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Abstract. A temporal (directed) graph is a graph whose edges are avail-
able only at specific times during its lifetime, τ . Paths are sequences of
adjacent edges whose appearing times are either strictly increasing or
non-strictly increasing (i.e., non-decreasing) depending on the scenario.
Then, the classical concept of connected components and also of unilat-
eral connected components in static graphs naturally extends to temporal
graphs. In this paper, we answer the following fundamental questions in
temporal graphs. (i) What is the complexity of deciding the existence of
a component of size k, parameterized by τ , by k, and by k + τ? We show
that this question has a different answer depending on the considered
definition of component and whether the temporal graph is directed or
undirected. (ii) What is the minimum running time required to check
whether a subset of vertices are pairwise reachable? A quadratic algo-
rithm is known but, contrary to the static case, we show that a better
running time is unlikely unless SETH fails. (iii) Is it possible to verify
whether a subset of vertices is a component in polynomial time? We show
that depending on the definition of component this test is NP-complete.

1 Introduction

A (directed) temporal graph (G,λ) with lifetime τ consists of a (directed) graph
G together with a time-function λ : E(G) → 2[τ ] which tells when each edge
e ∈ E(G) is available along the discrete time interval [τ ]. Given i ∈ [τ ], the

(Partially) supported by: FUNCAP MLC-0191-00056.01.00/22 and PNE-0112-
00061.01.00/16, CNPq 303803/2020-7, Italian PNRR CN4 Centro Nazionale per la
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Fig. 1. On the left a temporal graph, where on each edge e we depict λ(e). Some of its
components according to the non-strict model are reported on the right.

snapshot Gi refers to the subgraph of G containing exactly the edges available in
time i. Temporal graphs, also appearing in the literature under different names,
have attracted a lot of attention in the past decade, as many works have extended
classical notions of Graph Theory to temporal graphs (we refer the reader to the
survey [11] and the seminal paper [10]).

A crucial characteristic of temporal graphs is that a u, v-walk/path in G is
valid only if it traverses a sequence of adjacent edges e1, . . . , ek at non-decreasing
times t1 ≤ . . . ≤ tk, respectively, with ti ∈ λ(ei) for every i ∈ [k]. Similarly,
one can consider strictly increasing sequences, i.e. with t1 < . . . < tk. The
former model is referred to as non-strict model, while the latter as strict. In
both settings, we call such sequence a temporal u, v-walk/path, and we say that
u reaches v. For instance, in Fig. 1, both blue and green paths are valid in the
non-strict model, but only the green one is valid in the strict model, as the blue
one traverses two edges with label 2. The red path is not valid in either model.

The non-strict model is more appropriate in situations where the time granu-
larity is relatively big. This is the case in a disease-spreading scenario [19], where
the spreading speed might be unclear or in “time-varying graphs”, as in [14],
where a single snapshot corresponds to all the edges available in a time interval,
e.g. the set of all the streets available in a day. As for the strict model, it can
represent the connections of the public transportation network of a city which
are available only at precise scheduled times. All in all, there is a rich literature
on both models and this is why we explore both settings.

Connected Sets and Components. Given a temporal graph G = (G,λ), we
say that X ⊆ V (G) is a temporal connected set if u reaches v and v reaches u,
for every u, v ∈ X. Extending the classical notion of connected components in
static graphs, in [2] the authors define a temporal connected component (tcc for
short) as a maximal connected set of G. Such constraint can be strengthened
to the existence of such paths using only vertices of X. Formally, X is a closed
temporal connected component (closed tcc for short) if, for every u, v ∈ X, we
have that u reaches v and v reaches u through temporal paths contained in X.
See Fig. 1 for an example of tcc and closed tcc.
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Unilateral Connected Components. In the same fashion, also the concept of
unilateral connected components can be extended to temporal graphs. In static
graph theory, they are a well-studied relaxation of connected components which
asks for a path from u to v or vice versa, for every pair u, v in the component [1,4].
More formally, in a directed graph G, we say that X ⊆ V (G) is a unilateral
connected set if u reaches v or v reaches u, for every u, v ∈ X. X is a unilateral
connected component if it is maximal. In this paper, we introduce the definition
of a (closed) unilateral temporal connected set/component, which can be seen as
the immediate translation of unilateral connected component to the temporal
context. Formally, X ⊆ V (G) is a temporal unilateral connected set if u reaches
v or v reaches u, for every u, v ∈ X, and it is a closed unilateral connected set
if this holds using paths contained in X. Finally, a (closed) temporal unilateral
connected component ((closed) tucc for short) is a maximal (closed) temporal
unilateral connected set. See again Fig. 1 for an example.

Problems. In this paper, we deal with four different definitions of temporal
connected components, depending on whether they are unilateral or not, and
whether they are closed or not. In what follows, we pose three questions, and
we comment on partial knowledge about each of them. Later on, we discuss
our results, which close almost all the gaps found in the literature. We start by
asking the following.

Question 1 (Parameterized complexity). What is the complexity of deciding the
existence of temporal components of size at least k parameterized by (i) τ , i.e.
the lifetime, (ii) k, and (iii) k + τ?

In order to answer Question 1 for the strict model, there is a very simple
parameterized reduction from k-clique, known to be W[1]-hard when parameter-
ized by k [7], to deciding the existence of connected components (both closed or
not and both unilateral or not) of size at least k in undirected temporal graphs.
This reduction has appeared in [5]. Given an undirected graph G, we can simply
consider the temporal graph G = (G,λ) where λ(uv) = {1} for all uv ∈ E(G)
(i.e., G is equal to G itself). As u temporally reaches v if and only if uv ∈ E(G),
one can see that all those problems are now equivalent to deciding the existence
of a k-clique in G. Observe that we get W[1]-hardness when parameterized by
k or k + τ , and para-NP-completeness when parameterized by τ , both in the
undirected and the directed case.1 However, this reduction does not work in the
case of the non-strict model, leaving Question 1 open. Indeed the reductions
in [2] and in [6] for (closed) tccs, which work indistinctly for both the strict
or the non-strict models, are not parameterized reductions. We also observe that
the aforementioned reductions work on the non-strict model only for τ ≥ 4.

Another question of interest is the following. Letting n be the number of
vertices in G and M be the number of temporal edges,2 it is known that, in

1 In the directed case, it suffices to replace each edge of the input graph with two
opposite directed edges between the same endpoints.

2 M =
∑

e∈E(G) |λ(e)|.



On Computing Large Temporal (Unilateral) Connected Components 285

Table 1. A summary of our results for the parameterized complexity of comput-
ing components of size at least k of a temporal graph G having lifetime τ in the
non-strict model. “W[1]-h” stands for W[1]-hardness and “p-NP” stands for para-NP-
completeness. For the strict model the entries are W[1]-h in the third and fourth
columns and p-NP in the second one already for τ = 1, both for the directed and
the undirected case.

Par. τ Par. k Par. k + τ

tcc

p-NP τ ≥ 2 (Theorem 1)

W[1]-h Dir. τ ≥ 2 (Theorem 3)
and Undir. (Theorem 2)

W[1]-h Dir. (Theorem 3)
FPT Undir. (Theorem 5)

tucc W[1]-h Dir. τ ≥ 2 (Theorem 3)
FPT Undir. (Theorem 5)

closed tcc W[1]-h Dir. τ ≥ 3 (Theorem 4) W[1]-h Dir. (Theorem 4)
FPT Undir. (Theorem 5)

closed tucc W[1]-h Dir. τ ≥ 3 (Theorem 4)
FPT Undir. (Theorem 5)

order to verify whether X ⊆ V (G) is a connected set in G, we can simply
apply O(n) single source “best” path computations (see e.g. [17]), resulting in
a time complexity of O(n · M). This is O(M2) if G has no isolated vertices, a
natural assumption when dealing with connectivity problems. As in static graphs
testing connectivity can be done in linear time [8], we ask whether the described
algorithm can be improved.

Question 2 (Lower bound on checking connectivity). Given a temporal graph G
and a subset X ⊆ V (G), what is the minimum running time required to check
whether X is a (unilateral) connected set?

Finally we focus on one last question.

Question 3 (Checking maximality). Given a temporal graph G and a subset
X ⊆ V (G), is it possible to verify, in polynomial time, whether X is a component,
i.e. a maximal (closed) (unilateral) connected set?

For Question 3, we first observe that the property of being a temporal (unilat-
eral) connected set is hereditary (forming an independence system [12]), meaning
that every subset of a (unilateral) connected set is still a (unilateral) connected
set. For instance, in Fig. 1, every subset of the connected set B = {a, b, c, d, e}
is a connected set. Also, checking whether X ′ ⊆ V (G) is a temporal (unilateral)
connected set can be done in time O(n · M), as discussed above. We can then
check whether X is a maximal such set in time O(n2 · M): it suffices to test, for
every v ∈ V (G)\X, whether by adding v to X we still get a temporal (unilat-
eral) connected set. On the other hand, closed connected (unilateral) sets are not
hereditary, because by removing vertices from the set we could destroy the paths
between other members of the set. This is the case for the closed connected set
A = {a, b, c, d} in Fig. 1, since by removing d there are no temporal paths from
c to a nor b using only vertices in the remainder of the set. This implies that
the same approach as before does not work, i.e., we cannot check whether X is
maximal by adding to X a single vertex at a time, then checking for connectivity.
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For instance, the closed connected set A′ = {a, b} in Fig. 1 cannot be grown into
the closed connected set A by adding one vertex at a time, since both A′ ∪ {c}
and A′ ∪ {d} are not closed connected sets. Hence, the answer to Question 3 for
closed sets does not seem easy, and until now was still open.

Our Results. Our results concerning Question 1 are reported in Table 1 for the
non-strict model, since for the strict model all the entries would be W[1]-hard
or para-NP-complete already for τ = 1, as we argued before. In the non-strict
model, we observe instead that the situation is much more granulated. If τ = 1,
then all the problems become the corresponding traditional ones in static graphs,
which are all polynomial (see Paragraph “Related works”). As for bigger values
of τ , the complexity depends on the definition of component being considered,
and whether the temporal graph is directed or not. Table 1 considers τ > 1,
reporting on negative results, “τ ≥ x” for some x meaning that the negative
result starts to hold for temporal graphs of lifetime at least x.

The second column of Table 1 addresses Question 1(i), i.e., parameterization
by τ . We prove that, for all the definitions of components being considered, the
related problem becomes immediately para-NP-complete as soon as τ increases
from 1 to 2; this is done in Theorem 1. This reduction improves upon the reduc-
tion of [2], which holds only for τ ≥ 4.

Question 1(ii) (parameterization by k) is addressed in the third column of
Table 1. Considering first directed temporal graphs, we prove that all the prob-
lems are W[1]-hard. In particular, deciding the existence of a tcc or tucc of
size at least k is W[1]-hard already for τ ≥ 2 (Theorem 3). As for the exis-
tence of closed components, W[1]-hardness also holds as long as τ ≥ 3 (Theo-
rem 4). Observe that, since τ is constant in both results, these also imply the
W[1]-hardness results presented in the last column, thus answering also Ques-
tion 1(iii) (parameterization by k + τ) for directed graphs. On the other hand,
if the temporal graph is undirected, then the situation is even more granulated.
Deciding the existence of a tcc of size at least k remains W[1]-hard, but only if τ
is unbounded. This is complemented by the answer to Question 1(iii), presented
in the last column of Table 1: tcc and (even) closed tcc are FPT on undirected
graphs when parameterized by k + τ (Theorem 5). We also give FPT algorithms
when parameterized by k for unilateral components, namely tucc and closed

tucc. Observe how this differs from tcc, whose corresponding problem is W[1]-
hard, meaning that unilateral and traditional components behave very differently
when parameterized by k.

In summary, Table 1 answers Question 1 for almost all the definitions of
components, both for directed and undirected temporal graphs, leaving open
only the problems of, given an undirected temporal graph, deciding the existence
of a closed tcc of size at least k when parameterized by k, and solving the
same problem for closed tcc and closed tucc in directed temporal graphs
where τ = 2.

Concerning Questions 2 and 3, our results are summarized in Table 2. All
these results hold both for the strict and the non-strict models. For Ques-
tion 2, we prove that the trivial O(M2) algorithm to test whether S is a (closed)
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Table 2. Our results for Question 2 and Question 3, holding for both the strict and the
non-strict models. Recall that a component is a (inclusion-wise) maximal connected
set. The O(·) result is easy and explained in the introduction. M (resp. n) denotes the
number of temporal edges (resp. nodes) in G.

Check whether X ⊆ V is a connected set Check whether X ⊆ V is a component

tcc

Θ(M2) (Theorem 6)

O(n2 · M)

tucc

closed tcc NP-c (Theorem 7)

closed tucc

(unilateral) connected set is best possible, unless the Strong Exponential Time
Hypothesis (SETH) fails [9]. For Question 3, in the case of tcc and tucc, we
have already seen that checking whether a set X ⊆ V is a component can be
done in O(n2 ·M). Interestingly, for closed tcc and closed tucc, we answer
negatively (unless P=NP) to Question 3.

Related Work . The known reductions for temporal connected components in
the literature [2,6] which considers the non-strict setting are not parameterized
and leave open the case when τ = 2 or 3. The reductions we give here are
parameterized (Theorems 3 and 4) and Theorem 1 closes also the cases τ = 2
and 3. Furthermore, in [6] they show a series of interesting transformations but
none of them allows us to apply known negative results for the strict model
to the non-strict one. There are many other papers about temporal connected
components in the literature, including [5], where they give an example where
there can be an exponential number of temporal connected components in the
strict model. In [14], the authors show that the problem of computing tccs
is a particular case of finding cliques in the so-called affine graph. This does
not imply that the problem is NP-complete as claimed, since in order to prove
hardness one needs to do a reduction on the opposite direction, i.e., a reduction
from a hard problem to tcc instead. Finally, we remark that there are many
results in the literature concerning unilateral components in static graphs [1],
also with applications to community detection [13]. Even though the number of
unilateral components in a graph is exponential [1], deciding whether there is
one of size at least k is polynomial.

2 Parameterized Complexity Results

Parameterization by τ . We start by proving the result in the first column of
Table 1, about para-NP-completeness wrt. to the lifetime τ , which applies to
all the definitions of temporal components. For (closed) tcc we present a
reduction from the NP-complete problem Maximum Edge Biclique (MEBP

for short) [16]. A biclique in a graph G is a complete bipartite subgraph of G. The
MEBP problem consists of, given a bipartite graph G and an integer k, deciding
whether G has a biclique with at least k edges. Using the same construction,
we prove hardness of (closed) tucc reducing from the NP-complete problem
2K2-free Edge Subgraph [18]. In this problem we are given a bipartite graph
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G and an integer k, and are trying to decide whether G has a 2K2-free subgraph
with at least k edges.

The main idea of the reductions is to generate a temporal graph G whose
underlying graph is the line graph L of a bipartite graph H with parts X,Y .
Recall that, for each u ∈ X ∪ Y , there is a clique in L formed by all the edges
incident to u; denote such clique by Cu. We make active in timestep 1 the edges
within Cu for every u ∈ X, and in timestep 2 the edges within Cu for every
u ∈ Y . Doing so, we ensure that any pair of vertices of G associated with a
biclique in H reach one another in G. We prove that there exists a biclique in
H with at least k edges if and only if there exists a closed tcc in G of size
at least k. The result extends to tccs, as every tcc is also a closed tcc. For
the unilateral case, we can relax the biclique to a 2K2-free graph since only one
reachability relation is needed. As a result, we get the following.

Theorem 1. For every fixed τ ≥ 2 and given a temporal graph G = (G,λ) of
lifetime τ and an integer k, it is NP-complete to decide if G has a (closed) tcc

or a (closed) tucc of size at least k, even if G is the line graph of a bipartite
graph.

W[1]-hardness by k. We now focus on proving the W[1]-hardness results in the
second column of Table 1 concerning parameterization by k, which also imply
some of the results of the third column. The following W[1]-hardness results
(Theorem 2, 4, and 3) are parameterized reductions from k-Clique. The general
objective is constructing a temporal graph G in a way that vertices in G are in
the same component if and only if the corresponding nodes in the original graph
are adjacent. Notice that we have to do this while: (i) ensuring that the size
of the desired component is f(k) for some computable function k (i.e., this
is a parameterized reduction); and (ii) avoiding that the closed neighborhood
of a vertex forms a component, so as to not a have a false “yes” answer to
k-Clique. To address these tasks, we rely on different techniques. The first
reduction concerns tcc in undirected graphs and requires τ to be unbounded,
as for τ bounded we show that the problem is FPT by k + τ (Theorem 5). The
technique used is a parameterized evolution of the so-called semaphore technique
used in [2,6], which in general replaces edges by labeled diamonds to control
paths of the original graph. However, while the original reduction gives labels
in order to ensure that paths longer than one are broken, the following one
allows the existence of paths longer than one. But if a temporal path from u
to v exists for uv /∈ E(G), then the construction ensures the non-existence of
temporal paths from v to u. Because of this property, the reduction does not
extend to tuccs, which we prove to be FPT when parameterized by k instead
(Theorem 5).

Theorem 2. Given a temporal graph G and an integer k, deciding if G has a
tcc of size at least k is W[1]-hard with parameter k.

Proof. We make a parameterized reduction from k-Clique. Let G be graph and
k ≥ 3 be an integer. We construct the temporal graph G = (G′, λ) as follows.
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V V

un un0

u3 u30

u2 u20

u1 u10

...

...

u vei

u v

huv

hvu

i

i

m+ i

m+ i

u v

huv

hvu

2m+ i

2m+ i

3m+ i

3m+ i

0 0

Fig. 2. Construction used in the proof of Theorem 2. On the left, the two copies of V (G)
and the edges between them, active in timestep 0. On the right, the edge ei ∈ E(G)
and the associated gadget in G.

See Fig. 2 to follow the construction. First, add to G′ every vertex in V (G) and
make V = V (G). Second, add to G′ a copy u′ of every vertex u ∈ V and define
V ′ = {u′ | u ∈ V }. Third, for every pair u, u′ with u ∈ V and u′ ∈ V ′ add the
edge uu′ to G′ and make all such edges active at timestep 0. Fourth, consider
an arbitrary ordering e1, . . . , em of the edges of G and, for each edge ei = uv,
create four new vertices {huv, hvu, h′

uv, h′
vu | uv ∈ E(G)}, adding edges:

– uhuv and vhvu, active at time i;
– u′h′

uv and v′h′
vu, active at time 2m + i;

– hvuu and huvv, active at time m + i; and
– h′

vuu′ and h′
uvv′, active at time 3m + i.

Denote the set {huv, hvu | uv ∈ E(G)} by H, and the set {h′
uv, h′

vu | uv ∈ E(G)}
by H ′. We now prove that G has a clique of size at least k if and only if G
has a tcc of size at least 2k. Given a clique C in G, it is easy to check that
C ∪ {u ∈ V ′ | u ∈ C} is a tcc.

Now, let S ⊆ V (G′) be a tcc of G of size at least 2k. We want to show that
either C = {u ∈ V (G) | u ∈ S ∩ V } or C ′ = {u ∈ V (G) | u′ ∈ S ∩ V ′} is a
clique of G of size at least k. This part of the proof combines a series of useful
facts, which we cannot include here due to space constraints. In what follows we
present a sketch of it.

First, we argue that both C and C ′ are cliques in G. Then, by observing that
the only edges between V ∪ H and V ′ ∪ H ′ are those incident to V and V ′ at
timestep 0, we conclude that either S ⊆ V ∪ H or S ⊆ V ′ ∪ H ′. Since the cases
are similar, we assume the former. If |S ∩ V | ≥ k, then C contains a clique of
size at least k and the result follows. Otherwise, we define ES = {uv ∈ E(G) |
{huv, hvu} ∩ S 	= ∅}. That is, ES is the set of edges of G related to vertices in
S ∩ H. We then prove the following claim.

Claim. Let a, b ∈ S ∩ H be associated with distinct edges g, g′ of G sharing an
endpoint v. If u and w are the other endpoints of g and g′, respectively, then u
and w are also adjacent in G. Additionally, either |S ∩{hxy, hyx}| ≤ 1 for every
xy ∈ E(G), or |S ∩ H| ≤ 2.
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Fig. 3. Examples for some of our reductions. Given the graph in (a), Theorem 3 con-
structs the directed temporal graph in (b), Theorem 4 constructs the directed temporal
graph in (c), and, given additionally set X in (a), Theorem 7 contructs the temporal
graph G and set Y in (d).

To finish the proof, we first recall that we are in the case |S∩H| ≥ k+1. By our
assumption that k ≥ 3, note that the above claim gives us that |S∩{hxy, hyx}| ≤
1 for every xy ∈ E(G), which in turn implies that |ES | = |S ∩ H|. Additionally,
observe that, since |S ∩ H| ≥ 4, the same claim also gives us that there must
exist w ∈ V such that e is incident to w for every e ∈ ES . Indeed, the only
way that 3 distinct edges can be mutually adjacent without being all incident
to the same vertex is if they form a triangle. Supposing that 3 edges in ES form
a triangle T = (a, b, c), since |ES | ≥ 4, there exists an edge e ∈ ES\E(T ). But
now, since G is a simple graph, e is incident to at most one between a, b and c,
say a. We get a contradiction wrt. the aforementioned claim as in this case e is
not incident to edge bc ∈ ES . Finally, by letting C ′′ = {v1, . . . , vk} be any choice
of k distinct vertices such that {wv1, . . . , wvk} ⊆ ES , our claim gives us that vi

and vj are adjacent in G, for every i, j ∈ [k]; i.e., C ′′ is a k-clique in G. ��
The following result concerns tcc and tucc in directed temporal graphs.

It is important to remark that for tcc and τ unbounded, we already know
that the problem is W[1]-hard because of Theorem 2 which holds for undirected
graphs and extends to directed ones. However, the following reduction applies
specifically for directed ones already for τ = 2. The technique used here is
the previously mentioned semaphore technique, made parameterized by exploit-
ing the direction of the edges. Namely, we reduce from k-Clique by replacing
every edge uv of G by two vertices wuv and wvu and the directed temporal
paths (u, 1, wuv, 2, v) and (v, 1, wvw, 2, u). See Fig. 3(b) to see the temporal graph
obtained from the graph in Fig. 3(a). One can check that G has a clique of size
at least k if and only if G has a tcc of size at least k. For tucc, we only need
to add one of wuv or wvu.

Theorem 3. Given a directed temporal graph G and an integer k, deciding if G
has a tcc of size at least k is W[1]-hard with parameter k, even if G has lifetime
2. The same holds for tucc.

The next result concerns closed tccs and tuccs. In this case, we also reduce
from k-Clique, but we cannot apply the semaphore technique as before. Indeed,
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as we are dealing with closed components, nodes must be reachable using ver-
tices inside the components, while the semaphore technique would make them
reachable via additional nodes, which do not necessarily reach each other. For
this reason, in the following we introduce a new technique subdividing nodes,
instead of edges, in order to break paths of the original graph of length longer
than one, being careful to allow that these additional nodes reach each other.
The construction is shown in Fig. 3, which shows how to construct temporal
graph G in Fig. 3(c), given graph G in Fig. 3(a) in a way that graph G has a
clique of size k if and only if G has a closed tcc (tucc) of size at least 2k.

Theorem 4. Given a directed temporal graph G and an integer k, deciding if G
has a closed tcc of size at least k is W[1]-hard with parameter k, even if G
has lifetime 3. The same holds for closed tucc.

FPT Algorithms. We now show our FPT algorithms to find (closed) tccs and
(closed) tuccs in undirected temporal graphs, as for directed temporal graphs
we have proved W[1]-hardness. In particular, we prove the following result.

Theorem 5. Given a temporal graph G = (G,λ) on n vertices and with lifetime
τ , and a positive integer k, there are algorithms running in time

1. O(kk·τ · n) that decides whether there is a tcc of size at least k;
2. O(2kτ · n) that decides whether there is a closed tcc of size at least k;
3. O(kk2 · n) that decides whether there is a tucc of size at least k; and
4. O(2kk · n) that decides whether there is a closed tucc of size at least k.

Proof. The reachability digraph R associated to G is a directed graph with the
same vertex set as G, and such that uv is an edge in R if and only u reaches v in
G and u 	= v. This is related to the affine graph in [14]. Observe that finding a
tcc (resp. tucc) in G of size at least k is equivalent to finding a set S ⊆ V (G) in
R of size exactly k such that uv ∈ E(R) and (resp. or) vu ∈ E(R) for every pair
u, v ∈ V (R). As for finding a closed tcc (resp. closed tucc), we need to have
the same property, except that all subsets of size at least k must be tested (recall
that being a closed connected (unilateral) set is not hereditary). Therefore, if Δ
is the maximum degree of R, then testing connectivity takes time O(kΔ · n) (it
suffices to test all subsets of size k − 1 in N(u), for all u ∈ V (R)), while testing
closed connectivity takes time O(2Δ · n) (it suffices to test all subsets of size at
least k − 1 in N(u), for all u ∈ V (R)). The proofs then consist in bounding the
value Δ in each case. ��

It is important to observe that, for unilateral components, these bounds
depend only on k, while for tccs and closed tccs they depend on both k and
τ . This is consistent with the fact that we have proved that for tcc the problem
is W[1]-hard when parameterized just by k (Theorem 2).
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3 Checking Connectivity and Maximality

This section is focused on Questions 2 and 3. The former is open for all defini-
tions of components for both the strict and the non-strict models. We answer to
question providing the following conditional lower bound, which holds for both
models, where the notation Õ(·) ignores polylog factors. We apply the technique
used for instance in [3] to prove lower bounds for polynomial problems, which
intuitively consists of an exponential reduction from SAT to our problem.

Theorem 6. Consider a temporal graph G on M temporal edges. There is no
algorithm running in time Õ(M2−ε), for some ε, that decides whether G is tem-
porally (unilaterally) connected, unless SETH fails.

We now focus on Question 3. We prove the results in the second column
of Table 2, about the problem of deciding whether a subset of vertices Y of a
temporal graph is a component, i.e. a maximal connected set. The question is
open both for the strict and the non-strict model. We argued already in the
introduction that this is polynomial for tcc and tucc for both models. In
the following we prove NP-completeness for closed tcc and closed tucc on
undirected graphs. The results extend to directed graphs as well.

Theorem 7. Let G be a (directed) temporal graph, and Y ⊆ V (G). Deciding
whether Y is a closed tcc is NP-complete. The same holds for closed tucc.

Proof. We reduce from the problem of deciding whether a subset of vertices X
of a given a graph G is a maximal 2-club, where a 2-club is a set of vertices C
such that G[C] has diameter at most 2. This problem has been shown to be NP-
complete in [15]. Let us first focus on the strict model. In this case, given G we
can build a temporal graph G with only two snapshots, both equal to G. Observe
that X is a 2-club in G if and only if X is a closed tcc in G. Indeed, because
we can take only one edge in each snapshot and τ = 2, we get that temporal
paths will always have length at most 2. This also extends to closed tucc by
noting that all paths in G can be temporally traversed in both directions.

In the case of the non-strict model, the situation is more complicated as
in each snapshot we can take an arbitrary number of edges resulting in paths
arbitrarily long. We show the construction for closed tcc in what follows. Let
G be obtained from G by subdividing each edge uv of G twice, creating vertices
huv and hvu, with λ(uhuv) = λ(vhvu) = {1, 3, 5}, and λ(huvhvu) = {2, 4}. See
Fig. 3 (d) for an illustration.

Given (G,X), the instance of maximal 2-club, we prove that X is a maximal
2-club in G iff Y = X ∪ NH(X) is a closed tcc in G. For this, it suffices to
prove that, given X ′ ⊆ V (G) and defining Y ′ similarly as before w.r.t. X ′, we
have that G[X ′] has diameter at most 2 iff Y ′ is a closed temporal connected
set. The proof extends to closed tucc by proving that every closed tcc is
also a closed tucc and vice-versa. ��
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