustment, and local search. The algorithm produces
good quality solutions, however that comes at a high computational cost. Rios-
Mercado et. al. [9] expanded upon the CTDP with a new model that makes use
of a diameter-based dispersion measure instead of its center-based counterpart.
They used the GRASP metaheuristic in combination with path relinking to solve
instances of 500 nodes and p = 10 districts. The algorithm provides good results
in terms of the dispersion measure however they are computationally expensive.

In this paper, we propose to solve the DTDP by a Variable Neighborhood
Search (VNS) algorithm. The core paradigm behind VNS is to systematically
change neighborhood structures to prevent plateaus at local optima [10]. Over
the years, VNS has been extensively researched and now boasts a wide array
of extensions [11]; General VNS, Variable Neighborhood Descent, and Reduced
VNS to name a few.

VNS has been successfully used to solve related problems to TDP. Mladenovic
et al. [12] proposed a Basic VNS metaheuristic with vertex substitution local
search to solve the p-center problem. Their results show that VNS, on average,
outperforms Tabu Search, whereas Tabu Search is better for a small p.
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Hindi and Fleszar [13] proposed to solve the capacitated p-median problem
by a VNS metaheuristic based on the generalized assignment problem. They
test their results on five standardized sets of benchmark instances and show
that the proposed heuristic finds the best known solutions as well as it improves
a previously best-known solution.

Brimberg et. al. [14] showed that Skewed General VNS performs well for
the capacitated clustering problem. They showed that evaluating moves prior
to accepting inferior solutions is preferable to random shaking procedures. The
authors tested the algorithm on the largest set of instances (MDG2000). The
Skewed General VNS showed to be the fastest procedure out of the tested meta-
heuristics with up to 1.55% improvement over other metaheuristics.

Mladenovic et. al. successfully used the Basic VNS to solve the obnoxious
p-median problem in the Less-is-more approach (LIMA) [15]. They proposed a
simple facility best improvement local search that lies in between the first and
best improvement strategies. They found new best solutions for four instances
and ties with 133 instances out of a set of 144 benchmark instances.

Contribution: In this work we propose a VNS based meta-heuristic for solv-
ing the DTDP problem, with relaxed connectivity criteria. To the best of our
knowledge, this technique has not been previously applied to this problem. Via
numerical experiments, we show that the VNS procedure outperforms the algo-
rithm of [9] by 6.35% on average.

3 Problem Description and Mathematical Model

The input to the DTDP is a graph G = (V,E), where the nodes are the set
of basic units (BU) and the edges represent the streets between BUs. For each
node, we are given a set of attributes A such as number of customers, product
demand, and workload. The value of attribute a ∈ A of BU i ∈ V will be denoted
by wi

a.
We denote a p-partition of the set V by X = (X1, ...,Xp) where Xm ⊂ V is

called a territory of V. The size of the territory Xm with respect to attribute
a ∈ A is denoted by wa(Xm) =

∑
i∈Xm

wa
i .

We call a partition X balanced w.r.t an attribute a, if the size of each territory
Xm in X satisfies wa(Xm)

μa ∈ [1 − τa, 1 + τa], where μa is the average of attribute
a over all the nodes. Here, τa is a tolerance parameter that is prespecified by
the user.

The goal of DTDP is to find a balanced p− partition w.r.t. each attribute,
that minimizes the maximum diameter over the territories created. Moreover,
we require that any two BUs in a territory are connected by a path in G.

We denote the collection of all the p-partitions of the set V by Π. The TDTP
can be formulated as a combinatorial optimization as follows:
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min
X∈Π

max
m∈M

max
i,j∈Xm

{dij} (1)

s. t.
wa(Xm)

μa
∈ [1 − τa, 1 + τa] m ∈ M,a ∈ A (2)

Gm = G(Vm, E) is connected m ∈ M (3)

The formulation in this paper is based on the mathematical model outlined
for the CTDP (see Rios-Mercado and Escalante [9]). The objective function (1)
minimizes the maximum diameter in a p−partition X. Constraints (2) requires
that the p−partition should be balanced in each attribute a ∈ A. Constraints (3)
stipulate that each node of a district must be connected by a path in graph G.

4 Variable Neighborhood Search Procedure

We propose to solve the DTDP by a Basic VNS (BVNS) procedure, in the spirit
of the LIMA paradigm [15]. One of the reasons the BVNS is used is that it
does not require high computational resources and provides high-quality solu-
tions. Using this variant, we are able to diversify the solution through random
neighborhood structures and intensify it through the deterministic neighborhood
structures. By doing so, we are able to avoid plateauing at local optima.

The next subsections will outline the construction of the initial solution, the
Basic VNS procedure, the local search variants, and the shaking procedure.

4.1 Initial Solution

To generate the initial solution, we use the construction phase of the GRASP
algorithm outlined in [9] once. The construction phase starts with a set of p
randomly chosen seeds in V . The algorithm then greedily assigns nodes i ∈
V to the p seeds while attempting to maintain the balancing criteria. If it is
not possible to maintain the balancing constraints, the unassigned nodes are
allocated to the closest seed. We denote the solution obtained by Xin.

4.2 Basic Variable Neighborhood Search

Consider a p-partition X = (X1, ...,Xp). We define a neighborhood Sk(X) as
the set of solutions obtained by reallocating k nodes from a territory Xm1 to a
territory Xm2 .

To evaluate the quality of a solution X = {X1, . . . , Xp}, the VNS procedure
uses the function Ψ(X) introduced in [9] and defined as a linear combination
between a function related to the maximum diameter and a measure of the
infeasibility of X. More precisely

Ψ(X) = λF (X) + (1 − λ)G(X),
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where

F (X) =
(

1
dmax

)

max
m∈M

max
i,j∈Xm

{dij},

dmax = max
i,j∈V

{dij},

and

G(X) =
p∑

m=1

∑

a∈A

ga(Xm),

where,

ga(Xm) =
1
μa

max{wa(Xm) − (1 + τa)μa, (1 − τa)μa − wa(Xm), 0}.

Furthermore, λ is a user specified parameter that controls whether the objective
function or the infeasibility is more favored in the cost function calculation.

A general outline of the Basic Variable Neighborhood Search (BVNS) proce-
dure is given in Algorithm 1. The BVNS uses a shake procedure and two local
search procedures, called LS-NBI and LS-DBI, that will be described in Sect. 4.3.

Algorithm 1. BVNS(Xin, kmax, βmax)
1: β ← 1
2: X ← Xin

3: while β ≤ βmax do
4: k ← 1
5: while k ≤ kmax do
6: X

′ ← Shake(X, k)

7: X
′′ ← LS − NBI(X ′)

8: if Ψ(X ′′) < Ψ(X) then
9: k ← 1

10: X ← X
′′

11: else
12: k ← k + 1
13: end if
14: end while
15: end while
16: X ← LS − DBI(X)

The BVNS takes in as input the initial solution Xin, the maximum number of
neighborhoods used in the shaking procedure kmax, and the maximum number of
repetitions βmax. While the number of repetitions is not reached, the algorithm
executes a shake procedure followed by the the local search procedure LS-NBI
(lines 6–7). If the value of Ψ is improved, the algorithm performs a sequential
neighborhood change step (lines 8–13). Lines (14–15) lead to repeating the BVNS
procedure if kmax is reached. Finally line (16) applies the second local search
variant, LS-DBI.
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4.3 Local Search and Shaking Procedures

The BVNS uses two best improvement local search procedures: Node Best
Improvement Local Search (LS-NBI) and District Best Improvement Local
Search (LS-DBI).

In both procedures, a move(m, i) is defined as re-allocating a node i ∈ V \
{Xm} to territory Xm.

Node Best Improvement Local Search (LS-NBI). A pseudo-code for Node
Best Improvement (LS-NBI) is given in Algorithm 2. The LS-NBI procedure
iterates over all the territories of a solution X. For each territory m, move(m, i),
i ∈ V \{Xm} that leads to the best improvement in Ψ is performed (lines 5–11).
LS-NBI terminates either when the maximum number of moves is reached (line
3) or no improved solution is found (lines 12–18).

Algorithm 2. LS-NBI(X)
1: nmoves ← 0
2: optima ← False
3: while nmoves < max moves and optima = False do
4: improvement ← False
5: for all m ∈ {1, . . . , p} do
6: Find move(m, i) that leads to best improvement of Ψ
7: if Ψ is improved then
8: Perform move(m, i)
9: improvement ← True

10: end if
11: end for
12: if improvement ← True then
13: nmoves = nmoves + 1
14: optima = False
15: else
16: optima = True
17: end if
18: end while

District Best Improvement Local Search (LS-DBI). Algorithm District
Best Improvement (LS-DBI) is similar to LS-NBI with the main difference being
that it iterates over all nodes i ∈ V instead of territories. For each node i,
it performs the best move(m, i), where district m is such that i /∈ Xm. The
procedure terminates either when the maximum number of moves is reached or
when no improved solution is found. We refer to Algorithm 3 for the detailed
pseudo-code.
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Algorithm 3. LS-DBI(X)
1: nmoves ← 0
2: optima ← False
3: while nmoves < max moves and optima = False do
4: improvement ← False
5: for all i ∈ V do
6: Find move(m, i) that leads to best improvement of Ψ
7: if Ψ is improved then
8: Perform move(m, i)
9: improvement ← True

10: end if
11: end for
12: if improvement ← True then
13: nmoves = nmoves + 1
14: optima = False
15: else
16: optima = True
17: end if
18: end while

Shaking Procedure. The shake procedures serves to diversify the search space.
Shake(X, k) chooses two random territories X1,X2 of the current solution X and
moves k random nodes from X1 to X2.

Algorithm 4. Shake(X, k)
1: Choose two random districts X1, X2 ∈ X
2: Choose a set K of random nodes in X1, |K| = k
3: Remove K from X1 and re-allocate the nodes in K to X2

5 Computational Experiments

In this section, we present the results of the numerical experiments we have
performed in order to test the proposed algorithms. The algorithms discussed in
this section were coded in Python 3.9, and all of the experiments were run on
IntelR© Xeon X5650 2.67GHz with 72GB RAM.

The computational experiments were performed on randomly generated pla-
nar graphs consisting of 500 nodes. We started with a grid graph of 30 × 30
nodes, divided into 7 regions as in Fig. 1. We generated three types of graphs;
Graph Type Center, Graph Type Diagonal, and Graph Type Corners (G-C, G-
D, G-CN) by randomly removing 900 − n nodes where n = 500 from certain
regions while maintaining the connectivity of the nodes in the graph.

We remove � 3
4 (900 − n)� nodes from the regions R3, R4, and R5 for G-C;

R1, R4, and R7 for G-D; R1, R2, R6, and R7 for G-CN. Finally, we remove
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� 1
4 (900 − n)� from the remaining regions for each graph type. When a node is

removed, its adjacent edges are also removed.

Fig. 1. Graphical representation of the regions of the graph.

Each node in a graph G has three attributes: demand, workload, and number
of customers. The attributes were generated from a uniform distribution in the
ranges of [15, 400], [15, 100], and [4, 20] respectively [7]. Furthermore, to simulate
real-world scenarios, we generated a distance attribute for edges from a uniform
distribution in the range of [5, 20]. The value of the parameters was chosen as
follows. For the cost function Ψ(X), parameter λ was set to λ = 0.7. Furthermore,
p = 10, βmax = 5, mmax = 4, and max moves = 100.

5.1 Impact of Local Search on Initial Solution

In Table 1, the columns LS-NBI and LS-DBI refer to the algorithms in which
the initial solutions are improved by applying the respective local search once.
Furthermore, the column labeled with “GRASP-LS” refers to the local search
procedure described in [9].

The average improvement of LS-NBI, LS-DBI, and GRASP in terms of the
objective function value over the initial solutions was 4.00%, 4.32%, and 1.59%
respectively. Table 1 shows the average percentage improvement of the local
search variants on each graph type. We note that LS-DBI outperformed the
rest of the variants over graph types G-CN and G-D at 5.26% and 3.81% respec-
tively. While LS-NBI, outperformed the rest of the variants for graph type G-C
at 4.72%.
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Table 1. Local search procedures percentage improvement over the initial solution.

Graph LS-NBI LS-DBI GRASP-LS

Graph-Type Measure

G-C Max 14.29% 9.13% 5.34%

Average 4.72% 3.88% 1.18%

Min 0% 0% 0%

G-D Max 9.53% 12.61% 7.16%

Average 2.97% 3.81% 2.43%

Min 0% 0% 0%

G-CN Max 14.56% 14.56% 4.98%

Average 4.31% 5.26% 1.15%

Min 0% 0% 0%

We observe that the local search variants LS-NBI and LS-DBI have a different
impact based on the graph type that the variant was performed on. Furthermore,
we notice that both local search procedures had a high variance in graph type
G-CN. This suggests that this particular graph type is difficult to improve upon.

We note that the local search variant LS-DBI outperformed LS-NBI and
GRASP-LS for graph types G-D and G-CN at 3.81% and 5.26% respectively.
On the other hand, LS-NBI outperformed all other variants in graph type G-C
at 4.72%. Due to the different performance of both LS-NBI and LS-DBI based
on the graph type, we used both local search variants in BV NS(X, kmax, βmax).

5.2 Computational Experiments on BVNS

We compared the results of the proposed BVNS algorithm on all graph types
with the results of the static Path-Relinking (PR) algorithm presented in [9].

Figure 2 shows an example solution and a comparison between BVNS and
PR. Figure 2(a) shows the BVNS solution of that particular instance while
Fig. 2(b) shows the PR solution where each have ten distinct districts. We can see
that due to the shaking procedure of the BVNS algorithm, the solution was able
to escape local optima regardless of the graph structure and provide significant
improvements.

Table 2. Objective Function Percentage Improvement of BVNS over PR.

Graph Min Max Average

G-C 0.95% 18.62% 6.42%

G-D 0% 13.20% 5.21%

G-CN 0% 20.86% 7.42%

Average 6.35%
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Fig. 2. Example comparison of BVNS and PR.

Table 2 summarizes the results of the objective function improvement of
BVNS over PR. We show the minimum, maximum, and average improvement
of BVNS over PR for each graph type. On average, BVNS outperforms PR by
6.35% over all graph types with a maximum improvement of 20.86% for G-CN.
On average, BVNS outperformed PR by 6.42% for graph type G-C, 5.21% for
graph type G-D, and by 7.42% for graph type G-CN. We note that BVNS out-
performed PR for 27 out of the 30 graphs. PR outperformed BVNS for 3 out of
the 30 graphs in terms of objective function value. We note that 2 out of the 3
graphs where PR outperformed BVNS occurred in graph type G-D.

Figure 3 shows the box plot of the percentage improvement of the relative
infeasibility of BVNS over PR. We can see that the relative infeasibility of BVNS
has shown consistent improvements over PR with the certain outliers in each
graph type. This indicates that using the BVNS procedure with LS-NBI and
LS-DBI led to improvements of the infeasibility of the solution compared to PR,
on average by 21.7%. The relative infeasibility in graph type G-CN has been the
most unstable where 3 out of the 6 instances show PR outperforming BVNS in
terms of relative infeasibility.

Furthermore, Fig. 3 along with the results presented for the average objective
function improvement, suggest that the graph type G-D is difficult to improve
for both algorithms.

5.3 Running Times

The average running time of BVNS was 394.49 s over all graph types. Among
the local search procedures, LS-DBI was less time consuming, with an average
of 13.17 s, followed by LS-NBI with an average running time of 17.24 s. Thus,
the time difference between the two local search procedures is negligible and
provides great benefit in tackling different types of graphs with considerable
improvements.
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Fig. 3. Relative Infeasibility of BVNS and PR.

To examine the scalability of the algorithm, we tested BVNS on graphs with
nodes V = {500, 600, 700} with 10 graphs for each graph type. Table 3 shows
the CPU time (in mins.) and the standard deviation of every graph type at a
different number of nodes.

Table 3. CPU Time (in sec.) and the Standard Deviation of Each Graph Type.

Graph 500 Nodes 600 Nodes 700 Nodes

Graph Size CPU Time

G-C Mean 405.12 821.50 941.52

SD 103.49 444.32 243.47

G-CN Mean 369.77 843.76 869.22

SD 75.55 242.31 227.85

G-D Mean 408.58 627.08 1117.42

SD 125.19 169.98 363.40

As expected, the running time increases as the problem size grows larger at
V = 100 increments. We note that for graph sizes V = 500 and V = 700, graph
type G-CN had the lowest mean and standard deviation in their respective graph
sizes. On the other hand, for graph size V = 600, graph type G-D had the lowest
mean and standard deviation.

Furthermore, we can see that in the first increment between V = 500 and
V = 600, the mean CPU time increased at a higher rate that between V = 600
and V = 700 for graph types G-C and G-CN. This suggests that graph types
G-C and G-CN scale well as the problem increases in size. In addition, we note
that for graph type G-D, the mean and standard deviation had their lowest rate
of increase between graph sizes V = 500 and V = 600. This suggests that for
this particular graph type, scaling the problem size up to V = 600 would not
present significant increases in run time and that the algorithm would provide a
solution in an adequate timeframe.
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We note that the high mean and standard deviation for graph type G-D in
graph size V = 700 can be attributed to the high convergence time caused by
relatively small improvements in the balancing constraints for certain instances
in this graph type.

6 Concluding Remarks

In this paper, we studied the DTDP, a districting problem often occurring in
delivery operations, in which balancing and connectivity constraints are taken
into account while minimizing the maximum diameter. We proposed two local
search procedures that improve the objective function value and lower the rela-
tive infeasibility of a given solution. We used a Basic VNS following the LIMA
paradigm under which we used both the local search variants and a simple shake
procedure. We conducted computational experiments on graphs of V = 500
nodes and p = 10 districts with a competitive running time and average improve-
ment at 6.35% over all graph types and a maximum improvement of 20.86%.
Furthermore, we conducted computational experiments on graphs of V = 600
and V = 700 to showcase the scalability of the algorithm.

There are several areas of future research that arise from this problem. One
promising area of research, given the results of the Basic VNS, is exploring other
variants of VNS such as the General VNS.

Furthermore, applying different local search neighborhoods in conjunction
with different neighborhood change steps could allow for further diversification
and intensification of the solution space.
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Abstract. Signed graphs are a particular type of graph, in which the
vertices are connected through edges labeled with a positive or nega-
tive weight. Given a signed graph, the Minimum Sitting Arrangement
(MinSA) problem aims to minimize the total number of errors produced
when the graph (named the input graph) is embedded into another graph
(named the host graph). An error in this context appears every time that
a vertex with two adjacent (one positive and one negative) is embedded
in such a way that the adjacent vertex connected with a negative edge
is closer than the adjacent vertex connected with a positive edge. The
MinSA can be used to model a variety of real-world problems, such as
links in online social networks, the location of facilities, or the relation-
ships between a group of people. Previous studies of this problem have
been mainly focused on host graphs, whose structure is a path. How-
ever, in this research, we compare two variants of the MinSA that differ
in the graph used as the host graph (i.e., a path or a cycle). Particu-
larly, we adapted a previous state-of-the-art algorithm for the problem
based on Basic Variable Neighborhood Search. The solutions obtained
are compared with the solutions provided by a novel Branch & Bound
algorithm for small instances. We also analyze the differences found by
using non-parametric statistical tests.

Keywords: Minimum Sitting Arrangement · Graph embedding ·
Basic Variable Neighborhood Search · Cycle host graph

1 Introduction

The Minimum Sitting Arrangement (MinSA) problem belongs to a family of
combinatorial optimization problems denoted as Graph Layout Problems (GLP).
The aim of GLPs is to find a layout of an input graph that optimizes a certain
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objective function. A layout consists of embedding a graph, denoted as input
graph, in another graph, denoted as host graph, by mapping the vertices of the
input graph to the vertices of the host graph. GLPs have acquired significant
interest in the scientific community due to their multiple applications in the
real world such as circuit design, telecommunication network migration, facility
location, language syntax analysis or graph drawing, among others [4,5,12,26].

Within the GLP family, the most studied problems are those in which the
embedding is performed on a path host graph [12,22]. In these variants, prac-
titioners have focused on several well-known objective functions such as: the
bandwidth [6,8], the cutwidth [9,14], the minimum linear arrangement [24], or
the vertex separation [25]. Furthermore, some of those objective functions have
also been studied for other host graphs with regular structure such as: cycle
graphs [7,9], tree graphs [13], or grid graphs [6], among others [12].

The MinSA is a GLP originally introduced and studied using a path host
graph, but recently adapted to cycle host graphs [3]. Given an input graph
with positive and negative edges (that is, labeled with +1/−1), the objective of
the MinSA is to find a linear/circular layout where the vertices connected with
positive edges are placed closer than the vertices connected with negative edges.
In particular, the objective function of MinSA looks for the minimization of the
number of negative connections placed closer than a positive one. However, the
study of the same objective function but for different regular-structured host
graphs, might require very different solution approaches, resulting in different
optimization problems.

The MinSA can be related to a wide range of real-world applications, for
example, the assignment of frequencies to radio channels, the modeling of rela-
tionships or links in social networks, or the location of facilities on a map [1–3,11].
These practical applications are some of the motivating factors for the problem
under investigation.

In this paper, we study the differences of the best solutions obtained for
the MinSA when the host graph is a path in comparison with a cycle. To this
end, we implemented the best previous state-of-the-art heuristic algorithm for
the MinSA, based on Basic Variable Neighborhood Search (BVNS), which was
proposed for the path, reporting the best solutions found, and we evaluated them
when the embedding is performed in a cycle. Then, we modified the algorithm
to optimize the MinSA specifically for the cycle, identifying if the performance
of the previous algorithm vary. Finally, we compare the best results obtained by
the BVNS procedure for the MinSA considering a path and a cycle host graph.

The rest of the paper is organized as follows. In Sect. 2, we review the state
of the art of the MinSA. Then, in Sect. 3, we formally define the problem. In
Sect. 4 we present the best algorithmic approach for the MinSA. Next, in Sect. 5,
we describe the experiments carried out and compare and analyze the results
obtained. Finally, in Sect. 6, we provide general conclusions and relevant direc-
tions for future research.
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2 State of the Art

The MinSA problem was initially introduced in [18], where it was defined for a
path host graph. In that work, it was proved that the problem can be solved
in polynomial time for complete input graphs. Lately, the problem was proved
to be NP-Complete if the input graph is not a complete graph [11]. Therefore,
the MinSA problem has been studied from both theoretical [11] and heuristic
perspectives [21,23]. From a heuristic perspective, the method proposed in [21]
can be considered the current state-of-the-art algorithm for the problem, when
defined for a path host graph. Specifically, in that paper, the authors proposed a
greedy constructive procedure and a Basic Variable Neighborhood Search algo-
rithm.

Recently, the MinSA problem has been extended by considering the embed-
ding of the candidate graph in other structures. In [3], the authors proposed
the embedding of signed input graphs in a cycle. Moreover, in [3], it was proved
that given a complete signed graph, there exists an embedding with an asso-
ciated objective function value equal to 0, if its positive subgraph is a proper
circular-arc graph [27]. The MinSA problem has also been theoretically studied
by considering tree host graphs. In [2], the authors proved that a complete input
graph can be embedded in a tree with 0 errors, if the input graph is strongly
chordal [15].

In addition to the previous theoretical results, as far as we are concerned, no
general algorithms (either exact or heuristic) have been proposed for the variants
of the problem where the host graph is either a cycle or a tree.

3 Problem Statement

In general, a graph layout problem can be formally defined as the embedding of
an input graph G in a host graph H, such that an objective function is optimized.
The input graph is defined as G = (VG, EG), where VG and EG represent the
sets of vertices and edges of the input graph, respectively, and the host graph is
defined as H = (VH , EH), where VH and EH represent the sets of vertices and
edges of the host graph, respectively. The embedding, also known as projection,
labeling, or mapping, consists of defining two mathematical functions. The first,
usually denoted as ϕ, is a bijective function that assigns each vertex of the
input graph to a vertex of the host graph such that ϕ : VG → VH . Therefore, a
vertex u ∈ VG is assigned to a vertex v ∈ VH if ϕ(u) = v. The second function,
commonly denoted ψ, is an injective function that assigns each edge (u, v) ∈ EG

to a path in H with endings in ϕ(u) and ϕ(v).
When the input graph G = (VG, EG) is a signed graph, EG has the particu-

larity of being divided into two subsets: EG = {E+, E−}, with E+ ∪ E− = EG

and E+ ∩ E− = ∅. The subset E+ contains the edges signed as positive. Simi-
larly, the subset E− contains the edges labeled as negative. The sign of an edge
can also be understood as a positive or negative weight (+1/−1). For example,
in Fig. 1a we show an input signed graph G with |VG| = 5 and |EG| = 5,
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where the vertices are alphabetically labeled, being VG = {A,B,C,D,E},
EG = {(A,B), (A,E), (B,E), (C,E), (D,E)}, with E+ = {(B,E), (C,E)} and
E− = {(A,B), (A,E), (D,E)}.

Among the different regular-structured host graphs for which the MinSA has
been studied, in this paper we focus our attention on the comparison between
path graphs and cycle graphs. A path graph, denoted as Pn, is a connected graph
with n vertices and n − 1 edges such that n = |VG| = |VH |. On the other hand,
a cycle graph Cn is a connected graph with n vertices and n edges such that
n = |VG| = |VH |. For example, given the input graph G depicted in Fig. 1a we
illustrate a path host graph P5 in Fig. 1b able to host the vertices of G. Similarly,
in Fig. 1c, we illustrate a cycle host graph C5, suitable to host the vertices of G.
In the context of MinSA, the number of vertices in both host graphs must be
5, since |VG| = |VP5 | = 5 and |VG| = |VC5 | = 5. Furthermore, in both examples,
the vertices of the host graphs have been labeled with numbers from 1 to 5.

Fig. 1. (a) Example of an input signed graph G with 5 vertices and 5 edges. (b) The
path host graph P5 for graph G. (c) The cycle host graph C5 for graph G.

Finally, the embedding is performed through the definition of the functions
ϕ and ψ. In particular, ϕ, as mentioned above, relates each vertex of G to a
vertex of H. Then, ψ, in the particular case of the MinSA, assigns the shortest
path in H to an edge (u, v) of G. More formally:

ψ((u, v)) = arg min
p(ϕ(u),ϕ(v))∈PH

{|p(ϕ(u), ϕ(v))|} ∀ (u, v) ∈ EG, (1)

where PH represents the set of all possible paths in H. Note that in the case of
a path host graph, there is only one possible path that can be assigned to every
input edge. However, in the case of the cycle host graph, there are two possible
paths (avoiding loops) between each pair of vertices. Additionally, since ψ can
be derived from ϕ, in order to simplify the notation, in the rest of the document,
we only use ϕP and ϕC to denote an embedding (i.e., a solution of the problem)
in a path or a cycle host graph, respectively.
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Let us illustrate the concept of embedding with examples. In Fig. 2a we show
a possible embedding ϕ′

P of G in the path host graph P5. In this example, the
function ϕ′

P has been defined as follows: ϕ′
P (A) = 1, ϕ′

P (B) = 2, ϕ′
P (C) = 3,

ϕ′
P (D) = 4, and ϕ′

P (E) = 5. Similarly, in Fig. 2b we illustrate a possible embed-
ding ϕ′

C of G in a cycle host graph C5 where ϕ′
C is defined by the assignments

ϕ′
C(A) = 1, ϕ′

C(B) = 2, ϕ′
C(C) = 3, ϕ′

C(D) = 4, and ϕ′
C(E) = 5.

Fig. 2. (a) A possible embedding ϕ′
P of G in P5. (b) A possible embedding ϕ′

C of G in
C5.

With the previous definitions at hand, we now introduce the concept of error
that is necessary for defining the objective function of the MinSA, either in the
path or in the cycle. Given a function ϕ, three vertices u, v, w ∈ VG, and two
edges, (u, v) ∈ E+ and (u,w) ∈ E−, an error in u, denoted as E(u, ϕ), occurs if
ϕ(w) ∈ ψ((u, v)), where ϕ(w) is the host vertex assigned to w.

Then, the number of errors produced in an embedding ϕ, denoted as E(ϕ),
is calculated as the sum of errors across the entire set of vertices, for each pair
of edges with a positive and negative sign, respectively. More formally:

E(ϕ) =
∑

u∈VG

E(u, ϕ). (2)

Finally, the objective of MinSA is to find an embedding ϕ∗, among the set
of all possible embeddings Φ, that minimizes the total number of errors. In
mathematical terms:

ϕ∗ = arg min
ϕ∈Φ

E(ϕ). (3)
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To illustrate how to evaluate the objective function of MinSA, considering
either a path or a cycle host graph, we again use the embeddings ϕ′

P and ϕ′
C ,

shown in Fig. 2. Furthermore, the number of errors associated with each vertex
in G is presented in Table 1. For example, vertex B has one positive edge (with
vertex E) and one negative edge (with vertex A). To calculate the number of
errors of B on the path host graph, E (B, ϕ′

P ), we determine whether ϕ′
P (A) is

contained in the path assigned to the edge (B,E) in the host graph, through
ψ((B,E)). Since ψ((B,E)) = {2, 3, 4, 5}, and ϕ′

P (A) = 1 /∈ {2, 3, 4, 5}, no errors
are produced. Now, we calculate the number of errors of B in the cycle host
graph, E (B, ϕ′

C). Similarly, we determine whether ϕ′
C(A) is contained in the

path assigned to the edge (B,E). In this case, there are two possible paths in
the host graph between ϕ′

C(B) and ϕ′
C(E): {2, 3, 4, 5} and {2, 1, 5}. As stated in

Eq. 1, the shortest path in the host graph is assigned to each edge, and therefore
ψ((B,E)) = {2, 1, 5}. Since ϕ′

C(A) = 1 ∈ {2, 1, 5}, an error is produced.
Finally, given the number of errors produced by each vertex of G in the path

host graph (depicted in Fig. 2a), the value of the objective function of the MinSA
problem, for the solution ϕ′

P , is calculated as: E(ϕ′
P ) = 0 + 0 + 0 + 0 + 2 = 2.

Similarly, given the number of errors produced by each vertex of G in the cycle
host graph (depicted in Fig. 2b), the value of the objective function of the MinSA
problem, for the solution ϕ′

C (depicted in Fig. 2b) is E(ϕ′
C) = 0+1+0+0+2 = 3.

As it can be observed, both solutions do not have the same objective function
value despite their similarities.

Table 1. Number of errors of each vertex of G embedded in a path and cycle host
graph through functions ϕ′

P and ϕ′
C , respectively.

Vertex #Errors in P5 #Errors in C5

A E (A, ϕ′
P ) = 0 E (A, ϕ′

C) = 0

B E (B, ϕ′
P ) = 0 E (B, ϕ′

C) = 1

C E (C, ϕ′
P ) = 0 E (C, ϕ′

C) = 0

D E (D, ϕ′
P ) = 0 E (D, ϕ′

C) = 0

E E (E, ϕ′
P ) = 2 E (E, ϕ′

C) = 2

4 Algorithmic Strategies

In this paper, we study the behavior of a previous heuristic algorithm based on
Variable Neighborhood Search designed for the MinSA in the path, when used
to generate solutions for the MinSA in the cycle. Furthermore, we compare their
results with an exact algorithm, a basic Branch & Bound.

The heuristic algorithm was introduced in [21] and, as far as we know, it is
the current state of the art of the problem. It consists of a greedy constructive
procedure to generate an initial solution and a Basic Variable Neighborhood
Search (BVNS) to improve it.
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The constructive procedure proposed in [21] is based on the identification of
existent cliques in the input graph, when considering only the positive edges.
Then, the vertices belonging to the same clique are placed in the embedding
consecutively. The cliques are selected following a descending order of size (in
terms of the number of vertices of the clique). Later, the remaining vertices are
embedded in any unassigned host vertex at random. This approach is based on
the idea that the vertices within the clique are suitable for placement together
in the layout because they do not create errors among them.

The solution obtained by the previous constructive method is provided as an
initial solution to a BVNS procedure. BVNS is one of the most relevant variants
of Variable Neighborhood Search metaheuristic. VNS was proposed by Mladen-
ović and Hansen as a general method to solve hard combinatorial optimization
problems [16,17]. The main principle of this methodology is to make systematic
changes to the neighborhood structure in order to escape from local optima solu-
tions. The pseudocode of BVNS is presented in Algorithm 1. This procedure, in
addition to the initial solution (ϕ), receives two additional parameters: the max-
imum computation time (tmax) and the maximum number of neighborhoods to
be explored (kmax). In particular, BVNS is made up of three procedures, Shake
(step 5), LocalSearch (step 6) and NeighborhoodChange (step 7). The Shake
procedure performs k random movements within the associated neighborhood.
In this case, the shake is based on the swap move, a classical move operator
that consists of exchanging the assignment of two vertices of the input graph.
Then, the LocalSearch procedure finds a local optimum starting from the solu-
tion provided by the Shake procedure, within the neighborhood defined by the
insert move. The insert move consists of removing an input vertex from its cur-
rent position in the host graph and inserting it in a different position. As is
customary in insertion moves, the displaced elements must be shifted. In this
proposal, the vertices are shifted in the direction in which the least number of
vertices are affected. Finally, the NeighborhoodChange procedure is responsible
for determining whether the new solution under consideration has improved the
best solution found in the procedure or not. If so, k = 1 and the best solution is
updated, otherwise the value of k increases. If a solution is not improved after
exploring the neighborhood kmax (step 4), then the procedure starts again from
k = 1, as long as the elapsed time is less than tmax (step 2).

To evaluate the previous BVNS algorithm to solve MinSA for a cycle host
graph, we have configured two variants of the procedure, denoted as BVNS1

and BVNS2, which differ in the criterion used by each method for consider-
ing an improvement move during the search. Note that BVNS1 corresponds to
the original implementation of the procedure, defined for the path host graph.
Therefore, every time that a move is performed, BVNS1 evaluates the solution
as if it were a path, accepting or not the move if an improvement is made con-
sidering the evaluation on the path. When the method is not able to further
improve the solution with this strategy, it stops and evaluates the final solution
obtained over the cycle. On the other hand, BVNS2 modifies BVNS1 by eval-
uating the resulting solution after a move, considering the solution as a cycle
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Algorithm 1. State-of-the-art algorithm for the MinSA
1: BVNS(ϕ, tmax, kmax)
2: while ElapsedTime() < tmax do
3: k ← 1
4: while k < kmax do
5: ϕ′ ← Shake(ϕ, k)
6: ϕ′′ ← LocalSearch(ϕ′)
7: ϕ, k ← NeighborhoodChange(ϕ, ϕ′′, k)
8: end while
9: end while

10: return ϕ

(that is, two possible paths can be assigned to each input edge and the shortest
one is selected). The comparison between these two methods aims to determine
whether an algorithm designed for the MinSA over the path can be directly used
for the MinSA over the cycle, or at least it can be easily adapted.

Additionally, we have implemented an exact algorithm, based on Branch &
Bound (B&B) [19,20], for comparison purposes. The B&B is an exact strategy
designed as an evolution of the Backtracking algorithm [10]. It usually represents
the solution space as a tree, where each intermediate node represents a partial
solution, and each final node (i.e., the leaves of the tree) represent a complete
solution. The algorithm tries the exploration of all nodes of the tree, avoiding
those branches which do not lead to promising solutions, using bounds in each
node, to avoid wasting computational time. In this case, we introduce a very
basic version of B&B where the bounds are based on two strategies: 1) avoiding
the exploration of partial solutions with an objective function value equal to or
larger than the best overall solution found; and 2) avoiding the exploration of
equivalent solutions. Notice, that a solution is equivalent to a previously explored
one when the relative order in the host graph between each pair of candidate
vertices is equal to a previously explored solution.

5 Experiments

This section is devoted to studying the performance of the algorithms introduced
in Sect. 4, when tackling MinSA defined using a cycle host graph. The experi-
ments presented in this section are carried out on a representative subset of 60
instances selected from a previously introduced data set for the problem [21,23].
This set is made of three types of randomly generated instances: Random, Inter-
val and Complete. Random instances, as the name indicates, are composed of
random graphs. Interval instances are graphs where the positive edges form a
unit interval graph, and negative edges are added on top of the unit interval
positive structure. Finally, Complete instances are complete graphs where the
positive/negative edges are randomly set. The data set used can be downloaded
at https://www.heuristicas.es/publications/minsa-icvns. All experiments have
been executed on a virtual CPU AMD EPYC 7282 8-Core and 8 GB of RAM.

https://www.heuristicas.es/publications/minsa-icvns
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Note that we have directly used the original code implemented by the authors
of [21], who kindly provided us with the source code of their algorithms for our
research. Additionally, all algorithms compared (BVNS1, BVNS2 and the B&B)
have been implemented in Java 17 and no other commercial software, such as a
solver, has been used.

In Table 2 we report the results obtained by a single execution of the BVNS1,
BVNS2 and the B&B over the set of previously introduced instances. The results
are grouped by type of instance (Complete, Interval, or Random) and, addition-
ally, at the bottom of the table, we have added a row (labeled as “Total”) that
provides the average for all instances of the table. In particular, we report the
average of the best solutions found (Avg.), the deviation from the best solution
found in the experiment (Dev. (%)), the CPU time in seconds (CPU T.(s)), and
the number of the best solutions found in the experiment (# Best). Notice that
in the case of the B&B, the number of the best solutions found matches the
number of optima found by the method.

Analyzing the performance of three algorithms compared, as expected,
BVNS2 is the best procedure for the MinSA over the cycle, since it obtains
the best average quality of the solutions, the lowest deviation, and the highest
number of the best solutions found. Although BVNS2 is just a modification of
BVNS1, it is capable of reaching the global optimum for 13 instances (those
where the B&B certified the optimum). On the other hand, the computation
time of the BVNS2 is an order of magnitude longer than the BVNS1. This can
be partially explained by the fact that BVNS2 is able to find better solutions dur-
ing the search and, therefore, continues the search for longer time. In any case,
we can state that the performance of the BVNS2 has considerably improved
the original method in terms of quality of the objective function. As expected,
the performance of the B&B method decreases when the size of the instances
increases. The method was able to find 13 optimum values for small instances;
however, for large instances it was only able to reach some feasible solutions of
lower quality than BVNS1 and BVNS2 in the time limit of 3600 s.

In the Appendix section, we include the individual results for each instance
considered in Table 2.

To complement the previous experiment, we have statistically analyzed the
differences between the values of the objective function of the best solutions
found by BVNS1 and BVNS2. To this end, we used a non-parametric statistical
test, since the samples do not follow a normal distribution. In particular, we
employ Wilcoxon’s signed rank test [28], a test which objective is to determine
whether two samples are likely to derive from the same population (algorithms
in this case). The test calculates the difference between pairs and analyzes these
differences to determine whether they differ significantly from each other or not.
The null hypothesis, in this case, indicates that there is no significant difference
between two populations (that is, there is no difference between the solutions
found by both algorithms). The obtained p-value less than 0.0001 indicates that
we can reject the null hypothesis and confirm the existence of significant differ-
ences among the best solutions found.
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Table 2. Comparison of the algorithmic strategies described in this paper.

Avg. CPU T.(s) Dev. (%) # Best

Complete (20) BVNS1 15978.50 31.68 25.34 2

BVNS2 14761.55 119.91 0.00 20

B&B 18893.55 2892.14 33.03 4

Interval (20) BVNS1 206.40 19.18 106.45 7

BVNS2 147.75 43.67 7.35 18

B&B 3077.75 2706.39 2974.34 5

Random (20) BVNS1 16826.80 29.54 30.26 3

BVNS2 15658.60 642.99 0.00 20

B&B 19883.45 2910.45 100.59 4

Total (60) BVNS1 11003.90 26.80 54.02 12

BVNS2 10189.30 268.80 2.45 58

B&B 13951.58 2836.32 1035.99 13

Finally, to observe the relationship between the objective function of the
MinSA when the graph is embedded either in the path or in the cycle, we intro-
duce the Fig. 3. In particular, we display three scatter plots, one for each set of
instances: complete graphs in Fig. 3a, Interval graphs in Fig. 3b, and Random
graphs in Fig. 3c.

Each point in the graphs represents an instance, the X-axis represents the
value of the objective function for the MinSA when the host graph is a path, and
the Y-axis represents the value of the objective function for the MinSA when the
host graph is a cycle. In each chart, we have drawn a dashed straight line that
comfortably fits through the data; hence, we can observe the existence of a linear
relationship between both objective functions. The slope of the line is positive, so
there is a positive correlation between the value of the objective function of both
problems. Interestingly, since the slope is greater than 1 in the three charts (1.36
in complete graphs, 1.14 in interval graphs, and 1.32 in random graphs) we can
state that the value of the objective function for an instance of a MinSA solution
is generally higher in the case of the cycle than in the case of the path. This may
be useful for future researchers as a starting point for studying the relationship
between both problems and derive lower/upper bounds between them.
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Fig. 3. Relation between the quality of the objective function of the MinSA problem
when the host graph is a path or a cycle for different sets of instances.

6 Conclusions

In this paper we have studied the Minimum Sitting Arrangement Problem, that
consists of embedding an input graph into a host graph while minimizing the sum
of the number of errors in the embedding. Particularly, we tackled two variants
of the problem depending on the structure of the host graph: a path or a cycle.

The problem has been addressed using exact and heuristic algorithms. The
exact proposal consists of a Branch & Bound algorithm that reaches optimal
solutions for small instances in a few seconds. However, for large instances, it
is only able to reach feasible solutions in the time limit of 3600 s. The heuristic
approach is based on a previous state of the art BVNS metaheuristic, which
best configuration was able to reach the optimal value for the instances which
the B&B certified the optimum, and better solutions than the B&B for larger
instances. On the other hand, despite the fact that the studied heuristic found
promising solutions for both variants of the problem, we observed significant
differences in the values of the objective function.
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Given the findings of this paper, specific heuristic algorithms for the MinSA
should be designed when the host graph is a cycle. Furthermore, the relation of
the two variants could be studied in terms of upper and lower bounds.

Appendix: Individual results per instance

Next, we present the individual results per instance obtained by each algorithm.
In the case of the B&B procedure, results obtained before 3600 s (when the
method is truncated) correspond to optimal solutions (Tables 3, 4 and 5).

Table 3. Complete instances.

Instance BVNS1 BVNS2 B&B

F.O. CPU T.(s) F.O. CPU T.(s) F.O. CPU T.(s)

Complete 002 24 30.00 10 30.00 10 4.82

Complete 004 26 30.00 9 30.01 9 6.62

Complete 006 4 30.00 4 30.00 4 3.33

Complete 009 2 30.00 2 30.00 2 3.26

Complete 012 523 30.10 464 30.42 654 3600.04

Complete 015 487 30.08 386 30.51 671 3600.04

Complete 018 511 30.10 406 30.24 654 3600.04

Complete 021 3127 30.47 2742 32.25 3912 3600.57

Complete 024 2974 30.35 2414 30.71 3789 3600.55

Complete 027 3011 30.18 2593 32.52 3958 3600.55

Complete 030 8752 31.15 8047 36.98 11431 3603.08

Complete 033 9248 31.49 8490 41.44 11677 3603.14

Complete 036 8665 30.23 7848 32.83 11044 3602.82

Complete 039 21155 31.93 18749 154.85 25953 3610.93

Complete 042 19375 32.40 17525 160.70 24799 3610.29

Complete 045 20418 31.87 18652 94.07 25443 3610.58

Complete 048 40977 34.45 36861 367.09 49215 3629.08

Complete 050 67360 33.26 64750 430.39 76242 3645.31

Complete 052 42203 35.66 38628 170.82 48215 3632.31

Complete 055 70728 39.95 66651 602.33 80189 3675.44
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Table 4. Interval instances.

Instance BVNS1 BVNS2 B&B

F.O. CPU T.(s) F.O. CPU T.(s) F.O. CPU T.(s)

Interval 001 0 0.00 0 0.00 0 0.04

Interval 003 0 0.00 0 0.00 0 0.01

Interval 005 0 0.00 0 0.00 0 0.04

Interval 008 0 0.00 0 0.00 0 0.02

Interval 012 0 0.01 0 0.01 0 6.05

Interval 025 395 0.11 210 31.98 1802 3600.32

Interval 027 44 30.35 81 30.38 457 3600.30

Interval 029 10 30.68 7 31.57 179 3600.17

Interval 034 210 0.39 102 34.18 5070 3601.88

Interval 038 83 30.06 4 32.36 707 3600.66

Interval 043 136 0.63 80 64.96 12056 3606.49

Interval 048 16 30.55 27 36.10 648 3601.23

Interval 056 364 32.13 359 53.19 3013 3604.36

Interval 057 19 31.85 13 42.14 810 3603.17

Interval 060 609 31.49 440 87.84 9273 3616.54

Interval 065 325 33.33 304 37.73 5007 3609.50

Interval 074 790 34.03 617 82.09 5300 3616.70

Interval 075 122 32.46 96 62.86 3581 3612.18

Interval 082 749 32.19 394 103.82 10124 3627.70

Interval 084 256 33.27 221 142.77 3528 3620.45

Table 5. Random instances.

Instance BVNS1 BVNS2 B&B

F.O. CPU T.(s) F.O. CPU T.(s) F.O. CPU T.(s)

Random 001 0 0.00 0 0.00 0 0.05

Random 003 0 0.00 0 0.00 0 0.00

Random 005 1 30.00 0 0.00 0 0.01

Random 009 0 0.00 0 0.00 0 0.18

Random 014 155 30.10 119 30.43 224 3600.01

Random 018 241 30.03 223 30.59 395 3600.03

Random 021 18 30.36 9 30.64 100 3600.03

Random 025 2391 30.34 1733 31.76 2677 3600.44

Random 029 396 30.20 235 31.37 625 3600.18

Random 034 6111 30.79 4945 33.31 7216 3602.26

Random 038 845 30.36 616 33.17 1428 3600.72

Random 043 14527 37.21 12575 115.32 16561 3608.11

Random 049 8879 32.60 7011 93.09 11043 3608.58

Random 055 2068 32.19 1252 58.22 2854 3603.38

Random 059 25137 33.62 22905 313.72 30730 3629.00

Random 064 3577 31.92 2392 91.39 4711 3607.95

Random 069 21834 37.00 19804 570.10 29799 3637.83

Random 075 3644 39.16 2947 114.53 5874 3611.89

Random 080 161249 42.01 156263 7761.31 183124 3887.71

Random 086 85463 62.94 80143 3520.84 100308 3810.56
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Abstract. In this work, we deal with a dynamic problem arising from
outpatient healthcare facility systems. Patients in need of service arrive
during the day at the facility. Their requests are expected to be satis-
fied within a given target time, otherwise, tardiness is incurred. The facil-
ity has multiple identical servers that operate simultaneously and are in
charge of providing the patients with the requested services. Each server
can provide only a finite subset of services, and each subset is called a con-
figuration. The objective is to assign to each server a configuration selected
from a set of predefined configurations, aiming at minimizing total tar-
diness. Assignments are not fixed statically, but they can be dynamically
changed over time to better cope with the requested services. As the prob-
lem nature is dynamic, we propose a re-optimization algorithm that peri-
odically optimizes the assignments with a Reduced Variable Neighbor-
hood Search (RVNS). The RVNS works on neighborhood structures based
on changing the assignments of one or more servers. The RVNS has been
extensively tested on realistic instances. The results prove its efficiency in
reaching low-tardiness solutions under low computing time.

Keywords: Dynamic outpatient facility · Reduced VNS · Total
tardiness

1 Introduction

Queue management is widely studied in many research fields and has both,
high practical and theoretical relevance. Queue management problems are found
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in several different contexts. One particular context is healthcare, where the
presence of multiple queues and servers, dynamic arrival of patients, unknown
service times, and different priorities, among many other features, provide several
challenges [3,22,27]. General queue management problems have been addressed
by a variety of approaches, in particular, as the focus of this paper, by operations
research methods [25,26].

The problem we address in this paper is motivated by a real-world situa-
tion faced by a healthcare facility. The problem concerns the queue management
optimization in an outpatient facility system, where patients requiring specific
services arrive dynamically during the working time horizon. For each patient
arriving in the facility, the requested service and the expected service time are
assumed to be known. The patients are grouped in multiple queues, one per ser-
vice, and served by multiple identical servers working in parallel. At a given time
instant, each server is able to provide a subset of all possible services provided by
the facility. This subset is called configuration in the following. Thus, a patient
can be served by a given server in a given time instant only if the server can
provide the service requested by the patient, that is if the configuration currently
adopted by the server includes the requested service.

During the considered time horizon, the configuration associated with each
server is allowed to change. In practice, this possibility enables the facility to
adapt the offered services according to the overall needs of the patients in the
queues. The possibility of changing configurations during the facility’s operating
hours may help, for example, in reducing the patients’ waiting time. The possible
configurations the servers can assume belong to a finite set and are known in
advance. In addition to the requested service and the expected service time, each
patient is associated with a service-dependent target time. Tardiness is incurred
if the time in which a patient is extracted by her queue is larger than her target
time. The decision to be taken is which configuration to assign to each server
over the time horizon so as to minimize the total tardiness of patients.

Many works in the literature deal with healthcare problems in Emergency
Departments (ED) focusing on the scheduling of patients, nurses, operation
rooms, surgeries, and others, with the aim of optimizing Key Performance Indi-
cators (KPI) such as patients waiting time and length of stay [1]. Regarding
queuing models in literature, there is a large variety of works addressing the-
oretical aspects. In [27], the authors reviewed the advances in queuing theory
regarding applications in healthcare, focusing on queuing systems with infinite
number of servers. Other authors studied problems with multiple servers and
single/multiple queues, e.g., [11] who proposed an algorithm that adjusts the
number of open servers depending on the number of patients in a single queue.
Concerning practical applications, [13] considered a queuing system in a fast-
food company composed of a finite number of servers and a capacitated queue.
The authors focused on controlling the queue size by the allocation of workers to
servers. Regarding the semiconductor industry, [12] studied a five-stage queuing
system. In the healthcare context, [19] discussed real applications of queuing
theory. In [23], the authors studied the registration process of a hospital located
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in China through simulation. In order to reduce the patients waiting time, the
authors proposed to change from a multiple queue and multiple servers to a
single queue with multiple servers. Still, with the objective of reducing patients
waiting time, [24] investigated an ED in Romania. For a general discussion about
queuing theory in healthcare, we refer the reader to [6].

We tackle the problem under investigation by proposing a re-optimization
algorithm combined with a Reduced Variable Neighborhood Search (RVNS)
metaheuristic to decide configuration-server assignments over a given time hori-
zon. We also propose and test some variants of the RVNS. We aim at improving
patient satisfaction by minimizing total tardiness. This work is a follow-up of [4],
where we proposed some constructive heuristics.

The remainder of the paper is organized as follows. Section 2 contains the
problem definition and its context. Section 3 is devoted to the re-optimization
algorithm, the RVNS details and its variants. In Sect. 4, we present the numerical
results, discussing the impact of the number of available servers and the way the
patients are scheduled. Section 5 presents concluding remarks and directions for
future investigations.

2 Problem Definition

The problem we handle comes from an existing situation experienced by an out-
patient facility system in the north of Italy. The facility receives many patients
per day and has multiple servers operating in parallel to serve these patients. At
the facility, the patients first book a ticket for the service they need to receive
and then stay in a waiting room until being called by one of the servers. In case
two or more patients request the same service, they are inserted in the same
First-In-First-Out (FIFO) queue associated with the service. As each patient
has a target time, the facility should accomplish the requested service within
this target time; otherwise, it will incur tardiness. We assume the servers are
identical, with the same efficiency, and each one can serve one patient per time.
Besides that, to each server is assigned a configuration (i.e., a subset of ser-
vices that a server can serve). Due to the dynamic nature of the problem, the
configuration of each server can change with time.

In other words, the problem considers a set S of identical parallel servers, a
set K of services offered by the facility, a set C of possible configurations (from
having no service to having all services in K), and a set I of patients. The sets
S, K, and C are static, while the set I is dynamic, i.e., I changes over time, as
patients arrive, receive their services, and leave the facility. Each server s ∈ S
can hold any configuration c ∈ C. Each configuration c ∈ C represents a subset
of services in K. Each service k ∈ K has an expected processing time pk, which
is the average over the historical data, and holds a queue Qk, with the patients
who requested that service and are waiting to be served. Each patient i ∈ I has
an arrival time ai (i.e., when she enters the queue), a service ki ∈ K (i.e., the
service she requested – we assume each patient can only request a single service),
and a target time di (i.e., the due time to be served).
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There is a discrete-time horizon T (in minutes) over which the facility
(servers) is operating and receiving (servicing) patients. The decisions are related
to assigning one configuration in C to each server in S at each instant of the time
horizon T , and to define the start time ti at which each patient i ∈ I is served
by a server in S. The problem constraints are: all patients must receive their
services; a patient can only be served if there is a server currently configured
with her requested service; two or more servers can hold the same configuration;
the configurations adopted by the servers can only be changed every Δ units
of time (and after finishing the service of their current patients, if any); and
each server can serve at most one patient per time. The problem objective is
to minimize the total tardiness z, where the tardiness of a patient i is given by
Ti = max{0; ti − di}. We summarize in Table 1 the parameters and variables
used in this section.

Table 1. Parameters and variables used to describe the problem.

Variable Description

T End of the time horizon

I Set of patients

S Set of parallel servers

K Set of available services

C Set of possible configurations

pk Expected processing time of service k ∈ K

Qk Queue with the patients requiring service k ∈ K

ai Arrival (release) time of patient i ∈ I

ki Service requested by patient i ∈ I

di Target (due) time of patient i ∈ I

ti Start time for patient i ∈ I

Ti Tardiness generated after serving patient i ∈ I

z Total tardiness (sum of the patient’s tardiness) generated over the time
horizon

NT Number of tardy patients over the time horizon

Δ Time-step to change the servers configurations

We notice that the static version (i.e., when all data is known in advance)
of this problem is related to the identical parallel machine scheduling problem
with release dates and minimizing the total tardiness. For a more detailed math-
ematical description we refer the reader to [4]. This problem is NP-hard and
well-studied in the scheduling literature [2,15,18]. As the problem we are facing
is dynamic by nature, we opted for developing a fast and accurate re-optimization
algorithm equipped with the RVNS, as described in the next section.
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3 Proposed Algorithm

Variable Neighborhood Search (VNS) algorithms are based on the principle of
systematically changing neighborhoods whenever the incumbent solution is not
improved, to escape from valleys and attain a final solution that is globally opti-
mal concerning all neighborhoods. VNS was proposed in [16] and since then
it has been successfully applied to handle many different optimization prob-
lems, including integer linear and non-linear programming models. Comprehen-
sive reviews dedicated to VNS, including recent advances, extensions, issues,
and/or problem applications, are provided in, e.g., [7,9,10]. Furthermore, spe-
cial issues dedicated to the VNS can be found in [5,17]. Recently, Lan et al. [14]
reviewed the applications of VNS concerning problems in the healthcare area.

In a basic VNS, we have three distinct phases constituting the main algo-
rithm schemes. The first is the shaking (i.e., a stochastic search, where a random
solution is generated from a given initial solution and a given neighborhood).
The second is the local search (i.e., a search based on the best/first improvement
method) in the solution obtained from the previous phase. The last is related
to the change of neighborhood (i.e., if the new solution improves the incumbent
one, the incumbent solution is updated, and the search restarts from the first
neighborhood structure). Another scheme is the general VNS, where the local
search consists of the variable neighborhood descent method (i.e., a determinis-
tic search over the neighborhoods). Both basic and general VNSs can use both
stochastic and deterministic changes of neighborhoods [8].

In terms of computing time, one bottleneck of these schemes may be the
local search, especially for very large instances or, in our case, dynamic prob-
lems where decisions should be taken in a very short time to avoid service inter-
ruptions. Therefore, we use the Reduced VNS (RVNS) for the problem under
consideration. The RVNS consists of the first and last phases of the main scheme,
i.e., it has the shaking and the change of neighborhood phases, as described in
Algorithm 1. Its input parameters are a given solution x, the maximum number
Itmax of iterations used as stopping criterion, and the number Nmax of neigh-
borhood structures.
Algorithm 1: Framework of the RVNS

Input: x; Itmax; Nmax.
1 for j ← 1, 2, . . . , Itmax do
2 n ← 1
3 do

/*shaking*/
4 x′ ← neighbor solution of x from structure Nn

/*change of neighborhood*/
5 if f(x′) < f(x) then
6 x ← x′; n ← 1
7 else
8 n ← n + 1

9 while n ≤ Nmax

Output: x
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Due to the dynamic nature of the problem, where patients are arriving during
the facility’s working hours, we develop a re-optimization algorithm that uses
the RVNS to update the solution in the occurrence of an event. Re-optimization
(greedy) algorithms take decisions based on the currently available information.
They usually do not explore the stochastic aspect of the problem [20]. We assume
there is a single event, called update servers, occurring every Δ minutes. There-
fore, we discretize the time horizon in slots of Δ minutes (i.e., 0,Δ, 2Δ, . . . , T ),
although patients can arrive at any (discrete) time, starting from zero. Algo-
rithm 2 describes the proposed re-optimization algorithm, where each call to
the RVNS takes into consideration the patients waiting for service in I and the
current time j.

Algorithm 2: Re-optimization algorithm with RVNS

Input: Itmax; Nmax; Δ; T .
1 x ← randomly generated solution
2 for j ← 0, 1, 2, . . . , T do
3 I ← update the set of patients
4 if j is a multiple of Δ then
5 x ← RVNS(x, Itmax, Nmax)

6 Schedule patients in I to servers in S, according to the configurations
adopted in x

In Algorithm 2, the solution x is coded as a vector of elements. Each position
of the vector is associated both with a server s ∈ S and its current configuration
c ∈ C, and an ordered list of patients scheduled to such server s. The initial
solution x is created in the following way: for each server s ∈ S, select randomly
a configuration in C and assign it to s. In the beginning, the list of patients
served by s is empty since the arrival time of each patient cannot be less than
the start of the time horizon. In the loop of lines 2–6, the set I of patients
is updated. This means that patients already served and patients receiving a
service at time j are disregarded from now on, while non-served yet patients and
newly arrived ones can still be scheduled. This set, the time horizon T , and the
current time j are global parameters used by the RVNS in Algorithm 1. Besides
that, we propose a shaking phase using the following Nmax = 3 neighborhood
structures:

– Neighborhood N1: randomly select one server and change its configuration
to a randomly selected different configuration in C. The new configuration of
the server must be different from its current one.

– Neighborhood N2: randomly select two servers and set the first server to have
the same configuration as the second one;

– Neighborhood N3: randomly select a subset of servers and change the con-
figuration of each of these servers to a randomly selected configuration in C.
The new configuration of each server may be the current one.

The call to the RVNS in line 5 of Algorithm 2 is responsible to update x by
optimizing the servers’ configuration. In line 6, we assume the non-disregarded
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patients in I are scheduled by the FIFO policy, i.e., the servers in the solu-
tion x have their ordered list of patients updated by the assignment of patients
observing their arrival times (smallest first). We also investigate the influence of
another policy in the computational experiments section.

The cost of a solution x is calculated with the function f() in Algorithm 3,
which considers the patients in I, the time horizon T , and the current time j.
In this way, a solution x has its cost given by a first term, calculated over the
disregarded patients in I, and a second term, calculated over the other patients
in I. The value of the second term depends on the servers’ configurations and
how the non-disregarded patients in I are scheduled to the servers, from the
current time j. Patients are scheduled by the FIFO policy and those requesting
the same service are kept in the same queue. Therefore, if there is a free server
whose configuration has the patient service, the patient with the smallest arrival
time will start receiving service from such a server.

Algorithm 3: Cost function f()
Input: x; I; T ; j.

1 firstcost ← sum of the tardiness of the patients not in I
2 secondcost ← 0
3 for t ← j, j + 1, j + 2, . . . , T do
4 Sfree ← set of servers free at time t
5 foreach s ∈ Sfree do
6 ti ← schedule patient i ∈ I with the smallest arrival time and

whose service is offered by s
7 secondcost ← update with the tardiness of patient i

Output: (firstcost+ secondcost)

In Algorithm 3, the free servers in Sfree are those not servicing any patient at
the current time t. In the loop of lines 5–7, patients are scheduled at t to the free
servers. Patients can only be scheduled to a server if such a server is configured
with that service at t. In the case a free server is not able to service any patient
of I at t, it will continue free until there is a change in its configuration or new
patients arrive. The secondcost is updated with the tardiness of patient i that
is scheduled to server s with start time ti. Notice that scheduled patients of I
cannot be considered in the next iterations of the algorithm.

In order to further explore the proposed neighborhood structures Ni, we
implemented three additional versions of the RVNS, namely RVNSi, for i =
1, 2, 3. To each RVNSi, we associate three neighborhood structures Nk

i , for k =
1, 2, 3, in which N1

i is the same Ni. Besides that:

– RVNS1 has, in this order, the neighborhood structures
{
Nk

1 : k = 1, 2, 3
}
. In

Nk
1 , we perform a loop from 1, . . . , k, invoking the neighborhood N1, that is

N1 is called k times;
– RVNS2 has, in this order, the neighborhood structures

{
Nk

2 : k = 1, 2, 3
}
. In

Nk
2 , we perform a loop from 1, . . . , k, invoking the neighborhood N2, that is

N2 is called k times;
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– RVNS3 has, in this order, the neighborhood structures
{
Nk

3 : k = 1, 2, 3
}
. In

Nk
3 , we invoke the neighborhood N3 where the subset of servers has cardinality

fixed to k + 1.

4 Computational Experiments

We coded all algorithms in the C++ language programming and tested them on
18 realistic instances, 15 of them already used by [4]. These instances were col-
lected from an outpatient facility system in the north of Italy and corresponded
to 18 working days in December 2019. The facility operates from 7 AM to 4
PM, with at most 13 servers serving between 147 to 1336 patients per day. The
facility may offer 512 services organized in 128 different configurations. More-
over, as explained in [4], the facility prefers to update the servers’ configuration
every Δ = 60 min. The experiments that we performed were carried out on a
computer equipped with an Intel Core i7 processor of 1.2 GHz, 8 GB of RAM,
and running macOS 12.2.1.

The parameters of the re-optimization algorithm were calibrated in a trial-
and-error procedure, balancing solution quality and computing time. After the
calibration, we set Itmax = 250 iterations and for the neighborhood N3, the size
of the subsets generated are in the set {2, 3, . . . , �|S|/4�}. In the following, we
discuss how the problem parameters influence the solution quality, by focusing
in particular on the number |S| of available servers, the value of Δ, and the
policy used to schedule patients. The solution quality is measured in terms of
the total tardiness z (i.e., the main problem objective) and the number of tardy
patients NT (an additional interesting KPI). The algorithm was executed 10
times with different seeds, and average values are reported per instance. The
computing times are not reported because they were always below 3 s per exe-
cution. Despite the |S| = 13 servers available in the facility, keeping all of them
operating may be too costly. Similarly, the facility would like to avoid changing
the servers’ configuration constantly, and the value of Δ influences the number
of times the RVNS is applied to optimize (and possibly change) the servers’ con-
figurations. Concerning the policy to schedule patients, besides the FIFO, we
also implemented the Earliest Due Date (EDD) rule. In the EDD, the patients
are scheduled by the smallest target time.

The first results we present are related to a comparison between the re-
optimization algorithm with RVNS and the re-optimization algorithm with the
other RVNS variants (i.e., RVNS1, RVNS2, and RVNS3). In these tests, we set
Δ = 60 and |S| = 13, besides considering the FIFO and EDD policies. We com-
pare the performance of the four algorithms. Table 2 has the results by using the
FIFO policy, while Table 3 has the results by using the EDD policy. Each line of
these tables presents the instance number, the number of patients in I, and, for
each algorithm, the total tardiness z and the number of tardy patients NT .

In the results of Tables 2 and 3, we observe that the RVNS2 could not achieve a
feasible solution for all the executions, which are the average values marked with
an ∗. In this way, we do not consider this algorithm when comparing it with the
other ones. For the FIFO policy, in Table 2, we observe the RVNS, as originally
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proposed, has the best overall results in terms of total tardiness and number of
tardy patients. It presents the best (or equal) average total tardiness for 12 out of
18 instances, while the RVNS1 and RVNS3 have the best (or equal) results for 5
and 9 instances, respectively. On the other hand, considering the EDD policy, in
Table 3, the RVNS1 has the best overall results in terms of total tardiness, while
the RVNS3 has the best overall results in terms of the number of tardy patients.
Considering the results for each instance, the RVNS, RVNS1, and RVNS3 have
the best (or equal) average total tardiness for 6, 11, and 7 instances, respectively.
After all, we have decided to use the re-optimization algorithm with RVNS in the
next experiments.

Table 2. Results for different RVNS algorithms, using the FIFO policy.

Inst. |I| RVNS RVNS1 RVNS2 RVNS3

z NT z NT z NT z NT

1 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 914 293.11 64.50 284.94 64.40 272.09∗ 63.00 283.75 64.40

4 959 64.63 20.10 96.94 21.30 25.53∗ 17.70 67.06 19.40

5 974 104.98 32.20 84.08 31.10 83.18∗ 31.00 84.08 31.10

6 1034 308.56 66.10 309.56 65.80 307.70∗ 65.00 308.56 66.10

7 1052 176.25 54.00 176.25 54.00 176.25∗ 54.00 176.25 54.00

8 1052 110.74 52.20 143.25 53.70 110.91∗ 52.30 186.56 56.00

9 1105 163.34 36.90 147.09 35.90 115.32∗ 33.60 142.36 35.60

10 1123 180.13 48.30 175.11 47.80 166.52∗ 46.60 172.15 47.20

11 1124 346.69 65.00 356.60 65.80 301.14∗ 60.60 355.77 65.10

12 1160 179.83 56.90 197.15 58.20 93.68∗ 51.40 270.35 61.40

13 1193 101.19 47.50 87.86 46.50 71.44∗ 44.20 109.73 47.10

14 1193 167.46 48.40 171.01 48.00 153.43∗ 45.80 168.43 47.00

15 1217 897.87 253.30 900.78 253.10 829.07∗ 247.80 896.84 251.90

16 1276 369.57 95.20 371.98 95.30 352.25∗ 93.10 375.91 96.70

17 1309 401.27 80.90 471.61 85.50 353.52∗ 74.50 428.01 84.00

18 1336 243.98 116.50 251.97 114.10 221.61∗ 112.80 250.47 117.10

Average 228.31 63.22 234.79 63.36 201.87∗ 60.74 237.57 63.56

Table 4 has the results that we obtained for different number of servers, i.e.,
|S| ∈ {4, 6, 8, 10, 13}, and Δ = 60, using the FIFO policy to schedule patients.
The results obtained with the EDD policy are presented in Table 5. Observing
the results in these tables, we notice that increasing the number of available
servers is beneficial to improve the solution quality. By increasing from 4 to 13
servers, we can reduce the average total tardiness and the average number of
tardy patients by 99.88% and 93.64%, with the FIFO policy, and 99.90% and
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Table 3. Results for different RVNS algorithms, using the EDD policy.

Inst. |I| RVNS RVNS1 RVNS2 RVNS3

z NT z NT z NT z NT

1 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 914 275.64 57.10 270.80 56.50 266.68∗ 56.00 275.31 57.10

4 959 103.18 18.40 85.16 18.80 27.92∗ 15.40 104.53 18.60

5 974 89.75 32.50 89.75 32.50 84.17∗ 31.30 93.43 33.10

6 1034 302.43 59.20 301.12 59.10 301.53∗ 59.40 301.41 59.40

7 1052 170.67 46.20 170.96 46.20 170.65∗ 46.00 170.67 46.20

8 1052 173.61 32.80 123.29 31.00 87.11∗ 29.30 151.54 31.80

9 1105 148.78 36.00 141.15 35.70 121.49∗ 34.70 159.19 37.00

10 1123 163.25 41.60 162.14 42.90 154.09∗ 40.40 161.17 41.80

11 1124 401.31 68.00 363.08 65.00 299.80∗ 60.00 340.98 63.50

12 1160 147.64 39.80 184.90 41.60 78.13∗ 35.30 170.83 40.60

13 1193 89.21 32.70 86.54 31.80 59.72∗ 29.10 81.66 31.70

14 1193 170.85 45.60 173.74 46.10 150.14∗ 42.80 162.59 44.40

15 1217 379.15 80.10 370.29 78.20 347.51∗ 68.10 377.49 78.80

16 1276 326.15 71.00 320.01 70.70 298.04∗ 67.10 333.33 71.50

17 1309 407.39 76.80 430.07 77.10 357.29∗ 72.90 428.58 77.10

18 1336 149.52 39.10 139.41 39.80 119.55∗ 38.90 139.48 38.20

Average 194.36 43.16 189.58 42.94 162.43∗ 40.37 191.79 42.82

95.66%, with the EDD policy, respectively. Comparing the two policies used to
schedule patients, EDD is relatively better, with an average overall reduction
of 0.58%, in terms of total tardiness, and 2.70%, in terms of number of tardy
patients, compared to FIFO.

Table 6 gives the results for different values of Δ ∈ {15, 30, 60, 90, 120}, and
|S| = 13 servers, using the FIFO policy. For the EDD policy, the results are
shown in Table 7. We observe that smaller values of Δ lead to better quality
solutions. In general, we can observe an average reduction of 98.92%, in terms
of total tardiness, and 89.84%, in terms of the number of tardy patients, for
the FIFO policy, when passing from Δ = 120 to Δ = 15. Even better results
are obtained with the EDD policy, with an average reduction of 99.62% and
95.86%, respectively. Concerning the facility preference to update the servers
every Δ = 60 min, we notice that the solution quality could be improved if
smaller values of Δ were considered, as the best results are indeed obtained with
Δ = 15. However, the decision maker should evaluate the managerial impact of
these more frequent changes in the daily practice. Comparing the two policies,
again EDD is better than FIFO, showing an overall average reduction of 5.86%,
in terms of total tardiness, and 10.12%, in terms of the number of tardy patients
with respect to FIFO.
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Table 4. Results for different number of servers, using the FIFO policy.

Inst. |I| |S| = 4 |S| = 6 |S| = 8 |S| = 10 |S| = 13

z NT z NT z NT z NT z NT

1 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 215 3.85 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 914 118684.30 909.90 21044.50 691.50 1561.13 270.40 488.54 99.40 296.71 64.90

4 959 116877.20 948.00 13996.09 663.20 358.90 119.00 137.26 39.60 74.74 20.60

5 974 121110.80 966.40 14245.33 608.10 727.57 176.00 167.21 53.20 86.68 31.40

6 1034 173742.00 1030.00 38670.35 918.40 2926.80 382.00 597.02 124.10 308.25 65.70

7 1052 172469.30 1043.00 40537.99 996.10 2866.27 454.30 338.01 103.50 187.26 54.50

8 1052 166273.50 1048.00 30581.86 908.90 1774.57 343.80 293.97 79.70 165.92 54.80

9 1105 195975.60 1101.00 41352.55 1061.10 1566.48 299.60 276.81 84.90 149.24 35.60

10 1123 211362.60 1118.60 53127.21 1072.90 5741.46 601.80 327.82 83.80 174.83 47.80

11 1124 216109.50 1120.00 54217.47 1080.50 4956.95 531.90 744.29 133.80 381.49 67.30

12 1160 229894.70 1156.00 60780.00 1119.00 8788.97 621.70 712.12 198.10 199.31 58.20

13 1193 247645.20 1188.70 66317.00 1172.00 4187.31 579.90 303.52 120.30 100.55 47.30

14 1193 249619.70 1189.00 69532.00 1156.00 6560.83 659.00 362.82 112.70 177.51 48.80

15 1217 302848.50 1213.00 117030.60 1211.0032296.72 979.00 6254.42 581.90 895.40 253.10

16 1276 314534.40 1271.00 107492.40 1266.0015863.21 878.50 1147.74 284.70 393.28 98.30

17 1309 333459.20 1305.00 116179.00 1303.0016034.79 910.90 1013.86 209.80 363.11 76.10

18 1336 381722.90 1332.00 156984.20 1327.0047227.49 1163.70 8933.06 892.00 243.89 116.40

Average 197351.85 996.92 55671.59 919.71 8524.41 498.42 1227.69 177.86 233.23 63.38

Table 5. Results for different number of servers, using the EDD policy.

Inst. |I| |S| = 4 |S| = 6 |S| = 8 |S| = 10 |S| = 13

z NT z NT z NT z NT z NT

1 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 914 118356.20 910.00 20765.74 741.70 942.30 193.50 453.91 68.70 278.06 57.40

4 959 116690.40 955.00 13570.49 664.00 269.24 34.90 115.51 23.00 96.82 18.30

5 974 120867.70 970.00 13868.26 604.40 261.02 51.70 154.74 38.00 111.73 33.90

6 1034 173377.50 1030.00 38273.48 963.10 2094.74 428.50 541.62 75.80 301.53 59.40

7 1052 172205.70 1048.00 40196.36 1025.40 1540.03 388.70 276.00 60.00 170.71 46.60

8 1052 165994.60 1048.00 30045.79 968.70 813.42 260.10 292.94 46.80 141.15 31.40

9 1105 195642.70 1101.00 40995.50 1087.00 599.69 153.50 267.77 49.60 152.27 36.50

10 1123 210641.50 1119.00 52603.30 1090.00 5098.18 564.90 268.13 49.20 162.18 42.10

11 1124 215733.70 1120.00 53777.90 1118.00 4541.32 479.10 599.47 78.50 358.32 64.90

12 1160 229427.90 1156.00 60438.30 1135.00 8259.40 656.20 285.06 74.80 203.43 42.50

13 1193 247028.70 1189.00 66066.40 1187.00 3089.97 549.90 189.62 57.20 89.43 32.70

14 1193 249015.20 1189.00 68810.10 1167.00 5693.25 666.50 308.42 57.90 182.91 47.00

15 1217 302490.30 1213.00 116828.80 1211.00 31880.78 1002.20 5511.65 585.90 379.32 80.50

16 1276 314271.30 1272.00 107327.30 1270.00 15381.76 904.10 583.80 131.90 320.59 68.80

17 1309 333646.30 1305.00 115899.50 1303.00 15042.97 973.70 751.92 94.70 406.95 76.80

18 1336 381082.40 1332.00 156311.10 1330.00 46665.82 1191.80 8162.23 928.30 140.01 41.00

Average 197026.23 997.61 55321.02 936.96 7898.55 472.18 1042.38 134.46 194.19 43.32
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Table 6. Results for different values of Δ, using the FIFO policy.

Inst. |I| Δ = 15 Δ = 30 Δ = 60 Δ = 90 Δ = 120

z NT z NT z NT z NT z NT

1 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 1.00

3 914 30.97 23.10 44.26 24.60 293.11 64.50 1036.96 122.10 3726.76 274.80

4 959 1.70 3.20 9.63 5.00 64.63 20.10 588.67 69.00 2398.85 217.00

5 974 12.02 9.00 14.62 9.30 104.98 32.20 433.17 68.90 1626.03 183.30

6 1034 44.19 33.70 47.16 35.20 308.56 66.10 1231.23 136.50 5483.58 388.00

7 1052 36.75 29.00 36.75 29.00 176.25 54.00 438.79 85.00 3464.25 286.60

8 1052 31.37 28.40 38.59 29.50 110.74 52.20 790.59 114.50 3934.38 281.50

9 1105 19.66 11.60 22.24 12.10 163.34 36.90 745.95 111.90 4591.25 327.90

10 1123 36.89 22.10 43.84 22.20 180.13 48.30 783.66 105.20 3605.84 301.50

11 1124 50.51 24.30 51.31 24.30 346.69 65.00 1140.43 125.70 3926.11 271.10

12 1160 34.92 35.00 40.25 35.90 179.83 56.90 941.88 172.20 7061.14 413.10

13 1193 16.50 18.70 16.03 18.30 101.19 47.50 1207.36 151.70 5761.23 371.80

14 1193 20.33 16.10 21.08 16.30 167.46 48.40 814.00 109.20 5024.45 364.10

15 1217 625.60 223.20 617.26 222.60 897.87 253.30 6293.37 511.10 20858.07 734.20

16 1276 94.54 56.50 96.77 57.20 369.57 95.20 2331.29 237.10 10366.98 519.70

17 1309 26.26 17.00 37.95 18.40 401.27 80.90 2145.36 217.00 9129.37 518.10

18 1336 127.13 89.10 139.66 88.30 243.98 116.50 3993.83 400.70 21393.43 844.80

Average 67.18 35.56 70.97 36.01 228.31 63.22 1384.25 152.10 6241.78 349.92

Table 7. Results for different values of Δ, using the EDD policy.

Inst. |I| Δ = 15 Δ = 30 Δ = 60 Δ = 90 Δ = 120

z NT z NT z NT z NT z NT

1 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 914 25.48 16.00 34.15 17.10 275.64 57.10 970.54 109.10 3739.17 287.50

4 959 0.20 0.40 6.94 1.90 103.18 18.40 522.32 62.10 2212.91 220.60

5 974 12.02 9.00 15.52 9.60 89.75 32.50 418.35 67.90 1507.96 168.40

6 1034 35.49 26.40 40.85 28.50 302.43 59.20 1125.84 128.10 5296.02 389.10

7 1052 31.16 21.10 33.90 21.50 170.67 46.20 479.24 79.50 3258.92 277.70

8 1052 6.90 5.00 10.69 5.70 173.61 32.80 764.94 113.90 3679.86 288.70

9 1105 19.96 11.70 23.44 12.60 148.78 36.00 722.85 105.50 4460.73 355.00

10 1123 23.51 15.50 31.66 16.40 163.25 41.60 629.19 87.20 3390.68 298.30

11 1124 50.36 23.30 51.91 24.30 401.31 68.00 1111.06 124.30 3913.82 259.00

12 1160 23.43 20.00 33.52 21.80 147.64 39.80 754.25 121.60 7020.14 387.90

13 1193 2.68 3.50 8.65 4.40 89.21 32.70 1044.60 129.30 5778.56 373.90

14 1193 18.93 13.00 16.76 12.30 170.85 45.60 772.24 102.20 4669.85 348.10

15 1217 82.73 43.90 100.46 48.00 379.15 80.10 6072.47 519.20 20706.81 734.60

16 1276 40.27 30.10 40.88 30.20 326.15 71.00 2076.62 260.30 10109.94 520.10

17 1309 24.41 15.20 54.12 19.20 407.39 76.80 1999.52 228.60 8727.51 508.70

18 1336 11.20 7.20 29.09 9.30 149.52 39.10 3412.88 434.80 19639.72 890.50

Average 22.71 14.52 29.58 15.71 194.36 43.16 1270.94 148.53 6006.25 350.45
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5 Conclusions and Future Research

Optimizing the flow of patients in outpatient facilities is always a hard task.
While the patients would like to receive their services as soon as possible, the
facility could be also interested in reducing its costs and operating with a reduced
number of servers/operators. In this paper, we study how the right configuration
of servers can help at reducing patients’ tardiness in a dynamic environment. The
need for sophisticated and fast methods is essential for that aim. For this reason,
we developed a re-optimization algorithm, which uses an RVNS to decide on the
assignments of configurations to servers, in order to solve realistic instances.

In the computational experiments, we evaluated how the number of servers,
the time interval to update the servers’ configuration, and the policy used to
schedule patients impact the solution quality. Using all 13 servers is the best
decision, with an average reduction in total tardiness of 81.01%, for the FIFO
policy, and 81.37%, for the EDD policy, compared to using only 10 servers. Of
course, the more the number of available servers, the less the number of patients
without tardiness; despite that, [4] noticed that defining correctly the set of
configurations that the servers could offer can also impact the solution quality.
Concerning the time interval to update the servers’ configuration, we observe
that large values of Δ can affect the solution quality and thus a decision-maker
should pay attention and act as soon as she detects an increase in the tardiness.
With respect to the scheduling of patients, it is not a wise decision, though very
popular, to prefer their arrival time (FIFO policy) to their target time (EDD
policy), as this leads indeed to an overall average increase of 0.74% in the total
tardiness and 4.31% in the number of tardy patients.

We observe that there is room for improvement in terms of solution meth-
ods. A direction could consider the proposal of more elaborated heuristics for
the scheduling of patients instead of using the FIFO or EDD policies. Another
direction could consider methods based on sampled scenarios to anticipate future
decisions. For this line of research, it would be interesting to take into considera-
tion information about the priority/urgency and the realized processing time of
services for scheduling the patients. We could also investigate the problem under
a multi-objective perspective by proposing multi-objective VNS algorithms (e.g.,
as in [21]).
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Abstract. The study of Social Network Influence has attracted the
interest of scientists. The wide variety of real-world applications of this
area, such as viral marketing and disease analysis, highlights the rele-
vance of designing an algorithm capable of solving the problem efficiently.
This paper studies the Multiple Round Influence Maximization (MRIM)
problem, in which influence is propagated in multiple rounds indepen-
dently from possibly different seed sets. This problem has two variants:
the non-adaptive MRIM, in which the advertiser needs to determine the
seed sets for all rounds at the beginning, and the adaptive MRIM, in
which the advertiser can select the seed sets adaptively based on the
propagation results in the previous rounds. The main difficulty of this
optimization problem lies in the computational effort required to evalu-
ate a solution. Since each node is infected with a certain probability, the
value of the objective function must be calculated through an influence
diffusion model, which results in a computationally complex process. For
this purpose, a metaheuristic algorithm based on Variable Neighborhood
Search is proposed with the aim of providing high-quality solutions, being
competitive with the state of the art.

Keywords: Information systems · Social networks · Influence
maximization · Network science · Viral marketing · VNS

1 Introduction

Today, people manage multiple Social Networks (SNs) from different social posi-
tions, for example: the internet, information, propagation of ideas, social bond
dynamics, disease propagation, viral marketing, or advertisement, among oth-
ers [4,6,15,16].

SNs are exponentially increasing the number of active users. This growth is
extended to the amount of behavioral data, and, therefore, all classical network-
related problems are becoming computationally harder.

It is worth mentioning that SNs are used not only to spread positive informa-
tion, but also malicious information. In general, research devoted to maximizing
the influence of positive ideas is called Influence Maximization [26]. Thus, solv-
ing successfully this problem allows the decision-maker to decide the best way to
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propagate information about products and/or services. On the contrary, SNs can
be also used for the diffusion of malicious information like derogatory rumors,
disinformation, hate speech, or fake news. These examples motivate research on
how to reduce the influence of negative information. This family of problems are
usually know as Influence Minimization [14,23].

Researchers usually model an SN as a graph G(V,E) where the set of nodes
V represents the users and each relation between two users is modeled as a pair
(u, v) ∈ E, with u, v ∈ V indicating that user u is connected to or can even
transmit information to user v. Kempe [12] originally formalized the influence
model to analyze how information is transmitted among SN users. Given an SN
with |V | = n nodes where the edges (relational links) represent the spreading or
propagation process on that network, the task is to choose a seed set nodes S of
size l < n with the aim of maximizing the number of nodes in the network that
are influenced by the seed set S.

The evaluation of the influence [17,27] of a given seed set S requires the
definition of an Influence Diffusion Model (IDM) [12]. This model is responsi-
ble for deciding which nodes are affected by the information received from their
neighboring nodes in the SN. The most extended IDMs are: Independent Cas-
cade Model (ICM), Weighted Cascade Model (WCM), Linear Threshold Model
(LTM), and Triggering Model (TM). All of them are based on assigning an influ-
ence probability to each relational link in the SN. ICM, which is one of the most
widely used IDMs, considers that the probability of influence is the same for each
link and is usually a small probability, being 1% a widely accepted value. On the
contrary, WCM considers that the probability that a user v will be influenced
by an user u is proportional to the in-degree of user v, i.e., the number of users
that can eventually influence the user v. Therefore, the probability of influencing
the user v is defined as 1/din(v), where din(v) is the in-degree of user v. LTM,
requires a specific activation weight for each link in the SN. Given these weights,
a user will be influenced if and only if the sum of the weights of its neighbors is
larger than or equal to a given threshold.

This work considers the Triggering Model as IDM, as it is the IDM used in
the best algorithm found in the literature [33], with the aim of providing a fair
comparison. The TM is a generalization of ICM and LT where every node v
independently chooses a random trigger set according to some distribution over
subsets of its neighbors and is influenced if any of the nodes in its trigger sets
are influenced. Note that the ICM model is a special case of TM where every
edge (u, v) ∈ E is associated with a probability pu,v ∈ [0, 1] and is set to zero if
pu,v /∈ [0, 1]. The trigger set for each user v is selected in each round, conformed
with those users u whose probability of directly influencing v is larger than or
equal to puv, being this probability selected at random for each round.

A solution for the Multi-Round Influence Maximization problem (MRIM)
consist of selecting R seed sets of size l, one for each round, i.e., S =
{S1, S2, . . . , SR}. Notice that, since l nodes can be selected for each round, the
total number of nodes conforming the final seed set S is equal to l · R. The aim
of MRIM is to maximize the number of active nodes following a specific IDM.
The objective function value is then evaluated as:
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MRIM(S) = IDM(S1 ∪ S2 ∪ . . . ∪ SR)

where IDM represents the influence diffusion model considered. Then, the objec-
tive of the MRIM is to find the seed set for each round that maximizes the value
of the objective function value. In mathematical terms,

S� ← arg max
S∈S

MRIM(S)

where S is the set of all possible combinations of seed sets for the problem under
consideration.

Notice that, in the case in which a single round is considered, i.e., R = 1, the
problem is equivalent to the well-studied Social Network Influence Maximization
Problem (SNIMP). The classical SNIMP is NP-hard [13], so both the non-
adaptive and adaptive versions of MRIM are also NP-hard.

As it was aforementioned, there are two different approximations with the
MRIM problem. On the one hand, the non-adaptive approach consisting of
selecting a number l of nodes per round without having information about the
influenced users in each round. On the other hand, in the adaptive approach,
users are influenced after the selection of each round is known, increasing the
information available for the next rounds.

(a) Initial Social Network. (b) Real world influence selecting A.

Fig. 1. Initial Social Network and influence propagation when A is considered as first
seed set node.

Figure 1 represents an SN with 3 nodes and 2 relations where the number
of selected nodes as a seed set is l = 2. Let us suppose that the initial selected
node is always A. If we now consider the non-adaptive model, it is expected
that the next most promising node to be selected is node C, since node C will be
more probably influenced by A. However, if in the final simulation C is not finally
influenced, the active nodes will be A and B. However, considering the adaptive
model, after selecting the first node A, the method will know that C is not finally
influenced, so it can select C to increase the number of active nodes, resulting in
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Fig. 2. Example of SN with l = 1 and 2 rounds where MRIM(S1 ∪ S2) = 6.

A, B, and C. In this case, the available information in the adaptive model allows
the method to increase the number of active nodes.

Figure 2 shows an example of an SN where 2 rounds are considered for the
MRIM, with l = 1 and the Triggering Model. The value close to each node rep-
resents the value obtained in the Monte Carlo simulation to select the triggering
set. In particular, the triggering set for a given node is defined as those adja-
cent nodes whose relation value is larger than or equal to the value obtained in
the Monte Carlo simulation. Assuming that the Monte Carlo simulation value
obtained for node F is 0.6, the triggering set for node F is {A, B} since the value
relation with A is 0.7, larger than 0.6, and the value of the relation with B is 0.6,
which is equal to the value obtained in Monte Carlo simulation, 0.6.

The selected nodes are colored dark gray, while the influenced ones are colored
light gray. In Fig. 2a node F is selected as the seed node, resulting in S1 = {F}.
Then, nodes A and B are directly influenced by F, and node C is also influenced
by node B, resulting in an objective function value of 4. Notice that nodes D
and E are not influenced by F since the relation value is smaller than the Monte
Carlo value obtained for F (the value close to the node).

In the second round, depicted in Fig. 2b, the same seed node F is selected,
S2 = {F}. Notice that, in this round, the values obtained in the Monte Carlo
simulation for each node (the value depicted close to each node) may vary. In this
case, nodes A, B, D, and E are directly influenced, and node C is not influenced by
B since the relation value is smaller than the Monte Carlo value obtained for B.

This work presents a novel metaheuristic approach to deal with MRIM, which
allows us to find high-quality solutions in a reasonable computing time. Our main
goal is to design an efficient algorithm to find the most influential users in an
SN, considering the TM as an IDM, thus increasing the efficiency of the algo-
rithm. An algorithm based on Variable Neighborhood Search (VNS) framework
is presented, characterized by its efficiency when designing solutions for NP-hard
combinatorial optimization problems. The proposed procedure is validated over
a set of real-world instances widely used in the context of social influence max-
imization and compared against the state-of-the-art method based on a totally
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greedy approach. The results obtained demonstrate the efficiency and efficacy of
the proposed methodology.

The main contributions of this work are the following.

– A metaheuristic algorithm based on the Variable Neighborhood Search App-
roach applied to Social Networks Problems is proposed.

– A competitive testing is performed with the VNS algorithm and state-of-the-
art algorithms.

The paper is organized as follows. Section 2 defines the Multi-Round Influence
Maximization problem in this manuscript. Section 3 describes the proposed algo-
rithm and the strategies used to solve it. Section 4 includes the computational
results for both variants adaptive and non-adaptive. Finally, the conclusions and
future research are discussed in Sect. 5.

2 Literature Review

Richardson [29] initially formulated the problem of selecting the target nodes
in the SNs. Kempe et al. [12] were the first to solve the SNIMP formulating it
as a discrete optimization problem. It has been shown that the SNIMP is NP-
hard [13]. Kempe et al. [12] proposed a greedy hill-climbing algorithm with an
approximation of 1 − 1/e − ε, being e the base of the natural logarithm and ε
any positive real number. This result indicates that the algorithm is able to find
solutions which are always within a factor of at least 63% of the optimal value
under the IDMs described in Sect. 1.

As a consequence of the computational effort required to evaluate the ICM,
Kempe et al. [12] also proposed several greedy heuristics based on SN analysis
metrics, such as degree and closeness centrality [32]. These methods only require
one run of a Monte Carlo simulation to validate the single solution obtained
using heuristic functions, thus increasing efficiency at the cost of loss of efficacy.
When the metric considered is the degree of the node, the algorithm is called
high-degree heuristic.

Several extensions of those first greedy algorithms were later proposed. In
particular, Leskovec et al. [18] introduced the Cost-Effective Lazy Forward
(CELF ) selection that took advantage of the submodularity property to sig-
nificantly reduce the run time of the greedy hill-climbing algorithm, becoming
more than 700 times faster than the original procedure.

Goyal et al. [9] proposed a new algorithm called CELF++ with the aim of
improving the efficiency of the original CELF. It leans on the property of sub-
modularity of the spread function for IDM, avoiding unnecessary computations.
According to the authors, it is 35–55% faster than CELF.

Another related work is adaptive seeding [31], which uses the first-stage nodes
and their accessible neighbors together as the seed set to maximize the influence,
and is quite different from ours. In terms of the multi-round diffusion model and
influence maximization, Lin et al. [19] focus on multiparty influence maximiza-
tion where there must be at least two parties competing in networks.
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The adaptive MRIM study follows the adaptive optimization framework
defined by Golovin and Krause [8]. They also study adaptive influence maxi-
mization as an application, but the adaptation is at the per-node level: seeds are
selected one by one. Later seeds can be selected based on the activation results
of the earlier seeds, but earlier seeds would not help propagation again for later
seeds. This makes it different from our multi-round model.

Finally in [33] and the extension [34] provide a further analysis about
MRIM in an adaptive and non-adaptive way, compared with several methods
in the state-of-the-art. The outperforming method it is a greedy method called
AdaIMM that we used it to compare with our proposal.

Several surveys [1,2] show that [34] is considered the state-of-the-art proposal,
and metaheuristic approaches are scarce in the context of SNs problems.

3 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic [25] originally proposed
as a general framework for solving hard optimization problems. The main contri-
bution of this methodology is to consider several neighborhoods during the search
and to perform systematic changes in the neighborhood structures. Although it
was originally presented as a simple metaheuristic, VNS has drastically evolved,
resulting in several extensions and variants: Basic VNS, Reduced VNS, Vari-
able Neighborhood Descent, General VNS, Skewed VNS, Variable Neighbor-
hood Decomposition Search, or Variable Formulation Search, among others.
See [10,11,22] for a detailed analysis of each variant.

In this work, we propose a Basic Variable Neighborhood Search (BVNS) for
providing high quality solutions for MRIM. This variant combines determinis-
tic and random changes of neighborhood structures in order to find a balance
between diversification and intensification, as presented in Algorithm 1.

Algorithm 1. BVNS (kmax, R, l)
1: S ← ∅
2: while R > 0 do
3: S ← Construct(S, l)
4: S ← LocalSearch(S)
5: k ← 1
6: while k ≤ kmax do
7: S′ ← Shake(S, k)
8: S′′ ← LocalSearch(S′)
9: k ← NeighborhoodChange(S, S′′, k)

10: end while
11: R ← R − 1
12: end while
13: return S
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The algorithm receives three input parameters: the largest neighborhood to
be explored, kmax; the number of rounds used, R; and, finally, the size of the seed
set per round l, resulting in the complete seed set of size l ∗ R. The algorithm
starts by creating the seed set S where it contains the selected nodes (step 1).
Steps 2–12 represent the number of rounds used in the MRIM problem, and
in step 3, an initial solution S is generated considering the constructive proce-
dure presented in Sect. 3.1. The solution is then locally improved with the local
search method described in Sect. 3.2 (step 4). Starting from the first predefined
neighborhood (step 5), BVNS iterates until it reaches the maximum considered
neighborhood kmax (steps 6–10). For each iteration, the incumbent solution is
perturbed by the shake method (step 7). This method is designed to escape
from local optima by randomly exchanging the position of k nodes, generating
a solution S′ in the neighborhood under exploration. The local search method
(step 8) is then responsible for finding a local optimum S′′ in the current neigh-
borhood with respect to the perturbed solution S′. Finally, the neighborhood
change method selects the next neighborhood to be explored (step 9). In par-
ticular, if S′′ outperforms S in terms of the objective function value, then it is
updated (i.e., S ← S′′), and the search starts again from the first neighborhood
(i.e., k ← 1). Otherwise, the search continues in the next neighborhood (i.e.,
k ← k + 1). The current round stops when reaching the largest neighborhood
considered kmax, then the number of rounds it decreases in step 11 and starts
the new round using the best seed set S. Finally, when the number of rounds
ends, the best seed set found during the search is in S and returns this value
(step 13).

3.1 Constructive Algorithm

Every VNS variant requires an initial solution, as stated by [11]. The original
proposal of VNS [25] states that the initial solution does not affect to the quality
of the obtained results, so it can be generated at random. However, several
studies [20,28] have shown that providing a high-quality starting point helps the
metaheuristic focus the search on more promising regions of the search space.

This work proposes a greedy algorithm which uses the objective function as
greedy function value. This method calculates the number of activated nodes
when selecting the next seed node u, MRIM(u). With the aim of reducing
the computational effort, the number of iterations required by Monte Carlo is
reduced.

The nodes conforming the seed set for the first round are the ones that results
in the maximum number of influenced users considering the reduced number of
Monte Carlo iterations. Then, the method for selecting the seed sets for the next
rounds depends on the approximation considered: the non-adaptive model or
the adaptive model. In the former, the method selects the next l nodes most
influential. On the contrary, in the latter, the nodes selected are those which are
able to influence a larger number of non-previously influenced nodes.
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3.2 Local Search

The improvement phase it is devoted to reach a local (ideally global) optimum.
Designing a local search for influence maximization problems usually results in
rather complex algorithms. In order to propose an efficient method, the local
search proposed in this research is based on the one originally presented in [21],
which allows us to have a short time-consuming local search procedure by lim-
iting the search space explored.

The neighborhood of a solution S is defined as the set of solutions that can
be reached by performing a single move over S. The move considered is a swap
move Swap(S, u, v) where node u is removed from the seed set, being replaced
by v, with u ∈ S and v /∈ S. This swap move is formally defined as:

Swap(S, u, v) = (S \ {u}) ∪ {v}

Thus, the neighborhood Ns(S) of a given solution S consists of the set of solu-
tions that can be reached from S by performing a single swap move. More for-
mally,

Ns(S) = {Swap(S, u, v) ∀u ∈ S,∀v ∈ V \ S}
The size of the resulting neighborhood, l ·(n−l), makes the complete exploration
of the neighborhood not suitable for MRIM, even considering an efficient imple-
mentation of objective function evaluation. Then, the intelligent neighborhood
exploration strategy proposed in [21] is followed, with the aim of reducing the
number of solutions explored within each neighborhood. This reduction in the
size of the search space is performed by exploring just a small fraction δ of the
available nodes for the swap move.

The δ-value limits the number of nodes considered in the local search app-
roach so it is recommended to select the most promising ones to be involved in
the swap moves. In the context of MRIM, a node with a large out-degree can
eventually influence a large number of nodes. Following this idea, we sort the
candidate nodes to be included in the seed set in descending order with respect
to their out-degree, while the candidate nodes to be removed from the seed set
are sorted in ascending order with respect to their out-degree.

Notice that the objective function evaluation consists in a Monte Carlo sim-
ulation, being the most computationally demanding part of the proposed algo-
rithm. For this reason, the proposed local search aims to limit the number of
required simulations, thus leading to a more efficient procedure.

3.3 Shake

The perturbation mechanism in VNS is usually called the Shake procedure. The
goal of this method is to diversify the search by generating a neighbor solution,
which will not be explored by the local search method, and may eventually lead
to further regions of the search space. We propose a method that modifies the
structure of the solution according to a parameter k. Its value ranges from 1 to
kmax, which is an input parameter of the complete procedure (see Algorithm 1).
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The proposed shake method performs k swaps moves to the incumbent solu-
tion. As is customary in the BVNS methodology, these elements are selected
at random. Recent works have studied more advanced shake techniques that
balance diversification and intensification of the search. This strategy has been
referred to as intensified shake (see [7] and [30] for further details).

4 Computational Results

This section describes the computational experiments designed to evaluate
the performance of the proposed algorithms and analyze the results obtained.
All experiments have been performed in an Intel Core i7-9750H (2.6 GHz)
with 16 GB RAM and the algorithms were implemented using Java 17 and
the Metaheuristic Optimization framewoRK (MORK) 13 [24]. The testbed of
instances used in this work is the same set considered in the previous work. The
results compare the performance of our proposal with the state-of-the-art greedy
method AdaIMM [33].

Instances used by the state-of-the-art algorithm consist of two different
datasets. On the one hand, the Flixster dataset is a network of the American
social movie discovery service (www.flixster.com) where each user is represented
by a node, and a directed edge from node u to v is formed if v rates a movie
shortly after u does so on the same movie. The dataset is analyzed in [3], and the
influence probability are learned by the topic-aware model. This instance con-
tains 95969 nodes and 484865 directed edges. On the other hand, the NetHEPT
dataset [5] is widely used in many influence maximization studies. It is an aca-
demic collaboration network from the “High Energy Physics Theory” section
of arXiv from 1991 to 2003, where nodes represent the authors and each edge
represents one paper co-authored by two nodes. There are 15233 nodes and
32235 directed edges in the NetHEPT dataset. All experiments are reproduced
in the same environment thanks to the public code https://github.com/lichao-
sun/Multi-Round-Influence-Maximization.

The Basic Variable Neighborhood Search (BVNS) parameters have been
experimentally set, resulting in l = 10, R = 5, δ = 25, k = 0.1. For both
datasets, 100 Monte Carlo simulations are considered, as in the best previous
method. Tables 1 and 2 contain the following performance metrics per round:
the average objective function value (i.e., the number of nodes influenced, on
average, after 100 simulations), Avg.; the average deviation with respect to the
best known solution, Dev. (%); the average execution time of the algorithm mea-
sured in seconds, Time (s); and, finally, the number of times that the algorithm
is able to reach the best solution in the experiment (#Best).

Table 1 shows competitive results when comparing both approaches in the
non-adaptive version. In terms of deviation, AdaIMM reports 14.15% versus
2.37% of the BVNS. Notice that BVNS outperforms AdaIMM considering the
Flixster instances in the average objective function. However, when dealing with
NetHEPT instances, the average objective function value is more competitive.
Analyzing the computational time, AdaIMM requires shorter computing time

www.flixster.com
https://github.com/lichao-sun/Multi-Round-Influence-Maximization
https://github.com/lichao-sun/Multi-Round-Influence-Maximization
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Table 1. Results of the BVNS algorithm versus the state-of-the-art procedure in the
non-adaptive version. Best results are highlighted with bold font.

Instance R BVNS AdaIMM

Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

NetHEPT 1 355.89 0.00 0.34 1 302.40 15.03 0.21 0

2 584.66 0.00 0.49 1 544.40 6.89 0.28 0

3 719.36 5.57 0.61 0 761.80 0.00 0.33 1

4 900.89 6.72 0.75 0 965.80 0.00 0.51 1

5 1015.53 11.41 0.82 0 1146.30 0.00 0.60 1

Flixster 1 16637.78 0.00 78.21 1 13560.51 18.50 6.59 0

2 17964.82 0.00 89.16 1 13349.29 25.69 7.88 0

3 18288.07 0.00 98.57 1 13655.16 25.33 9.50 0

4 18603.10 0.00 106.82 1 14033.71 24.56 13.33 0

5 19120.03 0.00 114.90 1 14820.86 22.49 17.22 0

Summary 9419.01 2.37 49.07 7 7312.96 14.15 5.64 3

(5.64 s versus 49.07 s), mainly due to the large number of nodes of Flixster
instances, since AdaIMM only requires one complete Monte Carlo execution.
Analyzing the number of best solutions found, BVNS is able to reach 7 out of
10 best results, while AdaIMM reaches 3 best solutions.

Table 2. Results of the BVNS algorithm versus the state-of-the-art procedure in the
adaptive version. Best results are highlighted with bold font.

Instance R BVNS AdaIMM

Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

NetHEPT 1 355.89 0.00 0.34 1 302.40 15.03% 0.21 0

2 584.66 0.00 0.52 1 557.20 4.70% 0.35 0

3 806.20 0.00 0.68 1 776.90 3.63% 0.38 0

4 913.99 6.93 0.81 0 982.00 0.00% 0.41 1

5 1021.09 12.24 0.99 0 1163.50 0.00% 0.56 1

Flixster 1 16637.78 0.00 78.21 1 13611.37 18.19% 7.11 0

2 17831.39 0.00 95.31 1 13749.83 22.89 7.99 0

3 18364.20 0.00 106.87 1 13855.42 24.55 9.21 0

4 18929.40 0.00 109.22 1 14213.69 24.91 13.24 0

5 19310.31 0.00 121.23 1 14863.01 23.03 16.15 0

Summary 9475.49 1.92 51.42 8 7407.53 13.69 5.56 2

The results of the adaptive version, depicted in Table 2, are similar to the
non-adaptive ones. The average deviation in AdaIMM is 13.69%, while BVNS
obtains a value of 1.92%. Again, BVNS is more computationally demanding
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(5.56 s versus 51.42 s). Analyzing the number of best solutions found, BVNS is
able to reach 8 out of 10, while AdaIMM obtains 2 best solutions.

The results obtained in both non-adaptive and adaptive approaches show
that BVNS is a competitive method for the MRIM when compared with the
best method found in the literature, obtaining better solutions than AdaIMM.
The main drawback of the proposal is the required computational time, although
it can be limited by reducing the number of nodes explored in the local search
method.

5 Conclusions

In this paper a Basic Variable Neighborhood Search algorithm for solving the
adaptive and non-adaptive MRIM is presented. A constructive procedure based
on the objective function is used with a surrogate local search based on swap
moves. Since an exhaustive exploration of the search space is not suitable for this
problem, an intelligent neighborhood exploration strategy is used which limits
the region of the search space to be explored, focusing on the most promising
areas. This rationale leads us to provide high quality solutions in reasonable com-
puting time, even for the largest instances derived from real-world SNs commonly
considered in the SNI problems. Since the intelligent neighborhood exploration
strategy is parameterized, if computing time is not a relevant factor, the region
explored can be easily extended to find better solutions, thus increasing the
required computational effort. This fact makes the proposed MRIM algorithm
highly scalable.

In our future work, we plan to increase the number of instances to pro-
vide robust results, reduce the computational time, study other methodologies
as Variable Neighborhood Descent and General Variable Neighbourhood Search
metaheuristic, and adapt the techniques developed in this work to influence min-
imization problems. This adaptation can be useful for minimizing the impact of
fake news and monitor those users which can eventually transmit misinformation
through the network.
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Abstract. This paper is related to open-dimension problems in the area
of cutting and packing. The problem we are interested in considers a set
of irregularly shaped items and a two-dimensional (2D) bin in which one
side is open. The objective is to pack all items in the bin and, in the
case of a bin with one opened side, we also want to minimize the length
of such a side. A packing cannot have items overlapping each other and
items extrapolating the bin’s dimensions. This problem appears in the
metal-mechanic, textile, leather, and other related industries to the cut-
ting of irregular pieces. We propose a variable neighborhood search-based
heuristic for such a problem. A solution is coded as a vector of items that
gives the sequence in which items will be packed. Neighborhood struc-
tures based on swap and insertion movements are considered in the local
search phase, while the shaking phase contains a single neighborhood
structure based on swap movements. Numerical experiments on bench-
mark instances show that the heuristic is competitive compared to other
literature methods, obtaining equal or better solutions for 90.90% of the
instances.

Keywords: Irregular cutting problems · Open dimension problems ·
Variable neighborhood search

1 Introduction

The problem of packing small objects inside one or more large objects appears in
many real-world applications. In the logistics area, for example, we have pallets
and boxes to be loaded into containers, trucks, trains, ships, or airplanes. This
problem is computationally hard in many of its variants and so mathematical
programming models and heuristics have been proposed in the literature. It is
important to mention that, from a theoretical point of view, it is equivalent to
cutting problems, which in turn requires the cutting of large objects to produce
small ones. In the textile and metal-mechanic industry, for example, fabric rolls
and metal plates are cut to produce pieces of products. For an overview of
packing and cutting problems, we refer to the book in [20].

In this paper, we are interested in problems where small objects can have
irregular shapes. We look for the packing (cutting) of all small objects (hereafter
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called items) in a single large object (hereafter called a strip). This problem is
known as the two-dimensional irregular strip packing problem [18]. As the strip is
assumed to have a fixed width, the objective is to minimize its opened length by
obtaining a feasible packing. Concerning irregularly shaped items, the guarantee
of a feasible packing can be obtained with geometric tools, such as the raster
method, the phi-functions, the direct trigonometry, and the no-fit polygons. For
these tools, we refer to the tutorial in [3]. We use the no-fit raster, a combination
of the raster method and the no-fit polygons [23].

In the literature on the two-dimensional irregular strip packing problem, we
may find different contributions, from simple mathematical programming models
to sophisticated heuristics. As this problem is NP-hard, most of the contributions
are related to heuristics. In [1], sequences of items are packed with the bottom-
left rule. In this rule, an item is translated to the bottom and then to the left in
the strip. This rule is also used in [15], where a genetic algorithm generates the
sequence of items; in [10], where a 2-exchange heuristic generates the sequence
of items; in [11], where simulated annealing is used for generating the sequence
of items; in [17], where a biased random key genetic algorithm generates the
sequence of items.

Other contributions are related to a constraint programming model in [4],
the integration of the cuckoo search with a guided local search in [7], and a tai-
lored branch-and-cut algorithm, where a variable neighborhood search heuristic
generates feasible solutions, in [22]. Integer linear programming models are pro-
posed in [5,8,16,19,23]. The model in [19] uses clique constraints to detect
infeasible packings. They improved most of the previous solutions presented in
the literature.

We propose a Variable Neighborhood Search (VNS) for the two-dimensional
irregular strip packing problem. The VNS’s neighborhood structures are based
on swap and insertion movements. The shaking phase consists of a single struc-
ture based on swap movements, while the local search consists of the variable
neighborhood descent (VND). The VNS generates the sequence of items, while
a function is used to transform the given sequence into a feasible packing. For
that, items are positioned in the strip by combining the bottom-left and top-
left placement rules. Results obtained with the VNS are compared with those
in [19,22], with better solutions for 27.27% of the instances and equal solutions
for 63.63% of the instances.

The remainder of this paper is organized as follows. In Sect. 2, we define
the problem and the geometric tools used to guarantee feasible packings. In
Sect. 3, we present the variable neighborhood search and how a sequence of items
is transformed into a problem solution. In Sect. 4, we perform computational
experiments on literature instances and compare the performance of the VNS
with the literature. In Sect. 5, we give some conclusions and directions for future
works.



A VNS Based Heuristic for a 2D Open Dimension Problem 127

2 Problem Definition

This paper is about the Two-Dimensional Irregular Strip Packing Problem
(2ISP). We assume the strip is rectangular, while items are defined as (irreg-
ular) polygons without holes. Each item j has a set of vertices Vj , an area aj ,
and a reference vertex pj . We assume an item is positioned in the strip by its ref-
erence vertex, which in turn is defined as the vertex with the lowest y-coordinate
and, in the case of ties, with the lowest x-coordinate. A solution is built on the
Cartesian plane. The strip’s lower-left coordinates are at (0, 0) and its top-right
coordinates are at (∞,W ). We associate the opened length (∞) to the x-axis and
the width W to the y-axis. The problem’s objective is to minimize the opened
length while packing all items in the strip.

We assume the strip is discrete and then defined by a grid of points [2]. The
reference vertex of items is positioned on points of this grid. A feasible solution
(packing) is obtained when all items are packed inside the strip (i.e., there is
no part/area of any item extrapolating the strip’s dimensions) and items do not
overlap each other (i.e., there is no intersection between any two items when
positioned on the grid). To guarantee these two conditions to obtain a feasible
solution, we calculate the inner-fit raster of each item with the strip and the
no-fit raster between any two items. Figure 1 shows an example of irregularly
shaped items, a rectangular strip, and the no-fit raster between two items.

The inner-fit and no-fit rasters are calculated in a pre-processing step [23].
For the inner-fit raster, each item j is positioned by its reference vertex at the
lowest-left position on the grid, touching the strip’s borders where possible but
not extrapolating the strip’s dimensions. Then, this item is translated around the
strip always touching the strip’s borders. The inner-fit polygon that is generated
is next discretized according to the strip’s grid. Positions having value “1” mean
that such an item cannot be positioned there since it does not respect the strip’s
dimensions. For the no-fit raster, we consider each pair of items i and j. Item
i is fixed on the plane, while j is positioned in such a way that it touches i.
Then, item j is translated (by its reference vertex) around and touching i. The
no-fit polygon that is generated is next discretized according to the strip’s grid.
Positions having value “1” mean that item j cannot be positioned there since
such items will overlap each other.

3 Proposed Heuristic

We develop a VNS heuristic to the 2ISP. This heuristic has been applied to
solve many continuous and discrete optimization problems, obtaining very com-
petitive results compared to other literature methods [6,13]. Differently from
other literature contributions that applied VNSs to irregular cutting problems,
we consider the shaking phase defined on only one neighborhood structure, while
the local search phase is composed of three neighborhood structures. The idea
is to prioritize the local search phase to obtain high-quality solutions. As this
phase could require a large computational time, the VNS has the advantage of
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Fig. 1. Illustrative example for the 2ISP.

carrying the optimization over a single solution and thus helping on reducing
the computational effort. Algorithm 1 presents the proposed VNS.

In Algorithm 1, we code the solution x as a vector of integers. This is com-
monly adopted in the literature on irregular cutting problems [21,22]. Each inte-
ger represents the index of an item in the input instance. This means that x con-
tains the sequence in which items are packed in the strip’s grid. In the shaking
phase, we consider that only the neighborhood structure N1 is applied, where
positions i and j are randomly chosen. On the other hand, the local-search phase
considers three neighborhood structures, which are N1, N2, and N3. In detail,
the neighborhood structures are:
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– N1 (one-element swap): The elements of two given positions i and j are
swapped, i.e., i ↔ j;

– N2 (one-element insertion): Given two positions i and j, position i is inserted
immediately after position j;

– N3 (three-elements change): The elements of three given positions i, j, and u
are changed, i.e., i → j, j → u, and u → i. Notice that auxiliary variables are
used to avoid losing information.

Algorithm 1: VNS proposed to the 2ISP

1 x ← randomly generated solution
2 for a given number of iterations do
3 while true do

/*shaking phase*/
4 x′ ← random solution in the neighborhood structure N1(x)

/*local-search phase*/
5 k ← 1
6 while k ≤ 3 do
7 x′′ ← first solution in the neighborhood structure Nk(x′) that

is better than x′, if one exists
8 if F (x′′) < F (x′) then
9 x′ ← x′′; k ← 1

10 else
11 k ← k + 1

/*change of neighborhood*/
12 if F (x′) < F (x) then
13 x ← x′

14 else
15 break

The local-search phase in Algorithm 1 consists of the variable neighborhood
descent heuristic [12]. It starts by looking for the first solution in the neighbor-
hood structure Nk(x′), initially for k = 1, that is better than x′, the solution of
the shaking phase. If this is true, solution x′ is updated and the search continues
on the same neighborhood structure; otherwise, the search continues on the next
neighborhood structure. It is worth mentioning that all possibilities of positions
in N1, N2, and N3 are tested until finding the first improved solution if one
exists. After the local search, solution x′ is compared with the current solution
x. The latter is updated if x′ is better; otherwise, the while loop is broken.

The value of a solution x is determined by the function F () in Algorithm 2.
This function is based on the decoder proposed by [22]. The difference is that
we are using only one placement rule, which is a combination of the bottom-left
and top-left rules. The proposed placement rule divides the solution vector x
into two parts. The left half of vector x assumes that items are positioned by
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the bottom-left rule, while the right half part has its items positioned by the
top-left rules.

Algorithm 2: Cost of a solution x calculated by the function
F ()

1 if solution x is in the hash table then
2 return length L of the packing defined by x

3 S ← ∅
4 foreach item j in solution x do
5 if j is in the left half of x then
6 (a, b) ← the first point of the grid by the bottom-left rule that

gives a feasible packing for j
7 S ← S ∪ {j, (a, b)}
8 else
9 (a, b) ← the first point of the grid by the top-left rule that gives a

feasible packing for j
10 S ← S ∪ {j, (a, b)}
11 Save x and S in the hash table
12 return length L of the packing S defined by x

Figure 2 has an example of Algorithm 2 applied to a solution with four items
in the sequence {1, 4, 3, 2}. Items 1 and 4 are in the left half of x and then are
packed by the bottom-left rule. Items 3 and 2 are in the right half part and then
are packed by the top-left rule. The resulting packing has length L, which is the
cost of the solution returned by the function F ().

4 Computational Experiments

We coded all algorithms in the C++ programming language and performed com-
putational experiments on literature instances. The experiments are executed in
a computer with an Apple M2 processor, 8 GB of RAM, and macOS 13 as the
operating system. The proposed VNS has a single parameter to define, which
is the maximum number of iterations. We define it as a maximum time limit,
set to 120 s, to solve each instance. The VNS runs 5 times and the best solution
found among these is reported.
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Fig. 2. Example of packing obtained with the function F () for a solution x.

Table 1. Data of the 22 instances.

Instance name Authors Number of items Strip’s width (W )

blazewicz1 Toledo et al. [23] 7 15

blazewicz2 Toledo et al. [23] 14 15

blazewicz3 Toledo et al. [23] 21 15

blazewicz4 Toledo et al. [23] 28 15

blazewicz5 Toledo et al. [23] 35 15

dagli1 Rodrigues and Toledo [19] 10 60

fu Fujita et al. [9] 12 38

poly1a Hopper [14] 15 40

poly1b Rodrigues and Toledo [19] 15 40

poly1c Rodrigues and Toledo [19] 15 40

poly1d Rodrigues and Toledo [19] 15 40

poly1e Rodrigues and Toledo [19] 15 40

shapes2 Toledo et al. [23] 8 40

shapes4 Toledo et al. [23] 16 40

shapes5 Toledo et al. [23] 20 40

shapes7 Toledo et al. [23] 28 40

shapes15 Toledo et al. [23] 43 40

shirts1-2 Rodrigues and Toledo [19] 13 40

shirts2-4 Rodrigues and Toledo [19] 26 40

shirts3-6 Rodrigues and Toledo [19] 39 40

shirts4-8 Rodrigues and Toledo [19] 52 40

shirts5-10 Rodrigues and Toledo [19] 65 40

We consider 22 instances from the literature, which may be found on the
website of the EURO Special Interest Group on Cutting and Packing1. Table 1
1 https://www.euro-online.org/websites/esicup/data-sets.

https://www.euro-online.org/websites/esicup/data-sets
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has the instance name, the authors who proposed the instance, the total number
of items, and the strip width. Concerning the grid of points, we discretize the
strip, the inner-fit rasters, and no-fit polygons by one unit of distance according
to [19].

Table 2 has the results obtained with the proposed VNS and two other lit-
erature methods, i.e., the branch-and-cut algorithms in [19,22]. The algorithm
in [19] is not able to obtain the solution of two instances, namely shapes15
and shirts5-10. On the other hand, the VNS and the algorithm in [22] report a
solution to all instances. The proposed VNS obtains equal solutions for 14 out
of 22 instances. For the others, the VNS improves the solution of 6 instances,
namely poly1a, poly1b, shapes5, shapes7, shapes9, and shapes15. On the other
hand, the VNS is worse for instances shirts2-4 and shirts3-6, differing from one
unit in terms of length. The computing time of the VNS is not reported in the
table because it is used as the stopping criterion and is equal to 120 s for each
instance. In Fig. 4, we show the improved solutions obtained with the proposed
VNS.

Table 2. Comparing the VNS with two other literature algorithms.

Instance Proposed VNS Souza Queiroz and Andretta [22] Rodrigues and Toledo [19]

Length L Length L Time (s) Length L Time (s)

blazewicz1 8 8 7.43 8 0.01

blazewicz2 14 14 195.39 14 4.17

blazewicz3 21 21 3600.00 20 1139.96

blazewicz4 28 28 3600.00 27 3600.00

blazewicz5 35 35 3600.00 34 3600.00

dagli1 23 23 1.48 23 100.73

fu 34 34 3600.00 37 3600.00

poly1a 16 17 3600.00 17 3600.00

poly1b 19 20 3600.00 20 3600.00

poly1c 13 13 63.78 13 152.25

poly1d 13 13 3600.00 13 3600.00

poly1e 12 12 3600.00 12 3600.00

shapes2 14 14 2.10 14 1.09

shapes4 25 25 2431.50 25 3600.00

shapes5 30 31 3600.00 31 3600.00

shapes7 41 42 3600.00 45 3600.00

shapes9 48 49 3600.00 54 3600.00

shapes15 61 62 3600.00 – 3600.00

shirts1-2 13 13 0.03 13 0.02

shirts2-4 18 17 177.29 17 47.77

shirts3-6 25 24 3558.46 24 497.68

shirts4-8 33 33 3600.00 33 3600.00

shirts5-10 41 41 3600.00 – 3600.00
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Fig. 3. Solutions improved by the proposed VNS - part 1.
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Fig. 4. Solutions improved by the proposed VNS - part 2.
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5 Concluding Remarks

This paper is related to the two-dimensional irregular strip packing, an open-
dimension problem, for which the strip’s length is minimized while packing all
items. Besides being an NP-hard problem, it is found in many real-world appli-
cations. As the items to pack may have an irregular shape, we use geometric
tools such as the inner-fit raster and no-fit raster to guarantee feasible solutions.
The proposed VNS has the shaking phase defined over a single neighborhood
structure, while the local search as the VND has three neighborhoods based on
swap and insertion movements. Due to the solution representation, we define
a function to obtain the packing and so its length. In this function, items in
the given sequence are packed by a combination of the bottom-left and top-left
placement rules (Fig. 2).

The computational experiments on literature instances show the proposed
VNS is competitive, obtaining equal or better solutions for 90.90% of the
instances. For the other instances, the difference is one unit in the strip’s length,
which is relatively small. We notice that there is room for improvement in many
directions. One could be in the proposal of new ways to code and decode a
solution, as in the case of defining new placement rules. Further exploration of
the scale adopted to the grid could also be worthwhile to identify the trade-off
between solution quality and computing time. Another interesting direction is
the combination of heuristics and mathematical programming models. It could
be important to have a comparison between different paradigms, e.g., single
trajectory heuristics versus population-based ones. In terms of instances, one
direction could be to have items with holes and allow the rotation of items.

Acknowledgements. The authors acknowledge the financial support of the National
Council for Scientific and Technological Development (CNPq grants numbers
405369/2021-2 and 311185/2020-7) and the State of Goiás Research Foundation
(FAPEG).
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Abstract. The Bi-Objective Multi-Row Facility Layout Problem is a
problem belonging to the family of Facility Layout Problems. This prob-
lem is challenging for exact and metaheuristics approaches. We use the
Pareto front approach instead of the weight approach by means of a
non-dominated solution set which we update in order to keep only the
non-dominated solutions. To tackle this problem, we propose a Basic
VNS algorithm based on a constructive method that generates random
solutions, a mono-objective local search that relies on an interchange
move, and a shake method that applies insert moves. In this regard, we
also explain how to adapt the mono-objective schema of the BVNS for a
multi-objective one. Then, we compare our results with the state of the
art and propose future work.

Keywords: Basic VNS · Bi-Objective optimization · Facility Location

1 Introduction

Facility Layout Problems (FLPs) are a well-known family of optimization prob-
lems with the goal of finding the optimal position of facilities in a given layout.
See [1,9] and [10] for recent surveys. FLP is seen as a challenge for both exact
and heuristic procedures. The very first work addressing this family of prob-
lems originally dates from 1969 [16] and was motivated by the need for a linear
arrangement of different rooms along a corridor. This problem is called Single-
Row Facility Layout Problem (SRFLP).

Many FLP variants can also be found in the literature. For example, in the
Single-Row Equal Facility Layout Problem (SREFLP) [11] all the facilities have
the same width. Using two rows, we find the Double-Row Facility Layout Prob-
lem (DRFLP) [4], and its variants. Other variants consider several rows (more
than two rows) such as the Multi-Row Facility Layout Problem (MRFLP) [12],
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and its variants. Another challenging variant is the Multi-Row Equal Facility
Layout Problem (MREFLP) [2,18]. From the multi-objective point of view, the
bi-objective MREFLP is a variant of the MREFLP which considers two objec-
tive functions and where both, the number of rows and the number of facilities
that can be allocated in each row, are given by the instance. In other words, the
layout configuration is fixed by the target instance.

In general multi-objective problems can be addressed from two different
approaches. The first one combines all objective functions into a single one by
means of a weighted sum, and returns a single value [3,6–8,13,15], and [17]. The
second approach considers a set of different non-dominated solutions taking into
account the objective functions separately [17]. In this work, we will follow this
last approach.

The rest of the paper is structured as follows. In Sect. 2 we provide a descrip-
tion for the problem and an example of evaluation. Then, we describe our Basic
VNS approach in Sect. 3. In Sect. 4 we explain our results and compare them
with the state of the art. Finally, in Sect. 5, we present our conclusions and
future work.

2 Problem Description

Given a set of facilities (F ), a weight matrix corresponding to an objective
function (W ), a solution that we are going to evaluate (ϕ), the number of rows
(m) and the number of columns (c), we can calculate the objective function value
through Eq. 1 in this way: let ρ(i, j) be the facility in row i and column j in ϕ,
wu,v be the weight between facilities u and v in matrix W , and du,v the distance
between facilities u and v, the equation computes the sum of the products of all
facilities pairwise weight and their pairwise distance.

F(F,W,ϕ) =
m∑

i=1

c∑

j=1

m∑

k=1

c∑

l=j+1

wρ(i,j),ρ(k,l) · dρ(i,j),ρ(k,l) (1)

As seen, the product has two parameters: a weight between the pairwise and
the distance between these facilities. We extract the weight from the weight
matrix, but we need to calculate the distance among them. In this problem,
the Manhattan distance is used. This means that we will consider the vertical
distance in addition to the horizontal distance between facilities. Manhattan
distance is computed as shown in Equation (2).

dρ(i,j),ρ(k,l) = |l − j| + |k − i| (2)

For this problem, we have two objective functions: material handling cost,
MHC and closeness ratio, CR, and both are calculated with Equation (1). The
difference between them is the weight matrix they use, which is different. Notice
that these objectives are opposed due to these weight matrices values. Table 1
shows the weight matrix for MHC on the left and the weight matrix for CR on
the right. Here we see that the weight between A and E facilities for MHC is
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6, and it is -1 for CR. On the contrary, the weights between C and F are 1 and
-1. So, depending on the values of these weight matrix, the objectives could be
opposed.

Table 1. Weight matrices for the solution in Fig. 1. On the left, the weight matrix for
the MHC. On the right, the weight matrix for the CR.

A B C D E F

A 0 5 3 2 6 4

B 5 0 5 2 6 2

C 3 5 0 1 2 1

D 2 2 1 0 2 2

E 6 6 2 2 0 6

F 4 2 1 2 6 0

A B C D E F

A 0 4 6 2 -1 4

B 4 0 4 2 2 8

C 6 4 0 2 2 -1

D 2 2 2 0 6 2

E -1 2 2 6 0 1

F 4 8 -1 2 1 0

For the sake of understanding we provide an example through Table 1 and
Fig. 1. Let us begin with the contribution of the facility located in the first row
and in the first column, ρ(1, 1) = A, to the objective functions. First, we need
to calculate the distance between facilities A and D, where ρ(1, 2) = D. Notice
that both facilities are in the same column, so, there is no vertical distance
between them (dAD = |(1 − 1)| + |(2 − 1)| = 1). Then we proceed with the weight
matrix. The contribution to the objective CR is wAD · dAD, where dAD = 1 and
wAD = 2. As a result, we have wAD · dAD = 2. For the other objective function, we
use the weight between A and D. Since wAD = 2, we have the same result for the
objective function MHC. We repeat this process for each pairwise between A and
the other facilities. In the final step, we calculate the last pairwise facilities value,
A and F. For these facilities, where ρ(1, 1) = A and ρ(2, 3) = F, the distance is
dAF = |(3 − 1)| + |(2 − 1)| = 3. The weight between facilities A and F is 4, for CR
and for MHC. Then, the contribution of this pairwise for the objective function
CR is wAF · dAF = 12 and wAF · dAF = 12 for the MHC one. In summary, to obtain
the total contribution of facility A, we need the following operation:

wAD · dAD + wAE · dAE + wAB · dAB + wAC · dAC + wAF · dAF

Once we finish calculating facility A, we have to repeat this process with the
rest of facilities.

Fig. 1. Example layout with size 6.
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3 Basic Variable Neighborhood Search

One of the most famous metaheuristics is Variable Neighborhood Search (VNS),
which was proposed in 1997 by Mladenovic and Hansen [14]. This algorithm has
several variants and, among them, one of the most used is the Basic Variable
Neighborhood Search (BVNS). This variant lets us escape from the local optima
through a shake movement. For mono-objective problems, we can apply the
schema for BVNS as it was originally proposed. For multi-objective problems,
we have to change this schema because this schema works for one solution, but
not a set of solutions.

3.1 Bi-Objective BVNS

In this section, we will explain our algorithm proposal and the details of each
proposed component for this algorithm.

If we work with mono-objective problems, it is simple to define if one solution
is better than another. If we minimize, the solution with lowest value will be
the best. If we are maximizing, then the other way around. For multi-objective
problems, we have to compare the values for different objective functions. In this
particular case, we have two functions that we have to minimize. One solution
can dominate another, be dominated by another, or these solutions can be non-
dominated among them. More precisely a solution ϕ1 dominates ϕ2 (ϕ1 ≺ ϕ2) if
the value of objective function Gi(ϕ1) is better of equal for all objectives i, and
exists one objective value where ϕ1 is better. Equation (3) formally shows this
concept.

ϕ1 ≺ ϕ2 if

∀i ∈ {1..k} : Gi(ϕ1) ≤ Gi(ϕ2)
∧ ∃i ∈ {1..k} : Gi(ϕ1) < Gi(ϕ2)

(3)

Due to the fact that we are going to work with more than one solution,
we have to store them in a data structure. We will use a set of non-dominate
solutions which we call ND. This set will contain only non-dominated solutions.
Whenever we want to add a solution ϕ to this set, we will use the function
Update, which will check if ϕ is dominated by any solution in the set. If so,
we will not add this solution. If not, we will check all the solutions in the set,
removing all the solutions dominated by ϕ.

One of the most important points of this algorithm is to define when we have
improved our solution. To this aim, we will use the approach proposed [5]. This
approach uses ND as the solution to be improved. If any changes have been
made to ND, we consider that our algorithm has improved our current solution.
Algorithm 1 shows our implementation of this approach.

In step 1) we create an empty ND. Then we generate a set of solutions by
mean of a constructive method in step 2 which will be explained in Sect. 3.2.
The number of solutions that we generate is given by the maxCons parameter.
Then, in step 3, we populate ND with the solutions previously generated (S ). It
is worth noting that we Update each time we add a solution to our ND. Then, in
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Algorithm 1: BVNS Algorithm (maxCons)

1 ND ← ∅
2 S ← Constructive(maxCons) � Section 3.2
3 ND ← Update(ND , S)
4 S ← LocalSearch(ND) � Section 3.3
5 ND ← Update(ND , S)
6 k ← 1
7 while k < kMax do
8 ϕ ← SelectRandom(ND)
9 ϕ′ ← Shake(ϕ, k) � Section 3.4

10 S ← LocalSearch({ϕ′}) � Section 3.3
11 ND ′ ← Update(ND , S)
12 if (ND �= ND ′) then
13 k ← 1
14 ND ← ND ′;

15 else
16 k ← k + 1

17 return ND

step 4, we try to improve all our solutions as explained in Sect. 3.3. As a result,
we obtain a new set S of improved solutions. Then, we update again our ND
with S, obtaining the initial set of non-dominated solutions. In step 6, we set
k = 1. Then, in step 7, we will iterate until we reach kMax. In this case, kMax
depends on the size of the instance. Inside the loop, in step 8, we select a random
solution (ϕ) from ND. Then, in step 9, we shake our solution ϕ as described in
Sect. 3.4. The parameter k indicates how many times we shake our solution. In
step 10, we apply our local search procedure to ϕ′, saving the resulting solutions
in S. In step 11 we update our ND with S obtaining a new set ND’. In step 12 we
check if ND’ is equal to ND. If they are different then there was an improvement.
Therefore, we update ND to ND’ in step 11 and then, in step 13, we set k = 1
to reset the loop. If there was no improvement, k is incremented in step. Finally,
in step 17, we return ND.

3.2 Constructive Method

In this first approach, we have used only one constructive method. With the
aim of increasing diversity, our algorithm generates feasible solutions at random
following a multi-start approach. This way, the non-dominated solution set will
be populated with a number of different solutions. We have run this constructive
100 times, and we have stored these solutions in S. Once we have these solutions,
we proceed to update our ND. Due to the fact that this set will contain only
non-dominated solutions, ND could contain less than 100 solutions.
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3.3 Local Search

Once we have a constructive method, we proceed to try to improve the solu-
tions that we have obtained. We have implemented two different neighborhoods
through two different moves: interchange and insert. In this section, we will
explain the interchange movement. In the next section we will explain the insert
one. Moreover, we will explain the local search that we have used. It is worth
remembering that the layout is already defined by the instance, that means we
know, as a constraint of the problem, the number of rows and the number of
facilities per row.

Let us explain the interchange movement through Fig. 2. As stated in Sect. 1,
the layout is already defined. Whenever we use a movement, we have to keep
the same layout. On the left, we have the original layout, and on the right, we
have the resulting one after the movement. The interchange movement changes
the position of two facilities, leaving the others in their previous position. As we
can see in Fig. 2, we have interchanged facilities D and C.

Fig. 2. Interchange facilities C and D.

For the local search, we will use the interchange movement. Our local search
is based on the one proposed in [18] which considers only one objective. Due to
the fact that we have two objectives, we need to adapt the implementation. The
idea is to run two searches on each solution, one per objective. Let us explain in
detail the local search through its implementation in Algorithm 2.

First, in step 1 we create an empty initial set of solutions S. Then in step 2,
we will go through all the solutions in ND. We launch the local search that we
mentioned above, focusing on the objective MHC and store this result in s1. We
do the same for the CR in step 4. Then, we add s1 and s2 to S in step 5 and
iterate to the next solution in ND. Finally, we return S in step 6.

We represent this idea of the alternate local searches in Fig. 3. In this figure,
we have two solutions, indicated as (b) and (a). In addition, we have also rep-
resented the two objectives MHC and CR. On the abscissa axis, MHC is rep-
resented; meanwhile, on the ordinate axis, CR is represented. There are four
colored arrows. On the one hand, the orange ones represent how the solutions
follow a trajectory toward the MHC objective. On the other hand, the blue ones
follow a path toward the CR objective.
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Algorithm 2: LocalSearch(ND)

1 S ← ∅
2 for i = 1 to |ND | do
3 s1 ← LSMHC (ND [i])
4 s2 ← LSCR(ND [i])
5 S ← S ∪ {s1} ∪ {s2}
6 return S

Fig. 3. Mono-objective local search.

3.4 Shake

In the previous section we have explained how the interchange movement works,
and how we had used it in our local search procedure. In this section, we explain
the insert movement. We have reserved this movement for the shake procedure.
The reason is that this movement diversifies more than the interchange move-
ment. Let us explain this movement through Fig. 4.

In Fig. 4 we have the original solution on the left, while on the right we have
the one obtained after a certain insert. In particular, we have inserted facility
A in the second row, third column. As we can see in this solution, all the other
facilities but F have changed positions. The reason is that the layout has been
previously defined and we have to keep this layout.

Fig. 4. Insert facility A in the second row and third column.
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4 Results

In this section, we show our experimental results and then compare them with
the state of the art. We represent our results graphically, in order to make the
comparison easier for the reader.

The previous state of the art presented three algorithms: BBO, NSBBO and
NSGA - II [17]. They used BBO as a weighted approach and NSBBO and NSGA
- II as a Pareto front approach. In particular, NSBBO is the adaptation of the
BBO to the Pareto front approach. The previous authors proposed four instances
where we have run our proposal. As it will be shown, the authors reported only a
few solutions per instance, but they did not report execution times. The solutions
proposed by the previous paper are colored green for NSBBO and blue for NSGA
- II. Our proposal is colored red en the figures.

Figure 5 shows the results for the instance of size 6. In this instance, the
values reported for NSBBO and NSGA - II are the same. Our BVNS approach
obtains four solutions that clearly dominate the previous ones. In fact, solution
(71, 105) dominates all previous solutions.

Fig. 5. Previous instance with size 6.

Figure 6 shows the results for the instance of size 8. Again, our BVNS app-
roach obtains four solutions that clearly dominate the previous ones.

Figure 7 shows the results for the instance of size 12. In this instance, our
BVNS proposal obtains eleven solutions that clearly dominate the previous ones.

Finally, Fig. 8 shows the results for the instance of size 15. In this instance,
the values reported for the NSBBO and NSGA - II are more dispersed than in
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Fig. 6. Previous instance with size 8.

Fig. 7. Previous instance with size 12.
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the previous instances. Our BVNS proposal obtains eight solutions where two of
them are similar to the previous results. However, the resulting solutions clearly
dominates the previous ones.

Fig. 8. Previous instance with size 15.

5 Conclusions and Future Work

The BO-MREFLP was recently studied in several works, using different
approaches. In this paper, we propose a metaheuristic algorithm based on the
BVNS methodology. We have reached and improved the results in the state of
the art.

As a future work, we will work on a new constructive method based on a
GRASP methodology. In addition, it could be possible to implement another
kind of local search instead of the mono-objective one. Finally, instead of select-
ing random solutions from ND, we can use the crowding distance to select the
solution.
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