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Abstract. We study the single machine scheduling problem under
uncertain parameters, with the aim of minimizing the maximum lateness.
More precisely, the processing times, the release dates and the delivery
times of the jobs are uncertain, but an upper and a lower bound of
these parameters are known in advance. Our objective is to find a robust
solution, which minimizes the maximum relative regret. In other words,
we search for a solution which, among all possible realizations of the
parameters, minimizes the worst-case ratio of the deviation between its
objective and the objective of an optimal solution over the latter one.
Two variants of this problem are considered. In the first variant, the
release date of each job is equal to 0. In the second one, all jobs are of
unit processing time. In all cases, we are interested in the sub-problem
of maximizing the (relative) regret of a given scheduling sequence. The
studied problems are shown to be polynomially solvable.

Keywords: Scheduling · Maximum lateness · Min-max relative
regret · Interval uncertainty

1 Introduction

Uncertainty is a crucial factor to consider when dealing with combinatorial opti-
mization problems and especially scheduling problems. Thus, it is not sufficient
to limit the resolution of a given problem to its deterministic version for a single
realisation of the uncertain parameters, i.e., a scenario. In our study, we investi-
gate a widely used method of handling uncertainty that relies on a set of known
possible values of the uncertain parameters without any need of probabilistic
description, namely the robustness approach or worst-case approach [12]. The
aim of this approach is to generate solutions that will have a good performance
under any possible scenario and particularly in the most unfavorable one.

The use of the robustness approach involves specifying two key components.
The first component is the choice of the type of uncertainty set. Literature
has proposed various techniques for describing the uncertainty set [6], with the
discrete uncertainty and the interval uncertainty being the most well-examined.
Indeed, the most suitable representation of uncertainty in scheduling problems is
the interval uncertainty, where the value of each parameter is restricted within a
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specific closed interval defined by a lower and an upper bound. These bounds can
be estimated through a data analysis on traces of previous problem executions.

The second component is the choice of the appropriate robustness criterion [1,
16]. The absolute robustness or min-max criterion seeks to generate solutions
that provide the optimal performance in the worst case scenario. This criterion
can be seen as overly pessimistic in situations where the worst-case scenario
is unlikely, causing decision makers to regret not embracing a moderate level
of risk. The robust deviation or min-max regret criterion aims at minimizing
the maximum absolute regret, which is the most unfavorable deviation from the
optimal performance among all scenarios. The relative robust deviation or min-
max relative regret criterion seeks to minimize the maximum relative regret,
which is the worst percentage deviation from the optimal performance among
all possible scenarios. Averbakh [4] remarks that the relative regret objective is
more appropriate compared to the absolute regret objective in situations where
the statement “10% more expensive” is more relevant than “costs $30 more”.
However, the min-max relative regret criterion has a complicated structure and
this may explain why limited knowledge exists about it.

The focus of this paper is to investigate the min-max relative regret crite-
rion for the fundamental single machine scheduling problem with the maximum
lateness objective. The interval uncertainty can involve the processing times,
the release dates or the delivery times of jobs. In Sect. 2, we formally define our
problem and the used criteria. In Sect. 3, we give a short review of the existing
results for scheduling problems with and without uncertainty consideration. We
next consider two variants of this problem.

In Sect. 4, we study the variant where all jobs are available at time 0 and the
interval uncertainty is related to processing and delivery times. Kasperski [11]
has applied the min-max regret criterion to this problem and developed a poly-
nomial time algorithm to solve it by characterizing the worst-case scenario based
on a single guessed parameter through some dominance rules. We prove that this
problem is also polynomial for the min-max relative regret criterion. An itera-
tive procedure is used to prove some dominance rules based on three guessed
parameters in order to construct a partial worst-case scenario. To complete this
scenario, we formulate a linear fractional program and we explain how to solve
it in polynomial time.

In Sect. 5, we study the maximum relative regret criterion for the variant of
the maximum lateness problem where the processing times of all jobs are equal
to 1 and interval uncertainty is related to release dates and delivery times. For
a fixed scenario, Horn [8] proposed an optimal algorithm for this problem. For
the uncertainty version, we simulate the execution of Horn’s algorithm using
a guess of five parameters, in order to create a worst-case scenario along with
its optimal schedule. Note that, we also give a much simpler analysis for the
maximum regret criterion of this variant of our scheduling problem.

We conclude in Sect. 6.
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2 Problem Definition and Notations

In this paper, we consider the problem of scheduling a set J of n non-preemptive
jobs on a single machine. In the standard version of the problem, each job is
characterized by a processing time, a release date and a due date. However, in
this work we use a known equivalent definition of this problem in which the
due dates are replaced by delivery times. In general, the values of the input
parameters are not known in advance. However, an estimation interval for each
value is known. Specifically, given a job j ∈ J , let [pmin

j , pmax
j ], [rmin

j , rmax
j ] and

[qmin
j , qmax

j ] be the uncertainty intervals for its characteristics.
A scenario s = (ps

1, ..., p
s
n, rs

1, ..., r
s
n, qs

1, ..., q
s
n) is a possible realisation of all

values of the instance, such that ps
j ∈ [pmin

j , pmax
j ], rs

j ∈ [rmin
j , rmax

j ] and qs
j ∈

[qmin
j , qmax

j ], for every j ∈ J . The set of all scenarios is denoted by S. A solution
is represented by a sequence of jobs, π = (π(1), ..., π(n)) where π(j) is the jth
job in the sequence π. The set of all sequences is denoted by Π.

Consider a schedule represented by its sequence π ∈ Π and a scenario s ∈ S.
The lateness of a job j ∈ J is defined as Ls

j(π) = Cs
j (π)+qs

j , where Cs
j (π) denotes

the completion time of j in the schedule represented by π under the scenario s.
The maximum lateness of the schedule is defined as L(s, π) = maxj∈J Ls

j(π).
The job c ∈ J of maximum lateness in π under s is called critical, i.e., Ls

c(π) =
L(s, π). The set of all critical jobs in π under s is denoted by Crit(s, π). We call
first critical job, the critical job which is processed before all the other critical
jobs. By considering a given scenario s, the optimal sequence is the one leading to
a schedule that minimizes the maximum lateness, i.e., L∗(s) = minπ∈Π L(s, π).
This is a classical scheduling problem, denoted by 1|rj |Lmax using the standard
three-field notation, and it is known to be NP-hard [15].

In this paper, we are interested in the min-max regret and the min-max
relative regret criteria whose definitions can be illustrated by a game between
two agents, Alice and Bob. Alice selects a sequence π of jobs. The problem of Bob
has as input a sequence π chosen by Alice, and it consists in selecting a scenario
s such that the regret R of Alice R(s, π) = L(s, π) − L∗(s) or respectively the
relative regret RR of Alice RR(s, π) = L(s,π)−L∗(s)

L∗(s) = L(s,π)
L∗(s) − 1 is maximized.

The value of Z(π) = maxs∈S R(s, π) (resp. ZR(π) = maxs∈S RR(s, π)) is called
maximum regret (resp. maximum relative regret) for the sequence π. In what
follows, we call the problem of maximizing the (relative) regret, given a sequence
π, as the Bob’s problem. Henceforth, by slightly abusing the definition of the
relative regret, we omit the constant −1 in RR(s, π), since a scenario maximizing
the fraction L(s,π)

L∗(s) maximizes also the value of L(s,π)
L∗(s) −1. Then, Alice has to find

a sequence π which minimizes her maximum regret (resp. maximum relative
regret), i.e., minπ∈Π Z(π) (resp. minπ∈Π ZR(π)). This problem is known as the
min-max (relative) regret problem and we call it as Alice’s problem.

Given a sequence π, the scenario that maximises the (relative) regret over all
possible scenarios is called the worst-case scenario for π. A partial (worst-case)
scenario is a scenario defined by a fixed subset of parameters and can be extended
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to a (worst-case) scenario by setting the remaining unknown parameters. For a
fixed scenario s, any schedule may consist of several blocks, i.e., a maximal set
of jobs, which are processed without any idle time between them. A job uj is
said to be first-block for the job j if it is the first job processed in the block
containing j in a given schedule.

3 Related Work

In the deterministic version, the problem 1|rj |Lmax has been proved to be
strongly NP-hard [15]. For the first variant where all release dates are equal,
the problem can be solved in polynomial time by applying Jackson’s rule [9],
i.e., sequencing the jobs in the order of non-increasing delivery times. For the
second variant with unit processing time jobs, the rule of scheduling, at any
time, an available job with the biggest delivery time is shown to be optimal by
Horn [8].

For the discrete uncertainty case, the min-max criterion has been studied
for several scheduling problems with different objectives. Kouvelis and Yu [12]
proved that the min-max resource allocation problem is NP-hard and admits
a pseudo-polynomial algorithm. Aloulou and Della Croce [2] showed that the
min-max 1||∑ Uj problem of minimizing the number of late jobs is NP-hard,
while the min-max problem of the single machine scheduling is polynomially
solvable for many objectives like makespan, maximum lateness and maximum
tardiness even in the presence of precedence constraints. The only scheduling
problem studied under discrete uncertainty for min-max (relative) regret is the
1||∑ Cj for which Yang and Yu [17] have proved that it is NP-hard for all the
three robustness criteria.

For the interval uncertainty case, the min-max criterion has the same com-
plexity as the deterministic problem since it is equivalent to solve it for an
extreme well-known scenario. Considerable research has been dedicated to the
min-max regret criterion for different scheduling problems. Many of these prob-
lems have been proved to be polynomially solvable. For instance, Averbakh [3]
considered the min-max regret 1||max wjTj problem to minimize the maximum
weighted tardiness, where weights are uncertain and proposed a O(n3) algorithm.
He also presented a O(m) algorithm for the makespan minimization for a permu-
tation flow-shop problem with 2 jobs and m machines with interval uncertainty
related to processing times [5]. The min-max regret version of the first variant
of our problem has been considered by Kasperski [11] under uncertain process-
ing times and due dates. An O(n4) algorithm has been developed which works
even in the presence of precedence constraints. On the other hand, Lebedev and
Averbakh. [14] showed that the min-max regret 1||∑ Cj problem is NP-hard.
Kacem and Kellerer [10] considered the single machine problem of scheduling
jobs with a common due date with the objective of maximizing the number of
early jobs and they proved that the problem is NP-hard.

Finally, for the min-max relative regret criterion for scheduling problems
with interval uncertainty, the only known result is provided by Averbakh [4]
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who considered the problem 1||∑ Cj with uncertain processing times and he
proved that it is NP-hard.

4 Min-Max Relative Regret for 1 || Lmax

In this section, we consider the min-max relative regret criterion for the max-
imum lateness minimization problem, under the assumption that each job is
available at time 0, i.e., rs

j = 0 for all jobs j ∈ J and all possible scenarios
s ∈ S. For a fixed scenario, this problem can be solved by applying the Jack-
son’s rule, i.e., sequencing the jobs in order of non-increasing delivery times.

4.1 The Bob’s Problem

We denote by B(π, j) the set of all the jobs processed before job j ∈ J , including
j, in the sequence π and by A(π, j) the set of all the jobs processed after job j
in π. The following lemma presents some properties of a worst-case scenario for
a given sequence of jobs.

Lemma 1. Let π be a sequence of jobs. There exists (1) a worst case scenario
s for π, (2) a critical job cπ ∈ Crit(s, π) in π under s, and (3) a critical job
cσ ∈ Crit(s, σ) in σ under s, where σ is the optimal sequence for s, such that:

i for each job j ∈ A(π, cπ), it holds that ps
j = pmin

j ,
ii for each job j ∈ J \{cπ}, it holds that qs

j = qmin
j ,

iii for each job j ∈ B(π, cπ) ∩ B(σ, cσ), it holds that ps
j = pmin

j , and
iv cσ is the first critical job in σ under s.

Consider the sequence π chosen by Alice. Bob can guess the critical job cπ

in π and the first critical job cσ in σ. Then, by Lemma 1 (i)–(ii), he can give
the minimum processing times to all jobs in A(π, cπ), and the minimum deliv-
ery times to all jobs except for cπ. Since the delivery times of all jobs except
cπ are determined and the optimal sequence σ depends only on the delivery
times according to the Jackson’s rule, Bob can obtain σ by guessing the position
k ∈ �1, n� of cπ in σ. Then, by Lemma 1 (iii), he can give the minimum process-
ing times to all jobs in B(π, cπ) ∩ B(σ, cσ). We denote by the triplet (cπ, cσ, k)
the guess made by Bob. Based on the previous assignments, Bob gets a partial
scenario s̄π

cπ,cσ,k. It remains to determine the exact value of qcπ
and the process-

ing times of jobs in B(π, cπ) ∩ A(σ, cσ) in order to extend s̄π
cπ,cσ,k to a scenario

sπ
cπ,cσ,k. At the end, Bob will choose, among all the scenarios sπ

cπ,cσ,k created,

the worst case scenario sπ for the sequence π, i.e., sπ = arg max
i,j,k

{L(sπ
i,j,k, π)

L∗(sπ
i,j,k)

}
.

In what follows, we propose a linear fractional program (P ) in order to find a
scenario sπ

cπ,cσ,k which extends s̄π
cπ,cσ,k and maximizes the relative regret for the

given sequence π. Let pj , the processing time of each job j ∈ B(π, cπ)∩A(σ, cσ),
and qcπ

, the delivery time of job cπ, be the continuous decision variables in (P ).
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All other processing and delivery times are constants and their values are defined
by s̄π

cπ,cσ,k. Recall that σ(j) denotes the j-th job in the sequence σ. To simplify
our program, we consider two fictive values qσ(n+1) = qmin

cπ
and qσ(0) = qmax

cπ
.

maximize

∑
i∈B(π,cπ) pi + qcπ

∑
i∈B(σ,cσ)

pi + qcσ

(P )

subject to
∑

i∈B(π,j)

pi + qj ≤
∑

i∈B(π,cπ)

pi + qcπ
∀j ∈ J (1)

∑

i∈B(σ,j)

pi + qj ≤
∑

i∈B(σ,cσ)

pi + qcσ
∀j ∈ J (2)

pj ∈ [pmin
j , pmax

j ] ∀j ∈ B(π, cπ) ∩ A(σ, cσ) (3)

qcπ
∈ [max{qmin

cπ
, qσ(k+1)},min{qmax

cπ
, qσ(k−1)}] (4)

The objective of (P ) maximizes the relative regret for the sequence π under
the scenario sπ

cπ,cσ,k with respect to the hypothesis that cπ and cσ are critical in
π and σ, respectively, i.e.,

ZR(π) =
L(sπ

cπ,cσ,k, π)
L∗(sπ

cπ,cσ,k)
=

L
sπ

cπ,cσ,k
cπ (π)

L
sπ

cπ,cσ,k
cσ (σ)

Constraints (1) and (2) ensure this hypothesis. Constraints (3) and (4) define
the domain of the continuous real variables pj , j ∈ B(π, cπ) ∩ A(σ, cσ), and qcπ

.
Note that, the latter one is based also on the guess of the position of cπ in
σ. The program (P ) can be infeasible due to the Constraints (1) and (2) that
impose jobs cπ and cσ to be critical. In this case, Bob ignores the current guess of
(cπ, cσ, k) in the final decision about the worst case scenario sπ that maximizes
the relative regret.

Note that the Constraint (1) can be safely removed when considering the
whole procedure of Bob for choosing the worst case scenario sπ. Indeed, consider
a guess (i, j, k) which is infeasible because the job i is not critical in π due to the
Constraint (1). Let s be the scenario extended from the partial scenario s̄π

i,j,k by
solving (P) without using the Constraint (1). Let cπ be the critical job under
the scenario s. Thus, Ls

cπ
(π) > Ls

i (π). Consider now the scenario s′ of maximum
relative regret in which cπ is critical. Since sπ is the worst case scenario chosen
by Bob for the sequence π and by the definition of s′ we have

L(sπ, π)
L∗(sπ)

≥ L(s′, π)
L∗(s′)

≥ L(s, π)
L∗(s)

=
Ls

cπ
(π)

L∗(s)
>

Ls
i (π)

L∗(s)

In other words, if we remove the Constraint (1), (P ) becomes feasible while its
objective value cannot be greater than the objective value of the worst case
scenario sπ and then the decision of Bob with respect to the sequence π is not
affected. This observation is very useful in Alice’s algorithm. However, a similar
observation cannot hold for Constraint (2) which imposes cσ to be critical in σ.
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As mentioned before, the program (P ) is a linear fractional program, in which
all constraints are linear, while the objective function corresponds to a fraction
of linear expressions of the variables. Moreover, the denominator of the objective
function has always a positive value. Charnes and Cooper [7] proposed a poly-
nomial transformation of such a linear fractional program to a linear program.
Hence, (P ) can be solved in polynomial time.

Note also that, in the case where cπ �= cσ, the value of the maximum lateness
in the optimal sequence (

∑
j∈B(σ,cσ)

ps
j + qs

cσ
) is fixed since the processing times

of jobs processed before the job cσ in σ, as well as, the delivery time qs
cσ

of the job
cσ are already determined in the partial scenario s̄π

cπ,cσ,k. Therefore, if cπ �= cσ

then (P ) is a linear program. Consequently, the Charnes-Cooper transformation
is used only in the case where cπ = cσ.

Theorem 1. Given a sequence π, there is a polynomial time algorithm that
returns a worst case scenario sπ of maximum relative regret ZR(π) for the prob-
lem 1 || Lmax.

4.2 The Alice’s Problem

In this section, we show how Alice constructs an optimal sequence π minimizing
the maximum relative regret, i.e., π = argminσ∈Π ZR(σ). Intuitively, by starting
from the last position and going backwards, Alice searches for an unassigned job
that, if placed at the current position and it happens to be critical in the final
sequence π, will lead to the minimization of the maximum relative regret for π.

In order to formalize this procedure we need some additional definitions.
Assume that Alice has already assigned a job in each position n, n − 1, . . . , r + 1
of π. Let Br be the set of unassigned jobs and consider any job i ∈ Br. If i is
assigned to the position r in π, then the sets B(π, i) and A(π, i) coincide with Br

and J \Br, respectively, and are already well defined, even though the sequence
π is not yet completed (recall that B(π, i) includes i). Indeed, B(π, i) and A(π, i)
depend only on the position r, i.e., B(π, i) = B(π, j) = Br and A(π, i) = A(π, j)
for each couple of jobs i, j ∈ Br. Hence, Alice can simulate the construction in
Bob’s procedure in order to decide which job to assign at position r. Specifically,
for a given job i ∈ Br, Alice considers all scenarios sBr

i,j,k, where j ∈ J is the
first critical job in the optimal sequence σ for this scenario and k ∈ �1, n� is
the position of i in σ, constructed as described in Bob’s algorithm. Note that,
we slightly modified the notation of the scenario constructed by Bob for a guess
(i, j, k) to sBr

i,j,k instead of sπ
i,j,k, since a partial knowledge (Br = B(π, i)) of π is

sufficient for his procedure. Moreover, the reason of omitting Constraint (1) in
the program (P ) is clarified here, since the job i is not imposed to be necessarily
critical in π. For a job i ∈ Br, let

fi(π) = max
j∈J ,k∈�1,n�

{
L(sB(π,i)

i,j,k )

L∗(sB(π,i)
i,j,k )

}

Then, Alice assigns to position r the job i which minimizes fi(π), and the fol-
lowing theorem holds.



56 I. Assayakh et al.

Theorem 2. There is a polynomial time algorithm which constructs a sequence
π that minimizes the maximum relative regret for the problem 1 || Lmax.

5 Min-Max Relative Regret for 1 | rj, pj = 1 | Lmax

In this section, we consider the case of unit processing time jobs, i.e., ps
j = 1

for all jobs j ∈ J and all possible scenarios s ∈ S. In contrast to the previous
section, the jobs are released on different dates whose values are also imposed
to uncertainties. For a fixed scenario, Horn [8] proposes an extension of the
Jackson’s rule leading to an optimal schedule for this problem: at any time t,
schedule the available job, if any, of the biggest delivery time, where a job j is
called available at time t if rj ≤ t and j is not yet executed before t.

5.1 The Bob’s Problem

Since all jobs are of unit the processing times, a scenario s is described by
the values of the release dates and the delivery times of the jobs, i.e., by rs

j ∈
[rmin

j , rmax
j ] and qs

j ∈ [qmin
j , qmax

j ], for each j ∈ J . Recall that, in the presence
of different release dates, the execution of the jobs is partitioned into blocks
without any idle time, while, given a sequence π and a scenario s, the first job in
the block of a job j ∈ J is called first-block job for j in π under s. The following
lemma characterizes a worst case scenario for a given sequence of jobs π.

Lemma 2. Let π be a sequence of jobs. There exists a worst case scenario s, a
critical job c ∈ Crit(s, π) and its first-block job uc in π under s such that:

i for each job j ∈ J \{c}, it holds that qs
j = qmin

j ,
ii for each job j ∈ J \{uc}, it holds that rs

j = rmin
j .

Consider the sequence π chosen by Alice. Bob can guess the critical job c in π
and its first-block job uc. Using Lemma 2, we get a partial scenario s̄ by fixing
the delivery times of all jobs except for c as well as the release dates of all jobs
except for uc to their minimum values. It remains to determine the values of qc

and ruc
in order to extend the partial scenario s̄ to a scenario s. At the end, Bob

will choose, among all scenarios created, the worst case one for the sequence π,
i.e., the scenario with the maximum value of relative regret.

In what follows, we explain how to construct a sequence σ which will corre-
spond to an optimal schedule for the scenario s when the values of qc and ruc

will be fixed. The main idea of the proposed algorithm is that, once a couple of
σ and s is determined, then σ corresponds to the sequence produced by applying
Horn’s algorithm with the scenario s as an input. The sequence σ is constructed
from left to right along with an associated schedule which determines the starting
time Bj and the completion time Cj = Bj + 1 of each job j ∈ J . The assign-
ment of a job j to a position of this schedule (time Bj) introduces additional
constraints in order to respect the sequence produced by Horn’s algorithm:

(C1) there is no idle time in [rj , Bj),
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(C2) at time Bj , the job j has the biggest delivery time among all available jobs
at this time, and

(C3) the delivery times of all jobs scheduled in [rj , Bj) should be bigger than qs
j .

These constraints are mainly translated to a refinement of the limits of qc or of
ruc

, i.e., updates on qmin
c , qmax

c , rmin
uc

and rmax
uc

. If at any point of our algorithm
the above constraints are not satisfied, then we say that the assumptions/guesses
made become infeasible, since they cannot lead to a couple (σ, s) respecting
Horn’s algorithm. Whenever we detect an infeasible assumption/guess, we throw
it and we continue with the next one.

Let �[x] be the x-th job which is released after the time rmin
uc

, that is, rmin
uc

≤
rs̄
�[1] ≤ rs̄

�[2] ≤ . . . ≤ rs̄
�[y]. By convention, let rs̄

�[0] = rmin
uc

and rs̄
�[y+1] = +∞. To

begin our construction, we guess the positions kc and kuc
of the jobs c and uc,

respectively, in σ as well as the interval [rs̄
�[x], r

s̄
�[x+1]), 0 ≤ x ≤ y, of Buc

in the
optimal schedule s for σ. Let kmin = min{kc, kuc

}. We start constructing σ and
its corresponding schedule by applying Horn’s algorithm with input the set of
jobs J \{c, uc} for which all data are already determined by the partial scenario
s̄, until kmin − 1 jobs are scheduled. Then, we set σ(kmin) = arg min{kc, kuc

}.
We now need to define the starting time of σ(kmin) and we consider two cases:

Case 1: kc < kuc
. We set Bc = max{Cσ(kmin−1), r

s̄
c}. If Bc = rs̄

c and there is an
idle time and an available job j ∈ J \{c, uc} in [Cσ(kmin−1), Bc), then we throw
the guess kc, kuc

, [rs̄
�[x], r

s̄
�[x+1]) since we cannot satisfy constraint (C1) for j, and

hence our schedule cannot correspond to the one produced by Horn’s algorithm.
Let qs̄

a = max{qs̄
j : j ∈ J \{c, uc} is available at Bc}. Then, in order to sat-

isfy constraint (C2) we update qmin
c = max{qmin

c , qs̄
a}. Let qs̄

b = min{qj : j ∈
J \{c, uc} is executed in [rc, Bc)}. Then, in order to satisfy constraint (C3) we
update qmax

c = min{qmax
c , qs̄

b}. If qmax
c < qmin

c , then we throw the guess kc, kuc
,

[rs̄
�[x], r

s̄
�[x+1]) since we cannot get a feasible value for qs

c .
It remains to check if there is any interaction between c and uc. Since kc <

kuc
, uc is not executed in [rc, Bc). However, uc may be available at Bc, but we

cannot be sure for this because the value of rs
uc

is not yet completely determined.
For this reason, we consider two opposite assumptions. Note that Bc is already
fixed by the partial scenario s̄ in the following assumptions, while rs

uc
is the

hypothetical release date of uc in the scenario s.

Assumption 1.1: rs
uc

≤ Bc. In order to impose this assumption, we update
rmax
uc

= min{rmax
uc

, Bc}.
Assumption 1.2: rs

uc
> Bc. In order to impose this assumption, we update

rmin
uc

= max{rmin
uc

, Bc + 1}.

If in any of these cases we have that rmax
uc

< rmin
uc

, then we throw the correspond-
ing assumption, since there is no feasible value for rs

uc
. For each non-thrown

assumption, we continue our algorithm separately, and we eventually get two
different couples of sequence/scenario if both assumptions are maintained. More
specifically, for each assumption, we continue applying Horn’s algorithm with
input the set of jobs J \{σ(1), σ(2), . . . , σ(kmin − 1), c, uc} starting from time
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Cc = Bc + 1, until kuc
− kc − 1 additional jobs are scheduled. Then, we set

σ(kuc
) = uc and Buc

= max{Cσ(kuc −1), r
min
uc

, rs̄
�[x]}. Note that Buc

depends for
the moment on the (updated) rmin

uc
and not on the final value of rs

uc
which has

not been determined at this point of the algorithm. If Buc
≥ rs̄

�[x+1], then we
throw the guess on [rs̄

�[x], r
s̄
�[x+1]). We next check if the constraints (C1)-(C3) are

satisfied for all jobs in J \{uc} with respect to the assignment of the job uc at the
position kuc

of σ with starting time Buc
. If not, we throw the current assumption.

Otherwise, Horn’s algorithm with input the jobs in J \{σ(1), σ(2), . . . , σ(kuc
)}

and starting from time Buc
+ 1 is applied to complete σ.

Case 2: kc > kuc
. We set Buc

= max{Cσ(kmin−1), r
min
uc

, rs̄
�[x]}. As before, Buc

depends on rmin
uc

and not on the final value of rs
uc

. If Buc
≥ rs̄

�[x+1] then we throw
the current guess on [rs̄

�[x], r
s̄
�[x+1]). We need also to check if the constraints (C1)-

(C3) are satisfied for all jobs in J \{uc} with respect to the assignment of the job
uc at the position kuc

of σ with starting time Buc
. If not, we throw the current

guess kc, kuc
, [rs̄

�(q), r
s̄
�(q)+1). Note that the last check is also applied for c and

eventually leads to update qmax
c = min{qmax

c , qs̄
uc

} if c is available at Buc
. This

can be easily verified because of the guess of the interval of Buc
.

Next, we continue applying Horn’s algorithm with input the set of jobs
J \{σ(1), σ(2), . . . , σ(kmin−1), c, uc} starting from time Buc

+1, until kc−kuc
−1

additional jobs are scheduled. Then, we set σ(kc) = c, Bc = max{Cσ(kc−1), r
s̄
c},

and we check if the constraints (C1)-(C3) are satisfied for all jobs in J \{c}
with respect to the assignment of the job c at the position kc of σ with starting
time Bc. If not, we throw the current guess kc, kuc

, [rs̄
�[x], r

s̄
�[x+1]). Moreover, an

update on qmin
c and qmax

c is possible here, like the one in the begin of case 1.
Finally, Horn’s algorithm with input the jobs in J \{σ(1), σ(2), . . . , σ(kc)} and
starting from time Cc = Bc + 1 is applied to complete σ.

Note that after the execution of the above procedure for a given guess c,
uc, kc, kuc

, [rs̄
�[x], r

s̄
�[x+1]), and eventually an assumption 1.1 or 1.2, we get a

sequence σ and its corresponding schedule, while the values of qs
c and rs

uc
are

still not defined but their bounds are probably limited to fit with this guess.
Then, we apply the following three steps in order to get the scenario s:

1. Extend the partial scenario s̄ to a scenario smin by setting qsmin
c = qmin

c and
rsmin
uc

= rmin
uc

.
2. Extend the scenario smin to the scenario s1 by increasing the delivery time

of c to its maximum without increasing the maximum lateness and without
exceeding qmax

c , i.e., qs1
c = qsmin

c + min{qmax
c − qsmin

c , L∗(smin) − Lsmin
c (σ)}.

3. Extend the scenario s1 to the scenario s by increasing the release date of uc

to its maximum without increasing the maximum lateness, without exceeding
rmax
uc

and without violating the constraint (C1) and the current guess.

The following theorem holds since in an iteration of the above algorithm, the
guess corresponding to an optimal sequence σ for the worst case scenario s will
be considered, while Horn’s algorithm guarantees the optimality of σ.
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Theorem 3. There is a polynomial time algorithm which, given a sequence π,
constructs a worst case scenario sπ of maximum relative regret for the problem
1|rj , pj = 1|Lmax.

5.2 The Alice’s Problem

In this section, we describe Alice’s algorithm in order to construct an optimal
sequence minimizing the maximum relative regret for 1|rj , pj = 1|Lmax. Since
Alice knows how Bob proceeds, she can do a guess g of the five parameters c, uc,
kc, kuc

, [r�[x], r�[x+1]) in order to construct an optimal sequence σg for a scenario
sg corresponding to this guess. Then, she assumes that σg is provided as input
to Bob. Bob would try to maximize its relative regret with respect to σg by
eventually doing a different guess ĝ, obtaining a scenario sĝ, i.e.,

RR(sĝ, σg) = max
g′

L(sg′ , σg)
L∗(sg′)

Note that, if g = ĝ, then RR(sĝ, σg) = 1 since by definition σg is the optimal
sequence for the scenario sg = sĝ. Therefore, Alice can try all possible guesses in
order to find the one that minimizes her maximum relative regret by applying
Bob’s algorithm to the sequence obtained by each guess, and hence the following
theorem holds.

Theorem 4. There is a polynomial time algorithm which constructs a sequence
π minimizing the maximum relative regret for the problem 1|rj , pj = 1|Lmax.

Note that, Bob’s guess for this problem defines almost all parameters of a
worst case scenario, without really using the input sequence provided by Alice.
This is not the case in Sect. 4 where, according to Lemma 1, the jobs that
succeed the critical job in Alice’s sequence should be known. For this reason
Alice’s algorithm is simpler here compared to the one in Sect. 4.2.

6 Conclusions

We studied the min-max relative regret criterion for dealing with interval uncer-
tain data for the single machine scheduling problem of minimizing the max-
imum lateness. We considered two variants and we proved that they can be
solved optimally in polynomial time. Our main technical contribution concerns
the sub-problem of maximizing the relative regret for these variants. The com-
plexity of our results justifies in a sense the common feeling that the min-max
relative criterion is more difficult than the min-max regret criterion.

Note that our result for the variant without release dates can be extended
even in the case where the jobs are subject to precedence constraints. Indeed,
Lawler [13] proposed an extension of Jackson’s rule for the deterministic version
of this problem, while the monotonicity property still holds. Thus, the corre-
sponding lemma describing a worst case scenario holds, and the determination
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of the optimal sequence depends only on the guess of the position of the crit-
ical job in this sequence which should be imposed to respect the precedence
constraints.

In the future, it is interesting to clarify the complexity of the general maxi-
mum lateness problem with respect to min-max relative regret when all param-
eters are subject to uncertainty. We believe that this problem is NP-hard. If this
is confirmed, the analysis of an approximation algorithm is a promising research
direction.
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