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Abstract. In this paper, we present the first linear delay algorithms
to enumerate all 2-edge-connected induced subgraphs and to enumerate
all 2-vertex-connected induced subgraphs for a given simple undirected
graph. We treat these subgraph enumeration problems in a more general
framework based on set systems. For an element set V , (V, C ⊆ 2V ) is
called a set system, where we call C ∈ C a component. A nonempty
subset Y ⊆ C is a removable set of C if C \ Y is a component and Y
is a minimal removable set (MRS) of C if it is a removable set and no
proper nonempty subset Z � Y is a removable set of C. We say that a
set system has subset-disjoint (SD) property if, for every two components
C, C′ ∈ C with C′ � C, every MRS Y of C satisfies either Y ⊆ C′ or
Y ∩ C′ = ∅. We assume that a set system with SD property is implicitly
given by an oracle that returns an MRS of a component which is given as
a query. We provide an algorithm that, given a component C, enumerates
all components that are subsets of C in linear time/space with respect
to |V | and oracle running time/space. We then show that, given a simple
undirected graph G, the pair of the vertex set V = V (G) and the family
of vertex subsets that induce 2-edge-connected (or 2-vertex-connected)
subgraphs of G has SD property, where an MRS in a 2-edge-connected
(or 2-vertex-connected) induced subgraph corresponds to either an ear
or a single vertex with degree greater than two.

Keywords: Enumeration of subgraphs · 2-edge-connectivity ·
2-vertex-connectivity · Binary partition · Linear delay

1 Introduction

Given a graph, subgraph enumeration asks to list all subgraphs that satisfy
required conditions. It could find interesting substructures in network analysis.
Enumeration of cliques is among such problems [2,3], where a clique is a sub-
graph such that every two vertices are adjacent to each other and thus may
represent a group of so-called SNS users that are pairwise friends. Pursuing fur-
ther applications, there have been studied enumeration of subgraphs that satisfy
weaker connectivity conditions, e.g., pseudo-cliques [12].
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In this paper, we consider enumeration of subgraphs that satisfy fundamen-
tal connectivity conditions; 2-edge-connectivity and 2-vertex-connectivity. For a
graph G, let V (G) and E(G) denote the set of vertices of G and the set of edges of
G, respectively. Let n := |V (G)| and m := |E(G)|. An enumeration algorithm in
general outputs many solutions, and its delay refers to computation time between
the start of the algorithm and the first output; between any consecutive two out-
puts; and between the last output and the halt of the algorithm. The algorithm
attains polynomial delay (resp., linear delay) if the delay is bounded by a polyno-
mial (resp., a linear function) with respect to the input size.

The main results of the paper are summarized in the following two theorems.

Theorem 1. For a simple undirected graph G, all 2-edge-connected induced sub-
graphs of G can be enumerated in O(n + m) delay and space.

Theorem 2. For a simple undirected graph G, all 2-vertex-connected induced
subgraphs of G can be enumerated in O(n + m) delay and space.

We achieve the first linear delay algorithms for enumerating 2-edge/vertex
connected induced subgraphs. Ito et al. [7] made the first study on enumeration
of 2-edge-connected induced subgraphs, presenting a polynomial delay algorithm
based on reverse search [1] such that the delay is O(n3m). For an element set
V , (V, C ⊆ 2V ) is called a confluent set system if, for every three components
X,Y,Z ∈ C, Z ⊆ X∩Y implies X∪Y ∈ C. Haraguchi and Nagamochi [5] studied
an enumeration problem in a confluent set system that includes enumeration
of k-edge-connected (resp., k-vertex-connected) induced subgraphs as special
cases, which yields O(min{k + 1, n}n5m) (resp., O(min{k + 1, n1/2}nk+4m))
delay algorithms. Wen et al. [13] proposed an algorithm for enumerating maximal
vertex subsets that induce k-vertex-connected subgraphs such that the total time
complexity is O(min{n1/2, k}m(n+ δ(G)2)n), where δ(G) denotes the minimum
degree over the graph G.

We deal with the two subgraph enumeration problems in a more general
framework. For a set V of elements, let C ⊆ 2V be a family of subsets of V .
A pair (V, C) is called a set system and a subset C ⊆ V is called a component
if C ∈ C. A nonempty subset Y ⊆ C of a component C is a removable set
of C if C \ Y ∈ C. Further, a removable set Y of C is minimal, or a minimal
removable set (MRS), if there is no Z � Y that is a removable set of C. We
denote by MrsC(C) the family of all MRSs of C. Let us introduce the notion of
SD property of set system as follows.

Definition 1. A set system (V, C) has subset-disjoint (SD) property if, for any
two components C,C ′ ∈ C such that C � C ′, either Y ⊆ C ′ or Y ∩ C ′ = ∅ holds
for every MRS Y of C.

We consider the problem of enumerating all components that are subsets of
a given component in a set system with SD property. We assume that the set
system is implicitly given by an oracle such that, for a component C ∈ C and
a subset X ⊆ C, the oracle returns an MRS Y of C that is disjoint with X
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if exists; and Nil otherwise. We denote the time and space complexity of the
oracle by θt and θs, respectively. We show the following theorem that is a key
for proving Theorems 1 and 2.

Theorem 3. Let (V, C) be a set system with SD property, C ∈ C be a component
and n := |C|. All components that are subsets of C can be enumerated in O(n+θt)
delay and O(n + θs) space.

The paper is organized as follows. After making preparations in Sect. 2, we
present an algorithm that enumerates all components that are subsets of a given
component in a set system with SD property, along with complexity analyses
in Sect. 3, as a proof for Theorem 3. Then in Sect. 4, we provide proofs for
Theorems 1 and 2. There are two core parts in the proofs. In the first part, given a
2-edge-connected (resp., 2-vertex-connected) graph G, we show that a set system
(V, C) has SD property if V = V (G) and C is the family of all vertex subsets
that induce 2-edge-connected (resp., 2-vertex-connected) subgraphs. This means
that 2-edge/vertex-connected induced subgraphs can be enumerated by using the
algorithm developed for Theorem 3. Then in the second part, we explain how
we design the oracle to achieve linear delay and space.

For some lemmas, we omit the proofs due to space limitation. The omitted
proofs are found in the preprint of this paper [8].

2 Preliminaries

Let Z and Z+ denote the set of integers and the set of nonnegative integers,
respectively. For two integers i, j ∈ Z (i ≤ j), let us denote [i, j] := {i, i +
1, . . . , j}.

For any sets P,Q of elements, when P ∩ Q = ∅, we may denote by P � Q the
disjoint union of P and Q in order to emphasize that they are disjoint.

Set Systems. Let (V, C) be a set system which does not necessarily have SD
property. For any two subsets U,L ⊆ V , we denote C(U,L) := {C ∈ C | L ⊆
C ⊆ U}. Recall that, for a component C ∈ C, we denote by MrsC(C) the
family of all MRSs of C. Further, for X ⊆ C, we denote MrsC(C,X) := {Y ∈
MrsC(C) | Y ∩ X = ∅}. For any two components C,C ′ ∈ C with C � C ′, let
Y1, Y2, . . . , Y� ⊆ C \ C ′ be subsets such that Yi ∩ Yj = ∅, 1 ≤ i < j ≤ �; and
Y1 � Y2 � · · · � Y� = C \ C ′ (i.e., {Y1, Y2, . . . , Y�} is a partition of C \ C ′). Then
(Y1, Y2, . . . , Y�) is an MRS-sequence (between C and C ′) if

– C ′ � Y1 � · · · � Yi ∈ C, i ∈ [1, �]; and
– Yi ∈ MrsC(C ′ � Y1 � · · · � Yi), i ∈ [1, �].

One easily sees that there exists an MRS-sequence for every C,C ′ ∈ C such that
C � C ′. The following lemma holds regardless of SD property.

Lemma 1. For any set system (V, C), let C ∈ C and X ⊆ C. It holds that
MrsC(C,X) = ∅ ⇐⇒ C(C,X) = {C}.
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As we described in Sect. 1, we assume that a set system (V, C) with SD
property is given implicitly by an oracle. We denote by ComputeMrsC the
oracle. Given a component C ∈ C and a subset X ⊆ C as a query to the oracle,
ComputeMrsC(C,X) returns one MRS in MrsC(C,X) if MrsC(C,X) �= ∅,
and Nil otherwise, where we denote by θt and θs the time and space complexity,
respectively.

The following lemma states a necessary condition of SD property which is
not sufficient.

Lemma 2. Suppose that a set system (V, C) with SD property is given. For every
component C ∈ C, the minimal removable sets in MrsC(C) are pairwise disjoint.

Graphs. Let G be a simple undirected graph. For a vertex v ∈ V (G), we denote
by degG(v) the degree of v in the graph G. We let δ(G) := minv∈V (G) degG(v).
Let S ⊆ V (G) be a subset of vertices. A subgraph induced by S is a subgraph
G′ of G such that V (G′) = S and E(G′) = {uv ∈ E(G) | u, v ∈ S} and denoted
by G[S]. For simplicity, we write the induced subgraph G[V (G) \ S] as G − S.
Similarly, for F ⊆ E(G), we write as G − F the subgraph whose vertex set is
V (G) and edge set is E(G) \ F .

A cut-set of G is a subset F ⊆ E(G) such that G − F is disconnected. In
particular, we call an edge that constitutes a cut-set of size 1 a bridge. We define
the edge-connectivity λ(G) of G to be the cardinality of the minimum cut-set of
G unless |V (G)| = 1. If |V (G)| = 1, then λ(G) is defined to be ∞. G is called
k-edge-connected if λ(G) ≥ k. A vertex cut of G is a subset S ⊆ V (G) such that
G − S is disconnected. In particular, we call a vertex cut whose size is two a cut
point pair and a vertex that constitutes a singleton vertex cut an articulation
point. For a subset S ⊆ V (G), let Art(S) denote the set of all articulation points
in G[S]. We define the vertex-connectivity κ(G) of G to be the cardinality of the
minimum vertex cut of G unless G is a complete graph. If G is complete, then
κ(G) is defined to be |V (G)| − 1. G is called k-vertex-connected if |V (G)| > k
and κ(G) ≥ k. Obviously, G is 2-edge-connected (resp., 2-vertex-connected) if
and only if there is no bridge (resp., no articulation point) in G.

Proposition 1 ([15]). Suppose that we are given a simple undirected graph G.
If |V (G)| ≥ 2, then it holds that κ(G) ≤ λ(G) ≤ δ(G).

3 Enumerating Components in Set System with SD
Property

In this section, we propose an algorithm that enumerates all components that
are subsets of a given component in a set system (V, C) with SD property and
conduct complexity analyses, as a proof for Theorem 3.

Let us introduce mathematical foundations for a set system with SD property
that are necessary for designing our enumeration algorithm.
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Algorithm 1 . An algorithm to enumerate all components in C(C, I), where
C ∈ C is a component in a set system (V, C) with SD property and I is a subset
of C
Input: A component C ∈ C and a subset I ⊆ C
Output: All components in C(C, I)
1: procedure List(C, I)
2: Output C;
3: X ← I;
4: while ComputeMrsC(C, X) �= Nil do
5: Y ← ComputeMrsC(C, X);
6: List(C \ Y, X);
7: X ← X ∪ Y
8: end while
9: end procedure

Lemma 3. For a set system (V, C) with SD property, let C ∈ C be a component
and I ⊆ C be a subset of C. For any Y ∈ MrsC(C, I), it holds that C(C, I) =
C(C \ Y, I) � C(C, I � Y ).

Lemma 4. For a set system (V, C) with SD property, let C ∈ C be a component,
I ⊆ C be a subset of C, and MrsC(C, I) := {Y1, Y2, . . . , Yk}. It holds that

C(C, I) = {C} � ( k⊔

i=1

C(C \ Yi, I � Y1 � · · · � Yi−1)
)
.

Algorithm. Let C ∈ C, I ⊆ C and MrsC(C, I) := {Y1, Y2, . . . , Yk}. Lemma 4
describes a partition of C(C, I) such that there exists a similar partition for
C(Ci, Ii), where Ci = C \Yi and Ii = I �Y1 � · · · �Yi−1, i ∈ [1, k]. Then we have
an algorithm that enumerates all components in C(C, I) by outputting C and
then outputting all components in C(Ci, Ii) for each i ∈ [1, k] recursively.

For C ∈ C and I ⊆ C, Algorithm 1 summarizes a procedure to enumerate all
components in C(C, I). Procedure List in Algorithm 1 outputs C in line 2 and
computes C(Ci, Ii), i ∈ [1, k] recursively in line 6. For our purpose, it suffices to
invoke List(C, ∅) to enumerate all components in C(C, ∅).

To analyze the complexities and prove Theorem 3, we introduce a detailed
version of the algorithm in Algorithm 2. We mainly use a stack to store data,
where we can add a given element (push), peek the element that is most recently
added (last), remove the last element (pop), and shrink to a given size by remov-
ing elements that are most recently added (shrinkTo) in constant time, respec-
tively, by using an array and managing an index to the last element.

In Algorithm 2, the set X of Algorithm 1 is realized by a stack. Note that
X in Algorithm 2 however contains a subset of elements in each container. In
addition, a stack Seq stores MRSs, an array Siz stores the number of the MRSs
of a given component, and an integer depth represents the depth of recursion
in Algorithm 1. We can see that the algorithm enumerates all components that
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are subsets of C in C by Lemma 4. To bound the time complexity by that for
processing a node in the search tree, we apply the alternative method to our
algorithm in line 4–6 and 12–14 and reduce the delay [11]. We next discuss the
space complexity. We see that Seq stores MRS-sequence between the current
component C ′ and C since Seq pops the MRS after traversing all children of C ′,
and so it consumes O(n) space. The stack X uses O(n) space by Lemma 2 and
the definition of ComputeMrsC , and moreover Siz uses only O(n) space since
the maximum depth is n.

Proof for Theorem 3. We can see that Algorithm 2 surely enumerates all
components in C(C, ∅) by Lemma 4. We first prove that Algorithm 2 works
in O(n+ θt) delay. If depth is odd, then the current component C ′ is outputted.
If depth is even and MrsC(C ′,X) = ∅, then C ′ is outputted. If depth is even
and MrsC(C ′,X) �= ∅, then C ′ \ Y will be outputted for Y in line 8 in the next
iteration. Then it suffices to show that operations from line 4 to 19 can be done
in O(n + θt) time. A component can be outputted in O(n) time. The difference
can be traced by subtracting and adding an MRS before and after the depth
changes, thus it takes O(n) time. In addition, ComputeMrsC works in θt time
by definition and another operations are adding and subtracting an MRS, where
computation time is O(n).

We next discuss the space complexity of Algorithm 2. The maximum size of
the depth is n since the size of the component C ′ is monotonically decreasing
while the depth increases and the termination condition that MrsC(C ′,X) is
initially empty is satisfied at most n depth. The rest to show is that the space
for Seq , X, and Siz are O(n). For a component C ′ ∈ C(C, ∅), we obtain that
the Seq is equivalent to the MRS-sequence between C ′ and C since Seq store a
new MRS before the depth increases and discards before the depth decreases.
X can be hold in O(n) space since for any subset I ⊆ C ′, I and MrsC(C ′, I)
are pairwise disjoint. It is obvious that Siz uses O(n) space since the maximum
depth is n. We then obtain that whole space is O(n + θs) space. �

4 Enumerating 2-Edge/Vertex-Connected Induced
Subgraphs

In this section, we provide proofs for Theorems 1 and 2. Suppose that we are
given a simple undirected graph G that is 2-edge-connected (resp., 2-vertex-
connected). In Sect. 4.1, we show that a set system (V, C) has SD property
if V = V (G) and C is the family of all vertex subsets that induce 2-edge-
connected subgraphs (resp., 2-vertex-connected subgraphs). This indicates that
all 2-edge/vertex-connected induced subgraphs can be enumerated by the algo-
rithm in the last section. Then in Sect. 4.2, we show how to design the oracle for
generating an MRS so that the required computational complexity is achieved.
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Algorithm 2. An algorithm to enumerate all components that are subsets of
C ∈ C in (V, C) with SD property
Input: A set system (V, C) with SD property and a component C ∈ C
Output: All components that are subsets of C in C
1: Seq , X ← empty stack; Siz ← an array of length n, filled by 0;
2: C′ ← C; depth ← 1;
3: while depth �= 0 do
4: if depth is odd then
5: Output C′

6: end if ;
7: if ComputeMrsC(C′, X) �= Nil then � emulate recursive call
8: Y ← ComputeMrsC(C′, X);
9: Seq .push(Y ); C′ ← C′ \ Y ; Siz [depth]← Siz [depth]+1;

10: depth ← depth + 1
11: else � trace back
12: if depth is even then
13: Output C′

14: end if ;
15: C′ ← C′ ∪ Seq .last();
16: X.shrinkTo(X.length() −Siz [depth]); Siz [depth]← 0;
17: X.push(Seq .last());
18: Seq .pop(); depth ← depth − 1
19: end if
20: end while

4.1 Constructing Set Systems with SD Property

We define Ce � {C ⊆ V (G) | G[C] is 2-edge-connected and |C| > 1} and Cv �
{C ⊆ V (G) | G[C] is 2-vertex-connected}. For S ⊆ V (G), we call S an e-
component (resp., a v-component) if S ∈ Ce (resp., S ∈ Cv). We deal with a
set system (V, C) such that V = V (G) and C ∈ {Ce, Cv}. We use the notations
and terminologies for set systems that were introduced in Sect. 2 to discuss the
problem of enumerating all e-components or v-components. Although a singleton
is a 2-edge-connected component by definition, we do not regard it as an e-
component since otherwise the system (V, Ce) would not have SD property.

The following lemma is immediate by Proposition 1.

Lemma 5. For a simple undirected graph G, it holds that Cv ⊆ Ce.

By Lemma 5, every v-component is an e-component. Let Maxe(S) (resp.,
Maxv(S)) denote the family of all maximal e-components (resp., v-components)
among the subsets of S. For an e-component C ∈ Ce (resp., a v-component
C ∈ Cv), we write the family MrsCe

(C) (resp., MrsCv
(C)) of all minimal remov-

able sets of C as Mrse(C) (resp., Mrsv(C)) for simplicity. We call an MRS in
Mrse(C) (resp., Mrsv(C)) an e-MRS of C (resp., a v-MRS of C). A minimal
e-component C ∈ Ce induces a cycle (i.e., G[C] is a cycle) since no singleton is
contained in Ce, and in this case, it holds that Mrse(C) = ∅.
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A block of a simple undirected graph G is a maximal connected subgraph
that has no articulation point. Every block of G is an isolated vertex; a cut-edge
(i.e., an edge whose removal increases the number of connected components); or
a maximal v-component; e.g., see Remark 4.1.18 in [14]. The following lemma is
immediate.

Lemma 6. For a given simple undirected graph G and an e-component C ∈ Ce,
it holds that C =

⋃
H∈Maxv(C) H.

For P ⊆ S ⊆ V (G), P is called a two-deg path in G[S] (or in S for short)
if degG[S](u) = 2 holds for every u ∈ P . In particular, P is a maximal two-deg
path in S if there is no two-deg path P ′ in S such that P � P ′. It is possible
that a maximal two-deg path consists of just one vertex. For an e-component
C ∈ Ce, we denote by Can=2(C) the family of all maximal two-deg paths in
C. We also denote Can>2(C) := {{v} | v ∈ C,degG[C](v) > 2} and define
Can(C) � Can=2(C) �Can>2(C). It is clear that every vertex in C belongs to
either a maximal two-deg path in Can=2(C) or a singleton in Can>2(C), where
there is no vertex v ∈ C such that degG[C](v) ≤ 1 since G[C] is 2-edge-connected.

The following Lemma 7 states that an e-MRS of an e-component C is either
a maximal two-deg path in C or a single vertex whose degree in G[C] is more
than two.

Lemma 7 (Observation 3 in [7]). For a simple undirected graph G, let C ∈
Ce. It holds that Mrse(C) = {Y ∈ Can(C) | C \ Y ∈ Ce}.

If G is 2-edge-connected, then the set system (V (G), Ce) has SD property, as
shown in the following Lemma 8.

Lemma 8. For a simple undirected 2-edge-connected graph G, the set system
(V (G), Ce) has SD property.

Proof. We see that V (G) ∈ Ce since G is 2-edge-connected. Let C,C ′ ∈ Ce be
e-components such that C � C ′ and Y ∈ Mrse(C) be an e-MRS of C. We show
that either Y ⊆ C ′ or Y ∩ C ′ = ∅ holds. The case of |Y | = 1 is obvious. Suppose
|Y | > 1. By Lemma 7, Y induces a maximal two-deg path in G[C] such that for
any u ∈ Y it holds degG[C](u) = 2. If Y �⊆ C ′ and Y ∩ C ′ �= ∅, then there would
be two adjacent vertices v, v′ ∈ Y such that v ∈ C \ C ′ and v′ ∈ C ′, where we
see that degG[C′](v′) ≤ 1 holds. The C ′ is an e-component and thus |C ′| ≥ 2.
By Proposition 1, we obtain 1 ≥ δ(G[C ′]) ≥ λ(G[C ′]), which contradicts that
C ′ ∈ Ce. �

We can derive analogous results for (V (G), Cv). In Lemma 9, we show that
a v-MRS of a v-component C is either a maximal two-deg path in C or a single
vertex whose degree in G[C] is more than two. Then in Lemma 10, we show that
(V (G), Cc) has SD property when G is 2-vertex-connected.

Lemma 9. For a simple undirected graph G, let C ∈ Cv. It holds that
Mrsv(C) = {Y ∈ Can(C) | C \ Y ∈ Cv}.
Lemma 10. For a simple undirected 2-vertex-connected graph G, the set system
(V (G), Cv) has SD property.
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4.2 Computing MRSs in Linear Time and Space

Let G be a simple undirected graph. We describe how we compute an e-MRS of
an e-component in linear time and space. Specifically, for a given e-component
C ∈ Ce and subset X ⊆ C, we design the oracle ComputeMrsCe

(C,X) so that
it outputs one e-MRS Y ∈ Mrse(C,X) if Mrse(C,X) �= ∅, and Nil otherwise,
in linear time and space. In what follows, we derive a stronger result that all
e-MRSs in Mrse(C,X) can be enumerated in linear delay and space.

The scenario of the proof is as follows.

(1) We show that, to enumerate e-MRSs in Mrse(C,X), it suffices to examine
Mrse(S,X) for each S ∈ Maxv(C) respectively. This indicates that we may
assume C to be a v-component. It is summarized as Corollary 1, followed
by Lemma 11.

(2) Using a certain auxiliary graph, we show that it is possible to output in linear
time and space all candidates in Can(C) that are e-MRSs of C (Lemma 13);
recall that all candidates of e-MRSs are contained in Can(C) by Lemma 7.

The case of computing a v-MRS of a v-component can be done almost analo-
gously.

Lemma 11. Given a simple undirected 2-edge-connected graph G that is neither
a cycle nor a single vertex, let V := V (G) and Y � V be any nonempty proper
subset of V . Then Y is an e-MRS of V if and only if there is S ∈ Maxv(V )
such that

(i) Y ∩ S′ = ∅ holds for every S′ ∈ Maxv(V ) such that S′ �= S; and
(ii) Y is either a path that consists of all vertices in S except one or an e-MRS

of S.

Proof. For the necessity, every v-component S ∈ Maxv(V ) is an e-component.
By the definition of SD property, either Y � S or Y ∩ S = ∅ should hold.
Suppose that there are two distinct v-components S, S′ ∈ Maxv(V ) such that
Y � S and Y � S′. This leads to |Y | = 1 since 1 ≥ |S ∩ S′| ≥ |Y | ≥ 1,
where the first inequality holds by the fact that two blocks share at most one
vertex (e.g., Proposition 4.1.19 in [14]). Then Y is a singleton that consists of
an articulation point of G, contradicting that V \ Y is connected. There is at
most one S ∈ Maxv(V ) that contains Y as a proper subset, and such S surely
exists since there is at least one v-component in Maxv(V ) that intersects Y by
Lemma 6, which shows (i).

To show (ii), suppose that G[S] is a cycle. Then it holds that |S ∩Art(V )| =
1; if |S ∩ Art(V )| ≥ 2, then no singleton or path in S is an e-MRS of V ,
contradicting that Y � S; if |S ∩Art(V )| = 0, then S is a connected component
in G. This contradicts that G is connected since G is not a cycle and hence
S � V . Then Y should be the path in S that consists of all vertices except the
only articulation point. Suppose that G[S] is not a cycle. Let u, v ∈ S be two
distinct vertices. We claim that every path between u and v should not visit a
vertex out of S; if there is such a path, then the union of v-components visited



Enumeration of 2-Edge/Vertex-Connected Induced Subgraphs 377

by the path would be a v-component containing S, contradicting the maximality
of S. In the graph G−Y , there are at least two edge-disjoint paths between any
two vertices u, v ∈ S −Y . These paths do not visit any vertex out of S, and thus
S − Y is an e-component. It is easy to see that Y ∈ Can(S).

For the sufficiency, suppose that G[S] is a cycle. There is no e-MRS of S by
definition. The set Y should be a path that consists of all vertices in S except
one, and by (i), the vertex that is not contained in Y should be an articulation
point (which implies |S ∩ Art(V )| = 1). Suppose that G[S] is not a cycle. An
e-MRS of S exists since S is a non-minimal e-component. Let Y be an e-MRS
of S that satisfies (i), that is, Y contains no articulation points in Art(V ). In
either case, it is easy to see that V \Y is an e-component and that Y ∈ Can(V )
holds, showing that Y is an e-MRS of V . �

Corollary 1. For a given simple undirected graph G, let C ∈ Ce be an e-
component. Then it holds that

Mrse(C) =
( ⊔

S∈Maxv(C): G[S] is not a cycle

{Y ∈ Mrse(S) | Y ∩ Art(C) = ∅})

� ( ⊔

S∈Maxv(C): G[S] is a cycle and |S∩Art(C)|=1

(S \ Art(C))
)
.

By the corollary, to obtain e-MRSs of an e-component C, it suffices to examine
all maximal v-components in Maxv(C) respectively.

We observe the first family in the right hand in Corollary 1. Let C be a
v-component such that G[C] is not a cycle. For each path P ∈ Can=2(C), there
are exactly two vertices u, v ∈ Can>2(C) such that u is adjacent to one endpoint
of P and v is adjacent to the other endpoint of P . We call such u, v boundaries
of P . We denote the pair of boundaries of P by B(P ), that is, B(P ) := {u, v}.
We define Λ>2(C) � {uv ∈ E(G) | u, v ∈ Can>2(C)}. Let Λ(C) := Can=2(C)�
Λ>2(C). We then define an auxiliary graph HC so that

V (HC) :=Can>2(C) � Can=2(C) � Λ>2(C)
=Can>2(C) � Λ(C) = Can(C) � Λ>2(C),

E(HC) := {uP ⊆ V (HC) | u ∈ Can>2(C), P ∈ Can=2(C), u ∈ B(P )}
� {ue ⊆ V (HC) | u ∈ Can>2(C), e ∈ Λ>2(C), u ∈ e}.

We call a vertex in Can>2(C) an ordinary vertex, whereas we call a vertex in
Λ(C) = Can=2(C) � Λ>2(C) an auxiliary vertex.

For P ∈ Can=2(C), we denote by E(P ) the set of all edges in the path
P ∪ B(P ). For e ∈ Λ>2(C), we denote E(e) := {e}. We see that E(G[C]) =⊔

h∈Λ(C) E(h) holds.

Lemma 12. Given a simple undirected graph G, let C ∈ Cv be a v-component
such that G[C] is not a cycle and Y ∈ Can(C). Then Y ∈ Mrse(C) holds if
and only if there is no auxiliary vertex h ∈ Λ(C) such that {Y, h} is a cut point
pair of HC .
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Proof. For the necessity, suppose that there is h ∈ Λ(C) such that {Y, h} is a cut
point pair of HC . Then h is an articulation point of HC −Y . Every edge e ∈ E(h)
is a bridge in G[C] − Y , indicating that G[C] − Y is not 2-edge-connected, and
hence Y /∈ Mrse(C).

For the sufficiency, suppose that Y /∈ Mrse(C). Then G[C]−Y is not 2-edge-
connected but should be connected. There exists a bridge, say e, in G[C] − Y .
Let h ∈ Λ(C) be the auxiliary vertex such that e ∈ E(h). We see that h is a cut
point of HC − Y , indicating that {Y, h} is a cut point pair of HC . �

Lemma 13. Suppose that a simple undirected 2-edge-connected graph G is
given. Let V := V (G). For any subset X ⊆ V , all e-MRSs in Mrse(V,X)
can be enumerated in O(n + m) time and space.

Proof. We can complete the required task as follows. (1) We obtain Art(V ) and
decompose V into maximal v-components. For each maximal v-component C,
(2) if G[C] is a cycle and |C ∩ Art(V )| = 1, then output C \ Art(V ) if it is
disjoint with X; and (3) if G[C] is not a cycle, then we construct an auxiliary
graph HC , compute all cut point pairs of HC , and output all Y ∈ Can(C) that
are disjoint with X ∪ Art(V ) and that are not contained in any cut point pair
together with an auxiliary vertex. The correctness of the algorithm follows by
Corollary 1 and Lemma 12.

For the time complexity, (1) can be done in O(n + m) time [9]. For each
C ∈ Maxv(V ), let nC := |C| and mC := |E(G[C])|. We can decide in O(nC +
mC) time whether C is in (2), (3) or neither of them. If we are in (2), then
the task can be done in O(nC) time. If we are in (3), then the task can be
done in O(nC + mC) time since HC can be constructed in linear time and
all cut point pairs of a 2-vertex-connected graph HC can be enumerated in
linear time [4,6]. An articulation point v appears in at most degG(v) maximal v-
components, and hence

∑
C∈Maxv(V ) O(nC) = O(n+m). The number of maximal

v-components is O(n), and the overall time complexity over C ∈ Maxv(V ) is
O(n) +

∑
C∈Maxv(V ) O(nC + mC) = O(n + m). The space complexity analysis is

analogous. �

Proofs for Theorems 1 and 2. For Theorem 1, we see that Ce =⊔
S∈Maxe(V ) Ce(S, ∅). We can enumerate all maximal e-components in Maxe(V )

in O(n+m) time and space, by removing all bridges in G [10]. All e-components
in Ce(S, ∅) for each S ∈ Maxe(V ) can be enumerated in O(n + θt) delay and
in O(n + θs) space by Theorem 3. We can implement ComputeMrsCe

so that
θt = O(n + m) and θs = O(n + m) by Lemma 13. Theorem 2 is analogous. �

Concluding Remarks. The future work includes extension of our framework to
k-edge/vertex-connectivity for k > 2; and studying relationship between SD
property and set systems known in the literature (e.g., independent system,
accessible system, strongly accessible system, confluent system).
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