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Preface

The 34th International Workshop on Combinatorial Algorithms (IWOCA 2023) was
planned as a hybrid event, with on-site activity held at the Magic School of Green
Technologies in National Cheng Kung University, Tainan, Taiwan during June 7–10,
2023.

Since its inception in 1989 as AWOCA (Australasian Workshop on Combinatorial
Algorithms), IWOCA has provided an annual forum for researchers who design
algorithms for the myriad combinatorial problems that underlie computer applications
in science, engineering, and business. Previous IWOCA and AWOCA meetings have
been held in Australia, Canada, the Czech Republic, Finland, France, Germany, India,
Indonesia, Italy, Japan, Singapore, South Korea, the UK, and the USA.

The Program Committee of IWOCA 2023 received 86 submissions in response to
the call for papers. All the papers were single-blind peer reviewed by at least three
Program Committee members and some trusted external reviewers, and evaluated on
their quality, originality, and relevance to the conference. The Program Committee
selected 33 papers for presentation at the conference and inclusion in the proceedings.

The program also included 4 keynote talks, given by Ding-Zhu Du (University of
Texas at Dallas, USA), Kazuo Iwama (National Ting Hua University, Taiwan), Peter
Rossmanith (RWTH Aachen University, Germany), and Weili Wu (University of
Texas at Dallas, USA). Abstracts of their talks are included in this volume.

We thank the Steering Committee for giving us the opportunity to serve as Program
Chairs of IWOCA 2023, and for the responsibilities of selecting the Program Com-
mittee, the conference program, and publications.

The Program Committee selected two contributions for the best paper and the best
student paper awards, sponsored by Springer.

The best paper award was given to:

• Adrian Dumitrescu and Andrzej Lingas for their paper “Finding Small Complete
Subgraphs Efficiently”

The best student paper award was given to:

• Tim A. Hartmann and Komal Muluk for their paper “Make a Graph Singly Con-
nected by Edge Orientations”

We gratefully acknowledge additional financial support from the following Tai-
wanese institutions: National Science and Technology Council, National Cheng Kung
University, NCKU Research and Development Foundation, Academic Sinica, National
Taipei University of Business, and Taiwan Association of Cloud Computing (TACC).

We thank everyone who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. We thank Springer for publishing the proceedings in
their ARCoSS/LNCS series and for their support. We would also like to extend special



thanks to the conference Organizing Committee for their work in making IWOCA
2023 a successful event.

Finally, we acknowledge the use of the EasyChair system for handling the sub-
mission of papers, managing the review process, and generating these proceedings.

June 2023 Sun-Yuan Hsieh
Ling-Ju Hung
Chia-Wei Lee

vi Preface



Organization

Steering Committee

Maria Chudnovsky Princeton University, USA
Henning Fernau Universität Trier, Germany
Costas Iliopoulos King’s College London, UK
Ralf Klasing CNRS and University of Bordeaux, France
Wing-Kin (Ken) Sung National University of Singapore, Singapore

Honorary Co-chairs

Richard Chia-Tong Lee National Tsing Hua University, Taiwan
Der-Tsai Lee Academia Sinica, Taiwan

General Co-chairs

Meng-Ru Shen National Cheng Kung University, Taiwan
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Sheng-Lung Peng National Taipei University of Business, Taiwan

Program Chairs

Ling-Ju Hung National Taipei University of Business, Taiwan
Chia-Wei Lee National Taitung University, Taiwan

Program Committee

Matthias Bentert University of Bergen, Norway
Hans-Joachim Böckenhauer ETH Zurich, Switzerland
Jou-Ming Chang National Taipei University of Business, Taiwan
Chi-Yeh Chen National Cheng Kung University, Taiwan
Ho-Lin Chen National Taiwan University, Taiwan
Li-Hsuan Chen National Taipei University of Business, Taiwan
Po-An Chen National Yang Ming Chiao Tung University, Taiwan
Eddie Cheng Oakland University, USA
Thomas Erlebach Durham University, UK
Henning Fernau Universität Trier, Germany
Florent Foucaud LIMOS - Université Clermont Auvergne, France
Wing-Kai Hon National Tsing Hua University, Taiwan
Juraj Hromkovič ETH Zurich, Switzerland
Mong-Jen Kao National Yang Ming Chiao Tung University, Taiwan
Ralf Klasing CNRS and University of Bordeaux, France



Tomasz Kociumaka Max Planck Institute for Informatics, Germany
Christian Komusiewicz Philipps-Universität Marburg, Germany
Dominik Köppl Tokyo Medical and Dental University, Japan
Rastislav Královic Comenius University, Slovakia
Van Bang Le Universität Rostock, Germany
Thierry Lecroq University of Rouen Normandy, France
Chung-Shou Liao National Tsing Hua University, Taiwan
Limei Lin Fujian Normal University, China
Hsiang-Hsuan Liu Utrecht University, The Netherlands
Hendrik Molter Ben-Gurion University of the Negev, Israel
Tobias Mömke University of Augsburg, Germany
Martin Nöllenburg TU Wien, Austria
Aris Pagourtzis National Technical University of Athens, Greece
Tomasz Radzik King’s College London, UK
M. Sohel Rahman Bangladesh University of Engineering and Technology,

Bangladesh
Adele Rescigno University of Salerno, Italy
Peter Rossmanith RWTH Aachen University, Germany
Kunihiko Sadakane University of Tokyo, Japan
Rahul Shah Louisiana State University, USA
Paul Spirakis University of Liverpool, UK
Meng-Tsung Tsai Academia Sinica, Taiwan
Shi-Chun Tsai National Yang Ming Chiao Tung University, Taiwan
Ugo Vaccaro University of Salerno, Italy
Tomoyuki Yamakami University of Fukui, Japan
Hsu-Chun Yen National Taiwan University, Taiwan
Christos Zaroliagis CTI and University of Patras, Greece
Guochuan Zhang Zhejiang University, China
Louxin Zhang National University of Singapore, Singapore

External Reviewers

Akchurin, Roman
Akrida, Eleni C.
Aprile, Manuel
Bruno, Roberto
Burjons, Elisabet
Caron, Pascal
Chakraborty, Dibyayan
Chakraborty, Dipayan
Chakraborty, Sankardeep
Chang, Ching-Lueh
Cordasco, Gennaro
Červený, Radovan
Dailly, Antoine

De Marco, Gianluca
Dey, Sanjana
Dobler, Alexander
Dobrev, Stefan
Fioravantes, Foivos
Francis, Mathew
Frei, Fabian
Gahlawat, Harmender
Gaikwad, Ajinkya
Ganguly, Arnab
Garvardt, Jaroslav
Gawrychowski, Pawel
Gehnen, Matthias

Georgiou, Konstantinos
Gregor, Petr
Hakanen, Anni
Hartmann, Tim A.
Im, Seonghyuk
Jia-Jie, Liu
Kaczmarczyk, Andrzej
Kalavasis, Alkis
Kaowsar, Iftekhar Hakim
Kellerhals, Leon
Klobas, Nina
Konstantopoulos,

Charalampos

viii Organization



Kontogiannis, Spyros
Kralovic, Richard
Kunz, Pascal
Kuo, Te-Chao
Kuo, Ting-Yo
Kurita, Kazuhiro
Lampis, Michael
Lehtilä, Tuomo
Li, Meng-Hsi
Lin, Chuang-Chieh
Lin, Wei-Chen
Liu, Fu-Hong
Lotze, Henri
Majumder, Atrayee
Mann, Kevin
Mao, Yuchen
Martin, Barnaby
Melissinos, Nikolaos
Melissourgos,

Themistoklis
Mock, Daniel

Morawietz, Nils
Muller, Haiko
Mütze, Torsten
Nisse, Nicolas
Nomikos, Christos
Pai, Kung-Jui
Pardubska, Dana
Pranto, Emamul Haq
Raptopoulos, Christoforos
Renken, Malte
Rodriguez Velazquez,

Juan Alberto
Roshany, Aida
Ruderer, Michael
Saha, Apurba
Sarker, Najibul Haque
Siyam, Mahdi Hasnat
Skretas, George
Sommer, Frank
Sorge, Manuel
Stiglmayr, Michael

Stocker, Moritz
Strozecki, Yann
Terziadis, Soeren
Theofilatos, Michail
Toth, Csaba
Tsai, Yi-Chan
Tsakalidis, Konstantinos
Tsichlas, Kostas
Unger, Walter
Vialette, Stéphane
Wang, Guang-He
Wang, Hung-Lung
Wild, Sebastian
Wlodarczyk, Michal
Wu, Tsung-Jui
Yang, Jinn-Shyong
Yeh, Jen-Wei
Yongge, Yang
Zerovnik, Janez

Organization ix



Sponsors

x Organization



Abstracts of Invited Talks



Adaptive Influence Maximization: Adaptability
via Non-adaptability

Ding-Zhu Du

University of Texas at Dallas, USA
dzdu@utdallas.edu

Adaptive influence maximization is an attractive research topic which obtained many
researchers’ attention. To enhance the role of adaptability, new information diffusion
models, such as the dynamic independent cascade model, are proposed. In this talk, the
speaker would like to present a recent discovery that in some models, the adaptive
influence maximization can be transformed into a non-adaptive problem in another
model. This reveals an interesting relationship between Adaptability and Non-
adaptability.



Bounded Hanoi

Kazuo Iwama

National Ting Hua University, Taiwan
iwama@ie.nthu.edu.tw

The classic Towers of Hanoi puzzle involves moving a set of disks on three pegs. The
number of moves required for a given number of disks is easy to determine, but when
the number of pegs is increased to four or more, this becomes more challenging. After
75 years, the answer for four pegs was resolved only recently, and this time complexity
question remains open for five or more pegs. In this article, the space complexity, i.e.,
how many disks need to be accommodated on the pegs involved in the transfer, is
considered for the first time. Suppose m disks are to be transferred from some peg L to
another peg R using k intermediate work pegs of heights j1; . . .; jk , then how large can m
be? We denote this value by H j1; . . .; jkð Þ. We have the exact value for two work pegs,
but so far only very partial results for three or more pegs. For example, H 10!; 10!ð Þ ¼
26336386137601 and H 0!; 1!; 2!; :::; 10!ð Þ ¼ 16304749471397, but we still do not
know the value for H 1; 3; 3ð Þ. Some new developments for three pegs are also men-
tioned. This is joint work with Mike Paterson.



Online Algorithms with Advice

Peter Rossmanith

Department of Computer Science, RWTH Aachen, Germany
rossmani@cs.rwth-aachen.de

Online algorithms have to make decisions without knowing the full input. A well-
known example is caching: Which page should we discard from a cache when there is
no more space left? The classical way to analyze the performance of online algorithms
is the competitive ratio: How much worse is the result of an optimization problem
relative to the optimal result. A different and relatively new viewpoint is the advice
complexity: How much information about the future does an online algorithm need in
order to become optimal? Or, similarly, how much can we improve the competitive
ratio with a given amount of information about the future? In this talk we will look at
the growing list of known results about online algorithms with advice and the inter-
esting problems that occurred when the pioneers of the field came up with the definition
of this model.



The Art of Big Data: Accomplishments
and Research Needs

Weili Wu

University of Texas at Dallas, USA
weiliwu@utdallas.edu

Online social platforms have become more and more popular, and the dissemination of
information on social networks has attracted wide attention in industry and academia.
Aiming at selecting a small subset of nodes with maximum influence on networks, the
Influence Maximization (IM) problem has been extensively studied. Since it is #P-hard
to compute the influence spread given a seed set, the state-of-the-art methods, including
heuristic and approximation algorithms, are with great difficulties such as theoretical
guarantee, time efficiency, generalization, etc. This makes them unable to adapt to
large-scale networks and more complex applications. With the latest achievements of
Deep Reinforcement Learning (DRL) in artificial intelligence and other fields, a lot of
work has focused on exploiting DRL to solve combinatorial optimization problems.
Inspired by this, we propose a novel end-to-end DRL framework, ToupleGDD, to
address the IM problem which incorporates three coupled graph neural networks for
network embedding and double deep Q-networks for parameter learning. Previous
efforts to solve the IM problem with DRL trained their models on a subgraph of the
whole network, and then tested their performance on the whole graph, which makes the
performance of their models unstable among different networks. However, our model is
trained on several small randomly generated graphs and tested on completely different
networks, and can obtain results that are very close to the state-of-the-art methods. In
addition, our model is trained with a small budget, and it can perform well under
various large budgets in the test, showing strong generalization ability. Finally, we
conduct extensive experiments on synthetic and realistic datasets, and the experimental
results prove the effectiveness and superiority of our model.
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Multi-priority Graph Sparsification

Reyan Ahmed1(B), Keaton Hamm2, Stephen Kobourov1,
Mohammad Javad Latifi Jebelli1, Faryad Darabi Sahneh1,

and Richard Spence1

1 University of Arizona, Tucson, AZ, USA
abureyanahmed@arizona.edu

2 University of Texas at Arlington, Arlington, TX, USA

Abstract. A sparsification of a given graph G is a sparser graph (typi-
cally a subgraph) which aims to approximate or preserve some property
of G. Examples of sparsifications include but are not limited to spanning
trees, Steiner trees, spanners, emulators, and distance preservers. Each
vertex has the same priority in all of these problems. However, real-world
graphs typically assign different “priorities” or “levels” to different ver-
tices, in which higher-priority vertices require higher-quality connectivity
between them. Multi-priority variants of the Steiner tree problem have
been studied previously, but have been much less studied for other types
of sparsifiers. In this paper, we define a generalized multi-priority prob-
lem and present a rounding-up approach that can be used for a variety of
graph sparsifications. Our analysis provides a systematic way to compute
approximate solutions to multi-priority variants of a wide range of graph
sparsification problems given access to a single-priority subroutine.

Keywords: graph spanners · sparsification · approximation algorithms

1 Introduction

A sparsification of a graph G is a graph H which preserves some property of
G. Examples of sparsifications include spanning trees, Steiner trees, spanners,
emulators, distance preservers, t–connected subgraphs, and spectral sparsifiers.
Many sparsification problems are defined with respect to a given subset of ver-
tices T ⊆ V which we call terminals: e.g., a Steiner tree over (G,T ) requires
a tree in G which spans T . Most of their corresponding optimization problems
(e.g., finding a minimum weight Steiner tree or spanner) are NP-hard to compute
optimally, so one often seeks approximate solutions in practice.

In real-world networks, not all vertices or edges are created equal. For exam-
ple, a road network may wish to not only connect its cities with roads, but
also ensure that pairs of larger cities enjoy better connectivity (e.g., with major
highways). In this paper, we are interested in generalizations of sparsification
problems where each vertex possesses one of k + 1 different priorities (between
0 and k, where k is the highest), in which the goal is to construct a graph H

Supported in part by NSF grants CCF-1740858, CCF-1712119, and CCF-2212130.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-Y. Hsieh et al. (Eds.): IWOCA 2023, LNCS 13889, pp. 1–12, 2023.
https://doi.org/10.1007/978-3-031-34347-6_1
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2 R. Ahmed et al.

such that (i) every edge in H has a rate between 1 and k inclusive, and (ii) for
all i ∈ {1, . . . , k}, the edges in H of rate ≥ i constitute a given type of sparsifier
over the vertices whose priority is at least i. Throughout, we assume a vertex
with priority 0 need not be included and all other vertices are terminals.

1.1 Problem Definition

A sparsification H is valid if it satisfies a set of constraints that depends on the
type of sparsification. Given G and a set of terminals T , let F be the set of all
valid sparsifications H of G over T . Throughout, we will assume that F satisfies
the following general constraints that must hold for all types of sparsification
we consider in this article: for all H ∈ F : (a) H contains all terminals T in the
same connected component, and (b) H is a subgraph of G. Besides these general
constraints, there are additional constraints that depend on the specific type of
sparsification as described below.

Tree Constraint of a Steiner Tree Sparsification: A Steiner tree over (G,T ) is a
subtree H that spans T . Here the specific constraint is that H must be a tree
and we refer to it as the tree constraint.

Distance Constraints of Spanners and Preservers: A spanner is a subgraph H
which approximately preserves distances in G (e.g., if dH(u, v) ≤ αdG(u, v) for
all u, v ∈ V and α ≥ 1 then H is called a multiplicative α-spanner of G). A subset
spanner needs only approximately preserve distances between a subset T ⊆ V
of vertices. A distance preserver is a special case of the spanner where α = 1.
The specific constraints are the distance constraints applied from the problem
definition. For example, the inequality above is for so-called multiplicative α-
spanners. We refer to these types of constraints as distance constraints.

The above problems are widely studied in literature; see surveys [5,22]. In this
paper, we study k-priority sparsification which is a generalization of the above
problems. An example sparsification which we will not consider in the above
framework is the emulator, which approximates distances but is not necessarily
a subgraph. We now define a k-priority sparsification as follows, where [k] :=
{1, 2, . . . , k}.

Definition 1 (k-priority sparsification). Let G(V,E) be a graph, where each
vertex v ∈ V has priority �(v) ∈ [k] ∪ {0}. Let Ti := {v ∈ V | �(v) ≥ i}. Let
w(e) be the edge weight of edge e. The weight of an edge with rate i is denoted
by w(e, i) = i w(e, 1) = i w(e). For i ∈ [k], let Fi denote the set of all valid
sparsifications over Ti. A subgraph H with edge rates R : E(H) → [k] is a k-
priority sparsification if for all i ∈ [k], the subgraph of H induced by all edges of
rate ≥ i belongs to Fi. We assess the quality of a sparsification H by its weight,
weight(H) :=

∑
e∈E(H) w(e,R(e)).

Note that H induces a nested sequence of k subgraphs, and can also be
interpreted as a multi-level graph sparsification [3]. A road map (Fig. 1(a)) serves
as a good analogy of a multi-level sparsification, as zooming out filters out smaller
roads. Figure 1(b) shows an example of 2-priority sparsification with distance



Multi-priority Graph Sparsification 3

Fig. 1. Different levels of detail on a road map of New York (a), 2-priority sparsifica-
tions with distance constraints (b), and with a tree constraint (c). On the left side, we
have the most important information (indicated using edge thickness). As we go from
left to right, more detailed information appears on the screen.

constraints where Fi is the set of all subset +2 spanners over Ti; that is, the
vertex pairs of Ti is connected by a path in Hi at most 2 edges longer than
the corresponding shortest path in G. Similarly, Fig. 1(c) shows an example of
2-priority sparsification with a tree constraint.

Definition 1 is intentially open-ended to encompass a wide variety of sparsi-
fication problems. The k-priority problem is a generalization of many NP-hard
problems, for example, Steiner trees, spanners, distance preservers, etc. These
classical problems can be considered different variants of the 1-priority problem.
Hence, the k-priority problem cannot be simpler than the 1-priority problem.
Let OPT be an optimal solution to the k-priority problem and the weight of
OPT be weight(OPT). In this paper, we are mainly interested in the following
problem.

Problem. Given 〈G, �, w〉 consisting of a graph G with vertex priorities � :
V → [k] ∪ {0}, can we compute a k-priority sparsification whose weight is small
compared to weight(OPT)?

1.2 Related Work

The case where Fi consists of all Steiner trees over Ti is known under differ-
ent names including Priority Steiner Tree [18], Multi-level Network Design [11],
Quality-of-Service Multicast Tree [15,23], and Multi-level Steiner Tree [3].
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Charikar et al. [15] give two O(1)-approximations for the Priority Steiner Tree
problem using a rounding approach which rounds the priorities of each terminal
up to the nearest power of some fixed base (2 or e), then using a subroutine which
computes an exact or approximate Steiner tree. If edge weights are arbitrary with
respect to rate (not necessarily increasing linearly w.r.t. the input edge weights),
the best known approximation algorithm achieves ratio O(min{log |T |, kρ} [15,
31] where ρ ≈ 1.39 [14] is an approximation ratio for the edge-weighted Steiner
tree problem. On the other hand, the Priority Steiner tree problem cannot be
approximated with ratio c log log n unless NP ⊆ DTIME(nO(log log log n)) [18].

Ahmed et al. [7] describe an experimental study for the k-priority problem
in the case where Fi consists of all subset multiplicative spanners over Ti. They
show that simple heuristics for computing multi-priority spanners already per-
form nearly optimally on a variety of random graphs. Multi-priority variants of
additive spanners have also been studied [6], although with objective functions
that are more restricted than our setting.

1.3 Our Contribution

We extend the rounding approach provided by Charikar et al. [15]. Our result
not only works for Steiner trees but also for graph spanners. We prove our result
using proof by induction.

2 A General Approximation for k-Priority Sparsification

In this section, we generalize the rounding approach of [15]. The approach has
two main steps: the first step rounds up the priority of all terminals to the
nearest power of 2; the second step computes a solution independently for each
rounded-up priority and merges all solutions from the highest priority to the
lowest priority. Each of these steps can make the solution at most two times worse
than the optimal solution. Hence, overall the algorithm is a 4-approximation. We
provide the pseudocode of the algorithm below, here Si in a partitioning is a set
of terminals.

Algorithm 1. Algorithm k-priority Approximation(G = (V,E))
// Round up the priorities
for each terminal v ∈ V do

Round up the priority of v to the nearest power of 2

// Independently compute the solutions
Compute a partitioning S1, S2, S4, · · · , Sk from the rounded-up terminals
for each partition component Si do

Compute a 1-priority solution on partition component Si

// Merge the independent solutions
for i ∈ {k, k − 1, · · · , 1} do

Merge the solution of Si to the solutions of lower priorities
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We now propose a partitioning technique that will guarantee valid solutions1.

Definition 2. An inclusive partitioning of the terminal vertices of a k-priority
instance assigns each terminal tj to each partition component in {Si : i ≤
�(tj), i = 2k, k ≥ 0}.

We compute partitioning S1, S2, · · · , Sk from the rounded-up terminal sets
and use them to compute the independent solutions. Here, we require one more
assumption: given 1 ≤ i < j ≤ k and two partition components Si, Sj , any two
sparsifications of rate i and j can be “merged” to produce a third sparsification
of rate i. Specifically, if Hi ∈ Fi, and Hj ∈ Fj , then there is a graph Hi,j ∈ Fi

such that Hj ⊆ Hi,j . For the above sparsification problems (e.g., Steiner tree,
spanners), we can often let Hi,j be the union of the edges in Hi and Hj , though
edges may need to be pruned to satisfy a tree constraint (by removing cycles).

Definition 3. Let Si and Sj be two partition components of a partitioning where
i < j. Let Hi and Hj be the independently computed solution for Si and Sj respec-
tively. We say that the solution Hj is merged with solution Hi if we complete
the following two steps:

1. If an edge e is not present in Hi but present in Hj, then we add e to Hi.
2. If there is a tree constraint, then prune some lower-rated edges to ensure there

is no cycle.

We need the second step of merging particularly for sparsifications with tree
constraints. Although the merging operation treats these sparsifications differ-
ently, we will later show that the pruning step does not play a significant role in
the approximation guarantee. Algorithm k-priority Approximation computes a
partitioning from the rounded-up terminals. We now provide an approximation
guarantee for Algorithm k-priority Approximation that is independent of the
partitioning method.

Theorem 1. Consider an instance ϕ = 〈G, �, w〉 of the k-priority problem. If
we are given an oracle that can compute the minimum weight sparsification of
G over a partition set S, then with at most log2 k + 1 queries to the oracle,
Algorithm k-priority computes a k-priority sparsification with weight at most
4 weight(OPT). If instead of an oracle a ρ-approximation is given, then the
weight of k-priority sparsification is at most 4ρ.

Proof. Given ϕ, construct the rounded-up instance ϕ′ which is obtained by
rounding up the priority of each vertex to the nearest power of 2. Let OPT′

be an optimum solution to the rounded-up instance. We can obtain a feasible
solution for the rounded-up instance from OPT by raising the rate of each edge
to the nearest power of 2, and the rate of an edge will not increase more than
two times the original rate. Hence weight(OPT′) ≤ 2 weight(OPT).

Then for each rounded-up priority i ∈ {1, 2, 4, 8, . . . , k}, compute a sparsifica-
tion independently over the partition component Si, creating log2 k + 1 graphs.
1 A detailed discussion can be found in the full version [8].
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We denote these graphs by ALG1, ALG2, ALG4, . . . , ALGk. Combine these
sparsifications into a single subgraph ALG. This is done using the “merging”
operation described earlier in this section: (i) add each edge of ALGi to all spar-
sification of lower priorities ALGi−1,ALGi−2, · · · ,ALG1 and (ii) prune some
edges to make sure that there is exactly one path between each pair of terminals
if we are computing priority Steiner tree.

It is not obvious why after this merging operation we have a k-priority spar-
sification with cost no more than 4 weight(OPT). The approximation algorithm
computes solutions independently by querying the oracle, which means it is
unaware of the terminal sets at the lower levels. Consider the topmost partition
component Sk of the rounded-up instance. The approximation algorithm com-
putes an optimal solution for that partition component. The optimal algorithm
of the k-priority sparsification computes the solution while considering all the
terminals and all priorities. Let OPTi be the minimum weighted subgraph in an
optimal k-priority solution OPT to generate a valid sparsification on partition
component Si. Then weight(ALGk) ≤ weight(OPTk), i.e., if we only consider
the top partition component Sk, then the approximation algorithm is no worse
than the optimal algorithm. Similarly, weight(ALGi) ≤ weight(OPTi) for each
i.

However, the approximation algorithm may incur an additional cost when
merging the edges of ALGk in lower priorities. In the worst case, merged edges
might not be needed to compute the solutions of the lower partition components
(if the merged edges are not used in the lower partition components in their
independent solutions, then we do not need to pay extra cost for the merging
operation). This is because the approximation algorithm computes the solutions
independently. On the other hand, in the worst case, it may happen that OPTk

includes all the edges to satisfy all the constraints of lower partition components.
In this case, the cost of the optimal k-priority solution is k·weight(OPTk). If
weight(ALGk) ≈ weight(ALGk−1) ≈ · · · ≈ weight(ALG1) and the edges of the
sparsification of a particular priority do not help in the lower priorities, then
it seems like the approximation algorithm can perform around k times worse
than the optimal k-priority solution. However, such an issue (the edges of the
sparsification of a particular priority do not help in the lower priorities) does
not arise as we are considering a rounded-up instance. In a rounded-up instance
Sk = Sk−1 = · · · = S k

2+1. Hence weight(ALGk) = weight(ALGi) for i = k −
1, k − 2, · · · , k

2 + 1.

Lemma 1. If we compute independent solutions of a rounded-up k-priority
instance and merge them, then the cost of the solution is no more than
2 weight(OPT).

Proof. Let k = 2i. Let the partitioning be S2i , S2i−1 , · · · , S1. Suppose we have
computed the independent solution and merged them in lower priorities. We
actually prove a stronger claim, and use that to prove the lemma. Note that
in the worst case the cost of approximation algorithm is 2iweight(ALG2i) +
2i−1weight(ALG2i−1) + · · · + weight(ALG1) =

∑i
p=0 2pweight(ALG2p). And the



Multi-priority Graph Sparsification 7

cost of the optimal algorithm is weight(OPT2i) + weight(OPT2i−1) + · · · +
weight(OPT1) =

∑2i

p=1 weight(OPTp). We show that
∑i

p=0 2pweight(ALG2p) ≤
2

∑2i

p=1 weight(OPTp). We provide a proof by induction on i.
Base step: If i = 0, then we have just one partition component S1. The

approximation algorithm computes a sparsification for S1 and there is nothing to
merge. Since the approximation algorithm uses an optimal algorithm to compute
independent solutions, weight(ALG1) ≤ weight(OPT1) ≤ 2 weight(OPT1).

Inductive step: We assume that the claim is true for i = j which is the
induction hypothesis. Hence

∑j
p=0 2pweight(ALG2p) ≤ 2

∑2j

p=1 weight(OPTp).
We now show that the claim is also true for i = j + 1. In other words, we have
to show that

∑j+1
p=0 2pweight(ALG2p) ≤ 2

∑2j+1

p=1 weight(OPTp). We know,

j+1∑

p=0

2pweight(ALG2p) = 2j+1weight(ALG2j+1) +
j∑

p=0

2pweight(ALG2p)

≤ 2j+1weight(OPT2j+1) +
j∑

p=0

2pweight(ALG2p)

= 2 × 2jweight(OPT2j+1) +
j∑

p=0

2pweight(ALG2p)

= 2
2j+1
∑

p=2j+1

weight(OPTp) +
j∑

p=0

2pweight(ALG2p)

≤ 2
2j+1
∑

p=2j+1

weight(OPTp) + 2
2j

∑

p=1

weight(OPTp)

= 2
2j+1
∑

p=1

weight(OPTp)

Here, the second equality is just a simplification. The third inequality uses
the fact that an independent optimal solution has a cost lower than or equal to
any other solution. The fourth equality is a simplification, the fifth inequality
uses the fact that the input is a rounded up instance. The sixth inequality uses
the induction hypothesis. ��

We have shown earlier that the solution of the rounded up instance has a
cost of no more than 2 weight(OPT). Combining that claim and the previous
claim, we can show that the solution of the approximation algorithm has cost no
more than 4 weight(OPT). In most cases, computing the optimal sparsification is
computationally difficult. If an oracle is instead replaced with a ρ-approximation,
the rounding-up approach is a 4ρ-approximation, by following the same proof as
above. ��
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3 Subset Spanners and Distance Preservers

Here we provide a bound on the size of subsetwise graph spanners, where light-
ness is expressed with respect to the weight of the corresponding Steiner tree.
Given a (possibly edge-weighted) graph G and α ≥ 1, we say that H is a (mul-
tiplicative) α-spanner if dH(u, v) ≤ α · dG(u, v) for all u, v ∈ V , where α is the
stretch factor of the spanner and dG(u, v) is the graph distance between u and
v in G. A subset spanner over T ⊆ V approximates distances between pairs of
vertices in T (e.g., dH(u, v) ≤ α · dG(u, v) for all u, v ∈ T ). For clarity, we refer
to the case where T = V as an all-pairs spanner. The lightness of an all-pairs
spanner is defined as its total edge weight divided by w(MST (G)). A distance
preserver is a spanner with α = 1.

Althöfer et al. [10] give a simple greedy algorithm which constructs an all-
pairs (2k − 1)-spanner H of size O(n1+1/k) and lightness 1 + n

2k . The lightness
has been subsequently improved; in particular Chechik and Wulff-Nilsen [17]
give a (2k −1)(1+ε) spanner with size O(n1+1/k) and lightness Oε(n1/k). Up to
ε dependence, these size and lightness bounds are conditionally tight assuming
a girth conjecture by Erdős [21], which states that there exist graphs of girth
2k + 1 and Ω(n1+1/k) edges.

For subset spanners over T ⊆ V , the lightness is defined with respect to the
minimum Steiner tree over T , since that is the minimum weight subgraph which
connects T . We remark that in general graphs, the problem of finding a light
multiplicative subset spanner can be reduced to that of finding a light spanner:

Lemma 2. Let G be a weighted graph and let T ⊆ V . Then there is a poly-time
constructible subset spanner with stretch (2k−1)(1+ε) and lightness Oε(|T |1/k).

Proof. Let G̃ be the metric closure over (G,T ), namely the complete graph K|T |
where each edge uv ∈ E(G̃) has weight dG(u, v). Let H ′ be a (2k − 1)(1 + ε)-
spanner of G̃. By replacing each edge of H ′ with the corresponding shortest
path in G, we obtain a subset spanner H of G with the same stretch and
total weight. Using the spanner construction of [17], the total weight of H ′ is
Oε(|T |1/k)w(MST (G̃)). Using the well-known fact that the MST of G̃ is a 2-
approximation for the minimum Steiner tree over (G,T ), it follows that the total
weight of H ′ is also Oε(|T |1/k) times the minimum Steiner tree over (G,T ). ��
Thus, the problem of finding a subset spanner with multiplicative stretch
becomes more interesting when the input graph is restricted (e.g., planar, or
H-minor free). Klein [25] showed that every planar graph has a subset (1 + ε)-
spanner with lightness Oε(1). Le [28] gave a poly-time algorithm which computes
a subset (1 + ε)-spanner with lightness Oε(log |T |), where G is restricted to be
H-minor free.

On the other hand, subset spanners with additive +β error are more inter-
esting, as one cannot simply reduce this problem to the all-pairs spanner as
in Lemma 2. It is known that every unweighted graph G has +2, +4, and +6
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spanners with O(n3/2) edges [9], Õ(n7/5) edges [16], and O(n4/3) edges [12,26]
respectively, and that the upper bound of O(n4/3) edges cannot be improved
even with +no(1) additive error [2].

3.1 Subset Distance Preservers

Unlike spanners, general graphs do not contain sparse distance preservers that
preserve all distances exactly; the unweighted complete graph has no nontrivial
distance preserver and thus Θ(n2) edges are needed. Similarly, subset distance
preservers over a subset T ⊆ V may require Θ(|T |2) edges. It is an open question
whether there exists c > 0 such that any undirected, unweighted graph and
subset of size |T | = O(n1−c) has a distance preserver on O(|T |2) edges [13].
Moreover, when |T | = O(n2/3), there are graphs for which any subset distance
preserver requires Ω(|T |n2/3) edges, which is ω(|T |2) when |T | = o(n2/3) [13].

Theorem 2. If the above open question is true, then every unweighted graph
with |T | = O(n1−c) and terminal priorities in [k] has a priority distance pre-
server of size 4 weight(OPT).

4 Multi-priority Approximation Algorithms

In this section, we illustrate how the subset spanners mentioned in Sect. 3 can
be used in Theorem 1, and show several corollaries of the kinds of guarantees
one can obtain in this manner. In particular, we give the first weight bounds for
multi-priority graph spanners. The case of Steiner trees was discussed [3].

4.1 Spanners

If the input graph is planar, then we can use the algorithm by Klein [25] to
compute a subset spanner for the set of priorities we get from the rounding
approach. The polynomial-time algorithm in [25] has constant approximation
ratio, assuming constant stretch factor, yielding the following corollary.

Corollary 1. Given a planar graph G and ε > 0, there exists a rounding app-
roach based algorithm to compute a multi-priority multiplicative (1 + ε)-spanner
of G having O(ε−4) approximation. The algorithm runs in O( |T | log |T |

ε ) time,
where T is the set of terminals.

The proof of this corollary follows from combining the guarantee of Klein [25]
with the bound of Theorem 1. Using the approximation result for subset spanners
provided in Lemma 2, we obtain the following corollary.

Corollary 2. Given an undirected weighted graph G, t ∈ N, ε > 0, there exists
a rounding approach based algorithm to compute a multi-priority multiplicative
(2t − 1)(1 + ε)-spanner of G having O(|T | 1

ε ) approximation, where T is the set
of terminals. The algorithm runs in O(|T |2+ 1

k+ε) time.
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For additive spanners, there are algorithms to compute subset spanners of size
O(n|T | 2

3 ), Õ(n|T | 4
7 ) and O(n|T | 1

2 ) for additive stretch 2, 4 and 6, respectively [1,
24]. Similarly, there is an algorithm to compute a near-additive subset (1+ε, 4)–

spanner of size O(n
√

|T | log n
ε ) [24]. If we use these algorithms as subroutines in

Lemma 2 to compute subset spanners for different priorities, then we have the
following corollaries.

Corollary 3. Given an undirected weighted graph G, there exist polynomial-
time algorithms to compute multi-priority graph spanners with additive stretch
2, 4 and 6, of size O(n|T | 2

3 ), Õ(n|T | 4
7 ), and O(n|T | 1

2 ), respectively.

Corollary 4. Given an undirected unweighted graph G, there exists a
polynomial-time algorithm to compute multi-priority (1 + ε, 4)–spanners of size

O(n
√

|T | log n
ε ).

Several of the above results involving additive spanners have been recently
generalized to weighted graphs; more specifically, there are algorithms to com-
pute subset spanners in weighted graphs of size O(n|T | 2

3 ), and O(n|T | 1
2 ) for addi-

tive stretch 2W (·, ·), and 6W (·, ·), respectively [4,19,20], where W (u, v) denotes
the maximum edge weight along the shortest u-v path in G. Hence, we have the
following corollary.

Corollary 5. Given an undirected weighted graph G, there exist polynomial-
time algorithms to compute multi-priority graph spanners with additive stretch
2W (·, ·), and 6W (·, ·), of size O(n|T | 2

3 ), and O(n|T | 1
2 ), respectively.

4.2 t–Connected Subgraphs

Another example which fits the framework of Sect. 1.1 is that of finding t–
connected subgraphs [27,29,30], in which (similar to the Steiner tree problem)
a set T ⊆ V of terminals is given, and the goal is to find the minimum-cost
subgraph H such that each pair of terminals is connected with at least t vertex-
disjoint paths in H. If we use the algorithm of [27] (that computes a t–connected
subgraph with approximation guarantee to O(t log t)) in Theorem 1 to compute
subsetwise t–connected subgraphs for different priorities, then we have the fol-
lowing corollary.

Corollary 6. Given an undirected weighted graph G, using the algorithm of [27]
as a subroutine in Theorem 1 yields a polynomial-time algorithm which computes
a multi-priority t–connected subgraph over the terimals with approximation ratio
O(t log t) provided |T | ≥ t2.

5 Conclusions and Future Work

We study the k-priority sparsification problem that arises naturally in large
network visualization since different vertices can have different priorities. Our
problem relies on a subroutine for the single priority sparsification. A nice open
problem is whether we can solve it directly without relying on a subroutine.
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Abstract. In this paper, we investigate the following problem: “given
a set S of n homothetic polygons, preprocess S to efficiently report all
the polygons of S containing a query point.” A set of polygons is said
to be homothetic if each polygon in the set can be obtained from any
other polygon of the set using scaling and translating operations. The
problem is the counterpart of the homothetic range search problem dis-
cussed by Chazelle and Edelsbrunner (Chazelle, B., and Edelsbrunner,
H., Linear space data structures for two types of range search. Discrete
& Computational Geometry 2, 2 (1987), 113–126). We show that after
preprocessing a set of homothetic polygons with constant number of ver-
tices, the queries can be answered in O(log n+ k) optimal time, where k
is the output size. The preprocessing takes O(n logn) space and time. We
also study the problem in dynamic setting where insertion and deletion
operations are also allowed.

Keywords: Geometric Intersection · Algorithms · Data Structures ·
Dynamic Algorithms

1 Introduction

The point enclosure problem is one of the fundamental problems in computa-
tional geometry [3,6,20,24]. Typically, a point enclosure problem is formulated
as follows:

Preprocess a given set of geometrical objects so that for an arbitrary query
point, all objects of the set containing the point can be reported efficiently.

In the counting version of the problem, we need only to compute the number
of such objects. The point enclosure problems with orthogonal input objects (e.g.
intervals, axes-parallel rectangles) have been well studied [1,3,5,6,24], but less
explored for non-orthogonal objects.

We consider the point enclosure problem for homothetic polygons. A family
of polygons is said to be homothetic if each polygon can be obtained from any
other polygon in the family using scaling and translating operations. More pre-
cisely, a polygon P ′ is said to be homothetic to another polygon P [8], if there
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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exists a point q and a real value c such that P ′ = {p ∈ R
2| there is a point v ∈

P such that px = qx + cvx and py = qy + cvy}. Note that polygons homothetic
to P are also homothetic to each other. Finding a solution to the point enclosure
problem for homothetic triangles is sufficient. We can triangulate homothetic
polygons into several sets of homothetic triangles and process each such set sep-
arately. Thus, our primary goal is to find an efficient solution for the triangle
version.

The problem has applications in chip design. In VLSI, one deals with orthog-
onal and c-oriented objects (objects with sides parallel to previously defined
c-directions) [4]. Earlier, Chazelle and Edelsbrunner [8] studied a range search
problem in which query ranges are homothetic triangles (closed under translat-
ing and scaling). The problem we are considering is its “dual” in that the roles
of input and query objects have swapped.

We study the problem in the static and dynamic settings. In the static ver-
sion, the set of input polygons can not be changed while in the dynamic setting,
new polygons may be inserted and existing ones may be deleted. For the static
version, we propose a solution that can support point enclosure queries in opti-
mal O(log n+k) time, where k is the output size. Preprocessing takes O(n log n)
space and time. In the dynamic setting, we present a data structure that can
answer a point enclosure query in O(log2 n + k) time, where k is the output
size and n is the current size of the dynamic set. An insertion or deletion oper-
ation takes O(log2 n) amortized time. The total space used by the structure is
O(n log n).

Remark 1. The point enclosure problem for homothetic triangles can also be
solved by transforming it into an instance of the 3-d dominance query problem
[2]. Here, we present a direct approach to solve the problem (without using the
machinery of the 3-d dominance problem [16,21,23]).

The point enclosure problem for general triangles has been studied see, e.g.
[10,19]. Overmars et al. [19] designed a data structure using a segment partition
tree. Its preprocessing takes O(n log2 n) space and O(n log3 n) time. The trian-
gles containing a query point can be reported in O(nλ + k) time and counted in
O(nλ) time, where k is the output size and λ ≈ 0.695. Cheng and Janardan [10]
improved the query and space bounds to O(min{√

n log n+ k log n ,
√

n log2 n+
k}) and O(n log2 n) respectively, again k is the output size. However, the pre-
processing time increases to O(n

√
n log2 n).

The point enclosure problems for triangles with other constraints have also
been studied. Katz [14] gave a solution for the point enclosure problem for convex
simply-shaped fat objects. The query time is O(log3 n + k log2 n), where k is
the output size. Gupta et al. [12] provided solutions for the problem with fat
input triangles. Sharir [22] gave a randomised algorithm to preprocess a set of
discs in the plane such that all discs containing a query point are reported in
O((k + 1) log n) (the worst-case) time.

Katz and Nielsen [15] considered a related decision problem of determining
whether a given set of geometric objects is k-pierceable or not. A set of objects
S is k-pierceable if there exists a set P of k points in the plane such that each
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object in S is pierced by (contains) at least one point of P . They solved the 3-
piercing problem for a set of n homothetic triangles in O(n log n) time. A similar
problem has been studied by Nielsen in [18].

Güting [13] considered the point enclosure problem for c-oriented poly-
gons: polygons whose edges are oriented in only a constant number of previ-
ously defined directions. He gave an optimal O(log n) query time solution for
its counting version. Chazelle and Edelsbrunner [8] gave a linear space and
O(log n+#output) query time solution for the problem of reporting points lying
in a query homothetic triangle.

First, we consider a more specific problem where the input set S contains
homothetic isosceles right-angled triangles. We can assume, without loss of gen-
erality, that the right-angled isosceles triangles in S are axes-parallel.

In our static optimal solution, we build a segment tree T over the x-
projections of the triangles in S. We represent the canonical set S(v) of triangles,
for each node v, by a linear list. For each triangle T ∈ S(v), v ∈ T , we define
two geometric objects (right-angled triangle and rectangle) such that a point
in the plane lies in one of these objects iff it lies in T . We call them trimmed
triangles and trimmed rectangles for (T, v). We store them in different struc-
tures separately that can quickly answer the point enclosure queries. Further,
we employ the fractional cascading technique to achieve O(log n+k) query time,
where k is the output size. O(n log n) space and time are needed to build the
data structure.

For the dynamic setting, we maintain the triangles in S in an augmented
dynamic segment tree [17]. At each node v in the tree, we maintain an augmented
list A(v) of trimmed triangles sorted by an order � (to be defined later) and a
dynamic interval tree [11] for storing y-projections of trimmed rectangles. For a
given query point, we obtain all the trimmed triangles (the trimmed rectangles)
containing the point using the augmented lists (the interval trees) associated with
the nodes on the search path for the query point. The query time is O(log2 n+k).
We can insert (delete) a triangle into (from) the structure in O(log2 n) time. The
space used by the data structure is O(n log n).

We show that, without increasing any bound, a solution for the special case
can be extended for general homothetic triangles. For homothetic polygons, by
similarly triangulating all polygons, we get several instances of the problem for
homothetic triangles.

The paper is organised as follows. In Sect. 2, we consider a special case where
the input objects are homothetic isosceles right-angled triangles and present
solutions for both the static setting and the dynamic setting. Section 3 describes
a transformation to obtain a solution for the general problem. In Sect. 4, we
study the problem for homothetic polygons. Finally, some conclusions are in
Sect. 5.

1.1 Preliminaries

One-Dimensional Point Enclosure Problem: The problem asks to preprocess a
set of intervals on the line so that all the intervals containing a query point (real
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value) can be found efficiently. Chazelle [6] describes a linear space structure,
namely the window-list, that can find all the intervals containing a query point in
O(log n+ k) time, where n is the number of input intervals, and k is the output
size. There is exactly one window in the window-list containing a particular
point. Knowing the query-point window allows us to find the required intervals
in O(k) time. The preprocessing time is O(n log n). The window-list structure
can be built in linear time if the interval endpoints are already sorted.

Interval Tree: The interval tree [3] is a classical data structure that can be used to
store a set of n intervals on the line such that, given a query point (a real value),
one can find all intervals containing the point in optimal O(log n + #output)
time. The dynamic interval tree [11] also supports the insertions of new intervals
and deletions of the existing ones, each one in O(log n) amortized time. The
space used in both settings is O(n).

Segment Tree: The segment tree data structure [3] for a set B of n segments on
the real line supports the following operations.

– report all the segments in B that contain a query point x in O(log n+#output)
time.

– count all the segments in B that contain a query point x in O(log n) time.

It can be built in O(n log n) time and space. Each node v in the segment tree
corresponds to a vertical slab H(v) = [x, x′)×R

2, where [x, x′) is an interval on
the x-axis. The union of vertical slabs corresponding to all nodes at any level in
the segment tree is the entire plane. We say that a segment si ∈ B spans node
v if si intersects H(v) and none of its endpoints lies in the interior of H(v). The
canonical set B(v), at node v, contains those segments of B that span v but do
not span u, where u is the parent of v in the segment tree. A segment si ∈ B can
belong to canonical set B(v) of at most two nodes at any tree level. As there are
O(log n) levels in the segment tree, segment si may belong to O(log n) nodes.
So, the total space required to store all the segments in the segment tree will be
O(n log n).

Fractional Cascading Technique: Chazelle and Guibas [9] introduced the frac-
tional cascading technique. Suppose there is an ordered list C(v) in each node v
of a binary tree of height O(log n). Using the fractional cascading method, we
can search for an element in all lists C(v) along a root-to-leaf path in the tree
in O(log n) time, where Σv(|C(v)|) = O(n).

Mehlhorn and Näher [17] showed that fractional cascading also supports
insertions into and deletion from the lists efficiently. Specifically, they showed
that a search for a key in t lists takes O(log n+ t log log n) time and an insertion
or deletion takes O(log log n) amortized time, where n is the total size of all lists.
As an application of the dynamic fractional cascading, they gave the following
theorem.

Theorem 1. [17] Let S be a set of n horizontal segments with endpoints in R×
R. An augmented dynamic segment tree for S can be built in O(n log n log log n)
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time and O(n log n) space. It supports an insertion or deletion operation in
O(log n log log n) amortized time. An orthogonal segment intersection search
query can be answered in O(log n log log n+#output). If only insertions or only
deletions operations are to be supported, then log log n factors can be replaced by
O(1) from all the bounds mentioned earlier.

We use the following definitions and notations. A right-angled triangle with two
sides parallel to the axes will be called an axes-parallel right-angled triangle. We
will characterise a point p in the plane by coordinates (px, py). By x-projection
(resp. y-projection) of an object O, we mean the projection of a geometric object
O on the x-axis (resp. y-axis). For any pair of points p and q in the plane, we
say point q dominates point p if qx ≥ px and qy ≥ py, and at least one of the
inequality is strict.

2 Isosceles Right-Angled Triangles

This section considers a particular case of the point enclosure problem where
the input triangles are isosceles right-angled. Let S be a set of n homothetic
isosceles right-angled triangles in the plane. Without loss of generality, we can
assume that the triangles in set S are axes-parallel triangles, and have their right-
angled vertices at bottom-left (with minimum x and minimum y coordinates).
As the hypotenuses of the triangles in S are parallel, we can define an ordering
among the triangles. Let hi and hj be the hypotenuses of triangles Ti and Tj ∈ S,
respectively. We say that Ti � Tj if the hypotenuse of hi lies below or on the
line through hj (i.e. if hj is extended in both directions). We use the notations
Ti � Tj and hi � hj interchangeably in this and the next section. By the position
of a point q in a list of triangles (sorted by �), we mean the position of the line
through q and parallel to the hypotenuse.

2.1 (Static) Optimal Algorithm

Let us assume that we have a segment tree T built on the x-projections of the
triangles in S. Instead of x-projections, let the canonical sets S(.) contain the
corresponding triangles. Consider a node v on the search path for an arbitrary
(but fixed) q in the plane. A triangle T ∈ S(v) will contain q if the point q
lies in T ∩ H(v), where H(v) is the vertical slab corresponding to node v in the
segment tree T . Observe that the region T ∩H(v) is a trapezoid. We can partition
it into an axes-parallel right-angled triangle and a (possibly empty) axes-parallel
rectangle. We next define a trimmed triangle for (T, v), where triangle T ∈ S(v).
Let A′ and C ′ be the points at which the hypotenuse of the triangle T intersects
the boundary of the slab H(v) (see Fig. 1). The trimmed triangle for (T, v) is a
right-angled triangle in T ∩ H(v) such that A′ and C ′ are the endpoints of the
hypotenuse. The remaining portion of T ∩ H(v) is a (possibly empty) rectangle
lying below the trimmed triangle. We call it the trimmed rectangle for (T, v).
Thus, a triangle T ∈ S(v) will contain point q in H(v) iff q lies in either the
trimmed triangle or the trimmed rectangle for (T, v).
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Fig. 1. Triangle A′B′C′ is the trimmed triangle for (T, v) and rectangle B′C′ED is
the trimmed rectangle for (T, v).

Lemma 1. Let L(v) be the sorted list (by order �) of trimmed triangles at node
v. The trimmed triangles at node v containing a point q ∈ H(v) will be contiguous
in the list L(v).

Proof. Let [α, β] × R
2 be the slab of node v and T ′

1, T
′
2, ..T

′
r be the sorted list

of trimmed triangles stored at v such that T ′
i � T ′

i+1, i ∈ [r − 1]. For the sake
of contradiction, let us assume there exist three integers i < k < j such that
trimmed triangles T ′

i and T ′
j contain q but the trimmed triangle T ′

k does not.
By definition, all trimmed triangles at node v are right-angled triangles with

two sides parallel to the axes. As triangles in S are isosceles right-angled triangles,
the horizontal and vertical sides of each trimmed triangle at v will be equal to
β − α; hence the trimmed triangles at node v are congruent with the same
orientation. So for any triplet T ′

i � T ′
k � T ′

j , their horizontal sides will hold the
same order.

A trimmed triangle will contain a point q ∈ H(v) if q lies above its horizontal
side and below the hypotenuse. The horizontal side (and hypotenuse) of T ′

k lies
between the horizontal sides (hypotenuses) of T ′

i and T ′
j . Since T ′

k does not
contain q, its horizontal side lies above q or its hypotenuse lies below the point
q. The former one can not be true as in that case, point q would lie outside of T ′

j ;
a contradiction. If q lies above the hypotenuse of T ′

k, q would also lie outside T ′
i .

Therefore, no such triplet can exist. Thus, all trimmed triangles at v containing
the point q ∈ H(v) will be contiguous in the list L(v). �

Lemma 2. At any node v ∈ T , the problem of computing trimmed rectangles
containing a point q ∈ H(v) can be transformed to an instance of the 1-d point
enclosure problem.

Proof. By definition, all trimmed rectangles at node v are axes-parallel rectangles
with x1 = α and x2 = β. Here [α, β] × R

2 is the slab corresponding to node v.
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Thus, the two y-coordinates of a trimmed rectangle can be used to know whether
point q lies in the rectangle. As point q is inside the slab [α, β] × R

2, we have
α ≤ qx ≤ β. Point q will be inside a trimmed rectangle [α, β]× [y1, y2] if and only
if y1 ≤ qy ≤ y2. Hence, the problem of computing trimmed rectangles at node v
containing q transforms to an instance of the 1-d point enclosure problem. �

First, we sort the given set S by order �. Next, we build a segment tree T
over the x-projections of triangles in S. We pick each triangle from S in order
and store it in the canonical sets of corresponding O(log n) nodes. As a result,
triangles in canonical set S(v), for each node v, will also be sorted by order �.
We realise the canonical set of each node by a linear list. For each node v ∈ T ,
we store the trimmed triangles in a linear list L(v) sorted by order � and the
y-projections of the trimmed rectangles in a window-list structure I(v). The
preprocessing takes O(n log n) time and space.

For a query point q = (qx, qy), we find the search path Π for qx in the segment
tree T . Path Π is a root-to-leaf path in the tree T . We traverse the path Π in
the root-to-leaf fashion and compute trimmed triangles and trimmed rectangles
of each traversed node. Let v be the current node being traversed. In order to
compute the required trimmed triangles at v, we locate the position of point
q among the hypotenuses of the triangles in the sorted list L(v) using binary
search. We next move upwards in the list L(v) and keep reporting the triangles
as long as the horizontal side is below point q and stop as soon as we encounter
a triangle whose horizontal side lies above point q. We query the window-list
structure I(v) with query value qy, and report the rectangles corresponding to
returned y-projections as the trimmed rectangles containing q.

Lemma 3. The query procedure computes all the triangles in S containing q in
O(log2 n + k) time, where k is the output size.

Proof. The correctness proof is immediate from Lemmas 1 and 2. At each node
on the search path, O(log n) time is needed to find the location q in L(v) and
O(1+kt) time is needed to report the kt triangles containing q. The query to the
window-list I(v) takes O(log n) time to find the target window and O(kr) time
to report kr y-projections containing qy. Thus at each node on the search path
for q, we are spending O(log n + kv) time to find triangles in S(v) containing
q, where kv = kt + kr. Since there are O(log n) nodes on the search path, the
query procedure would take O(log2 n + k) time in total, where k is the output
size. �

So we have the following result.

Theorem 2. We can process a set of n homothetic isosceles right-angled trian-
gles so that, for a given query point, we can find all the triangles containing the
query point in O(log2 n + k), where k is the output size. The structure can be
built in O(n log n) space and time.

We use the fractional cascading technique [9] to reduce the query time to
O(log n + k). Recall that if we have an ordered list C(v) in each node v of a
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binary tree, then using the fractional cascading technique, we can search for an
element in all lists C(v) along a root-to-leaf path in the tree in O(log n) time,
where Σv(|C(v)|) = O(n).

As the list L(v), for every node v, is sorted by order �, we can use the frac-
tional cascading technique. We search for point q in the list L(root) in O(log n)
time. Then, using the fractional cascading pointers, we can get the position of
point q in the list of any child in O(1) additional time. Thus, for a given point,
we can search the point in all lists L(v) along a root-to-leaf path in O(log n)
time in total.

The window-list structure I(v) is a sorted list of contiguous intervals (or
windows) on the y-axis, and y-projections of the trimmed rectangles are stored
in these windows. As the structure I(v), for every node v, is also a sorted list,
we can use the fractional cascading technique for structures I(v) as well. After
locating point q in I(root) in O(log n) time, we can identify the correct window
for each child in O(1) additional time. Thus, for a given point qy, we can identify
the window containing qy in all I(v) structures along a root-to-leaf path O(log n)
time in total. Therefore, we have the following.

Theorem 3. We can preprocess a given set of n of homothetic isosceles right-
angled triangles, in O(n log n) time and space to report all triangles that contain
a query point in O(log n + k) time, where k is the the output size.

2.2 Dynamic Data Structure

We next describe a dynamic data structure for homothetic isosceles right-angled
triangles. In Sect. 3, we discuss general homothetic triangles.

We build an augmented dynamic segment tree for S using the method of
Mehlhorn and Näher (see Theorem 6 in [17]) with the ordering �. Recall that
we say Ti � Tj if the hypotenuse of Ti lies below or on the line through the
hypotenuse of Tj . Each node v in the segment tree maintains an augmented list
A(v) of (trimmed) triangles. Moreover, for each node v in the segment tree, we
store the y-projections of the trimmed rectangles in a dynamic interval tree [11].
We denote this structure by TD.

The segment tree with augmented lists A(.) uses O(n log n) space [17]. As a
dynamic interval tree uses linear space, so the total space used in maintaining
the interval trees associated with all nodes will be O(n log n).

Lemma 4. The total space used by TD is O(n log n), where n is the number of
triangles currently stored.

For a given query point q in the plane, let v0, v1, v2, ..., vl be the nodes on the
search path for qx in the tree TD. Note that l = O(log n). Using a binary search,
we find the position of q in the augmented list A(v0) in O(log n) time. For each
i ∈ {1, 2, ..l}, we locate the position of q in A(vi) from its known position in
A(vi−1), in O(log log n) time, using the dynamic fractional cascading technique
[17]. Having the position of q in an augmented list A(vi), we can find the trimmed
triangles containing q, in a similar fashion as we have done in the static case, in
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time proportional to the number of reported triangles. Thus, we can report all
trimmed triangles that contain q in O(log n log log n + kt) time, where kt is the
number of reported trimmed triangles.

For each node vi, we query the associated dynamic interval tree with qy.
We report the triangles corresponding to y-projections (of trimmed rectangles)
returned as the query response. A query takes O(log |S(v)|) = O(log n) time at
each node; the total time spent in finding all trimmed rectangles (hence homoth-
etic triangles) containing the query point q will be O(log2 n+kr). Here, kr is the
number of trimmed rectangles containing q. Thus, the query time is dominated
by the time needed to compute trimmed rectangles.

Let T be the homothetic triangle we want to insert. We find O(log n) nodes
in tree TD corresponding to the new triangle T . We simply insert T into the aug-
mented lists of these O(log n) nodes in O(log n log log n) amortized time. More-
over, for each of the O(log n) nodes, we insert the y-projection of the trimmed
rectangle at the node in the associated dynamic interval tree in O(log n) time;
hence O(log2 n) amortized time is needed in total. Thus, the total time spent
during an insertion operation is O(log2 n).

Let T ′ be the triangle to be deleted. Again, we find the O(log n) nodes of TD
storing T ′. Deleting T ′ from the augmented lists A(.) of these nodes will take
O(log n log log n) time in total, while deletion from the interval trees associated
with these nodes will take O(log2 n) time in total. Thus, a deletion operation
will take O(log2 n) amortized time. Thus, we have the following theorem.

Theorem 4. We can build a dynamic data structure for a set of homothetic
triangles that supports a point enclosure query in O(log2 n + k) worst-case time
and an update operation in O(log2 n) amortized time. Here, n is the number of
triangles currently in the set, and k is the number of triangles containing the
query point.

3 General Homothetic Triangles

First, we consider the case where homothetic triangles are arbitrary right-angled
triangles, not necessary isosceles. As triangles are homothetic, all hypotenuses
will have the same slope. We can make each triangle isosceles by scaling x and
y coordinates. Let the hypotenuses of all input triangles be parallel to the line
x/a+ y/b = 1. By transformation x = ax′ and y = by′, the hypotenuses become
parallel to the line x+ y = 1. The transformed triangles are processed as before.
For a query point q = (qx, qy), we find the transformed triangles containing
the point ( qx

a ,
qy
b ). The preprocessing bounds and query time-bound remain the

same.
Let us now consider the general case of homothetic triangles. We only describe

the case where homothetic triangles are acute-angled triangles; the obtuse-angled
case can be handled analogously. Without loss of generality, let us assume that
the triangles of the input set S are in the first quadrant and have one side par-
allel to the x-axis. Let m be the slope of the sides of the triangles that make a
positive angle with the x-axis. We make these triangles right-angled triangles by
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Fig. 2. Dashed triangle T ′ is the transformed triangle of triangle T ∈ S.

a linear shear transformation: x′ = x − y/m and y′ = y. See Fig. 2. A triangle
T ∈ S will contain a point q if and only if its transformed triangle T ′ contains the
transformed query point q′ (see Appendix for proof). The transformed homo-
thetic right-angled triangles are handled as described earlier. For a query point
(qx, qy), we find the transformed triangles containing the point (q′

x + q′
y

m , q′
y).

Again, the bounds remain the same. Hence,

Theorem 5. We can process a given set of n homothetic triangles so that for
a given query point, all the triangles containing the query point can be found
in O(log n + k) time, where k is the output size. The structure can be built in
O(n log n) space and time.

4 Homothetic Polygons

Assume that we are given a set of homothetic polygons, each having a constant
number of vertices. We partition each homothetic polygon into homothetic tri-
angles by adding “similar” diagonals, see Fig. 3. Let v1, v2, ...vm be the vertices of
a particular polygon in clockwise order starting from the vertex with the small-
est x-coordinate. If there is a diagonal between vi and vj in the triangulation,
all other polygons will have a diagonal joining the corresponding vertices. As
a result, we get several sets of homothetic triangles. The problem breaks into
several instances of the point enclosure problem for homothetic triangles. We
process each instance as described earlier. For a query point q, we find the tri-
angles (and report the corresponding polygons) containing the point q using the
computed solutions of the instances. If the polygons are m-sided, a triangulation
will result in m− 2 triangles. Thus, there will be O(m) instances of the problem
for homothetic triangles, each with n triangles. The triangulation of a polygon
takes linear time [7], and adding similar diagonals to all the polygons requires
O(mn) time. Preprocessing each instance takes O(n log n) time. As the number
of vertices (m) in each polygon is constant, thus total preprocessing time will be
O(n log n).
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Fig. 3. Two homothetic polygons ABCDE and PQRST triangulated with similar
diagonals (AC,PR) and (AD,PS).

Remark 2. If number of vertices, m, is a parameter, then preprocessing all m−2
instances will take O(mn log n) space and time. Thus, the total preprocessing
time and space will be O(mn log n). The query time will be O(m log n+k), where
k is the number of polygons containing a query point. Hence, the bounds from
Theorem 3 also hold for homothetic polygons with m = O(1)-size description
complexity.

5 Conclusions

In this work, we studied the problem of finding all homothetic triangles con-
taining a query point and gave solutions in the static and the dynamic settings.
For the static case, we have given a near-linear space solution with optimal
query time. We believe that the bounds presented for the dynamic case can be
improved. We extended the solutions for a more general problem where input
objects are homothetic polygons.

As points in an arbitrary homothetic polygon can have arbitrary coordinates,
at first sight it appears difficult to work in rank space (and the word-RAM
model). We leave the problem of improving the results in the word-RAM model
as an open problem.

Acknowledgements. We wish to thank anonymous referees for careful reading of the
manuscript, their comments and suggestions. We believe the suggestions have helped
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Abstract. Measuring tree dissimilarity and studying the shape of trees
are important tasks in phylogenetics. One of the most studied shape
properties is the notion of tree imbalance, which can be quantified by
different indicators, such as the Colless index. Here, we study the general-
ization of the Colless index to mobiles, i.e., full binary trees in which each
leaf has been assigned a positive integer weight. In particular, we focus
on the problem Balanced Mobiles, which given as input n weights and
a full binary tree on n leaves, asks to find an assignment of the weights
to the leaves that minimizes the Colless index, i.e., the sum of the imbal-
ances of the internal nodes (computed as the difference between the total
weight of the left and right subtrees of the node considered). We prove
that this problem is strongly NP-hard, answering an open question given
at IWOCA 2016.

Keywords: Phylogenetic trees · Colless Index · Balanced Mobiles ·
Strong NP-hardness

1 Introduction

Phylogenetics is the study of evolutionary relationship among biological entities
(taxa). Its main task is to infer trees whose leaves are bijectively labeled by
a set of taxa and whose patterns of branching reflect how the species evolved
from their common ancestors (phylogenetic trees). The inferred trees are often
studied by comparing them to other phylogenetic trees or to existing models.
Thus, it is important to be able to formally quantify how different trees differ
from each other and to have measures that give information about the shape of
the trees. With respect to the latter, one of the most studied shape properties of
phylogenetic trees is that of tree balance, measured by metrics such as the Sackin
index [12] or the Colless index [3] (see also the survey of Fischer et al. [6]). The
Colless index is defined for binary trees as the sum, over all internal nodes v
of the tree, of the absolute value of the difference of the number of leaves in
the two children of v. It is one of the most popular and used metrics, see for
example [1,2,5,11,13].
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The natural generalization with weights on the leaves has later been studied
within mobiles1, defined as full binary trees with positive weights on their leaves.
In particular, given a set of n integer weights {w1, . . . , wn}, the problem Bal-
anced Mobiles asks to find a mobile whose n leaves have weights w1, . . . , wn,
and which minimizes the total Colless index (i.e., the sum of the imbalances
|x − y| of every internal node, where x and y represent the total weight of the
leaves on the left and right subtrees of the node considered) [9]. Despite being a
natural generalization, the complexity of this problem is still not yet known. In
fact, it was proposed as an open problem by Hamoudi, Laplante and Mantaci in
IWOCA 2016 [8].

Still, some results are known for some specific cases. For example, if all the
leaves have unit weight, it is known that building a partition tree or a left
complete tree are both optimal solutions, and their imbalance can be computed
in polynomial time using a recursive formula. On the other hand, if all the
weights are powers of two or if a perfectly balanced mobile can be constructed,
the well known Huffman’s algorithm [10] is optimal. This algorithm recursively
builds a mobile by grouping the two smallest weights together (where the weight
of the constructed subtree is added to the list of weights in each step).

With respect to the complexity, it is only known that the problem is in the
parameterized class XP, parameterized by the optimal imbalance [9] (i.e. it is
polynomial for constant values of the parameter). This result was obtained by
using a relaxation of Huffman’s algorithm, which gives an algorithm of complex-
ity O(log(n)nC∗

), where C∗ is the optimal imbalance. An ILP is also given to
solve the problem [9]. However, no polynomial time approximation algorithm has
been proposed for this problem, although it is known that Huffman’s algorithm
does not construct an approximate solution in the general case, being arbitrarily
far away from the optimum for some instances [9].

In this paper, we shed some light into the complexity of the problem by
showing that Balanced Mobiles is strongly NP-hard when both the full binary
tree and the weights are given as input.

2 Preliminaries

We first give the necessary definitions to present the problem.

Definition 1. A full binary tree is a rooted tree where every node that has at
least one child has precisely two children. A full binary tree is said to be perfect
when all its leaves are at the same depth. The depth d(v) of a node v is defined
by

d(v) :=
{

0 if v = r, the root,
1 + d(F (v)) otherwise,

where F (v) denotes the father of node v. Also, for every non-leaf node v, L(v)
(resp., R(v)) denotes the left (resp., right) child of node v.
1 The term “mobile” comes from what can be found in modern art (e.g. the ones of

Calder, well known in TCS being the illustration of the cover of the famous book
CLRS’ Introduction to Algorithms [4]) or the toy above toddler beds [9].
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Definition 2. A binary tree is said to be leaf-weighted when a natural number
w(v) is assigned to each one of its leaf nodes v. Then, the recurrence w(v) :=
w(L(v)) + w(R(v)) extends w defining it also on every internal node v as the
total weight over the leaves of the subtree rooted at v. A leaf-weighted full binary
tree is also called a mobile.

In this paper, we focus only on the Colless index to measure the balance of
mobiles. Thus, we will just refer to the cost at each node as imbalance, and to
the total Colless index of the tree as the total cost.

Definition 3. The imbalance of an internal node v is defined as imb(v) :=
|w(L(v)) − w(R(v))|. The total cost of a leaf-weighted full binary tree (mobile)
is the sum of the imbalances over the internal nodes. If the total cost is equal to
0, the mobile is said to be perfectly balanced.

We can now define the problem Balanced Mobiles studied in this paper.

Balanced Mobiles
Input: n natural numbers and a full binary tree T with n leaves.
Task: Assign each number to a different leaf of the given full binary tree
in such a way that the sum of the imbalance over the internal nodes of the
resulting leaf-weighted binary tree is minimum.

3 BALANCED MOBILES is NP-Hard in the Strong Sense

We prove that Balanced Mobiles as formulated above is NP-hard in the strong
sense.

To do so, we will reduce from ABC-partition, a variant of the problem
3-partition which we define below.

ABC-partition
Input: A target integer T , three sets A,B,C containing n integers each such
that the total sum of the 3n numbers is nT .
Task: Construct n triplets, each of which contains one element from A, one
from B and one from C, and such that the sum of the three elements of each
triplet is precisely the target value T .

The ABC-partition problem is known to be strongly NP-hard, that is, it is
NP-hard even when restricted to any class of instances in which all numbers have
magnitude O(poly(n)). This fact is reported in [7], where the problem, labeled
as [SP16], is also called Numerical 3-D Matching, as it can also be reduced
to the 3-Dimensional Matching problem.
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3.1 Preliminary Steps on the ABC-PARTITION Problem

As a first step in the reduction, given an instance of ABC-partition, we will
reduce it to an equivalent instance of the same problem with some specific prop-
erties that will be useful for the final reduction.

A class of instances is called shallow when it comprises only instances all
of whose numbers have magnitude O(poly(n)). Since we aim at proving strong
NP-hardness of the target problem, we need to make sure that, starting from
any shallow class of instances, the classes of instances produced at every step
remain shallow.

We start with some easy observations.

Observation 1. For any natural constant k, we can assume that all numbers
are divisible by 2k, simply by multiplying all of them by 2k.

Note that, since k is a constant, after this first reduction we are still dealing
with a shallow class of instances.

For the next step, we assume all numbers are greater than 1, which follows
from the above with k = 1.

Observation 2. We can then assume that n is a power of two, otherwise, let
h be the smallest natural such that 2h > n, we can just add 2h − n copies of the
number T −2 to the set A, and 2h −n copies of the number 1 to both sets B and
C.

Note that we are still dealing with a shallow class of instances.
The next step requires to be more formal. Assume the three given sets of

natural numbers to be A = {a0
1, a

0
2, . . . , a

0
n}, B = {b01, b

0
2, . . . , b

0
n} and C =

{c01, c
0
2, . . . , c

0
n}, the target value to be T 0 and let M0 be the maximum number

in A∪B ∪C. Here, M0 = O(poly(n)) since this generic instance is taken from a
shallow class. Consider the instance of the problem where the n input numbers
and the target value T 0 are transformed as follows:

a1
i := a0

i + 8n2M0 for every i = 1, 2, ..., n

b1i := b0i + 4n2M0 for every i = 1, 2, ..., n

c1i := c0i + 2n2M0 for every i = 1, 2, ..., n

T 1 := T 0 + 14n2M0

M1 := T 1

Notice that the new M1 does not represent any longer the maximum value of
the numbers of the input instance because it is equal to T 0 +14n2M0, while the
value of ever number is bounded above by a0

i +8n2M0. The role that parameter
M1 plays in our reduction will be seen only later.

Clearly, this new instance is equivalent to the previous one in the sense that
either both or none of them are yes-instances of ABC-partition. Moreover, this
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reduction yields a shallow class of instances C1 when applied to a shallow class
of instances C0. Therefore, thanks to Observation 2 and this transformation, we
can assume that we are dealing with a shallow class of instances each of which
satisfies the following two properties:

n is a power of two (1)
b > c and a > b + c for every a ∈ A, b ∈ B and c ∈ C. (2)

3.2 ABCDE-Partition Problem

Once Properties (1) and (2) are in place, we create a next equiv-
alent instance through one further reduction, this time yielding an
instance of a slightly different version of the multi-dimensional partition
problem, the ABCDE-partition problem, which we define below.

ABCDE-Partition
Input: A target integer T , five sets A,B,C,D,E, with n integers in each,
such that the sum of the numbers of all sets is nT .
Task: Construct n 5-tuples, each of which contains one element of each set,
with the sum of these five elements being precisely T .

If not known, the next transformation in our reduction proves that this vari-
ant is also strongly NP-hard. In fact, where a1

i , b
1
i , c

1
i ,M

1, T 1 comprise the modi-
fied input of the ABC-partition problem after the last transformation detailed
just above, consider the equivalent instance of the ABCDE-partition problem
where the input numbers and the target value are defined as follows:

ai := a1
i + 8n2M1 for every i = 1, 2, ..., n

bi := b1i + 4n2M1 for every i = 1, 2, ..., n

ci := c1i + 2n2M1 for every i = 1, 2, ..., n

di := n2M1 for every i = 1, 2, ..., n

ei := n2M1 for every i = 1, 2, ..., n

T := T 1 + 16n2M1

M := M1

Notice that, once again, the new M parameter does not represent the max-
imum value of the numbers comprising the new input instance. In fact, it is
significantly smaller.

Thanks to this last transformation, we see that the ABCDE-Partition
problem is NP-hard even when restricted to a shallow class of instances each of
which satisfies the following three properties:
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n is a power of two (say n = 2h) (3)
the numbers in D ∪ E are all equal (4)

c > d + e, b > c + d + e and a > b + c + d + e,

for every (a, b, c, d, e) ∈ A × B × C × D × E (5)

This instance also possesses other useful properties that we will exploit in the
reduction to the Balanced Mobiles problem we are going to describe next.

3.3 Reduction to BALANCED MOBILES

To the above instance (T,A,B,C,D,E) of ABCDE-Partition, we associate
the following instance (T ,W ) of Balanced Mobiles:

Weights (W ). Besides the weights ai, bi, ci, di, ei defined above for every i =
1, 2, ..., n, we also introduce n = 2h copies of the number T . Notice that all these
numbers have magnitude O(poly(n)) since it was assumed that M = O(poly(n)).

Full Binary Tree (T ). Before describing how to construct the tree T , which
completes the description of the instance and the reduction, we still have one
proviso.

While describing how to obtain the instance of the target problem from the
instance of the source problem, it often helps to describe simultaneously how to
obtain a yes-certificate for the target instance from a hypothetical yes-certificate
for the source instance. Hence, let σB and σC be two permutations in Sn meant
to encode a generic possible solution to the generic ABCDE-partition problem
instance (since all the elements in D and E are equal, it is enough to consider
these two permutations). The pair (σB , σC) is a truly valid solution, i.e., a yes-
certificate, iff ai + bσB(i) + cσC(i) + di + ei = T for every i = 1, 2, ..., n. We
are now going to describe not only how to construct an instance of the target
problem but also a solution S = S(σB , σC) for it, which depends solely on the
hypothetical yes-certificate (σB , σC).

The tree T and the solution S = S(σB , σC) are constructed as follows:

1. Start with a perfect binary tree of height h+1, with 2n = 2(h+1) leaves. Its n
internal nodes at depth h are called test nodes, denoted ti, i ∈ [n] (also called
r0i ). This tree is a full binary tree thanks to Property 3. Moreover, each test
node ti will next become the root of a subtree of depth 5, all these subtrees
having the very same topology, described in the following and illustrated in
Fig. 1.

2. For i = 1, ..., n, the left child of the test node ti is a leaf of the subtree rooted
at ti (and hence also of the global tree under construction). The certificate
assigns one different copy of T to each left child of a test node. These n nodes
will be the only leaves at depth 2n = 2(h+1) in the final tree under con-
struction. However, the right child of ti, called r1i , has two children described
next.
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3. The left child of r1i is a leaf, and the certificate assigns to this leaf the number
ai. On the other hand, the right child of r1i , which we denote r2i , will not be
a leaf, which means that it has two children, described next.

4. In the next step, we also let the left child of r2i be a leaf. The certificate
assigns the number bσB(i) to the left child. On the other hand, the right child
of r2i , called r3i , will have two children, described next.

5. As before, the left child of r3i is also a leaf, and the certificate assigns the
number cσC(i) to it. The right child of r3i , called r4i , will also have two children,
but, finally, both of them are leaves: to the left (resp., right) child leaf, the
certificate associates the number di (resp., ei).

ti

T r1i

ai r2i

bi r3i

ci r4i

di ei

Fig. 1. Subtree rooted at the test node ti with a canonical weight assignment. Recall
that in the full tree T , a full binary tree connects all the test nodes ti.

The set I of the internal nodes of T partitions into I< and I≥, those of depth
less than h and those of depth at least h, respectively. In other words, all the
strict ancestors of test nodes ti versus I≥ =

⋃
i=1,...,n{ti, r

1
i , r2i , r3i , r4i }. We also

define I> as the set of internal nodes at depth strictly greater than h.

Definition 4. A weight assignment is called canonical if it is of the form
S(σB, σC) for some pair (σB , σC). Equivalently, the canonical assignments are
those where all 2n leaf nodes at depth h + 5 have been assigned one different
copy of weight Mn2, and all n leaf nodes at depth h + 1 (resp., h + 2, h + 3, or
h+4) have weight precisely T (resp., falling in the interval (8n2M, 8n2M +M),
(4n2M, 4n2M + M), or (2n2M, 2n2M + M)).

The NP-hardness result now follows from the following discussion.
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Lemma 5. The total imbalance cost of S(σB, σC) in the nodes I< ∪{ti | i ∈ [n]}
is equal to 0 if and only if S(σB , σC) encodes a yes-certificate.

Proof. First of all, the imbalance at the internal node ti is equal to 0 if and only
if

T = ai + bi + ci + di + ei

or equivalently,
T 1 = a1

i + b1i + c1i

for every i ∈ [n]. That is, every 5-tuple (resp., every triplet) needs to sum up to T
(resp., T 1), the target value. To complete the proof, we just need to observe that
nodes at depth h − 1 have as children two test nodes. Thus, their imbalance is 0
if and only if the two test nodes have exactly the same weight (equivalently, the
triplets associated to them sum to the same value). Going up the (full binary)
tree, it is easy to see that we need all the test nodes to have exactly the same
weight, i.e., all the 5-tuples to sum up to the same value. ��
Lemma 6. The total imbalance cost of S(σB , σC) is greater or equal to∑n

i=1(a
1
i − c1i ) and equality holds if and only if S(σB , σC) encodes a yes-

certificate.

Proof. We have already seen in Lemma 5 that
∑

v∈I<∪{ti} imb(v) = 0 if and only
if S(σB, σC) encodes a yes-certificate. We will now prove that

∑
v∈I>

imb(v) =∑n
i=1(a

1
i −c1i ) for canonical assignments, from where the result follows. First, for

any canonical assignment, imb(r4i ) = n2M −n2M = 0 for every i = 1, . . . , n. We
will next see that, for every canonical assignment,

∑
v∈{r1

i ,r2
i ,r3

i : i=1,...,n} imb(v) =∑n
i=1(a

1
i − c1i ).

First of all,
n∑

i=1

imb(r3i ) =
n∑

i=1

|ci − w(r4i )| =
n∑

i=1

|(c1i + 2n2M) − 2n2M | =
n∑

i=1

c1i

Similarly,
n∑

i=1

imb(r2i ) =
n∑

i=1

|bi − w(r3i )| =
n∑

i=1

|b1i − c1i | =
n∑

i=1

(b1i − c1i )

where the last equality follows from the property that bi > ci. Finally,
n∑

i=1

imb(r1i ) =
n∑

i=1

|ai − w(r2i )| =
n∑

i=1

|a1
i − (b1i + c1i )| =

n∑
i=1

(a1
i − b1i − c1i )

where again we use the property that a1
i > b1i + c1i . Thus, summing all the costs

below every test node, we get that the total cost is
n∑

i=1

((a1
i − b1i − c1i ) + (b1i − c1i ) + c1i ) =

n∑
i=1

(a1
i − c1i )

��
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Before continuing, note that
∑n

i=1(a
1
i − c1i ) � n2M . Indeed,

n∑
i=1

(a1
i − c1i ) ≤

n∑
i=1

(M0 + 8n2M0 − 2n2M0) ≤ nM

The last inequality follows since M = T 0 + 14n2M0, which is clearly greater
than the term in the sum.

Lemma 7. Any assignment f of cost less than n2M is canonical.

Proof. Let f be any assignment of cost less than n2M . Notice that the con-
structed tree has precisely n internal nodes whose two children are both leaves
(those labeled r4i ). At the same time, we have 2n weights of value n2M , whereas
all other weights exceed 2n2M . Therefore, all copies of weight n2M should be
assigned to the leaves that are children of some r4i , that is, to the 2n nodes
of largest depth h + 5. Indeed, if at least one of the copies of weight n2M were
assigned to a node which is not at largest depth, then the imbalance at its parent
node would be |n2M − wr|, with wr being the weight of the right child, which
is always greater or equal than 2n2M . Thus, the imbalance would be already at
least n2M .

After this, we can go up the tree. The n nodes of weight in the interval
[2n2M, 2n2M + M ] are mapped to nodes that are left children of r3i nodes (all
leaf nodes at depth h + 4). Otherwise, the weight of that node would be at least
4n2M , yielding an imbalance of at least 2n2M . Similarly, the n nodes of weight
in the interval [4n2M, 4n2M + M ] are mapped to nodes that are left children of
r2i nodes (all leaf nodes at depth h+3), and the n nodes of weight in the interval
[8n2M, 8n2M + M ] are mapped to nodes that are left children of r2i nodes (all
leaf nodes at depth h+2). Finally, the n nodes of weight T are mapped to nodes
that are left children of test nodes ti (all leaf nodes at depth h + 1).

This shows that if we want an assignment of cost less than n2M , then every
weight, while it can be assigned to the leaves of a subtree rooted at any of the
test nodes ti, it has to be assigned to a leaf node of the right depth/category.
But then f is a canonical assignment. ��

Theorem 8. Balanced Mobiles is strongly NP-hard.

Proof. We have described a log-space reduction that, given a generic instance I
of ABCDE-partition yields an instance (T ,W ) of Balanced Mobiles and
a lower bound L :=

∑n
i=1(a

1
i − c1i ) such that:

1. Every possible solution to (T ,W ) has total imbalance cost at least L.
2. (T ,W ) admits a solution of cost L iff I is a yes-instance of the ABCDE-

partition problem.

This already shows that the Balanced Mobiles optimization problem is
NP-hard. The Balanced Mobiles problem is strongly NP-hard because the
ABCDE-partition problem is strongly NP-complete, and when the reduction
is applied on top of any shallow class of instances of ABCDE-partition, it
yields a shallow class of instances of Balanced Mobiles. ��
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Note that this implies that the decision version of the problem is (strongly)
NP-complete. Indeed, one can check that the problem is in NP because given a
potential solution, it can be verified in polynomial time whether it is valid or
not.

4 Conclusion

We have shown that Balanced Mobiles is strongly NP-hard when the full
binary tree is given as input. However, note that the complexity when the tree
is not given remains open. Indeed, our reduction cannot be directly extended
to this case since then, there is no structure to ensure that weights of set A
are grouped with weights of sets B and C. On the other hand, the complexity
when the weights are constant is also unknown, as in our proof, the constructed
weights depend on n. Finally, with respect to the parameterized complexity, as we
mentioned before, it is only known that the problem is in the parameterized class
XP, parameterized by the optimal imbalance [9], so other future work includes
to study whether there exists a fixed parameter algorithm or not.

Acknowledgements. Part of this work was conducted when RR was an invited pro-
fessor at Université Paris-Dauphine. This work was partially supported by the ANR
project ANR-21-CE48-0022 (“S-EX-AP-PE-AL”).
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Abstract. Given a graph G and an integer k, the Graph Burning
problem asks whether the graph G can be burned in at most k rounds.
Graph burning is a model for information spreading in a network, where
we study how fast the information spreads in the network through its
vertices. In each round, the fire is started at an unburned vertex, and
fire spreads from every burned vertex to all its neighbors in the subse-
quent round burning all of them and so on. The minimum number of
rounds required to burn the whole graph G is called the burning number
of G. Graph Burning is NP-hard even for the union of disjoint paths.
Moreover, Graph Burning is known to be W[1]-hard when parameter-
ized by the burning number and para-NP-hard when parameterized by
treewidth. In this paper, we prove the following results:
– In this paper, we give an explicit algorithm for the problem parame-

terized by treewidth, τ and k, that runs in time k2τ4k5τnO(1). This
also gives an FPT algorithm for Graph Burning parameterized by
burning number for apex-minor-free graphs.

– Y. Kobayashi and Y. Otachi [Algorithmica 2022] proved that the
problem is FPT parameterized by distance to cographs and gave a
double exponential time FPT algorithm parameterized by distance
to split graphs. We improve these results partially and give an FPT
algorithm for the problem parameterized by distance to cographs ∩
split graphs (threshold graphs) that runs in 2O(t ln t) time.

– We design a kernel of exponential size for Graph Burning in trees.
– Furthermore, we give an exact algorithm to find the burning number

of a graph that runs in time 2nnO(1), where n is the number of
vertices in the input graph.

Keywords: Burning number · fixed-parameter tractability ·
treewidth · threshold graphs · exact algorithm

1 Introduction

Given a simple undirected graph G = (V,E), the graph burning problem is defined
as follows. Initially, at round t = 0, all the nodes are unburned.At each round t ≥ 1,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-Y. Hsieh et al. (Eds.): IWOCA 2023, LNCS 13889, pp. 36–48, 2023.
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one new unburned vertex is chosen to burn, if such a node exists, and is called a fire
source. When a node is burned, it remains burned until the end of the process. Once
a node is burned in round t, its unburned neighbors become burned in round t+1.
The process ends when there are no unburned vertices in the graph. The burning
number of a graph G is the minimum number of rounds needed to burn the whole
graph G, denoted by b(G). The sources chosen in each round form a sequence of
vertices called a burning sequence of the graph. Let {b1, b2, · · · , bk} be a burning
sequence of graph G. For v ∈ V,Nk[v] denotes the set of all vertices within distance
k from v, including v. Then,

⋃
1≤i≤k Nk−i[bi] = V .

Given a graph G and an integer k, the Graph Burning problem asks if
b(G) ≤ k? This problem was first introduced by Bonato, Janssen, and Roshanbin
[3,4,13]. For any graph G with radius r and diameter d, �(d + 1)1/2� ≤ b(G) ≤
r + 1. Both bounds are tight, and paths achieve the lower bound.

The Graph Burning is not only NP-complete on general graphs but for
many restricted graph classes. It has been shown that Graph Burning is NP-
complete when restricted to trees of maximum degree 3, spider and path-forests
[1]. It was also shown that this problem is NP-complete for caterpillars of max-
imum degree 3 [8,12]. In [7], authors have shown that Graph Burning is NP-
complete when restricted to interval graphs, permutation graphs, or disk graphs.
Moreover, the Graph Burning problem is known to be polynomial time solv-
able on cographs and split graphs [10].

The burning number has also been studied in directed graphs. Computing the
burning number of a directed tree is NP-hard. Furthermore, the Graph Burning
problem is W[2]-complete for directed acyclic graphs [9]. For further information
about Graph Burning, the survey by Bonato [2] can be referred to.

The parameterized complexity of Graph Burning was first studied by
Kare and Reddy [10]. They showed that Graph Burning on connected graphs
is fixed-parameter tractable parameterized by distance to cluster graphs and
by neighborhood diversity. In [11], the authors showed that Graph Burning
is fixed-parameter tractable when parameterized by the clique-width and the
maximum diameter among all connected components, which also implies that
Graph Burning is fixed-parameter tractable parameterized by modular-width,
by tree-depth, and by distance to cographs. They also showed that this prob-
lem is fixed-parameter tractable parameterized by distance to split graphs. It
has also been shown that Graph Burning parameterized by solution size, k,
is W[2]-complete. The authors also showed that Graph Burning parameter-
ized by vertex cover number does not admit a polynomial kernel unless NP ⊆
coNP/poly.

Our Results: In Sect. 2 we add all the necessary definitions. In Sect. 3, we
use nice tree decomposition of G to give an FPT algorithm for Graph Burn-
ing parameterized by treewidth and solution size. This result also implies that
Graph Burning parameterized by burning number is FPT on apex-minor-free
graphs. In Sect. 4, we show that Graph Burning is fixed-parameter tractable
when parameterized by distance to cographs ∩ split graphs, also known as thresh-
old graphs, which partially improve the results given in [11]. In Sect. 5, we design
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an exponential kernel for Graph Burning in trees. In Sect. 6, we give a non
trivial exact algorithm for finding the burning number in general graphs.

2 Preliminaries

We consider the graph, G = (V,E), to be simple, finite, and undirected throughout
this paper. G[V \X] represents the subgraph of G induced by V \X. NG(v) repre-
sents the set of neighbors of the vertex v in graph G. We simply use N(v) if there is
no ambiguity about the corresponding graph. NG[S] = {u : u ∈ NG(v),∀v ∈ S}.
For v ∈ V , Nk[v] denotes the set of all vertices within distance k from v, including v
itself. N1[v] = N [v], the closed neighborhood of v. For any pair of vertices u, v ∈ V ,
distG(v, u) represents the length of the shortest path between vertices u and v in
G. The set {1, 2, · · · , n} is denoted by [n]. For definitions related to parameterized
complexity, refer the book by Cygan et al. [5].

A graph G is an apex graph if G can be made planar by removing a vertex.
For a fixed apex graph H, a class of graphs S is apex-minor-free if every graph
in S does not contain H as a minor. A threshold graph can be built from a single
vertex by repeatedly performing the following operations.

(i) Add an isolated vertex.
(ii) Add a dominating vertex, i.e., add a vertex that is adjacent to every other
vertex.

Thus for a threshold graph G, there exists an ordering of V (G) such that any
vertex is either adjacent to every vertex that appears before that in the ordering
or is adjacent to none of them.

3 Parameterized by Treewidth and Burning Number

We prove the following result in this section.

Theorem 1. Graph Burning is FPT for apex-minor-free graphs when param-
eterized by burning number.

To prove this result, we first give an FPT algorithm for Graph Burn-
ing parameterized by treewidth+burning number. For definitions and notations
related to treewidth, refer the book by Cygan et al. [5].

Theorem 2. Graph Burning admits an FPT algorithm that runs in
k2τ4k5τnO(1) time, when parameterized by the combined parameter, treewidth
τ and burning number k.

Proof. We use dynamic programming over a nice tree decomposition T of G. We
shall assume a nice tree decomposition of G of width τ is given.

We use the following notation as in [5]. For every node t in the nice tree
decomposition, we define Gt to be a subgraph of G where Gt = (Vt, Et = {e :
e is introduced in the subtree of t}). Vt is the union of all vertices introduced in
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the bags of the subtree rooted at t. For a function f : X → Y and α ∈ Y , we
define a new function fv→α : X ∪ {v} → Y as follows:

fv→α(x) =

{
f(x), when x �= v

α, when x = v

We define subproblems on every node t ∈ V (T ). We consider the partitioning
of the bag Xt by a mapping Ψ : Xt → {B,R,W}, where B, R, and W respec-
tively represent assigning black, grey, and white colors to vertices. Intuitively, a
black vertex represents a fire source, a grey vertex is not yet burned, and a white
vertex is burned by another fire source through a path that is contained in Gt.
Each vertex is further assigned two integer values by two functions FS : Xt → [k]
and D : Xt → [k − 1] ∪ {0}. For a vertex v ∈ Xt, FS(v) intuitively stores the
index of the fire source that will burn v, and D(v) stores the distance between
the fire source and v.

Let S be the set {∗, ↑, ↓}. For every bag, we consider an array γ ∈ Sk. Here
the entries in γ represent the location of each fire source with respect to the bag
Xt. More precisely, for 1 ≤ i ≤ k, γ[i] is ∗ when the i-th fire source is in Xt, is
↓ when the i-th fire source is in Vt \ Xt and ↑ otherwise.

For a tuple f [t, γ, FS,D, Ψ ], we define that a burning sequence of G realizes
the tuple if the fire sources in the burning sequence match γ i.e., for 1 ≤ i ≤ k,
the i-th fire source is in Xt, Vt \ Xt and V \ Vt if γ[i] is ∗, ↓ and ↑ respectively
and the following conditions are met.

1. A black vertex v ∈ Xt is part of the burning sequence at index FS(v).
2. A white vertex v ∈ Xt is burned by a fire source with index FS(v) by a path

of length D(v) that lies entirely in Gt.
3. A grey vertex v ∈ Xt is not burned in Gt.
4. For a vertex v in Vt \ Xt, v is either burned or there exists a path from v to

a grey vertex u ∈ Xt such that FS(u) + D(u) + distG(u, v) ≤ k.

We now define a sub-problem f [t, γ, FS,D, Ψ ] that returns True if and only if
there exists a burning sequence that realizes [t, γ, FS,D, Ψ ]. From the above def-
inition, it is easy to see that G admits a burning sequence of length k if and only
if f [t, γ, FS,D, Ψ ], where t is the root node (and therefore empty), γ contains all
entries as ↓ and FS,D, Ψ are null, returns True.

A tuple (t, FS,D, γ, Ψ) is valid if the following conditions hold for every
vertex v ∈ Xt.

– Ψ(v) = B if and only if D(v) = 0 and γ[i] = ∗, where i = FS(v).
– Ψ(v) = W , if and only if D(v) > 0 and γ[i] = ∗ or γ[i] =↓, where i = FS(v).
– For all vertices v, D(v) ≤ k − FS(v).
– For all 1 ≤ i ≤ k such that γ[i] = ∗, there exists exactly one vertex v in Xt

such that FS(v) = i and D(v) = 0.

For an invalid tuple, f [.], by default, returns False. We now define the values of
f [.] for different types of nodes in T .
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Leaf Node: In this case, Xt = ∅. So f [t, γ, FS,D, Ψ ] returns True if γ[i] =↑,
for all 1 ≤ i ≤ k and FS, D,Ψ are null functions. Otherwise, this returns False.

Introduce Vertex Node: Let v be the vertex being introduced and t′ be the
only child node of t such that v /∈ Xt′ and Xt = Xt′ ∪ {v}.

f [t, γ, FS,D, Ψ ] =

⎧
⎪⎨

⎪⎩

f [t′, γ′, FS|Xt′ ,D|Xt′ , Ψ|Xt′ ], if Ψ(v) = B

f [t′, γ, FS|Xt′ ,D|Xt′ , Ψ|Xt′ ], if Ψ(v) = R

False, if Ψ(v) = W

In the recurrence, γ′ is the same as γ except that γ′[FS(v)] =↑. The correctness
of the recurrence follows from the fact that v is an isolated vertex in Gt and v
is not present in Gt′ .

Forget Vertex Node: Let t′ be the only child node of t such that ∃v /∈ Xt and
Xt′ = Xt ∪ {v}.

We now give the recurrence as follows.

f [t, γ, FS, D, Ψ ] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨

i : γ[i]=↓
f [t′, γγ[i]→∗, FSv→i, Dv→0, Ψv→B ]

∨

i : γ[i] �=↑,
1≤j≤k−i

f [t′, γ, FSv→i, Dv→j , Ψv→W ]

∨

1≤j≤k
∃w∈Xt such that

j≤k−FS(w),D(w)=j−distG(v,w)
and Ψ(w)=R

f [t′, γ, FSv→FS(w), Dv→j , Ψv→R]

In the last case, we consider the case where v is burned by a path P that lies
outside Gt, at least partially. The feasibility of P is tracked by a vertex w ∈ Xt

that is closer to the fire source in P 1.

Lemma 1. [*] The recurrence for Forget Vertex Node is correct.

Introduce Edge Node: Let t be an introduce edge node with child node t′

and let (u, v) be the edge introduced at t. We compute the value of f based on
the following cases.

1. If Ψ(u) = Ψ(v) = R, set f [t, γ, FS,D, Ψ ] = f [t′, γ, FS,D, Ψ ]
2. If FS(u) + D(u) = FS(v) + D(v), set f [t, γ, FS,D, Ψ ] = f [t′, γ, FS,D, Ψ ]
3. If FS(u) + D(u) + 1 = FS(v) + D(v) and FS(u) �= FS(v), set

f [t, γ, FS,D, Ψ ] = f [t′, γ, FS,D, Ψ ]
4. If Ψ(v) ∈ {B,W}, Ψ(u) = W,FS(u) = FS(v) and D(u) = D(v) + 1, then set

f [t, γ, FS,D, Ψ ] = f [t′, γ, FS,D, Ψu→R]
∨

f [t′, γ, FS,D, Ψ ]
5. For all other cases, set f [t, γ, FS,D, Ψ ] = False

Lemma 2. [*] The recurrence for Introduce Edge Node is correct.

1 Proofs of results that are marked with [*] are omitted due to the space constraint.
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Join Node: Let t be a join node and t1, t2 be the child nodes of t such that
Xt = Xt1 = Xt2 . We call tuples [t1, γ1, FS,D, Ψ1] and [t2, γ2, FS,D, Ψ2] as
[t, γ, FS,D, Ψ ]-consistent if the following conditions hold.
For all values of i, 1 ≤ i ≤ k,

if γ[i] = ∗ then γ1[i] = γ2[i] = ∗
if γ[i] =↑ then γ1[i] = γ2[i] =↑
if γ[i] =↓ then either γ1[i] =↓, γ2[i] =↑ or γ1[i] =↑, γ2[i] =↓

For all v ∈ Xt,

if Ψ(v) = B then Ψ1(v) = Ψ2(v) = B
if Ψ(v) = R then Ψ1(v) = Ψ2(v) = R
if Ψ(v) = W then (Ψ1(v), Ψ2(v)) ∈ {(W,W ), (W,R), (R,W )}
We give a short intuition for the above. The cases where γ[i] = ∗ and γ[i] =↑

are easy to see. When γ[i] =↓, the i-th fire source is below the bag. By the
property of the tree decomposition, Vt1 \Xt and Vt2 \Xt are disjoint. Therefore,
exactly one of γ1[i] and γ2[i] is set to ↓. Similarly, Ψ(v) = B and Ψ(v) = R are
easy to see. When Ψ(v) = W , the vertex is already burned below. Here again,
there are two possibilities: v is burned in exactly one of Gt1 and Gt2 and v is
burned in both of them (possibly by different paths). Therefore, (Ψ1(v), Ψ2(v)) ∈
{(W,W ), (W,R), (R,W )}.

Then, the recurrence is as follows, where the OR operations are done over
all pairs of tuples, which are [t, γ, FS,D, Ψ ]-consistent.

f [t, γ, FS,D, Ψ ] =
∨

(f [t1, γ1, FS,D, Ψ1] ∧ f [t2, γ2, FS,D, Ψ2])

Lemma 3. [*] The recurrence for Join node is correct.

Running Time: Note that we can compute each entry for f [·] in time k2τ3k3τ

nO(1), except for join nodes. For join nodes, we require extra time as we are com-
puting over all possible consistent tuples. Let (γ, γ1, γ2) and (Ψ, Ψ1, Ψ2) be such
that (t1, γ1, FS,D, Ψ1) and (t2, γ2, FS,D, Ψ2) are (t, γ, FS,D, Ψ) consistent then,
∀i ∈ [k], (γ[i], γ1[i], γ2[i]) ∈ {(∗, ∗, ∗), (↑, ↑, ↑), (↓, ↓, ↑), (↓, ↑, ↓)} and ∀v ∈ Xt,
(Ψ [v], Ψ1[v], Ψ2[v]) ∈ {(B,B,B), (R,R,R), (W,W,W ), (W,W,R), (W,R,W )}.
Therefore, the total number of consistent tuples over all join nodes is upper
bounded by k2τ4k5τnO(1). Hence the running time of the algorithm can be
bounded by k2τ4k5τnO(1). ��

For apex-minor-free graphs, the treewidth is bounded by the diameter of the
graph, as shown in [6]. It has been established that the diameter of a graph is
bounded by a function of the burning number of the graph [4]. As a result, the
treewidth of apex-minor-free graphs is bounded by a function of the burning
number. This observation, along with Theorem 2, proves Theorem 1.
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4 Parameterized by Distance to Threshold Graphs

In this section, we give an FPT algorithm for Graph Burning parameterized
by the distance to threshold graphs. Recall that the problem is known to be
in FPT; the paper [11] shows that Graph Burning is FPT parameterized
by distance to cographs and gives a double-exponential time FPT algorithm
when parameterized by distance to split graphs. Since both these parameters
are smaller than the distance to threshold graphs that are precisely the graphs
in graph-class cographs ∩ split, these results imply fixed-parameter tractability
when the distance to threshold graphs is a parameter. Here, we give an FPT
algorithm that runs in single-exponential time, which improves the previously
known algorithms. We will consider a connected graph G = (V,E) and a subset
X ⊆ V with |X| = t, such that the induced subgraph G[V \ X] is a threshold
graph. It is assumed that the set X is given as part of the input.

Theorem 3. Graph Burning on G can be solved in time t2tnO(1).

Proof. Since G[V \X] is a threshold graph, there exists an ordering Π of vertices
such that every vertex is either a dominating vertex or an isolated vertex for the
vertices preceding it in Π. Let vd ∈ V \ X be the last dominating vertex in
Π and (D, I) be the partition of V \ X such that D is a set that contains the
vertices in Π till the vertex vd and I is the set containing all remaining vertices.
Thus, in G[V \ X], I is a maximal set of isolated vertices.

We observe that G can be burned in at most t + 3 steps. In at most t steps,
we set each vertex in X as a fire source. Since every vertex in I has at least
one neighbor in X, all vertices in I are burned in at most t+ 1 steps. Similarly,
since at least one vertex from D has a neighbor in X and D induces a graph of
diameter 2, every vertex in D is burned in at most t + 3 steps. Therefore, we
assume k < t + 3 for the rest of the proof.

For a valid burning sequence of length k of the graph G, for every vertex
v ∈ V , let (fs(v), d(v)) be a pair where 1 ≤ fs(v) ≤ k and 0 ≤ d(v) ≤ k −fs(v),
such that fs(v) is the index of the fire source that burns the vertex v and d(v)
is the distance between that fire source and v. It also implies that v is going to
burn at the (fs(v) + d(v))-th round. When two fire sources can simultaneously
burn v in the same round, fs(v) is assigned the index of the earlier fire source.
The basic idea of the algorithm is to guess the pair (fs(v), d(v)) for every v ∈ X
and then extend this guess into a valid burning sequence for G in polynomial
time.

Consider two families of functions F = {fs : X → [k]} and D = {d : X →
{0} ∪ [k − 1]} on X. A pair (fs, d) ∈ F × D corresponds to a guess that decides
how a vertex in X is burnt. We further extend this to an augmented guess by
guessing the fire sources in D. We make the following observation based on the
fact that every pair of vertices in D is at a distance at most two since vd is
adjacent to every vertex in D.

Observation 1. There can be at most two fire sources in D. Moreover, if there
are two fire sources in D, they are consecutive in the burning sequence.
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Thus, an augmented guess can be considered as extending the domain of the
functions fs and d to X ∪ D′ where D′ ⊆ D and 0 ≤ |D| ≤ 2. Note that, for all
v ∈ D′, d(v) = 0 since we are only guessing the fire sources in D.
An augmented guess is considered valid if the following conditions are true.

1. For all v in the domain of the functions, 0 ≤ d(v) ≤ k − fs(v).
2. For all 1 ≤ i ≤ k, there exists at most one vertex v such that fs(v) = i and

d(v) = 0.
3. For all u, v in the domain of the functions, |(fs(u)+d(u))− (fs(v)+d(v))| ≤

distG(u, v).

Algorithm 1 gives the procedure to extend a valid augmented guess to a valid
burning sequence by identifying the firesources in I. Specifically, Algorithm 1
takes a valid augmented guess as input and returns YES if it can be extended
to a burning sequence of length k.

Algorithm 1.
1: for 1 ≤ i < k such that �v such that fs(v) = i and d(v) = 0 do
2: Xi = {v ∈ X : fs(v) = i, d(v) = 1}
3: if Xi is not empty then
4: Ii = {u ∈ I : Xi ⊆ N(u)}; Fi = Ii

5: for u ∈ Ii do
6: if there exists w ∈ N(u)\Xi such that (fs(w)+d(w) = i+2)∨(fs(w)+

d(w) = i − 1) ∨ (fs(w) = i + 1 ∧ d(w) = 0) then
7: Delete u from Fi.
8: if (i �= k − 1) then
9: if Fi is not empty then
10: Let v be an arbitrary vertex in Fi. Set v as the i-th fire source.
11: else return NO.
12: else
13: F ′ = {u ∈ Fi : ∀w ∈ N(u) \ Xi, fs(w) + d(w) = k}
14: if |F ′| > 2 then return NO.
15: else if F ′ �= ∅ then
16: set an arbitrary vertex in F ′ as the i-th fire source.
17: else
18: set an arbitrary vertex in Fi as the i-th fire source.
19: if CheckValidity() = True then
20: Return YES.
21: else return NO.

Lemma 4. Algorithm 1 is correct.

Proof. It is enough to prove that the fire sources in I are correctly identified.
For every 1 ≤ i < k such that the i-th fire source is not “discovered” yet,

we consider the vertices in Xi. Ii ⊆ I is the set of vertices adjacent to every
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vertex in Xi. The i-th fire source, if exists, should be one of the vertices from
Ii. The algorithm further considers a set Fi that is obtained from Ii by filtering
out vertices that cannot be the i-th fire source. Specifically, the set Fi contains
vertices v such that, Xi ⊆ N(v) and for all w ∈ N(v) \ Xi, i ≤ fs(w) + d(w) ≤
i+1. We shall show that a vertex outside this set cannot be the i-th fire source.

Let v ∈ Ii and w ∈ N(v) \ Xi. For all u ∈ Xi, fs(u) + d(u) = i + 1 and
distG(u,w) ≤ 2, since they have a common neighbor v. By the constraint given
in the definition of a valid augmented guess, i − 1 ≤ fs(w) + d(w) ≤ i + 3. If
fs(w) + d(w) ≥ i+2, then fs(v) + d(v) ≥ i+1 and v is not the i-th fire source.
Also, if fs(w) + d(w) = i − 1, then fs(w) < i and v is not the i-th fire source
since an earlier fire source can burn v in the i-th round. Further, if v is the i-th
fire source, then the case where fs(w) = i + 1 and d(w) = 0 is not possible
since w will be burned by v in the (i+1)-th round. Note that, by definition, if a
vertex v can be burned simultaneously by two different fire sources, then fs(v)
is assigned the index of the earlier fire source. Thus, the i-th fire source, if exists,
should belong to the set Fi.

Assume i < k − 1. Let v1 and v2 be arbitrary vertices in the set Fi and let v1
be the i-th fire source in a burning sequence γ of G. Now, we will prove that a
sequence γ′ obtained by replacing v1 with v2 as the i-th fire source in γ is also a
valid burning sequence. Note that, in γ, Xi is exactly the set of vertices that are
burned by v1 in the (i+ 1)-th round since any other neighbor of v1 is burned in
the i-th or (i+1)-th round by a different fire source. Now, since Xi ⊆ N(v2), Xi

is burned in the (i+1)-th round by γ′ also. Also, any other neighbor of v1 or v2
is burned in the i-th or (i + 1)-th round by a fire source that is not the i-th fire
source, which also ensures v1 gets burned before the k-th round. Hence, if there
exists a fire source in Ii, then any arbitrary vertex in Ii can be the fire source.

Assume i = k − 1. Now we consider the subset F ′ = {u ∈ Fi : ∀w ∈
N(u) \ Xi, fs(w) + d(w) = k} of Fi. A vertex in F ′ can be burned only if it is
the k-th or (k − 1)-th fire source. Hence, we return No if |F ′| > 2. Otherwise an
arbitrary vertex is set as the (k − 1)-th fire source.

Finally, once the fire sources are set, we can check the validity of the burning
sequence in polynomial time. ��
Extending a valid augmented guess can be done in polynomial time. Thus the
running time of the algorithm is determined by the number of valid augmented
guesses which is bounded by t2tnO(1). ��

5 A Kernel for Trees

In this section, we design a kernel for the Graph Burning problem on trees.
Let (T, k) be the input instance of Graph Burning where T is a tree. First, we
arbitrarily choose a vertex r ∈ V (T ) to be the root and make a rooted tree. Let
L0, L1, L2, . . . , Lp be the levels of tree T rooted at r, where L0 = {r}. To give
a kernel, we give a marking procedure to mark some vertices in each level and
show that we can remove the unmarked vertices. In bottom-up fashion, starting
from the last level, in each iteration, we mark at most k + 1 children for each
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vertex in the level, and we remove the subtree rooted at any unmarked children.
Observe that while doing that, we maintain the connectedness of the tree. We
show that the removal of subtrees rooted on unmarked vertices does not affect
the burning number of the tree. Let Tz be the subtree rooted at a vertex z and
Mi be the set of marked vertices at level Li.

Marking Procedure: For all i ∈ [p], we initialise Mi = ∅. For a fixed i, i ∈ [p],
do as follows: For each vertex x ∈ Lp−i, mark at most k + 1 children of x such
that the depth of the subtrees rooted on marked children is highest and add
them into Mp−i+1.

Reduction Rule 1. If z ∈ Lp−i such that z /∈ Mp−i, then remove the subtree
Tz.

Lemma 5. The Reduction Rule 1 is safe.

Proof. To show the safeness of Reduction Rule 1, we show that (T, k) is a Yes-
instance of Graph Burning if and only if (T − Tz, k) is a Yes-instance.

For the forward direction, assume that (T, k) is a Yes-instance. Note that
T − Tz is a tree. Let (b1, b2, . . . , bk) be a burning sequence for T . If any of the bi

belongs to Tz, then we replace bi by placing a fire source on the first unburned
ancestor of z in T − Tz. Therefore, we can have a burning sequence of size k.
Hence, (T − Tz, k) is a Yes-instance.

For the backward direction, assume that (T − Tz, k) is a Yes-instance, and
we need to show that (T, k) is a Yes-instance. Let P (z) be the parent of vertex z
in T . Suppose that x1, x2, . . . , xk+1 be the set of marked children (neighbors) of
P (z). We have to show that any vertex u in the subtree Tz can also be burned
by the same burning sequence.

Since the burning number of T −Tz is k, there is at least one marked child xj

of P (z) such that there is no fire source placed in the subtree Txj
. Observe that

there exists a vertex u′ in the subtree Txj
such that the distances d(u, P (z))

and d(u′, P (z)) are the same since the height of Txj
is at least the height of

subtree Tz by the marking procedure. Let the vertex u′ get burned by a fire
source s. Note that the fire source s is either placed on some ancestor of xj or
some subtree rooted at a sibling of xj . In both cases, the s-u′ path contains the
vertex P (z). Since d(u, P (z)) = d(u′, P (z)), the vertex u also gets burned by the
same fire source in the same round. Thus, every vertex in Tz can be burned by
some fire source from the same burning sequence as T \ Tz. Hence, (T, k) is also
a Yes-instance. ��

Iteratively, for each fixed value of i, i ∈ [p] (starting from i = 1), We apply
the marking procedure once, and the Reduction Rule 1 exhaustively for each
unmarked vertex. After the last iteration (i = p), we get a tree T ′. Observe that
we can complete the marking procedure in polynomial time, and the Reduction
Rule 1 will be applied at most n times. Therefore, we can obtain the kernel T ′

in polynomial time.
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Kernel Size: Note that the obtained tree T ′ is a (k + 1)-ary tree. Let b1 be
the first fire source in T ′; then we know that b1 will burn vertices up to (k − 1)
distance. Therefore, we count the maximum number of vertices b1 can burn.

First, note that b1 will burn the vertices in the subtree rooted at b1 up to
height k − 1. Let n0 be the number of vertices in the subtree rooted at b1. It
follows that n0 ≤ (k+1)k−1−1

k , that is, n0 ≤ (k + 1)k−1. Note that b1 also burns
the vertices on the path between b1 to root r up to distance k−1 and the vertices
rooted on these vertices. Let P = b1v1v2 . . . vk−1 . . . r be b1-r path in T ′. Then b1
also burns the vertices in the subtree rooted at vi, say Tvi

, upto height k − 1− i,
where i ∈ [k−1]. Let ni = |V (Tvi

)|. Therefore, for any i ∈ [k−1], ni ≤ (k+1)k−1

as ni < n0. Thus, the total number of vertices b1 can burn is at most (k + 1)k.
Since each fire source bi can burn only fewer vertices than the maximum number
of vertices that can be burned by source b1, the total number of vertices any
burning sequence of size k can burn is at most (k + 1)k+1.

Therefore, if there are more than (k + 1)k+1 vertices in T ′, then we can
conclude that (T, k) is a No-instance of Graph Burning problem. This gives
us the following result.

Theorem 4. In trees, Graph Burning admits a kernel of size (k + 1)k+1.

6 Exact Algorithm

In this section, we design an exact algorithm for the Graph Burning problem.
Here, we reduce the Graph Burning problem to the shortest path problem in
a configuration graph.

Construction of a Configuration Graph: Given a graph G = (V,E), we
construct a directed graph G′ = (V ′, E′) as follows:

(i) For each set S ⊆ V (G), add a vertex xS ∈ V ′.
(ii) For each pair of vertices xS , xS′ ∈ V ′ such that there exists a vertex w /∈ S

and NG[S] ∪ {w} = S′, add an arc from xS to xS′ .

We call the graph G′ as the configuration graph of G.

G G

a

b

c

xφ

{a}
x{b}
x{c}

x{a,b}
x{b,c}

x{a,c}

x{a,b,c}

Fig. 1. An illustration of G′, the configuration graph of G.

Figure 1 shows an example of a configuration graph.
We have constructed G′ in such a way that a shortest path between the

vertices xS and xT , where S = ∅ and T = V (G), gives a burning sequence for
the original graph G. The following result proves this fact.
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Lemma 6. [*] Let G′ = (V ′, E′) be the configuration graph of a given graph G
and S = ∅ and T = V (G). There exists a path of length k between the vertices
xS and xT in G′ if and only if there is a burning sequence for G of size k.

Lemma 6 shows that a shortest path between xS and xT in G′ gives the burn-
ing sequence for graph G with minimum length. Thus, we can find a minimum
size burning sequence in two steps:

(i) We construct a configuration graph G′ from G.
(ii) Find a shortest path between the vertices xS and xT in G′, where S = ∅
and T = V (G).

Observe that we can construct the graph G′ in (|V (G′)|+ |E(G′)|)-time and find
a shortest path in G′ in O(|V (G′)|+ |E(G′)|)-time. We know that |V (G′)| = 2n

and note that the total degree (in-degree+out-degree) of each vertex in G′ is at
most n. Therefore, |E(G′)| ≤ n · 2n. Therefore, the total running time of the
algorithm is 2nnO(1). Thus, we have proved the next theorem.

Theorem 5. Given a graph G, the burning number of G can be computed in
2nnO(1) time, where n is the number of vertices in G.
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Abstract. We study the single machine scheduling problem under
uncertain parameters, with the aim of minimizing the maximum lateness.
More precisely, the processing times, the release dates and the delivery
times of the jobs are uncertain, but an upper and a lower bound of
these parameters are known in advance. Our objective is to find a robust
solution, which minimizes the maximum relative regret. In other words,
we search for a solution which, among all possible realizations of the
parameters, minimizes the worst-case ratio of the deviation between its
objective and the objective of an optimal solution over the latter one.
Two variants of this problem are considered. In the first variant, the
release date of each job is equal to 0. In the second one, all jobs are of
unit processing time. In all cases, we are interested in the sub-problem
of maximizing the (relative) regret of a given scheduling sequence. The
studied problems are shown to be polynomially solvable.

Keywords: Scheduling · Maximum lateness · Min-max relative
regret · Interval uncertainty

1 Introduction

Uncertainty is a crucial factor to consider when dealing with combinatorial opti-
mization problems and especially scheduling problems. Thus, it is not sufficient
to limit the resolution of a given problem to its deterministic version for a single
realisation of the uncertain parameters, i.e., a scenario. In our study, we investi-
gate a widely used method of handling uncertainty that relies on a set of known
possible values of the uncertain parameters without any need of probabilistic
description, namely the robustness approach or worst-case approach [12]. The
aim of this approach is to generate solutions that will have a good performance
under any possible scenario and particularly in the most unfavorable one.

The use of the robustness approach involves specifying two key components.
The first component is the choice of the type of uncertainty set. Literature
has proposed various techniques for describing the uncertainty set [6], with the
discrete uncertainty and the interval uncertainty being the most well-examined.
Indeed, the most suitable representation of uncertainty in scheduling problems is
the interval uncertainty, where the value of each parameter is restricted within a
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specific closed interval defined by a lower and an upper bound. These bounds can
be estimated through a data analysis on traces of previous problem executions.

The second component is the choice of the appropriate robustness criterion [1,
16]. The absolute robustness or min-max criterion seeks to generate solutions
that provide the optimal performance in the worst case scenario. This criterion
can be seen as overly pessimistic in situations where the worst-case scenario
is unlikely, causing decision makers to regret not embracing a moderate level
of risk. The robust deviation or min-max regret criterion aims at minimizing
the maximum absolute regret, which is the most unfavorable deviation from the
optimal performance among all scenarios. The relative robust deviation or min-
max relative regret criterion seeks to minimize the maximum relative regret,
which is the worst percentage deviation from the optimal performance among
all possible scenarios. Averbakh [4] remarks that the relative regret objective is
more appropriate compared to the absolute regret objective in situations where
the statement “10% more expensive” is more relevant than “costs $30 more”.
However, the min-max relative regret criterion has a complicated structure and
this may explain why limited knowledge exists about it.

The focus of this paper is to investigate the min-max relative regret crite-
rion for the fundamental single machine scheduling problem with the maximum
lateness objective. The interval uncertainty can involve the processing times,
the release dates or the delivery times of jobs. In Sect. 2, we formally define our
problem and the used criteria. In Sect. 3, we give a short review of the existing
results for scheduling problems with and without uncertainty consideration. We
next consider two variants of this problem.

In Sect. 4, we study the variant where all jobs are available at time 0 and the
interval uncertainty is related to processing and delivery times. Kasperski [11]
has applied the min-max regret criterion to this problem and developed a poly-
nomial time algorithm to solve it by characterizing the worst-case scenario based
on a single guessed parameter through some dominance rules. We prove that this
problem is also polynomial for the min-max relative regret criterion. An itera-
tive procedure is used to prove some dominance rules based on three guessed
parameters in order to construct a partial worst-case scenario. To complete this
scenario, we formulate a linear fractional program and we explain how to solve
it in polynomial time.

In Sect. 5, we study the maximum relative regret criterion for the variant of
the maximum lateness problem where the processing times of all jobs are equal
to 1 and interval uncertainty is related to release dates and delivery times. For
a fixed scenario, Horn [8] proposed an optimal algorithm for this problem. For
the uncertainty version, we simulate the execution of Horn’s algorithm using
a guess of five parameters, in order to create a worst-case scenario along with
its optimal schedule. Note that, we also give a much simpler analysis for the
maximum regret criterion of this variant of our scheduling problem.

We conclude in Sect. 6.
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2 Problem Definition and Notations

In this paper, we consider the problem of scheduling a set J of n non-preemptive
jobs on a single machine. In the standard version of the problem, each job is
characterized by a processing time, a release date and a due date. However, in
this work we use a known equivalent definition of this problem in which the
due dates are replaced by delivery times. In general, the values of the input
parameters are not known in advance. However, an estimation interval for each
value is known. Specifically, given a job j ∈ J , let [pmin

j , pmax
j ], [rmin

j , rmax
j ] and

[qmin
j , qmax

j ] be the uncertainty intervals for its characteristics.
A scenario s = (ps

1, ..., p
s
n, rs

1, ..., r
s
n, qs

1, ..., q
s
n) is a possible realisation of all

values of the instance, such that ps
j ∈ [pmin

j , pmax
j ], rs

j ∈ [rmin
j , rmax

j ] and qs
j ∈

[qmin
j , qmax

j ], for every j ∈ J . The set of all scenarios is denoted by S. A solution
is represented by a sequence of jobs, π = (π(1), ..., π(n)) where π(j) is the jth
job in the sequence π. The set of all sequences is denoted by Π.

Consider a schedule represented by its sequence π ∈ Π and a scenario s ∈ S.
The lateness of a job j ∈ J is defined as Ls

j(π) = Cs
j (π)+qs

j , where Cs
j (π) denotes

the completion time of j in the schedule represented by π under the scenario s.
The maximum lateness of the schedule is defined as L(s, π) = maxj∈J Ls

j(π).
The job c ∈ J of maximum lateness in π under s is called critical, i.e., Ls

c(π) =
L(s, π). The set of all critical jobs in π under s is denoted by Crit(s, π). We call
first critical job, the critical job which is processed before all the other critical
jobs. By considering a given scenario s, the optimal sequence is the one leading to
a schedule that minimizes the maximum lateness, i.e., L∗(s) = minπ∈Π L(s, π).
This is a classical scheduling problem, denoted by 1|rj |Lmax using the standard
three-field notation, and it is known to be NP-hard [15].

In this paper, we are interested in the min-max regret and the min-max
relative regret criteria whose definitions can be illustrated by a game between
two agents, Alice and Bob. Alice selects a sequence π of jobs. The problem of Bob
has as input a sequence π chosen by Alice, and it consists in selecting a scenario
s such that the regret R of Alice R(s, π) = L(s, π) − L∗(s) or respectively the
relative regret RR of Alice RR(s, π) = L(s,π)−L∗(s)

L∗(s) = L(s,π)
L∗(s) − 1 is maximized.

The value of Z(π) = maxs∈S R(s, π) (resp. ZR(π) = maxs∈S RR(s, π)) is called
maximum regret (resp. maximum relative regret) for the sequence π. In what
follows, we call the problem of maximizing the (relative) regret, given a sequence
π, as the Bob’s problem. Henceforth, by slightly abusing the definition of the
relative regret, we omit the constant −1 in RR(s, π), since a scenario maximizing
the fraction L(s,π)

L∗(s) maximizes also the value of L(s,π)
L∗(s) −1. Then, Alice has to find

a sequence π which minimizes her maximum regret (resp. maximum relative
regret), i.e., minπ∈Π Z(π) (resp. minπ∈Π ZR(π)). This problem is known as the
min-max (relative) regret problem and we call it as Alice’s problem.

Given a sequence π, the scenario that maximises the (relative) regret over all
possible scenarios is called the worst-case scenario for π. A partial (worst-case)
scenario is a scenario defined by a fixed subset of parameters and can be extended
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to a (worst-case) scenario by setting the remaining unknown parameters. For a
fixed scenario s, any schedule may consist of several blocks, i.e., a maximal set
of jobs, which are processed without any idle time between them. A job uj is
said to be first-block for the job j if it is the first job processed in the block
containing j in a given schedule.

3 Related Work

In the deterministic version, the problem 1|rj |Lmax has been proved to be
strongly NP-hard [15]. For the first variant where all release dates are equal,
the problem can be solved in polynomial time by applying Jackson’s rule [9],
i.e., sequencing the jobs in the order of non-increasing delivery times. For the
second variant with unit processing time jobs, the rule of scheduling, at any
time, an available job with the biggest delivery time is shown to be optimal by
Horn [8].

For the discrete uncertainty case, the min-max criterion has been studied
for several scheduling problems with different objectives. Kouvelis and Yu [12]
proved that the min-max resource allocation problem is NP-hard and admits
a pseudo-polynomial algorithm. Aloulou and Della Croce [2] showed that the
min-max 1||∑ Uj problem of minimizing the number of late jobs is NP-hard,
while the min-max problem of the single machine scheduling is polynomially
solvable for many objectives like makespan, maximum lateness and maximum
tardiness even in the presence of precedence constraints. The only scheduling
problem studied under discrete uncertainty for min-max (relative) regret is the
1||∑ Cj for which Yang and Yu [17] have proved that it is NP-hard for all the
three robustness criteria.

For the interval uncertainty case, the min-max criterion has the same com-
plexity as the deterministic problem since it is equivalent to solve it for an
extreme well-known scenario. Considerable research has been dedicated to the
min-max regret criterion for different scheduling problems. Many of these prob-
lems have been proved to be polynomially solvable. For instance, Averbakh [3]
considered the min-max regret 1||max wjTj problem to minimize the maximum
weighted tardiness, where weights are uncertain and proposed a O(n3) algorithm.
He also presented a O(m) algorithm for the makespan minimization for a permu-
tation flow-shop problem with 2 jobs and m machines with interval uncertainty
related to processing times [5]. The min-max regret version of the first variant
of our problem has been considered by Kasperski [11] under uncertain process-
ing times and due dates. An O(n4) algorithm has been developed which works
even in the presence of precedence constraints. On the other hand, Lebedev and
Averbakh. [14] showed that the min-max regret 1||∑ Cj problem is NP-hard.
Kacem and Kellerer [10] considered the single machine problem of scheduling
jobs with a common due date with the objective of maximizing the number of
early jobs and they proved that the problem is NP-hard.

Finally, for the min-max relative regret criterion for scheduling problems
with interval uncertainty, the only known result is provided by Averbakh [4]
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who considered the problem 1||∑ Cj with uncertain processing times and he
proved that it is NP-hard.

4 Min-Max Relative Regret for 1 || Lmax

In this section, we consider the min-max relative regret criterion for the max-
imum lateness minimization problem, under the assumption that each job is
available at time 0, i.e., rs

j = 0 for all jobs j ∈ J and all possible scenarios
s ∈ S. For a fixed scenario, this problem can be solved by applying the Jack-
son’s rule, i.e., sequencing the jobs in order of non-increasing delivery times.

4.1 The Bob’s Problem

We denote by B(π, j) the set of all the jobs processed before job j ∈ J , including
j, in the sequence π and by A(π, j) the set of all the jobs processed after job j
in π. The following lemma presents some properties of a worst-case scenario for
a given sequence of jobs.

Lemma 1. Let π be a sequence of jobs. There exists (1) a worst case scenario
s for π, (2) a critical job cπ ∈ Crit(s, π) in π under s, and (3) a critical job
cσ ∈ Crit(s, σ) in σ under s, where σ is the optimal sequence for s, such that:

i for each job j ∈ A(π, cπ), it holds that ps
j = pmin

j ,
ii for each job j ∈ J \{cπ}, it holds that qs

j = qmin
j ,

iii for each job j ∈ B(π, cπ) ∩ B(σ, cσ), it holds that ps
j = pmin

j , and
iv cσ is the first critical job in σ under s.

Consider the sequence π chosen by Alice. Bob can guess the critical job cπ

in π and the first critical job cσ in σ. Then, by Lemma 1 (i)–(ii), he can give
the minimum processing times to all jobs in A(π, cπ), and the minimum deliv-
ery times to all jobs except for cπ. Since the delivery times of all jobs except
cπ are determined and the optimal sequence σ depends only on the delivery
times according to the Jackson’s rule, Bob can obtain σ by guessing the position
k ∈ �1, n� of cπ in σ. Then, by Lemma 1 (iii), he can give the minimum process-
ing times to all jobs in B(π, cπ) ∩ B(σ, cσ). We denote by the triplet (cπ, cσ, k)
the guess made by Bob. Based on the previous assignments, Bob gets a partial
scenario s̄π

cπ,cσ,k. It remains to determine the exact value of qcπ
and the process-

ing times of jobs in B(π, cπ) ∩ A(σ, cσ) in order to extend s̄π
cπ,cσ,k to a scenario

sπ
cπ,cσ,k. At the end, Bob will choose, among all the scenarios sπ

cπ,cσ,k created,

the worst case scenario sπ for the sequence π, i.e., sπ = arg max
i,j,k

{L(sπ
i,j,k, π)

L∗(sπ
i,j,k)

}
.

In what follows, we propose a linear fractional program (P ) in order to find a
scenario sπ

cπ,cσ,k which extends s̄π
cπ,cσ,k and maximizes the relative regret for the

given sequence π. Let pj , the processing time of each job j ∈ B(π, cπ)∩A(σ, cσ),
and qcπ

, the delivery time of job cπ, be the continuous decision variables in (P ).
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All other processing and delivery times are constants and their values are defined
by s̄π

cπ,cσ,k. Recall that σ(j) denotes the j-th job in the sequence σ. To simplify
our program, we consider two fictive values qσ(n+1) = qmin

cπ
and qσ(0) = qmax

cπ
.

maximize

∑
i∈B(π,cπ) pi + qcπ

∑
i∈B(σ,cσ)

pi + qcσ

(P )

subject to
∑

i∈B(π,j)

pi + qj ≤
∑

i∈B(π,cπ)

pi + qcπ
∀j ∈ J (1)

∑

i∈B(σ,j)

pi + qj ≤
∑

i∈B(σ,cσ)

pi + qcσ
∀j ∈ J (2)

pj ∈ [pmin
j , pmax

j ] ∀j ∈ B(π, cπ) ∩ A(σ, cσ) (3)

qcπ
∈ [max{qmin

cπ
, qσ(k+1)},min{qmax

cπ
, qσ(k−1)}] (4)

The objective of (P ) maximizes the relative regret for the sequence π under
the scenario sπ

cπ,cσ,k with respect to the hypothesis that cπ and cσ are critical in
π and σ, respectively, i.e.,

ZR(π) =
L(sπ

cπ,cσ,k, π)
L∗(sπ

cπ,cσ,k)
=

L
sπ

cπ,cσ,k
cπ (π)

L
sπ

cπ,cσ,k
cσ (σ)

Constraints (1) and (2) ensure this hypothesis. Constraints (3) and (4) define
the domain of the continuous real variables pj , j ∈ B(π, cπ) ∩ A(σ, cσ), and qcπ

.
Note that, the latter one is based also on the guess of the position of cπ in
σ. The program (P ) can be infeasible due to the Constraints (1) and (2) that
impose jobs cπ and cσ to be critical. In this case, Bob ignores the current guess of
(cπ, cσ, k) in the final decision about the worst case scenario sπ that maximizes
the relative regret.

Note that the Constraint (1) can be safely removed when considering the
whole procedure of Bob for choosing the worst case scenario sπ. Indeed, consider
a guess (i, j, k) which is infeasible because the job i is not critical in π due to the
Constraint (1). Let s be the scenario extended from the partial scenario s̄π

i,j,k by
solving (P) without using the Constraint (1). Let cπ be the critical job under
the scenario s. Thus, Ls

cπ
(π) > Ls

i (π). Consider now the scenario s′ of maximum
relative regret in which cπ is critical. Since sπ is the worst case scenario chosen
by Bob for the sequence π and by the definition of s′ we have

L(sπ, π)
L∗(sπ)

≥ L(s′, π)
L∗(s′)

≥ L(s, π)
L∗(s)

=
Ls

cπ
(π)

L∗(s)
>

Ls
i (π)

L∗(s)

In other words, if we remove the Constraint (1), (P ) becomes feasible while its
objective value cannot be greater than the objective value of the worst case
scenario sπ and then the decision of Bob with respect to the sequence π is not
affected. This observation is very useful in Alice’s algorithm. However, a similar
observation cannot hold for Constraint (2) which imposes cσ to be critical in σ.



Min-Max Relative Regret for Scheduling to Minimize Maximum Lateness 55

As mentioned before, the program (P ) is a linear fractional program, in which
all constraints are linear, while the objective function corresponds to a fraction
of linear expressions of the variables. Moreover, the denominator of the objective
function has always a positive value. Charnes and Cooper [7] proposed a poly-
nomial transformation of such a linear fractional program to a linear program.
Hence, (P ) can be solved in polynomial time.

Note also that, in the case where cπ �= cσ, the value of the maximum lateness
in the optimal sequence (

∑
j∈B(σ,cσ)

ps
j + qs

cσ
) is fixed since the processing times

of jobs processed before the job cσ in σ, as well as, the delivery time qs
cσ

of the job
cσ are already determined in the partial scenario s̄π

cπ,cσ,k. Therefore, if cπ �= cσ

then (P ) is a linear program. Consequently, the Charnes-Cooper transformation
is used only in the case where cπ = cσ.

Theorem 1. Given a sequence π, there is a polynomial time algorithm that
returns a worst case scenario sπ of maximum relative regret ZR(π) for the prob-
lem 1 || Lmax.

4.2 The Alice’s Problem

In this section, we show how Alice constructs an optimal sequence π minimizing
the maximum relative regret, i.e., π = argminσ∈Π ZR(σ). Intuitively, by starting
from the last position and going backwards, Alice searches for an unassigned job
that, if placed at the current position and it happens to be critical in the final
sequence π, will lead to the minimization of the maximum relative regret for π.

In order to formalize this procedure we need some additional definitions.
Assume that Alice has already assigned a job in each position n, n − 1, . . . , r + 1
of π. Let Br be the set of unassigned jobs and consider any job i ∈ Br. If i is
assigned to the position r in π, then the sets B(π, i) and A(π, i) coincide with Br

and J \Br, respectively, and are already well defined, even though the sequence
π is not yet completed (recall that B(π, i) includes i). Indeed, B(π, i) and A(π, i)
depend only on the position r, i.e., B(π, i) = B(π, j) = Br and A(π, i) = A(π, j)
for each couple of jobs i, j ∈ Br. Hence, Alice can simulate the construction in
Bob’s procedure in order to decide which job to assign at position r. Specifically,
for a given job i ∈ Br, Alice considers all scenarios sBr

i,j,k, where j ∈ J is the
first critical job in the optimal sequence σ for this scenario and k ∈ �1, n� is
the position of i in σ, constructed as described in Bob’s algorithm. Note that,
we slightly modified the notation of the scenario constructed by Bob for a guess
(i, j, k) to sBr

i,j,k instead of sπ
i,j,k, since a partial knowledge (Br = B(π, i)) of π is

sufficient for his procedure. Moreover, the reason of omitting Constraint (1) in
the program (P ) is clarified here, since the job i is not imposed to be necessarily
critical in π. For a job i ∈ Br, let

fi(π) = max
j∈J ,k∈�1,n�

{
L(sB(π,i)

i,j,k )

L∗(sB(π,i)
i,j,k )

}

Then, Alice assigns to position r the job i which minimizes fi(π), and the fol-
lowing theorem holds.
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Theorem 2. There is a polynomial time algorithm which constructs a sequence
π that minimizes the maximum relative regret for the problem 1 || Lmax.

5 Min-Max Relative Regret for 1 | rj, pj = 1 | Lmax

In this section, we consider the case of unit processing time jobs, i.e., ps
j = 1

for all jobs j ∈ J and all possible scenarios s ∈ S. In contrast to the previous
section, the jobs are released on different dates whose values are also imposed
to uncertainties. For a fixed scenario, Horn [8] proposes an extension of the
Jackson’s rule leading to an optimal schedule for this problem: at any time t,
schedule the available job, if any, of the biggest delivery time, where a job j is
called available at time t if rj ≤ t and j is not yet executed before t.

5.1 The Bob’s Problem

Since all jobs are of unit the processing times, a scenario s is described by
the values of the release dates and the delivery times of the jobs, i.e., by rs

j ∈
[rmin

j , rmax
j ] and qs

j ∈ [qmin
j , qmax

j ], for each j ∈ J . Recall that, in the presence
of different release dates, the execution of the jobs is partitioned into blocks
without any idle time, while, given a sequence π and a scenario s, the first job in
the block of a job j ∈ J is called first-block job for j in π under s. The following
lemma characterizes a worst case scenario for a given sequence of jobs π.

Lemma 2. Let π be a sequence of jobs. There exists a worst case scenario s, a
critical job c ∈ Crit(s, π) and its first-block job uc in π under s such that:

i for each job j ∈ J \{c}, it holds that qs
j = qmin

j ,
ii for each job j ∈ J \{uc}, it holds that rs

j = rmin
j .

Consider the sequence π chosen by Alice. Bob can guess the critical job c in π
and its first-block job uc. Using Lemma 2, we get a partial scenario s̄ by fixing
the delivery times of all jobs except for c as well as the release dates of all jobs
except for uc to their minimum values. It remains to determine the values of qc

and ruc
in order to extend the partial scenario s̄ to a scenario s. At the end, Bob

will choose, among all scenarios created, the worst case one for the sequence π,
i.e., the scenario with the maximum value of relative regret.

In what follows, we explain how to construct a sequence σ which will corre-
spond to an optimal schedule for the scenario s when the values of qc and ruc

will be fixed. The main idea of the proposed algorithm is that, once a couple of
σ and s is determined, then σ corresponds to the sequence produced by applying
Horn’s algorithm with the scenario s as an input. The sequence σ is constructed
from left to right along with an associated schedule which determines the starting
time Bj and the completion time Cj = Bj + 1 of each job j ∈ J . The assign-
ment of a job j to a position of this schedule (time Bj) introduces additional
constraints in order to respect the sequence produced by Horn’s algorithm:

(C1) there is no idle time in [rj , Bj),
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(C2) at time Bj , the job j has the biggest delivery time among all available jobs
at this time, and

(C3) the delivery times of all jobs scheduled in [rj , Bj) should be bigger than qs
j .

These constraints are mainly translated to a refinement of the limits of qc or of
ruc

, i.e., updates on qmin
c , qmax

c , rmin
uc

and rmax
uc

. If at any point of our algorithm
the above constraints are not satisfied, then we say that the assumptions/guesses
made become infeasible, since they cannot lead to a couple (σ, s) respecting
Horn’s algorithm. Whenever we detect an infeasible assumption/guess, we throw
it and we continue with the next one.

Let �[x] be the x-th job which is released after the time rmin
uc

, that is, rmin
uc

≤
rs̄
�[1] ≤ rs̄

�[2] ≤ . . . ≤ rs̄
�[y]. By convention, let rs̄

�[0] = rmin
uc

and rs̄
�[y+1] = +∞. To

begin our construction, we guess the positions kc and kuc
of the jobs c and uc,

respectively, in σ as well as the interval [rs̄
�[x], r

s̄
�[x+1]), 0 ≤ x ≤ y, of Buc

in the
optimal schedule s for σ. Let kmin = min{kc, kuc

}. We start constructing σ and
its corresponding schedule by applying Horn’s algorithm with input the set of
jobs J \{c, uc} for which all data are already determined by the partial scenario
s̄, until kmin − 1 jobs are scheduled. Then, we set σ(kmin) = arg min{kc, kuc

}.
We now need to define the starting time of σ(kmin) and we consider two cases:

Case 1: kc < kuc
. We set Bc = max{Cσ(kmin−1), r

s̄
c}. If Bc = rs̄

c and there is an
idle time and an available job j ∈ J \{c, uc} in [Cσ(kmin−1), Bc), then we throw
the guess kc, kuc

, [rs̄
�[x], r

s̄
�[x+1]) since we cannot satisfy constraint (C1) for j, and

hence our schedule cannot correspond to the one produced by Horn’s algorithm.
Let qs̄

a = max{qs̄
j : j ∈ J \{c, uc} is available at Bc}. Then, in order to sat-

isfy constraint (C2) we update qmin
c = max{qmin

c , qs̄
a}. Let qs̄

b = min{qj : j ∈
J \{c, uc} is executed in [rc, Bc)}. Then, in order to satisfy constraint (C3) we
update qmax

c = min{qmax
c , qs̄

b}. If qmax
c < qmin

c , then we throw the guess kc, kuc
,

[rs̄
�[x], r

s̄
�[x+1]) since we cannot get a feasible value for qs

c .
It remains to check if there is any interaction between c and uc. Since kc <

kuc
, uc is not executed in [rc, Bc). However, uc may be available at Bc, but we

cannot be sure for this because the value of rs
uc

is not yet completely determined.
For this reason, we consider two opposite assumptions. Note that Bc is already
fixed by the partial scenario s̄ in the following assumptions, while rs

uc
is the

hypothetical release date of uc in the scenario s.

Assumption 1.1: rs
uc

≤ Bc. In order to impose this assumption, we update
rmax
uc

= min{rmax
uc

, Bc}.
Assumption 1.2: rs

uc
> Bc. In order to impose this assumption, we update

rmin
uc

= max{rmin
uc

, Bc + 1}.

If in any of these cases we have that rmax
uc

< rmin
uc

, then we throw the correspond-
ing assumption, since there is no feasible value for rs

uc
. For each non-thrown

assumption, we continue our algorithm separately, and we eventually get two
different couples of sequence/scenario if both assumptions are maintained. More
specifically, for each assumption, we continue applying Horn’s algorithm with
input the set of jobs J \{σ(1), σ(2), . . . , σ(kmin − 1), c, uc} starting from time
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Cc = Bc + 1, until kuc
− kc − 1 additional jobs are scheduled. Then, we set

σ(kuc
) = uc and Buc

= max{Cσ(kuc −1), r
min
uc

, rs̄
�[x]}. Note that Buc

depends for
the moment on the (updated) rmin

uc
and not on the final value of rs

uc
which has

not been determined at this point of the algorithm. If Buc
≥ rs̄

�[x+1], then we
throw the guess on [rs̄

�[x], r
s̄
�[x+1]). We next check if the constraints (C1)-(C3) are

satisfied for all jobs in J \{uc} with respect to the assignment of the job uc at the
position kuc

of σ with starting time Buc
. If not, we throw the current assumption.

Otherwise, Horn’s algorithm with input the jobs in J \{σ(1), σ(2), . . . , σ(kuc
)}

and starting from time Buc
+ 1 is applied to complete σ.

Case 2: kc > kuc
. We set Buc

= max{Cσ(kmin−1), r
min
uc

, rs̄
�[x]}. As before, Buc

depends on rmin
uc

and not on the final value of rs
uc

. If Buc
≥ rs̄

�[x+1] then we throw
the current guess on [rs̄

�[x], r
s̄
�[x+1]). We need also to check if the constraints (C1)-

(C3) are satisfied for all jobs in J \{uc} with respect to the assignment of the job
uc at the position kuc

of σ with starting time Buc
. If not, we throw the current

guess kc, kuc
, [rs̄

�(q), r
s̄
�(q)+1). Note that the last check is also applied for c and

eventually leads to update qmax
c = min{qmax

c , qs̄
uc

} if c is available at Buc
. This

can be easily verified because of the guess of the interval of Buc
.

Next, we continue applying Horn’s algorithm with input the set of jobs
J \{σ(1), σ(2), . . . , σ(kmin−1), c, uc} starting from time Buc

+1, until kc−kuc
−1

additional jobs are scheduled. Then, we set σ(kc) = c, Bc = max{Cσ(kc−1), r
s̄
c},

and we check if the constraints (C1)-(C3) are satisfied for all jobs in J \{c}
with respect to the assignment of the job c at the position kc of σ with starting
time Bc. If not, we throw the current guess kc, kuc

, [rs̄
�[x], r

s̄
�[x+1]). Moreover, an

update on qmin
c and qmax

c is possible here, like the one in the begin of case 1.
Finally, Horn’s algorithm with input the jobs in J \{σ(1), σ(2), . . . , σ(kc)} and
starting from time Cc = Bc + 1 is applied to complete σ.

Note that after the execution of the above procedure for a given guess c,
uc, kc, kuc

, [rs̄
�[x], r

s̄
�[x+1]), and eventually an assumption 1.1 or 1.2, we get a

sequence σ and its corresponding schedule, while the values of qs
c and rs

uc
are

still not defined but their bounds are probably limited to fit with this guess.
Then, we apply the following three steps in order to get the scenario s:

1. Extend the partial scenario s̄ to a scenario smin by setting qsmin
c = qmin

c and
rsmin
uc

= rmin
uc

.
2. Extend the scenario smin to the scenario s1 by increasing the delivery time

of c to its maximum without increasing the maximum lateness and without
exceeding qmax

c , i.e., qs1
c = qsmin

c + min{qmax
c − qsmin

c , L∗(smin) − Lsmin
c (σ)}.

3. Extend the scenario s1 to the scenario s by increasing the release date of uc

to its maximum without increasing the maximum lateness, without exceeding
rmax
uc

and without violating the constraint (C1) and the current guess.

The following theorem holds since in an iteration of the above algorithm, the
guess corresponding to an optimal sequence σ for the worst case scenario s will
be considered, while Horn’s algorithm guarantees the optimality of σ.
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Theorem 3. There is a polynomial time algorithm which, given a sequence π,
constructs a worst case scenario sπ of maximum relative regret for the problem
1|rj , pj = 1|Lmax.

5.2 The Alice’s Problem

In this section, we describe Alice’s algorithm in order to construct an optimal
sequence minimizing the maximum relative regret for 1|rj , pj = 1|Lmax. Since
Alice knows how Bob proceeds, she can do a guess g of the five parameters c, uc,
kc, kuc

, [r�[x], r�[x+1]) in order to construct an optimal sequence σg for a scenario
sg corresponding to this guess. Then, she assumes that σg is provided as input
to Bob. Bob would try to maximize its relative regret with respect to σg by
eventually doing a different guess ĝ, obtaining a scenario sĝ, i.e.,

RR(sĝ, σg) = max
g′

L(sg′ , σg)
L∗(sg′)

Note that, if g = ĝ, then RR(sĝ, σg) = 1 since by definition σg is the optimal
sequence for the scenario sg = sĝ. Therefore, Alice can try all possible guesses in
order to find the one that minimizes her maximum relative regret by applying
Bob’s algorithm to the sequence obtained by each guess, and hence the following
theorem holds.

Theorem 4. There is a polynomial time algorithm which constructs a sequence
π minimizing the maximum relative regret for the problem 1|rj , pj = 1|Lmax.

Note that, Bob’s guess for this problem defines almost all parameters of a
worst case scenario, without really using the input sequence provided by Alice.
This is not the case in Sect. 4 where, according to Lemma 1, the jobs that
succeed the critical job in Alice’s sequence should be known. For this reason
Alice’s algorithm is simpler here compared to the one in Sect. 4.2.

6 Conclusions

We studied the min-max relative regret criterion for dealing with interval uncer-
tain data for the single machine scheduling problem of minimizing the max-
imum lateness. We considered two variants and we proved that they can be
solved optimally in polynomial time. Our main technical contribution concerns
the sub-problem of maximizing the relative regret for these variants. The com-
plexity of our results justifies in a sense the common feeling that the min-max
relative criterion is more difficult than the min-max regret criterion.

Note that our result for the variant without release dates can be extended
even in the case where the jobs are subject to precedence constraints. Indeed,
Lawler [13] proposed an extension of Jackson’s rule for the deterministic version
of this problem, while the monotonicity property still holds. Thus, the corre-
sponding lemma describing a worst case scenario holds, and the determination
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of the optimal sequence depends only on the guess of the position of the crit-
ical job in this sequence which should be imposed to respect the precedence
constraints.

In the future, it is interesting to clarify the complexity of the general maxi-
mum lateness problem with respect to min-max relative regret when all param-
eters are subject to uncertainty. We believe that this problem is NP-hard. If this
is confirmed, the analysis of an approximation algorithm is a promising research
direction.
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Abstract. Let F be a fixed finite obstruction set of graphs and G
be a graph revealed in an online fashion, node by node. The online
Delayed F-Node-Deletion Problem (F-Edge-Deletion Prob-
lem) is to keep G free of every H ∈ F by deleting nodes (edges) until
no induced subgraph isomorphic to any graph in F can be found in G.
The task is to keep the number of deletions minimal.

Advice complexity is a model in which an online algorithm has access
to a binary tape of infinite length, on which an oracle can encode infor-
mation to increase the performance of the algorithm. We are interested
in the minimum number of advice bits that are necessary and sufficient
to solve a deletion problem optimally.

In this work, we first give essentially tight bounds on the advice com-
plexity of the Delayed F-Node-Deletion Problem and F-Edge-
Deletion Problem where F consists of a single, arbitrary graph H.
We then show that the gadget used to prove these results can be utilized
to give tight bounds in the case of node deletions if F consists of either
only disconnected graphs or only connected graphs. Finally, we show
that the number of advice bits that is necessary and sufficient to solve
the general Delayed F-Node-Deletion Problem is heavily depen-
dent on the obstruction set F . To this end, we provide sets for which
this number is either constant, logarithmic or linear in the optimal num-
ber of deletions.

Keywords: Online Algorithms · Advice Complexity · Late Accept
Model · Node-Deletion · Edge-Deletion · Graph Modification

1 Introduction

The analysis of online problems is concerned with studying the worst case perfor-
mance of algorithms where the instance is revealed element by element and deci-
sions have to be made immediately and irrevocably. To measure the performance
of such algorithms, their solution is compared to the optimal solution of the same
instance. The largest ratio between the size of an online algorithms solution and
the optimal solution size over all instances is then called the (strict)competitive
ratio of an algorithm. Finding an algorithm with the smallest possible competi-
tive ratio is the common aim of online analysis. The study of online algorithms
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was started by Sleator and Tarjan [16] and has been active ever since. For a
more thorough introduction on competitive analysis, we refer the reader to the
standard book by Borodin and El-Yaniv [5].

The online problems studied in this work are each defined over a fixed family
F of graphs. An induced online graph G is revealed iteratively by revealing its
nodes. The solution set, i.e. a set of nodes (edges), of an algorithm is called S
and we define G−S as V (G)\V (S) or as E(G)\E(S) respectively, depending on
whether S is a set of nodes or edges. When in some step i an induced subgraph
of G[{v1, . . . , vi}]− S is isomorphic to a graph H ∈ F , an algorithm is forced to
delete nodes (edges) T by adding them to S until no induced graph isomorphic
to some H ∈ F can be found in G[{v1, . . . , vi}]−{S ∪T}. The competitive ratio
of an algorithm is then measured by taking the ratio of its solution set size to
the solution set size of an optimal offline algorithm.

Note that this problem definition is not compatible with the classical online
model, as nodes (edges) do not immediately have to be added to S or ultimately
not be added to S. Specifically, elements that are not yet part of S may be added
to S at a later point, but no elements may be removed from S at any point.
Furthermore, an algorithm is only forced to add elements to S whenever an H ∈
F is isomorphic to some induced subgraph of the current online graph. Chen et
al. [9] showed that no algorithm for this problem can admit a constantly bounded
competitive ratio in the classical online setting and that there are families F for
which the competitive ratio is strict in the size of the largest forbidden graph
H ∈ F . This model, where only an incremental valid partial solution is to be
upheld, was first studied by Boyar et al. [6] and coined “Late Accept” by Boyar
et al. [7] in the following year. As we study the same problems as Chen et al.,
we use the term delayed for consistency.

When studying the competitive ratio of online algorithms, Dobrev et al. [10]
asked the question which, and crucially how much information an online algo-
rithm is missing in order to improve its competitive ratio. This model was revised
by Hromkovič et al. [11], further refined by Böckenhauer et al. [4] and is known
as the study of advice complexity of an online problem. In this setting, an online
algorithm is given access to a binary advice tape that is infinite in one direc-
tion and initialized with random bits. An oracle may then overwrite a number
of these random bits, starting from the initial position of the tape in order to
encode information about the upcoming instance or to simply give instructions
to an algorithm. An algorithm may then read from this tape and act on this
information during its run. The maximum number of bits an algorithm reads
from the tape over all instances to obtain a target competitive ratio of c is then
called the advice complexity of an algorithm. For a more thorough introduction
to the analysis of advice complexity and problems studied under this model, we
refer the reader to the book by Komm [12] and the survey paper by Boyar et
al. [8]. In this work, we are interested in the minimum needed and maximum
necessary number of bits of information an online algorithm needs in order to
solve the discussed problems optimally.
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Table 1. Advice complexity of node-deletion problems.

Node-Deletion Single graph H forbidden Family F of graphs forbidden

All graphs connected Chen et al. [9] Chen et al. [9]
Arbitrary graphs Essentially tight bound Lower & Upper bounds

Theorem 1, Corollary 1 Theorem 1, Theorem 6, Theorem 7, Theorem 8

Table 2. Advice complexity of edge-deletion problems.

Edge-Deletion Single graph H forbidden Family F of graphs forbidden

All graphs connected Chen et al. [9] Chen et al. [9]
Arbitrary graphs Essentially tight bound Open

Theorem 2, Corollary 2, Theorem 5

The analysis of advice complexity assumes the existence of an almighty oracle
that can give perfect advice, which is not realistic. However, recent publications
utilize such bounds, especially the information theoretic lower bounds. One field
is that of machine-learned advice [1,14,15]. A related field is that of uncertain or
untrusted advice [13], which analyses the performance of algorithms depending
on how accurate some externally provided information for an algorithm is.

Chen et al. [9] gave bounds on the Delayed F-Node-Deletion Prob-
lem and Delayed F-Edge-Deletion Problem for several restricted families
F , dividing the problem by restricting whether F may contain only connected
graphs and whether F consists of a single graph H or arbitrarily many. Tables 1
and 2 show our contributions: Up to some minor gap due to encoding details, we
close the remaining gap for the Delayed H-Node-Deletion Problem that
was left open by Chen et al. [9], give tight bounds for the Delayed H-Edge-
Deletion Problem, and provide a variety of (tight) bounds for the Delayed
F-Node-Deletion Problem depending on the nature of F .

The problem for families of connected graphs F has one nice characteristic
that one can exploit when designing algorithms solving node- or edge-deletion
problems over such families. Intuitively, one can build an adversarial instance by
presenting some copy of an H ∈ F , extend this H depending on the behavior
of an algorithm to force some specific deletion and continue by presenting the
next copy of H. The analysis can then focus on each individual copy of H to
determine the advice complexity. For families of disconnected graphs, this is not
always so simple: Remnants of a previous copy of some H together with parts of
another copy of H may themselves be a copy of some other H ′ ∈ F . Thus, while
constructing gadgets for some singular copy of H ∈ F is usually simple and can
force an algorithm to distinguish the whole edge set of H, this generally breaks
down once the next copy of H is presented in the same instance.

The rest of this work is structured as follows. We first give formal defi-
nitions of the problems that we analyze in this work and introduce neces-
sary notation. We then give tight bounds on the Delayed F-Node-Deletion
Problem for completely connected and completely disconnected families F and
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analyze the advice complexity of the Delayed H-Edge-Deletion Problem
and Delayed H-Node-Deletion Problem. We then take a closer look at
the general Delayed F-Node-Deletion Problem, showing that its advice
complexity is heavily dependent on the concrete obstruction set F . To this end,
we show that depending on F , constant, logarithmic or linear advice can be
necessary and sufficient to optimally solve the Delayed F-Node-Deletion
Problem. A full version that contains all the proofs is available via arXiv [2].

1.1 Notation and Problem Definitions

We use standard graph notation in this work. Given an undirected graph G =
(V,E), G[V ′] with V ′ ⊆ V denotes the graph induced by the node set V ′.
We use |G| to denote |V (G)| and ||G|| to denote |E(G)|. We use the notation
G for the complement graph of G. Kn and Kn denote the n-clique and the n-
independent set respectively. Pn denotes the path on n nodes. The neighborhood
of a vertex v in a graph G consists of all vertices adjacent to v and is denoted
by NG(v). A vertex v is called universal, if NG(v) = V \{v}. We measure the
advice complexity in opt, which denotes the size of the optimal solution of a
given problem.

We adapt some of the notation of Chen et al. [9]. We use H �ϕ G for
graphs H and G iff there exists an isomorphism ϕ such that ϕ(H) is an induced
subgraph of G. A graph G is called F-free if there is no H �ϕ G for any H ∈ F .
Furthermore, a gluing operation works as follows: Given two graphs G and G′,
identify a single node from G and a single node from G′. For example, if we glue

together with at the gray nodes, the resulting graph is .

Definition 1. Let F be a fixed family of graphs. Given an online graph G
induced by its nodes V (G) = {v1, . . . , vn}, ordered by their occurrence in an
online instance. The Delayed F-Node-Deletion Problem is for every i to
select a set Si ⊆ {v1, . . . , vi} such that G[{v1, . . . , vi}] − Si is F-free. Further-
more, it has to hold that S1 ⊆ . . . ⊆ Sn, where |Sn| is to be minimized.

The definition of the Delayed F-Edge-Deletion Problem is identical, with
S being a set of edges of G instead of nodes. If F = {H} we speak of an H-
Deletion Problem instead of an {H}-Deletion Problem.

For an obstruction set F we assume that there exist no distinct H1,H2 ∈ F
with H1 �ϕ H2 for some isomorphism ϕ, as each online graph containing H2

also contains H1, making H2 redundant. Furthermore, we assume in the case
of the Delayed F-Edge-Deletion Problem that F contains no Kn for any
n. This assumption is arguably reasonable as no algorithm that can only delete
edges is able to remove a set of isolated nodes from a graph.

2 Essentially Tight Advice Bounds

One can easily construct a naive online algorithm for the Delayed F-Node-
Deletion Problem that is provided a complete optimal solution on the advice
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tape and deletes nodes accordingly. The online algorithm does not make any deci-
sions itself, but strictly follows the solution provided by the oracle. The resulting
trivial upper bounds on the advice complexity of the problem is summarized in
the following theorem.

Theorem 1. Let F be an arbitrary family of graphs, and let H ∈ F be a maxi-
mum order graph. Then there is an optimal online algorithm for the Delayed
F-Node-Deletion Problem with advice that reads at most opt · log |H| +
O(log opt) bits of advice.

Proof. The online algorithm reads opt from the tape using self-delimiting encod-
ing (see [12]). Then it reads �opt · log |H|� bits and interprets them as opt num-
bers d1, ..., dopt ≤ |H|. Whenever some forbidden induced graph is detected, the
algorithm deletes the dith node. �	

With the same idea we can easily get a similar upper bound for the Delayed
H-Edge-Deletion Problem.

Theorem 2. There is an optimal online algorithm with advice for the Delayed
H-Edge-Deletion Problem that reads at most opt · log ‖H‖+O(log opt) bits
of advice.

In this section we show that for the Delayed F-Node-Deletion Problem
for connected or disconnected F , as well as for the Delayed H-Edge-Deletion
Problem this naive strategy is already the best possible. More formally, we meet
these trivial upper bounds by essentially tight lower bounds for the aforemen-
tioned problems. We call lower bounds of the form opt · log |H|, or opt · log ‖H‖
essentially tight, because they only differ from the trivial upper bound by some
logarithmic term in opt . This additional term stems from the fact that the advi-
sor must encode opt onto the advice tape in order for the online algorithm to
correctly interpret the advice. If the online algorithm knew opt in advance, we
would have exactly tight bounds.

2.1 Connected and Disconnected F-Node Deletion Problems

Chen et al. [9] previously proved essentially tight bounds on the advice complex-
ity of the Delayed F-Node-Deletion Problem for the case that all graphs
in F are connected. They found a lower bound of opt · log |H| where H is a
maximum order graph in F . Additionally, they proved a lower bound on the
advice complexity of the Delayed H-Node-Deletion Problem for discon-
nected H that was dependent on a maximum order connected component Cmax

of H: opt · log |Cmax| + O(log opt). We improve this result and provide a lower
bound on the advice complexity of the Delayed F-Node-Deletion Problem
for families F of disconnected graphs, that essentially matches the trivial upper
bound from Theorem 1.

Lemma 1. Let F be an arbitrary obstruction set, and let F :=
{

H | H ∈ F }

be the family of complement graphs. Then the advice complexity of the Delayed
F-Node-Deletion Problem is the same as for the Delayed F-Node-
Deletion Problem.
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Proof. We provide an advice preserving reduction from Delayed F-Node-
Deletion Problem to Delayed F-Node-Deletion Problem: If G is an
online instance for the F-problem, the complement graph of G is revealed for
F-problem. An optimal online algorithm has to delete the same nodes in the
same time steps in both instances. This proves that the advice complexity for
the F-problem is at most the advice complexity for the F-problem. The same
reduction in the other direction yields equality. �	

From this follows immediately the desired lower bound on the advice com-
plexity of the Delayed F-Node-Deletion Problem for disconnected F .

Theorem 3. Let F be a family of disconnected graphs, and H ∈ F a maximum
order graph. Then any optimal online algorithm for the Delayed F-Node-
Deletion Problem needs opt · log |H| bits of advice.

Proof. Since all graphs in F are disconnected, F is a family of connected graphs.
For F , the lower bound proven by Chen et al. of opt · log |H| holds. The claim
follows from Lemma 1. �	

In summary, this lower bound of opt · log (maxH∈F |H|) holds for all families
of graphs F that contain either only connected or only disconnected graphs. In
particular, these results imply a tight lower bound on the advice complexity of
the Delayed H-Node-Deletion Problem for arbitrary graphs H, which
Chen et al. raised as an open question.

Corollary 1. Let H be an arbitrary graph. Then any online algorithm for the
Delayed H-Node-Deletion Problem requires opt · log |H| bits of advice to
be optimal.

We want to briefly reiterate the main steps of the lower bound proof by Chen
et al. for connected F . Let H be a maximum order graph in F . The idea is to
construct |H|opt different instances with optimal solution size opt such that no
two of these instances can be handled optimally with the same advice string.
These instances consist of the disjoint unions of opt gadgets where each gadget
is constructed by gluing two copies of H at an arbitrary node. This way, each
gadget needs at least one node deletion, and deleting the glued node is the only
optimal way to make a gadget F-free. Since in each of the opt gadgets we have
|H| choices of where to glue the two copies together, we in total construct |H|opt
instances. This procedure of constructing instances that have to be handled by
different advice strings is a standard method of proving lower bounds on the
advice complexity.

As the proof of Theorem 3 uses this result by Chen et al. one can examine
closer the instances that are constructed implicitly in this proof. As a “dual”
approach to the disjoint gadget constructions, we will use the join of graphs.

Definition 2. Given two graphs G1, G2. The join graph G = G1∇G2 is con-
structed by connecting each vertex of G1 with each vertex of G2 with an edge,
i.e. V (G) = V (G1)∪ V (G2), E(G) = E(G1)∪ E(G2)∪ { v1v2 | v1 ∈ V (G1), v2 ∈
V (G2) }.
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First of all we look at how the gadgets for disconnected H look now. Let
H be a maximum order graph of F where F consists of disconnected graphs.
Then a gadget of H is the complement graph of a gadget of the connected graph
H. Therefore, a gadget of H is constructed by gluing two copies of H at some
arbitrary vertex and then joining them everywhere else. For example, the graph

has the following three possible gadgets: , , and . Here the
gray vertices were used for gluing, and the upper copy was joined with the lower
copy everywhere else. Since in the connected case the instance consisted of the
disjoint union of gadgets, in the “dual” case of disconnected forbidden graphs
we join them. Thus, the constructed instances are join graphs of gadgets where
each gadget is the join of two copies of H glued at an arbitrary vertex. Just as in
the proof by Chen et al. we can construct |H|opt such instances which all need
different advice strings in order to be handled optimally, and therefore the lower
bound of opt · log |H| holds also for disconnected F .

Similar constructions even work for the Delayed H-Edge-Deletion
Problem and result in an essentially tight lower bound on its advice complexity
as we will see in the next subsection.

2.2 H-Edge Deletion Problem

Chen et al. previously proved a lower bound of opt · log ‖H‖ on the advice com-
plexity of the Delayed H-Edge-Deletion Problem for connected graphs H
which essentially matches the trivial upper bound from Theorem 2. We show
that the same bound even holds if H is disconnected. For the node-deletion
problem with disconnected F we constructed instances that make extensive use
of the join operation. We will see that similar constructions can be used for the
edge-deletion case. It will be insightful to understand why exactly the join oper-
ation behaves nicely with disconnected graphs. The most important observation
is summarized in the following lemma.

Lemma 2. Let H be a disconnected graph and let G1, G2 be two other graphs.
Then G1∇G2 is H-free iff G1 and G2 are H-free.

We introduce the notion of an e-extension of a graph H. Intuitively, an e-
extension is a graph UH(e) that extends H in such a way that the unique optimal
way to make UH(e) H-free is to delete the edge e.

Definition 3. For a disconnected graph H and an edge e ∈ E(H) we call a
graph UH(e) an e-extension of H if it satisfies

(E.1) H � UH(e),
(E.2) H ��ϕ UH(e) − e, and
(E.3) H �ϕ UH(e) − f for all f ∈ E(UH(e))\{e}.
We call H edge-extendable if for every e ∈ E(H) there is such an e-extension.

It turns out that extendability is a sufficient condition for the desired lower
bound to hold.
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Theorem 4. Let H be an edge-extendable graph. Then any optimal online algo-
rithm for the Delayed H-Edge-Deletion Problem needs opt · log ‖H‖ bits
of advice.

Proof. Let m ∈ N be arbitrary. We construct a family of instances with optimal
solution size m such that any optimal online algorithm needs advice to distin-
guish these instances. Take m disjoint copies H(1), ...,H(m) of H. We denote the
vertices of H(i) by v(i). Furthermore, let e1, ..., em be arbitrary edges such that
ei ∈ E(H(i)). We construct the instance G(e1, ..., em) in m phases. In the ith
phase we reveal H(i) and join it with the already revealed graph from previous
phases. Then we extend H(i) to UH(i)(ei) and again join the newly added vertices
with the already revealed graph from the previous phases. If G(e1, ..., ei−1) is
the graph after phase i−1, after phase i we have revealed a graph isomorphic to
G(e1, ..., ei−1)∇UH(i)(ei). Thus, G := G(e1, ..., em)  UH(1)(e1)∇...∇UH(m)(em).
We claim that X := {e1, ..., em} is the unique optimal solution for the H-Edge
Deletion problem on G. Deleting all ei from G yields a graph isomorphic to
(UH(1)(e1) − e1)∇...∇(UH(m)(em) − em). By definition of an e-extension, and
Lemma 2 this graph is H-free. Thus X is a solution. It is also optimal because
G contains m edge-disjoint copies of H. Finally, if in one of the UH(i)(ei) we
delete any other edge than ei, by definition we need to delete at least one more
edge to make UH(i)(ei) H-free. Hence, X is the unique optimal solution.

We can construct ‖H‖m such instances that pairwise only differ in the choice
of the edges e1, ..., em. Any online algorithm needs advice to distinguish these
instances, and therefore requires m · log ‖H‖ bits to be optimal on all of them.
Since m = opt, the claim is proven. �	

We prove constructively that each disconnected graph H without isolated
vertices is edge-extendable. We then handle the case that H has isolated vertices.

Lemma 3. Let H be a disconnected graph without isolated vertices. Then H is
edge-extendable.

Proof (Sketch). We create two copies of H and identify two edges, one of each H.
We join the remaining nodes of the two copies. Figure 1 shows an example. �	

Fig. 1. Example for the e-extension of the graph P2∪P3∪K3 as constructed in Lemma
3. The edge e is depicted in orange. (Color figure online)

The results from Chen et al. together with Theorem 3 and 4 yield the fol-
lowing corollary.
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Corollary 2. Let H be a graph without isolated vertices. Then any opti-
mal online algorithm for the Delayed H-Edge-Deletion Problem needs
opt · log ‖H‖ bits of advice.

We now turn finally to the case where H has isolated nodes. We prove via
a simple advice-preserving reduction from the known case to the case where H
has isolated vertices that the same lower bound holds.

Theorem 5. Let H be a graph with k > 0 isolated vertices. Then any optimal
online algorithm for the Delayed H-Edge-Deletion Problem needs at least
opt · log ‖H‖ bits of advice.

Proof. Let H ′ be the graph we obtain from H by deleting all isolated vertices.
Of course, ‖H‖ = ‖H ′‖. For any graph G′ we have: G′ is H ′-free iff Kk ∪G′ is H-
free. Let G′ be an online instance for the Delayed H ′-Edge-Deletion Prob-
lem. We construct an online instance G for the Delayed H-Edge-Deletion
Problem that presents Kk in the first k time steps and then continues to
present G′ node by node. Note that |G| = |G′| + k. The deletions in G′ can
be translated in to deletions in G by shifting k time steps. The optimal solu-
tions of G and G′ coincide up to this shifting by k time steps, and of course
optH(G) = optH′(G′) = opt . Thus, the advice complexity for the Delayed H-
Edge-Deletion Problem is at least the advice complexity for the Delayed
H ′-Edge-Deletion Problem. For this problem, however, we already have a
lower bound from Corollary 2. Thus, the same lower bound applies to the case
where H has isolated vertices. �	

3 The Delayed F-Node-Deletion Problem

We have seen that for obstruction sets, in which all or none of the graphs are
connected, the advice complexity is linear in the number of optimal deletions.
This is not always the case when considering general families of graphs F as
obstruction sets. An easy example is the following: consider the family F4 that
contains all graphs over four nodes. Clearly, whenever any fourth node of an
online graph is revealed, a node has to be deleted. Yet which concrete node is
deleted is arbitrary for an optimal solution as every solution will have to delete
all but three nodes of the complete instance. Thus, no advice is needed.

A more curious observation is that there are families of forbidden graphs that
need advice that is logarithmic in the order of the optimal number of deletions.
Further, logarithmic advice is also sufficient to optimally solve most of these
problems. This is due to the fact that depending on the forbidden family of
graphs we can bound the number of remaining nodes of an instance after an
optimal number of deletions has been made.

We start by observing that when an F contains both an independent set and
a clique, the size of the biggest graph that contains no H ∈ F is bounded.

Lemma 4. Let F be an arbitrary family of graphs. Then there exists a minimal
R ∈ N such that all graphs of size at least R are not F-free iff Kn,Km ∈ F for
some n,m ∈ N.
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Proof. Ramsey’s Theorem guarantees the existence of R if Kn,Km ∈ F . Con-
versely, if F contains no clique (independent set), then arbitrarily big cliques
(independent sets) are F-free. �	
We can use this observation to construct an algorithm that is mainly concerned
with the remaining graph after all deletions have been made. As the size of this
graph is bounded by a constant, we can simply tell an online algorithm when it
should not delete every node of an H that it sees and which one that is.

Theorem 6. If Kn,Km ∈ F for some n,m ∈ N, then there is an optimal online
algorithm with advice for the Delayed F-Node-Deletion Problem that uses
O(log opt) bits of advice.

Proof. Let R be as in Lemma 4, and k be the size of the biggest graph in F .
Algorithm 1 uses at most�log(R−1)�+�(R−1) · log(opt ·k)� = (R−1) log(opt)+
O(1) bits of advice. We assume that the algorithm is given opt beforehand, which
can be encoded using O(log opt) bits of advice using self-delimiting encoding as
in [3]. The advisor computes an optimal offline solution. After deleting the nodes
from G, a graph with at most R − 1 nodes must remain, otherwise it would not
be F-free by Lemma 4. Let u ≤ R−1 be the number of nodes that are considered
by the online algorithm below and that will not be deleted. The advisor writes u
onto the tape. Next, for all those u nodes (vi)i≤u, the advisor computes in which
round the algorithm considers this node for the first time. A node is considered
by the algorithm if it is part of an H ∈ F that at some point is recognized. The
node (vi) can thus be identified by a pair (ri, ai) ∈ {1, . . . , opt} × {1, . . . , k}.
Then the algorithm encodes all these pairs ((ri, ai))i≤u onto the tape.

The algorithm starts by reading u and these pairs from the tape. Then it sets
its round counter r to 1, and the set of fixed nodes (i.e. the set of enounctered
nodes that will not be deleted) F to ∅. Whenever the algorithm finds a forbidden
induced subgraph it checks in the list (ri, ai) which of its nodes it must not delete,
and adds them to F . Then it deletes any other vertex from W\F . �	

This proof implies that, given some F , if we can always bound the size of
the graph remaining after deleting an optimal number of nodes by a constant,
we can construct an algorithm that solves the Delayed F-Node-Deletion
Problem with advice logarithmic in opt. Under certain conditions we also get
a lower bound logarithmic in opt as we will see in the following two theorems.

Theorem 7. Let Kn,Km ∈ F , and let D be a graph that is F-free, |D| = R−1,
and ‖D‖ is maximal among such graphs. If D has no universal vertex, then any
optimal online algorithm for the Delayed F-Node-Deletion Problem needs
Ω(log opt) bits of advice.

With a similar construction for independent sets instead of cliques we get
the following sufficient condition for the necessity of logarithmic advice.

Theorem 8. Let Kn,Km ∈ F , and let D be a graph that is F-free, |D| = R−1,
and ‖D‖ is minimal among such graphs. If D has no isolated vertex, then any
optimal online algorithm for the Delayed F-Node-Deletion Problem needs
Ω(log opt) bits of advice.
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Algorithm 1. Optimal Online Algorithm with Logarithmic Advice
1: Read �log(R − 1)� bits of advice, interpret as number u ∈ {1, . . . , R − 1}
2: Read �u·log(k·opt)� bits of advice, interpret as u pairs ((ri, ai))i≤u ⊆ {1, . . . , opt}×

{1, . . . , k}
3: r ← 1, F ← ∅
4: for all t = 1, . . . , T do
5: Gt ← reveal next node
6: while Gt[W ] 	 H ∈ F for some W ⊆ V (Gt) do
7: for all i = 1, . . . , u do
8: if r == ri then
9: vi ← ai’th vertex of W

10: F ← F ∪ {vi}
11: Delete any vertex from W\F (or all at once)
12: r ← r + 1

4 Further Work

While we were able to shed further light on the bigger picture of online node
and edge deletion problems with advice, the most general problems of their kind
are still not solved. For node deletion problems, the case of an obstruction set
with both connected and disconnected graphs proves to be much more involved,
with the advice complexity being heavily dependent on the obstruction set, as
we have seen in the previous section.

The logarithmic bounds of this paper cannot be directly transferred to the
Delayed F-Edge-Deletion Problem, as independent sets cannot be part
of the obstruction set. There are, of course, families F for which no advice is
necessary, e.g., , but it seems hard to find non-trivial families for which
less than linear advice is both necessary and sufficient. An additional difficulty
is that forbidden graphs may be proper (non-induced) subgraphs of one another,
which makes it difficult to count deletions towards individual copies of forbidden
graphs. Chen et al. [9] proposed a recursive way to do so, but it is unclear if
their analysis can be generalized to arbitrary families of forbidden graphs F .
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Abstract. Given an undirected graph G = (V, E) and an integer �, the
Eccentricity Shortest Path (ESP) problem asks to check if there
exists a shortest path P such that for every vertex v ∈ V (G), there is
a vertex w ∈ P such that dG(v, w) ≤ �, where dG(v, w) represents the
distance between v and w in G. Dragan and Leitert [Theor. Comput.
Sci. 2017] studied the optimization version of this problem which asks
to find the minimum � for ESP and showed that it is NP-hard even on
planar bipartite graphs with maximum degree 3. They also showed that
ESP is W[2]-hard when parameterized by �. On the positive side, Kučera
and Suchý [IWOCA 2021] showed that ESP is fixed-parameter tractable
(FPT) when parameterized by modular width, cluster vertex deletion
set, maximum leaf number, or the combined parameters disjoint paths
deletion set and �. It was asked as an open question in the same paper,
if ESP is FPT parameterized by disjoint paths deletion set or feedback
vertex set. We answer these questions and obtain the following results:
1. ESP is FPT when parameterized by disjoint paths deletion set, or

the combined parameters feedback vertex set and �.
2. A (1 + ε)-factor FPT approximation algorithm when parameterized

by the feedback vertex set number.

Keywords: Shortest path · Eccentricity · Feedback vertex set · FPT ·
W[2]-hardness

1 Introduction

Given a graph G = (V,E) and a path P , the distance from a vertex v ∈ V (G) to
P is min{dG(v, w) | w ∈ V (P )}, where dG(v, w) is the distance between v and w
in G. Given a graph G and a path P , the eccentricity of P , denoted by eccG(P ),
with respect to G is defined as the maximum over all of the shortest distances
between each vertex of G and P . Formally, eccG(P ) = max{dG(u, P )|u ∈ V (G)}.
Dragan and Leitert [6] introduced the problem of finding a shortest path with
minimum eccentricity, called the Minimum Eccentricity Shortest Path
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problem (for short MESP) in a given undirected graph. They found interesting
connections between MESP and the Minimum Distortion Embedding prob-
lem and obtained a better approximation algorithm for Minimum Distortion

Embedding. MESP may be seen as a generalization of the Dominating Path

Problem [7] that asks to find a path such that every vertex in the graph either
belongs to the path or has a neighbor in the path. In MESP, the objective is
to find a shortest path P in G such that the eccentricity of P is minimum.
Throughout the paper, we denote the minimum value over the eccentricities of
all the shortest paths in G as the eccentricity of the graph G, denoted by ecc(G).
MESP has applications in transportation planning, fluid transportation, water
resource management, and communication networks.

vertex cover

neighborhood
diversity twin cover split vertex

deletion set

max leaf [2]

disjoint paths

modular width [10]
cluster vertex
deletion set [10]

clique width

tree width

interval vertex
deletion set

chordal vertex

feedback vertex set

FPT

open

*

deletion set

deletion set
bipartite vertex
deletion set [8]

W[2]-hard

Fig. 1. The hierarchy of parameters explored in this work. Arrow pointing from param-
eter a to parameter b indicates b ≤ f(a), for some computable function f . Parameters
in red are studied in this paper (see full version [1]). The symbol “∗” attached to the
feedback vertex set means it is FPT in combination with the desired eccentricity. The
results for the parameters in grey boxes are subsumed by the existing results. (Color
figure online)

Dragan and Leitert [5] demonstrated that fast algorithms for MESP imply
fast approximation algorithms for Minimum Line Distortion, and the exis-
tence of low eccentricity shortest paths in special graph classes will imply low
approximation bounds for those classes. They also showed that MESP is NP-hard
on planar bipartite graphs with maximum degree 3. In parameterized settings,
they showed that MESP is W[2]-hard for general graphs and gave an XP algo-
rithm for the problem when parameterized by eccentricity. Furthermore, they
designed 2-approximation, 3-approximation, and 8-approximation algorithms for
MESP running in time O(n3), O(nm), and O(m) respectively, where n and
m represents the number of vertices and edges of the graph. The latter 8-
approximation algorithm uses the double-BFS technique. In 2016, Birmelé et
al. [2] showed that the algorithm is, in fact, a 5-approximation algorithm by a
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deeper analysis of the double-BFS procedure and further extended the idea to get
a 3-approximation algorithm, which still runs in linear time. Furthermore, they
study the link between MESP and the laminarity of graphs introduced by Volké
et al. [9] in which the covering path is required to be a diameter and established
some tight bounds between MESP and the laminarity parameters. Dragan and
Leitert [5] showed that MESP can be solved in linear time on distance-hereditary
graphs and in polynomial time on chordal and dually chordal graphs. Recently,
Kučera and Suchý [8] studied MESP with respect to some structural parameters
and provided FPT algorithms for the problem with respect to modular width,
cluster vertex deletion (clvd), maximum leaf number, or the combined parame-
ters disjoint paths deletion (dpd) and eccentricity (ecc), see Fig. 1. We call the
decision version of MESP, which is to check if there exists a shortest path P
such that for each v ∈ V (G), the distance between v and P is at most �, as the
Eccentricity Shortest Path Problem (for short ESP). In this paper, we further
extend the study of MESP in the parameterized setting.

1.1 Our Results and Discussion

In this paper, we study the parameterized complexity of ESP with respect to
the structural parameters: feedback vertex set (fvs) and disjoint paths deletion
set (dpd). We call this version as ESP/ρ, where ρ is the parameter. We now
formally define ESP/fvs+ ecc (other problems can be defined similarly).

ESP/fvs+ ecc Parameter: k + �
Input: An undirected graph G, a set S ⊆ V (G) of size k such that G − S is
a forest, and an integer �.
Question: Does there exist a shortest path P in G such that for each v ∈
V (G), distG(v, P ) ≤ � ?

First, we show an algorithm for ESP/fvs + ecc, in Sect. 2, that runs in
2O(k log k)�knO(1) time where � is the eccentricity of the graph and k is the size
of a feedback vertex set. In Sect. 3, we design a (1+ ε)-factor FPT algorithm for
ESP/fvs. Then, in Sect. 4 we design an algorithm for ESP/dpd running in time
2O(k log k) · nO(1).

Graph Notations. All the graphs considered in this paper are finite,
unweighted, undirected, and connected. For standard graph notations, we refer
to the graph theory book by R. Diestel [4]. For parameterized complexity ter-
minology, we refer to the parameterized algorithms book by Cygan et al. [3].
For n ∈ N, we denote the sets {1, 2, · · · , n} and {0, 1, 2, · · · , n} by [n] and [0, n]
respectively. For a graph G = (V,E), we use n and m to denote the number of
vertices and edges of G. Given an integer �, we say that a path P covers a vertex
v if there exists a vertex u ∈ V (P ) such that the distance between the vertices
u and v, denoted by, dG(v, u), is at most �. A feedback vertex set of a graph G
is a set S ⊆ V (G) such that G − S is acyclic.

The proofs of the results marked (�) are presented in the full version of the
paper [1].
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2 Parameterized by Feedback Vertex Set and Eccentricity

The main theorem of this section is formally stated as follows.

Theorem 1. There is an algorithm for ESP/fvs + ecc running in time
O(2O(k log k)�knO(1)).

Outline of the Algorithm. Given a graph G and a feedback vertex set S of
size k, we reduce ESP/fvs+ ecc to a “path problem” (which we call Colorful

Path-Cover) on an auxiliary graph G′ (a forest) which is a subgraph of G[V \S],
using some reduction rules and two intermediate problems called Skeleton

Testing and Ext-Skeleton Testing. In Sect. 2.1, we show that ESP/fvs +
ecc and Skeleton Testing are FPT-equivalent. Next, in Sect. 2.3, we reduce
Skeleton Testing to Ext-Skeleton Testing. Then in Sect. 2.4, we reduce
Ext-Skeleton Testing to Colorful Path-Cover. Finally, in Sect. 2.5, we
design a dynamic programming based algorithm for Colorful Path-Cover

that runs in O(�22O(k log k)nO(1)) time. Together with the time taken for the
reductions to the intermediate problems, we get our desired FPT algorithm. A
flow chart for the steps of the algorithm is shown in Fig. 2.

ESP/fvs+ ecc construction of

(G, S, k, �)
Skeleton Testing

Ext-Skeleton Testing

Reducing

Colorful Path Cover
construction of

Colorful Path

Skeleton

#

of components

(G, S, k, �,S)

(G, S, k, �,ES)

in G − S

(F,B, �, , t)

Fig. 2. Flow chart of the Algorithm for ESP/fvs+ ecc.

2.1 Reducing to Skeleton Testing

The input to the problem is an instance (G,S, k, �) where S ⊆ V (G) is a feedback
vertex set of size k in G. Let (G,S, k, �) be a yes instance, and P be a solution
path which is a shortest path such that for each v ∈ V (G), there exists u ∈ V (P )
such that dG(u, v) ≤ �. Our ultimate goal is to construct such a path P . Towards
this, we try to get as much information as possible about P in time f(k, �)nO(1).
Observe that if S is an empty set, then we can obtain P by just knowing its end-
points as there is a unique path in a tree between any two vertices. Generalizing
this idea, given the set S, we define the notion of skeleton of P .

Definition 1 (Skeleton). A skeleton of P , denoted by S, is the following set
of information.
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m1 m2 m3 m4

m5 = v x1

x2

x3

mo = u

S

M

T1
T2 T3

Fig. 3. Example of a skeleton of P . Here P is a shortest path (blue edges) between two
red colored vertices u and v through green colored internal vertices. For the vertices
x1, x2 and x3, f(x1) = f(x2) = 1, f(x3) = 2, g(x1) = 3, g(x2) = g(x3) = (3, 4). (Color
figure online)

– End-vertices of P , say u, v ∈ V (G).
– A subset of S\{u, v}, say M , of vertices that appear on P . That is, V (P ) ∩
(S\{u, v}) = M .

– The order in which the vertices of M appear on P , is given by an ordering
π = m1,m2, . . . ,m|M |. For notational convenience, we denote u by m0 and v
by m|M |+1.

– A distance profile (f, g) for the set X = S\M , is defined as follows:
The function f : X → [�] such that f(x) denotes the shortest distance
of the vertex x from P , and the function g : X → {0, 1, · · · , |M | +
1, (0, 1), (1, 2), · · · , (|M |, |M |+1)} such that g(x) stores the information about
the location of the vertex on P , that is closest to x. That is, if the vertex
closest to P belongs to {m0,m1, . . . ,m|M |,m|M |+1} then g(x) stores this by
assigning the corresponding index. Else, the closest vertex belongs to the
path segment between mi,mi+1, for some 0 ≤ i ≤ |M |, which g(x) stores by
assigning (i, i + 1).

An illustration of a skeleton is given in Fig. 3. By following the definition of
skeletons, we get an upper bound on them.

Observation 1. The number of skeletons is upper bounded by n22kk!�k(2k+2)k.

We say that a path P realizes a skeleton S if the following holds.

1. M = S ∩ V (P ), X ∩ V (P ) = ∅, the ordering of vertices in M in P is equal to
π, endpoints of P are m0 and m|M |+1,

2. For each v ∈ V (G), there exists a vertex u ∈ V (P ) such that dG(u, v) ≤ �,
3. For each v ∈ X, dG(v, w) ≥ f(v) for all w ∈ V (P ) (where f(v) is the shortest

distance from v to any vertex on P in G), and
4. For each v ∈ X, if g(v) = i, where i ∈ [0, |M | + 1], then dG(v,mi) = f(v)

and if g(v) = (i, i + 1) where i ∈ [0, |M |], then there exists a vertex u on a
subpath mi to mi+1 in P such that u /∈ {mi,mi+1} and dG(u, v) = f(v).
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Now, given an input (G,S, k, �) and a skeleton S, our goal is to test whether
the skeleton can be realized into a desired path P . This leads to the following
problem.

Skeleton Testing Parameter: k + �
Input: A graph G, a set S ⊆ V (G) of size k such that G − S is a forest, an
integer �, and a skeleton S.
Question: Does there exist a shortest path P in G that realizes S?

Our next lemma shows a reduction from ESP/fvs+ ecc to Skeleton Test-

ing problem.

Lemma 1 (�). (G,S, k, �) is a yes instance of ESP/fvs + ecc, if and only if
there exists a skeleton S such that (G,S, k, �,S) is a yes instance of Skeleton
Testing.

Observation 1 upper bounds the number of skeletons by 2O(k(log k+log �))n2. This
together with Lemma 1, implies that ESP/fvs + ecc and Skeleton Testing

are FPT-equivalent. Thus, from now onwards, we focus on Skeleton Testing.

2.2 Algorithm for Skeleton Testing

Let (G,S, k, �,S) be an instance of Skeleton Testing, where S =
(M,X, π,m0,m|M |+1, f, g). Our algorithm works as follows. First, the algorithm
performs a simple sanity check by reduction rule. In essence, it checks whether
the different components of the skeleton S are valid.

Reduction Rule 1 (Sanity Test 1). Return that (G,S, k, �,S) is a no
instance of Skeleton Testing, if one of the following holds:

1. For i ∈ [0, |M |], mimi+1 is an edge in G and g−1((i, i + 1)) 	= ∅. (g is not
valid.)

2. For a vertex v ∈ X, there exists a vertex u ∈ M ∪ {m0,m|M |+1} such that
dG(u, v) < f(v). (f is not valid.)

3. For a vertex v ∈ X, g(v) = i and dG(v,mi) > f(v). (f is not valid.)
4. For an i ∈ [0, |M |], mimi+1 is not an edge in G, and there is either no mi to

mi+1 path in G − (S\{mi,mi+1}) or the length of the path is larger than the
shortest path length of mi to mi+1 path in G. (π is not valid.)

5. For i, j ∈ [0, |M |], i < j, there exists mi to mi+1 shortest path Pi in G −
(S\{mi,mi+1}) and a mj to mj+1 shortest path Pj in G − (S\{mj ,mj+1})
such that if j = i + 1, then (V (Pi)\{mi+1}) ∩ (V (Pj)\{mj}) 	= ∅, otherwise
V (Pi) ∩ V (Pj) 	= ∅. (π is not valid – shortest path claim will be violated.)

6. For i ∈ [0, |M |] such that mimi+1 /∈ E(G), g−1((i, i + 1)) 	= ∅, and for
every connected component C in G − S, and for every mi to mi+1 path P in
G[V (C)∪ {mi,mi+1}] there exists a vertex u ∈ g−1((i, i+1)) such that there
is no vertex v ∈ V (P )\{mi,mi+1} for which dG(u, v) = f(u). (g is not valid.)

Lemma 2 (�). Reduction rule 1 is safe.
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Reducing the Components of G − S: Now, we describe our marking proce-
dure and reduction rules that are applied on the connected components in G−S.
Let Pi be a path segment (subpath) of P , between mi and mi+1, with at least
two edges. Further, let P int

i be the subpath of Pi, obtained by deleting mi and
mi+1. Then, we have that P int

i is a path between two vertices in G − S (that
is, a path in the forest G − S). This implies that P is made up of S and at
most k + 1 paths of forest G − S. Let these paths be P = P int

1 , . . . , P int
q , where

q ≤ k+1. Next, we try to understand these k+1 paths of forest G − S. Indeed,
if there exists a component C in G−S such that it has a vertex that is far away
from every vertex in S, then C must contain one of the paths in P (essential
components). The number of such components can be at most k + 1. The other
reason that a component contains a path from P is to select a path that helps us
to satisfy constraints given by the g function (g-satisfying components). Next,
we give a procedure that marks O(k) components, and later, we show that all
unmarked components can be safely deleted.

Marking Procedure: Let C∗ be the set of marked connected components of
G − S. Initially, let C∗ = ∅.

– Step 1. If there exists a connected component C in G − (S ∪ V (C∗)), such
that it contains a vertex v with dG(v,mi) > �, for all mi ∈ M , and dG(v, u) >
� − f(u), for all u ∈ X, then add C to C∗. (Marking essential components)

– Step 2. For i = 0 to |M | proceed as follows: Let C be some connected
component in G − (S ∪ V (C∗)) such that there exists a mi to mi+1 path Pi

in G[V (C) ∪ {mi,mi+1}], which is a shortest mi to mi+1 path in G and for
every vertex v ∈ g−1((i, i+1)), there exists a vertex u ∈ V (Pi)\{mi,mi+1} for
which dG(u, v) = f(v). Then, add C to C∗ and increase the index i. (Marking
g-satisfying components)

Let C1 be the set of connected components added to C∗ in Step 1. We now
state a few reduction rules the algorithm applies exhaustively in the order in
which they are stated.

Reduction Rule 2. If |C1| ≥ k + 2, then return that (G,S, k, �,S) is a no
instance of Skeleton Testing.

Lemma 3. Reduction rule 2 is safe.

Proof. For each component C in C1, C contains a vertex v such that dG(v,mi) >
�, for all mi ∈ M and dG(v, u) > � − f(u), for all u ∈ X, which implies we must
add a path from component C in solution path as a subpath such that it contains
a vertex that covers v. Observe that we can add at most |M | + 1 subpaths in
the solution path. Therefore, |C1| ≤ |M | + 1 if (G,S, k, �,S) is a yes instance of
Skeleton Testing. We obtain the required bound as |M | ≤ k. ��
Reduction Rule 3. If there exists a connected component C in G−S such that
C /∈ C∗, then delete V (C) from G. The resultant instance is (G−V (C), S, k, �,S).

Lemma 4 (�). Reduction rule 3 is safe.
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Observe that when Reduction rule 2 and Reduction rule 3 are no longer
applicable, the number of connected components in G−S is bounded by 2(k+1).
This is because |C1| ≤ k+1 and there exists a path (that is part of the solution)
from each component in C∗ − C1 and therefore |C∗ − C1| ≤ k + 1. Otherwise,
the given instance is a no instance of Skeleton Testing. Notice that all our
reduction rules can be applied in nO(1) time.

2.3 Reducing Skeleton Testing to Ext-Skeleton Testing:

Let (G,S, k, �,S) be a reduced instance of Skeleton Testing. That is, an
instance on which Reduction Rules 1, 2 and 3 are no longer applicable. This
implies that the number of connected components in G − S is at most 2k + 2.
Next, we enrich our skeleton by adding a function γ, which records an index of
a component in G − S that gives the mi to mi+1 subpath in P or records that
mimi+1 is an edge in the desired path P , where i ∈ [0, |M |].
Definition 2 (Enriched Skeleton). An enriched skeleton of a path P ,
denoted by ES, contains S and a segment profile of paths between mi and mi+1,
for i ∈ [0,M ]. Let C1, C2, . . . , Cq be the connected components in G − S. Then,
the segment profile is given by a function γ : [0, |M |] → [0, q]. The function γ
represents the following: For each i ∈ [0, |M |], if γ(i) = 0, then the pair mi,mi+1

should be connected by an edge in the solution path P , otherwise if γ(i) = j,
then in P , the mi to mi+1 subpath is contained in G[V (Cj)∪{mi,mi+1}]. Also,
ES is said to be enriching the skeleton S.

Let S be a skeleton. The number of ES, that enrich S is upper bounded by
(q+1)k+1. Thus, this is not useful for us unless q is bounded by a function of k, �.
Fortunately, the number of connected components in G − S is at most 2k + 2,
and thus the number of ES is upper bounded by 2O(k log k).

We say that a path P realizes an enriched skeleton ES enriching S, if P
realizes S and satisfies γ. Similar to Skeleton Testing, we can define Ext-

Skeleton Testing, where the aim is to test if a path exists that realizes
an enriched skeleton ES. Further, it is easy to see that Skeleton Testing

and Ext-Skeleton Testing are FPT-equivalent, and thus we can focus on
Ext-Skeleton Testing. Let (G,S, k, �,ES) be an instance of Ext-Skeleton
Testing, where G − S has at most 2k+2 components. Similarly, as Skeleton
Testing, we first apply some sanity testing on an instance of Ext-Skeleton
Testing.

Reduction Rule 4 (Sanity Test 2). Return that (G,S, k, �,ES) is a no
instance of Ext-Skeleton Testing, if one of the following holds:

1. mimi+1 is an edge in G and γ(i) 	= 0, (or) mimi+1 is not an edge in G and
γ(i) = 0.

2. For an i ∈ [|M |], γ(i) = j 	= 0 and there is,
– No mi to mi+1 path in G[V (Cj) ∪ {mi,mi+1}], (or)
– No mi to mi+1 path in G[V (Cj) ∪ {mi,mi+1}] which is also a shortest

mi to mi+1 path in G, (or)
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– There does not exist a mi to mi+1 path Pi in G[V (Cj)∪{mi,mi+1}] which
is also a shortest mi to mi+1 path in G and satisfies the property that for
every vertex v ∈ g−1((i, i+1)), there exists a vertex u ∈ V (Pi)\{mi,mi+1}
for which dG(u, v) = f(v).

The safeness of the above rule follows from Definition 2.

2.4 Reducing Ext-Skeleton Testing to Colorful Path-Cover

Let (G,S, k, �,ES) be an instance of Ext-Skeleton Testing on which Reduc-
tion Rule 4 is no longer applicable. Further, let us assume that the number of
components in G − S is k′ ≤ 2k + 2 and γ : [0, |M |] → [0, k′] be the function
in ES. Our objective is to find a path P that realizes ES. Observe that for an
i ∈ [0, |M |], if γ(i) = j 	= 0, then the interesting paths to connect mi,mi+1

pair are contained in component Cj in G − S. Moreover, among all the paths
that connect mi to mi+1 in Cj , only the shortest paths that satisfy the function
g are the interesting paths. Therefore, we enumerate all the feasible paths for
each mi,mi+1 pair in a family Fi and focus on finding a solution that contains
subpaths from this enumerated set of paths only. Notice that now our problem
is reduced to finding a set of paths P in G − S which contains exactly one path
from each family of feasible paths and covers all the vertices in G − S which are
far away from S. In what follows, we formalize the above discussion. First, we
describe our enumeration procedure.

For each i ∈ [0, |M |] where γ(i) = j 	= 0, we construct a family Fi of feasible
paths as follows. Let Pi be a path in G[V (Cj) ∪ {mi,mi+1}], such that (i) Pi

is a shortest mi to mi+1 path in G, (ii) for every vertex v ∈ g−1((i, i + 1)),
dG(v, Pi − {mi,mi+1}) = f(v). Let m′

i,m
′
i+1 be the neighbours of mi,mi+1,

respectively in Pi. Then we add m′
i to m′

i+1 subpath to Fi. Observe that a family
Fi of feasible paths satisfies the following properties: (1) V (Fi) ∩ V (Fi′) = ∅,
for all i, i′ ∈ γ−1(j), i 	= i′, as item 5 of reduction Rule 1 is not applicable, and
we add only shortest paths in families. (2) Fi contains paths from exactly one
component in G − S (by the construction). Let F be the collection of all the
families of feasible paths.

The above discussion leads us to the following problem.

Colorful Path-Cover

Input: A forest F , a set B ⊆ V (F ), an integer �, and a family F =
{F1,F2, . . . ,Ft} of t disjoint families of feasible paths.
Question: Is there a set P of t paths such that for each Fi, i ∈ [t], |P∩Fi| = 1
and for every vertex v ∈ B, there exists a path P ∈ P and a vertex u ∈ V (P ),
such that dF (u, v) ≤ �?

Let F be the forest obtained from G−S by removing all the components Cj

in G − S such that γ−1(j) = ∅, that is, components which do not contain any
interesting paths. Notice that the number of components that contain interesting
paths is at most 2k + 2. We let B ⊆ V (F ) be the set of vertices which is
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not covered by vertices in S, that is, it contains all the vertices v ∈ V (F )
such that dG(v,mi) > �, for all i ∈ [0, |M | + 1] and dG(v, u) > � − f(u), for
all u ∈ X. We claim that it is sufficient to solve Colorful Path-Cover on
instance (F,B, �,F) where F consists of at most 2k + 2 trees. The following
lemma shows a reduction formally and concludes that Ext-Skeleton Testing

parameterized by k and Colorful Path-Cover problem parameterized by k,
are FPT-equivalent.

Lemma 5 (�). (G,S, k, �,ES) is a yes instance of Ext-Skeleton Testing if
and only if (F,B, �,F) is a yes instance of Colorful Path-Cover.

We design a dynamic programming-based algorithm for the Colorful

Path-Cover problem parameterized by k. Since the number of trees is at most
2k +2, and the number of families of feasible paths is |F| = t, we first guess the
subset of families of feasible paths that comes from each tree in F in O(kt) time.
Now we are ready to work on a tree with its guessed family of feasible paths.
We now present an overview of the algorithm in the next section.

Lemma 6 (�). Colorful Path-Cover can be solved in time O(�2 ·
2O(k log k)nO(1)) when F is a forest with O(k) trees.

2.5 Overview of the Algorithm for Colorful Path-Cover

Consider an instance (T,B, �,F = {F1,F2, . . . ,Ft}) of Colorful Path-Cover

problem where T is a tree, B ⊆ V (T ), and � ∈ N and F is a disjoint family of
feasible paths. The aim is to find a set P of t paths such that for each Fi, i ∈ [t],
|P ∩ Fi| = 1 and for every vertex v ∈ B, there exists a path P ∈ P and a vertex
u ∈ V (P ), such that dT (u, v) ≤ �.

For a vertex v ∈ V (T ), the bottom-up dynamic programming algorithm
considers subproblems for each child w of v which are processed from left to
right. To compute a partial solution at the subtree rooted at a child of v, we
distinguish whether there exists a path containing v that belongs to P or not.
For this purpose, we define a variable that captures a path containing v in P.
If there exists such a path, we guess the region where the endpoints of the path
belong, which includes the cases that the path contains: (i) only the vertex v,
(ii) the parent of v and one of its endpoints belongs to the subtree rooted at w
or v’s child that is to the left of w or v’s child that is to the right of w, (iii)
both its endpoints belong to the subtrees of the children which are to the left or
the right of w, and (iv) one of the endpoints belongs to the subtree rooted at w
while the other belongs to the subtree of the child to the left or the right of w.

At each node v, we store the distance of the nearest vertex (say w′) in the
subtree of v, that is, on a path in P, from v. We store this with the hope that
w′ can cover vertices of B that come in the future. In addition, we also store the
farthest vertex (say w′′) in the subtree of v that is not covered by any chosen
paths of P in the subtree. Again, we store this with the hope that w′′ ∈ B can be
covered by a future vertex, and the current solution leads to a solution overall.
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At each node v, we capture the existence of the following: there exists a set
of t′ ≤ t paths Y , one from each Fi, that either includes v or not on a path
from Y in P satisfying the distances of the nearest vertex w′ and the farthest
vertex w′′ (from v) that are on Y and already covered and not yet covered by
Y , respectively. To conclude the existence of a colorful path cover at the root
node, we check for the existence of an entry that consists of a set Y of t paths,
one from each Fi, and all the farthest distance of an uncovered vertex is zero.

Proof of Theorem 1. ESP/fvs + ecc and Skeleton Testing are FPT-
equivalent from Lemma 1. Observation 1 upper bounds the number of skele-
tons by 2O(k(log k+log �))n2. Then, we show that Skeleton Testing and Ext-

Skeleton Testing are FPT-equivalent and for each skeleton we have at most
2O(k log k) enriched skeletons. Finally, given an instance of Ext-Skeleton Test-

ing, we construct an instance of Colorful Path-Cover in polynomial time.
The Colorful Path-Cover problem can be solved in �2 ·2O(k log k)nO(1) time,
and this completes the proof of Theorem 1. ��

3 (1+ε)-Factor Parameterized by Feedback Vertex Set

Theorem 2. For any ε > 0, there is an (1 + ε)-factor approximation algorithm
for ESP/fvs running in time 2O(k log k)nO(1).

We make use of our algorithm in Theorem 1 that runs in 2O(k log k)�knO(1)

time. Notice that, �k comes because of the number of skeletons (Observation 1).
Specifically, for the function f : X → [�] that maintains a distance profile of the
set of vertices of S that do not appear on P . To design a (1 + ε)-factor FPT
approximation algorithm, we replace the image set [�] with a set of fixed size
using ε such that we approximate the shortest distance for vertices of S that do
not appear on P , with the factor (1 + ε). The rest is similar to Theorem 1.

Let the function f : X → {ε�, �} denote the approximate shortest distance
of each vertex x ∈ X from a hypothetical solution P of ESP/fvs. Formally,

f(v) =

{
ε� if dG(v, P ) < ε�,

� if ε� ≤ dG(v, P ) ≤ �.

Correctness. Suppose that P ∗ is a shortest path, with eccentricity � and the
function f as defined in the proof of Theorem 1, returned by the algorithm in
Theorem 1. We prove that for each vertex v ∈ V (G), dG(v, P ) ≤ (1+ε)�. Observe
that for a vertex x ∈ X, if 1 ≤ dG(x, P ∗) < ε�, then for a correct guess of f ,
f(x) = ε� and dG(x, P ∗) < ε�. Also if ε� ≤ dG(x, P ∗) ≤ �, then for a correct
guess of f , f(x) = � and dG(x, P ∗) ≤ �. Recall that, in the algorithm when we
construct instances for a good function γ (reducing to instance of Colorful

Path-Cover), we remove such vertices to construct an instance of Colorful

Path-Cover. The assumption (or guess) we made was that the eccentricity
requirement for v is satisfied using x. More explicitly, we use the following con-
ditions: if f(x) = ε� (resp, f(x) = �), then the eccentricity requirement for the
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vertex v is satisfied using x if dG(v, x) ≤ � (resp, dG(v, x) ≤ ε�). Now consider a
vertex v ∈ V (G)\S. Suppose that there exists a shortest path from v to P ∗ con-
taining no vertex from S, then by the description and correctness of algorithm
of Theorem 1, we obtain that dG(v, P ) ≤ �. Next, suppose that the shortest path
from v to P ∗ contains a vertex x ∈ X, then dG(v, x) + dG(x, P ∗) ≤ �. There-
fore, for such vertices, while dG(x, v) ≤ � and dG(x, P ) < ε�, we obtain that
dG(v, P ) ≤ dG(x, v)+ dG(x, P ) ≤ �+ ε� = (1+ ε)� and similarly, if dG(x, v) ≤ ε�
and dG(x, P ) ≤ �, then dG(v, P ) ≤ dG(x, v) + dG(x, P ) ≤ ε�+ � = (1+ ε)�. This
completes the correctness of the proof of Theorem 2.

4 Disjoint Paths Deletion Set

To eliminate the eccentricity parameter from the running time, we construct a
set Q (in Lemma 7) of possible distance values of disjoint paths deletion set S
to a solution path such that |Q| is bounded by a function of |S|.
Theorem 3 (�). There is an algorithm for ESP/dpd running in time
O(2O(k log k)nO(1)).

Lemma 7 (�). Let (G,S, k) be a yes instance of ESP/dpd, and P be a hypo-
thetical solution. Then there is a set Q ⊆ [�] of size ≤ 2k2 such that for each
w ∈ S, dG(w,P ) ∈ Q. Moreover, one can construct such a Q in O(k2n2) time.
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Abstract. We consider the scenario of routing an agent called a thief
through a weighted graph G = (V, E) from a start vertex s to an end
vertex t. A set I of items each with weight wi and profit pi is distributed
among V \ {s, t}. In the thief orienteering problem, the thief, who has a
knapsack of capacity W , must follow a simple path from s to t within a
given time T while packing in the knapsack a set of items, taken from
the vertices along the path, of total weight at most W and maximum
profit. The travel time across an edge depends on the edge length and
current knapsack load.

The thief orienteering problem is a generalization of the orienteering
problem and the 0–1 knapsack problem. We present a polynomial-time
approximation scheme (PTAS) for the thief orienteering problem when
G is directed and acyclic, and adapt the PTAS for other classes of graphs
and special cases of the problem. In addition, we prove there exists no
approximation algorithm for the thief orienteering problem with constant
approximation ratio, unless P=NP.

Keywords: thief orienteering problem · knapsack problem · dynamic
programming · approximation algorithm · approximation scheme

1 Introduction

The thief orienteering problem (ThOP) is defined as follows. Let G = (V,E) be
a weighted graph with n vertices, where two vertices s, t ∈ V are designated the
start and end vertices, and every edge e = (u, v) ∈ E has a length du,v ∈ Q+. In
addition, let there be a set I of items, where each item ij ∈ I has a non-negative
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integer weight wj and profit pj . Each vertex u ∈ V \{s, t} stores a subset Su ⊆ I
of items such that Su ∩ Sv = ∅ for all u �= v and

⋃
u∈V \{s,t} Su = I. There is

an agent called a thief that has a knapsack with capacity W ∈ Z+ and the goal
is for the thief to travel a simple path from s to t within a given time T ∈ Q+

while collecting items in the knapsack, taken from the vertices along the path, of
total weight at most W and maximum total profit. The amount of time needed
to travel between two adjacent vertices u, v depends on the length of the edge
connecting them and on the weight of the items in the knapsack when the edge is
traveled; specifically, the travel time between adjacent vertices u and v is du,v/V
where V = Vmax − w(Vmax − Vmin)/W , w is the current weight of the items in
the knapsack, and Vmin and Vmax are the minimum and maximum velocities at
which the thief can travel.

The thief orienteering problem is a generalization of the orienteering prob-
lem [6] and the 0–1 knapsack problem, so it is NP-hard. The problem was formu-
lated by Santos and Chagas [12] who provided the first two heuristics for ThOP:
An iterated local search algorithm and a biased random-key genetic algorithm.
In 2020, Faêda and Santos [4] presented a genetic algorithm for ThOP. Chagas
and Wagner [2] designed a heuristic using an ant colony algorithm, and in 2022,
Chagas and Wagner [3] further improved this algorithm.

While ThOP is a relatively new problem, the closely related family of trav-
elling problems, such as the travelling thief problem [1] and some variants of
orienteering [7], are well-studied and have applications in areas as diverse as
route planning [5] and circuit design [1], among others.

In 2017, Polyakovskiy and Neumann [10] introduced the packing while trav-
elling problem (PWTP). This is a problem similar to ThOP, but in PWTP the
thief must follow a fixed path and the goal is to maximize the difference between
the profit of the items collected in the knapsack and the transportation cost.
Polyakovskiy and Neumann provided two exact algorithms for PWTP, one based
on mixed-integer programming and another on branch-infer-and-bound. In 2019,
Roostapour et al. [11] presented three evolutionary algorithms on variations of
PWTP. Most recently, Neumann et al. [9] presented an exact dynamic program-
ming algorithm and a fully polynomial-time approximation scheme (FPTAS)
for PWTP. Their dynamic programming algorithm, unfortunately, cannot be
applied to ThOP because in ThOP we must bound both the total weight of the
items and the travelling time of the thief.

To the best of our knowledge, study on ThOP to this date has focused
on the design of heuristics and no previous work has presented an approxima-
tion algorithm for it. In this paper, we present a dynamic programming-based
polynomial-time approximation scheme (PTAS) for ThOP on directed acyclic
graphs (DAGs). Our algorithm can be extended to other types of graphs like
outerplanar, series-parallel, and cliques. Furthermore, variations of the algorithm
yield several FPTAS on special versions of ThOP on arbitrary undirected graphs,
like the case when Vmin = Vmax and T is equal to the length L of a shortest path
from s to t plus a constant K. We also show that ThOP on undirected graphs
cannot be approximated within a constant factor unless P=NP.
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There are several challenges in the design of our PTAS. To achieve polynomial
running time at least two of the parameters of the problem (weight, profit, and
travelling time) need to be rounded to keep the size of the dynamic programming
table polynomial. Since travelling time depends on the weight of the items in
the knapsack, it seems that the most natural parameters whose values need to
be rounded are profit and weight. Rounding weights, however, needs to be done
carefully because (1) rounding the weights of small weight items with high profit
can yield solutions with profit much smaller than the optimum one, and (2)
rounding the weights of items located far away from the destination vertex can
cause large errors in the travelling times.

We solve the first problem through enumeration by ensuring that a constant
number of the items with largest profit in an optimum solution belong to the
solution computed by our algorithm. We solve the second problem by using
actual item weights and not rounded weights when computing travelling times.

The rest of the paper is organized in the following way. In Sect. 2 we prove the
inaproximability of ThOP. In Sect. 3 we present an exact algorithm for ThOP
on DAGs using dynamic programming and we prove its correctness in Sect. 4.
Our main result is a PTAS for ThOP when the input graph is a DAG, which we
present in Sect. 5, and we provide its analysis in Sect. 6. In Sect. 7 we show our
algorithm can be adapted to a restricted version of ThOP on undirected graphs.

2 Inapproximability

Theorem 1. There is no approximation algorithm for ThOP with constant
approximation ratio, unless P=NP. Furthermore, for any ε > 0, there is no
approximation algorithm for ThOP with approximation ratio 2O(log1−ε n) unless
NP ⊆ DTIME(2O(log1−ε n)). These hardness results hold even if the input graph
has bounded degree, all edges have unit length, and each vertex stores only one
item of unit weight and profit.

Proof. The longest path problem [8] is a special case of ThOP, where s and t are
the endpoints of a longest path in the input graph G = (V,E), every edge has
length 1, every vertex u ∈ V \ {s, t} stores one item of weight 1 and profit 1, the
capacity of the knapsack is W = |V | − 2, the bound on the time is T = |V |−1,
and Vmin = Vmax. Since there are O(|V |2) possible choices for the endpoints of
a longest path in G then the inapproximability properties of the longest path
problem [8] apply also to ThOP. ��
Corollary 1. The fractional version of ThOP, that allows the thief to select
only a fraction of each item, cannot be approximated in polynomial time within
any constant factor unless P=NP.

Proof. Consider the same reduction as in the proof of Theorem 1. Note than an
optimal fractional solution must collect the whole items stored in the vertices of
an optimal path. ��
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3 Algorithm for Thief Orienteering on DAGs

To simplify the description of our algorithm, for each vertex u that does not
store any items we add to I an item of weight 0 and profit 0 and store it in u;
hence, every vertex stores at least one item. We can assume that the minimum
and maximum velocities Vmin and Vmax are δ and 1, respectively, where δ ∈ Q+

and δ ≤ 1. Then, the travel time from u to v, when the knapsack’s total weight
is w just prior to leaving vertex u, is du,v/η, where η = 1 − (1−δ)w

W .
Since DAGs have no cycles, every path from s to t is a simple path. We index

the vertices using a topological ordering. As s is the start vertex, we delete from
G all vertices that are unreachable from s, and since t is the end vertex, we
delete from G all vertices that cannot reach t. For a vertex u, let u.index be the
index of the vertex as determined by the topological ordering.

Note that s and t have the lowest and highest indices, respectively. Addi-
tionally, observe that the indices of the vertices encountered along a simple path
from s to any vertex u appear in increasing order. We consider the vertices in
index order starting at s. We index the items stored in the vertices so that item
indices are unique and items in vertex ux have smaller indices than items in
vertex uy for all x < y. Let the items be i1, i2, ..., i|I|.

We define the parents of a vertex u to be the vertices v such that (v, u) is a
directed edge of G. Our algorithm for ThOP on DAGs is shown below.

Algorithm 1. ThOPDAG(G,W, T, s, t, I, δ)
1: Input: DAG G = (V, E), knapsack capacity W , time limit T , start vertex s, end

vertex t, item assignments I, and minimum velocity δ.
2: Output: An optimum solution for the thief orienteering problem.
3: Delete from G vertices unreachable from s and vertices that cannot reach t.
4: Compute a topological ordering for G.
5: Index V by increasing topological ordering and index items as described above.
6: Let A be an empty profit table. Set A[1] = (0, 0, 0, −1).
7: for i = s.index to t .index do
8: Let u be the vertex with index i.
9: Call UpdateProfitTable(W, T, δ, A, u).

10: end for
11: Return BuildKnapsack(A).

Due to space limitations, the BuildKnapsack algorithm has been omitted,
but note that it simply retrieves the path and the items in the knapsack corre-
sponding to the highest profit solution by backtracking through the profit table.

3.1 Profit Table

Let S be a subset of items. In the sequel, we define the travel time of S to
a vertex u as the minimum time needed by the thief to collect all items in S
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while travelling along a simple path psu from s to u that includes all the vertices
storing the items in S. Path psu is called a fastest path of S to u. Additionally,
we define the total travel time of S as the travel time of S to t.

Definition 1. Let Sz = {i1, ..., iz} for all z = 1, ..., |I|. A feasible subset S of
Sz has weight wS =

∑
ij∈S wj ≤ W and total travel time at most T .

Our algorithm builds a profit table A where each entry A[j], for j = 1, ..., |I|,
corresponds to the item with index j, and A[j] is a list of quadruples (p,w, time,
prev). Let u be the vertex that contains item ij . A quadruple (p,w, time, prev)
in the list of A[j] indicates that there is a subset S of Sj such that:

– the profit of the items in S is p, their weight is w ≤ W , the travel time of S
to u is time ≤ T , and

– a fastest path of S to u includes a vertex storing iprev. Note that item iprev

does not need to be in S.

A quadruple (p,w, time, prev) dominates a quadruple (p′, w′, time′, prev′) if
p ≥ p′, w ≤ w′, and time ≤ time′. We remove dominated quadruples from
each list of A so that no quadruple in the list of each entry A[j] dominates
another quadruple in the same list. Therefore, we can assume each list A[j] has
the following properties: (i) the quadruples are sorted in non-decreasing order of
their profits, (ii) there might be multiple quadruples with the same profit, and
if so these quadruples are sorted in non-decreasing order of their weights, and
(iii) if there were several quadruples in A[j] with the same profit p and weight
w, only the quadruple with the smallest value of time is kept in A[j].

3.2 UpdateProfitTable

Algorithm 2 shows how each vertex u updates the profit table. The start vertex
s ∈ V has no parents and holds a single item i1 of weight and profit 0; therefore,
we initialize A[1] to store the quadruple (0, 0, 0,−1).

When two or more different paths from s to t are routed through some
intermediate vertex u, it is vital that subsets of items corresponding to each of
the paths are recorded correctly; the entries in the profit table A must represent
the item subsets from each path from s to u, but none of the quadruples in A
should contain information from items stored in vertices from different paths.

When a vertex u’s first item ij is considered, two things must happen: (1)
the profit table must correctly store the path information for each quadruple
corresponding to ij by storing the index of the previous item associated with the
quadruple, and (2) the quadruples taken from all parents of u must have their
travel time updated.

Observe that after the thief has reached vertex u and the list of quadruples
corresponding to u’s first item has been created, the travel times for the quadru-
ples corresponding to the other items of u do not need to be further increased.
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Algorithm 2. UpdateProfitTable(W,T, δ,A, u)
1: Input: Knapsack capacity W , time limit T , minimum velocity δ, profit table A,

and vertex u.
2: Output: The entries of the profit table A corresponding to u’s items are updated

to represent the subsets of items found along all paths from s to u.
3: for each item ij of u do
4: Let p the profit and w be the weight of ij .
5: if ij is u’s first item then
6: A[j] = ∅.
7: for each parent v of u do
8: Let idv be the index of v’s last item.
9: for each(p′,w ′, time ′, prev ′) ∈ A[idv ] do

10: Let du,v be the distance from v to u.
11: Let η = 1 − (1 − δ)w′/W .
12: Let travel =

du,v

η
.

13: if time′ + travel ≤ T then
14: Append (p′, w′, time′ + travel, idv) to A[j].
15: end if
16: end for
17: end for
18: else
19: A[j] = A[j − 1].
20: For each quadruple (p′, w′, time′, prev′) in A[j] change prev′ to j − 1.
21: end if
22: for each(p′,w ′, time ′, prev ′) ∈ A[j ] do
23: if w + w′ ≤ W then
24: Append (p + p′, w + w′, time′, prev′) to A[j].
25: end if
26: end for
27: Remove dominated quadruples from A[j].
28: end for

4 Algorithm Analysis

Recall that the items are indexed such that for two items with indices h and j
where h < j, item ih must belong to a vertex whose index is less than or equal
to the index of the vertex containing item ij .

To prove that our algorithm is correct we must prove that each entry A[z] of
the profit table is such that for every feasible subset S of Sz the entry A[z]
contains either (i) a quadruple (pS , wS , timeS , prev), where pS =

∑
ij∈S pj ,

wS =
∑

ij∈S wj , and timeS is the travel time of S to the vertex u storing
iz, or (ii) a quadruple (p′, w′, time′, prev′) that dominates (pS , wS , timeS , prev).
This implies that A contains a quadruple representing a simple path from s to t
whose vertices store a maximum profit set S∗ of items of weight at most W and
total travel time at most T .
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Lemma 1. Let 1 ≤ z ≤ |I|. For each feasible subset S of Sz there is a quadruple
(p,w, time, prev) in the profit table A at entry A[z] such that p ≥ pS =

∑
ij∈S pj,

w ≤ wS =
∑

ij∈S wj, and time ≤ timeS, where timeS is the travel time of S to
the vertex u storing iz.

Proof. We use a proof by induction on the number of entries of the profit table
A. The base case is trivial as there are only two feasible subsets of S1, the empty
set and the set containing item i1 with weight and profit 0, and A[1] stores the
quadruple (0, 0, 0,−1).

Assume that the lemma holds true for every feasible subset S of Sq for all
q = 1, ..., z−1. Let S be a feasible subset of Sz; we show that there is a quadruple
(p,w, time, prev) ∈ A[z] such that p ≥ pS , w ≤ wS , and time ≤ timeS . Let u be
the vertex storing iz. We need to consider two cases:

– Case 1: Item iz ∈ S. Let S′ = S − {iz}. Note that since the travel time of S
to u is at most T , then the travel time of S′ to u is also at most T .

• Assume first that iz is u’s first item. Let uα be the vertex before u in the
fastest path of S to u; let iα be the last item at uα, and let timeα be
the travel time of S′ from uα to u. Note that by the way we indexed
the items, α < z. By the induction hypothesis, there is a quadruple
(p′, w′, time′, prev′) in A[α] such that p′ ≥ pS′ and w′ ≤ wS′ . Lines 7
to 16 in Algorithm 2 copy all the tuples in A[α] to A[z] whose travel
time, time′ + timeα, is at most T and update their travel times. More-
over, in lines 22 to 26 Algorithm 2 adds the quadruple (p′ + pz, w

′ +
wz, time′ + timeα, prev′) to A[z] because w′ +wz ≤ wS′ +wz = wS ≤ W ;
furthermore, p′ + pz ≥ pS′ + pz = pS . Therefore, there is a quadruple
(p,w, time, prev) in A[z] such that p ≥ pS , w ≤ wS , and time ≤ timeS .

• Assume now that iz is not u’s first item. Note that then the item iz−1

is also located at u because of the way in which we indexed the items.
By the induction hypothesis, there is a quadruple (p′, w′, time′, prev′) in
A[z − 1] such that p ≥ pS′ , w′ ≤ wS′ , and time′ ≤ timeS . Lines 19 to 26
in Algorithm 2 add the quadruple (p′ + pz, w

′ +wz, time′, prev′) to A[z],
as w′+wz ≤ wS′ +wz = wS ≤ W and p′+pz ≥ pS′ +pz = pS . Therefore,
there is a quadruple (p,w, time, prev) in A[z] such that p ≥ pS , w ≤ wS ,
and time ≤ timeS .

– Case 2: Item iz /∈ S. Since S is a feasible subset, by the induction hypothesis,
either (i) there is a quadruple (p,w, time, prev) in A[z − 1] such that p ≥
pS , w ≤ wS , and time ≤ timeS that Algorithm 2 would have copied to
A[z] in lines 19–20 if iz is not u’s first item, or (ii) there is a quadruple
(p,w, time, prev) in A[α] (where iα is the last item in vertex uα defined above)
such that p ≥ pS , w ≤ wS , and time ≤ timeS that Algorithm 2 would have
copied to A[z] in lines 7–17 if iz is u’s first item. Therefore, there is a quadruple
(p,w, time, prev) in A[z] such that p ≥ pS , w ≤ wS , time ≤ timeS . ��
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5 PTAS for Thief Orienteering on DAGs

Algorithm 1 might not run in polynomial time because the size of the profit table
might become too large. We can convert Algorithm 1 into a PTAS by carefully
rounding down the profit and rounding up the weight of each item.

Note that if we simply use rounded weights in the profit table described in
Sect. 3.1, then we might introduce a very large error to the travel times com-
puted by Algorithm 2. To prevent this, we modify the profit table so that every
entry A[j] holds a list of quintuples (p,wr, wt, time, prev), where each quintuple
indicates that there is a subset S of Sj in which the sum of their rounded profits
is p, the sum of their rounded weights is wr, the sum of their true weights is wt,
the travel time of S to the vertex u holding item ij is time, and the fastest path
of S to u includes the vertex which contains iprev. Let Pmax be the maximum
profit of an item that can be transported within the allotted time T from the
vertex that initially stored it to the destination vertex. Our PTAS is described
in Algorithm 3.

Algorithm 3. ThOPDAGPTAS(G,W, T, s, t, I, δ, ε)
1: Input: DAG G = (V, E), knapsack capacity W , time limit T , start vertex s, end

vertex t, item assignments I, minimum velocity δ, and constant ε > 0.
2: Output: A feasible solution for the thief orienteering problem of profit at least

(1 − 3ε)OPT , where OPT is the value of an optimum solution.
3: Delete from G vertices unreachable from s and vertices that cannot reach t.
4: Compute a topological ordering for G.
5: Index V by increasing topological ordering and items as described in Section 3.
6: Let K = 1

ε
.

7: Let S be the set of all feasible subsets S of S|I| such that |S| ≤ K.
8: for each S ∈ S do
9: Let A be an empty profit table. Set A[1] = (0, 0, 0, −1).

10: Let W ′ = W − ∑
ij∈S wj .

11: Round down the profit of each item in I − S to the nearest multiple of εPmax
|I| .

12: Round up the weight of each item in I − S to the nearest multiple of εW ′
|I|2 .

13: for i = s.index to t .index do
14: Let u be the vertex with index i.
15: Call UpdateProfitTable∗(W, T, δ, A, u, S).
16: end for
17: end for
18: Select the profit table A∗ storing the quintuple with maximum profit.
19: Return BuildKnapsack(A∗).

Algorithm UpdateProfitTable∗ is a slight modification of Algorithm 2 that
computes the travel time of each tuple using the true weights, but it uses the
rounded weights when determining if an item subset fits in the knapsack or
when discarding dominated tuples. Additionally, for each S ∈ S, Algorithm
UpdateProfitTable∗ includes the items from S in the knapsack when it processes
the vertices storing these items.



A PTAS for Thief Orienteering on DAGs 95

6 PTAS Analysis

Since the weights of some items are rounded up, the solution produced by Algo-
rithm 3 might have unused space where the algorithm could not fit any rounded
items. However, an optimal solution would not leave empty space if there were
items that could be placed in the knapsack while still travelling from s to t in at
most T time, so we need to bound the maximum profit lost due to the rounding
of the weights and profits.

Lemma 2. For any constant ε > 0, Algorithm 3 computes a feasible solution to
the thief orienteering problem on DAGs with profit at least (1 − 3ε)OPT , where
OPT is the profit of an optimum solution.

Proof. Let SOPT be the set of items in an optimum solution with maximum
profit and let OPT =

∑
ij∈SOPT

pj . If |SOPT | ≤ K then Algorithm 3 computes an
optimum solution. Hence, for the rest of the proof we assume that |SOPT | > K.
Let SK be the set of the K items with largest profit from SOPT , where K = 1

ε ,
and let W ′ = W −∑

ij∈SK
wj . Let SA be the set of items in the solution selected

by our algorithm, and let SOL =
∑

ij∈SA
pj .

Recall that our algorithm tries including every possible feasible subset of at
most K items in the knapsack. Therefore, our algorithm must have included SK

in the knapsack in one of the iterations and filled the remainder of the knapsack
using the profit table. Let S∗

A be the solution computed by our algorithm in
the iteration where it chose to include the items of SK in the knapsack, and let
SOL∗ =

∑
ij∈S∗

A
pj . Since our algorithm returns the best solution that it found

over all iterations, then SOL ≥ SOL∗.
To compare SOL∗ to OPT , we round up the weight of each item in SOPT −

SK to the nearest multiple of εW ′
|I|2 ; note that the weights and profits of the

items in SK are not rounded. In the sequel, we will use w′
j and p′

j to refer to
the rounded weight and profit of item ij , and wj and pj to refer to the true
weight and profit of item ij . Given a set X of items let weight(X) =

∑
ij∈X wj ,

weight ′(X) =
∑

ij∈X w′
j , profit(X) =

∑
ij∈X pj , and profit ′(X) =

∑
ij∈X p′

j . We
let profit ′(SK) = profit(SK).

Rounding up the weight of a single item increases the weight of that item by at
most εW ′

|I|2 , so weight ′(SOPT ) ≤ weight(SOPT )+ εW ′
|I| ≤ W + εW ′

|I| as |SOPT | ≤ |I|.
Let AOPT be a subset of SOPT − SK with weight ′(AOPT ) ≤ W ′ and maximum
rounded profit and such that AOPT ∪ SK is a feasible set of items. Note that
our algorithm must have included a quintuple (p∗, w∗

r , w∗
t , time∗, prev∗) in the

profit table such that w∗
r ≤ weight ′(AOPT ∪ SK), time∗ is at most the time to

transport from s to t the items in AOPT ∪ SK , and p∗ ≥ profit ′(AOPT ∪ SK).
Hence,

SOL∗ ≥ profit ′(AOPT ∪ SK) (1)

We now bound profit ′(AOPT ∪SK). Let S−
OPT = SOPT −SK −AOPT : These

are the items in the optimum solution whose profit is not included in the right
hand side of (1). Note that if S−

OPT is empty, then SK ∪ AOPT = SOPT and so
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SOL∗ ≥ profit ′(SOPT ). If S−
OPT is not empty, we show that weight ′(S−

OPT ) ≤
εW ′
|I| + wL, where wL is the largest weight of the items in S−

OPT . To see this,

recall that weight ′(SOPT ) ≤ W + εW ′
|I| and note that W − wL < weight(SK) +

weight ′(AOPT ) ≤ W , because by the way in which AOPT was defined the empty
space that SK∪AOPT leave in the knapsack is not large enough to fit the rounded
weight of another item from S−

OPT . Therefore,

weight ′(S−
OPT ) = weight ′(SOPT ) − (weight(SK) + weight ′(AOPT ))

< W +
εW ′

|I| − (W − wL) =
εW ′

|I| + wL

(2)

Now we bound profit ′(S−
OPT ). If S−

OPT consists of only one item ij , then
since the least profitable item in SK has profit at most 1

KOPT and ij is not in
SK , then pj ≤ 1

KOPT , which means that profit ′(S−
OPT ) ≤ 1

KOPT = εOPT . If
S−
OPT consists of two or more items, we can partition S−

OPT into the singleton
{iL} consisting of the item with largest weight wL and the set i∗ of remaining
items, which by (2) has weight ′(i∗) ≤ εW ′

|I| .
Item iL is not in SK , so it has profit pL ≤ 1

KOPT . As for i∗ we show that
profit ′(i∗) ≤ 1

KOPT :

– W ′ − weight ′(AOPT ) < εW ′
|I| = W ′

K|I| , as otherwise the items i∗ would have
been included in AOPT , and so

weight ′(AOPT ) =
∑

ij∈AOPT

w′
j > W ′ − W ′

K|I| >
K − 1

K
W ′, as |I| ≥ 1 (3)

– There is at least one item iψ in AOPT with w′
ψ ≥ W ′

K|I| . To see this, note

that if all of the items in AOPT had weight strictly less than W ′
K|I| , then

∑
ij∈AOPT

w′
j < W ′

K|I| |AOPT | < 1
K W ′, as |AOPT | ≤ |I|, which contradicts (3).

– By definition, AOPT includes items from SOPT − SK with weight ′(AOPT ) ≤
W ′ and maximum profit, and since the items i∗ are not in AOPT then
profit ′(i∗) ≤ p′

ψ, as otherwise the items i∗ would be in AOPT instead of
iψ. Since item iψ is not in SK then p′

ψ ≤ 1
KOPT and so profit ′(i∗) ≤ 1

KOPT .

Therefore, profit ′(S−
OPT ) = profit ′(iL) + profit ′(i∗) ≤ 2

KOPT . Since SOPT =
SK ∪AOPT ∪S−

OPT , then we know profit ′(AOPT )+profit ′(SK) = profit ′(SOPT )−
profit ′(S−

OPT ) ≥ profit ′(SOPT ) − 2
KOPT . Since SOL ≥ SOL∗, by (1),

SOL ≥ SOL∗ ≥ profit ′(AOPT ) + profit ′(SK) ≥ profit ′(SOPT ) − 2
K

OPT

≥ profit(SOPT ) − εPmax

|I| |SOPT | − 2
K

OPT

≥ OPT − εPmax − 2εOPT ≥ (1 − 3ε)OPT

��
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Theorem 2. There is a PTAS for the thief orienteering problem on DAGs.

Proof. As shown by Lemma 2, Algorithm 3 computes solutions with profit at
least (1 − 3ε)OPT . The profit table A has |I| entries, and each entry A[j] can
have at most O(PrWr) quintuples, where Pr is the number of different values for
the rounded profit of any subset of items and Wr is the number of different values
for the rounded weight of any subset of items of total weight at most W . Since
profits are rounded down to the nearest multiple of εPmax

|I| then Pr is O( |I|2
ε ).

Since weights of items not in the selected feasible subsets S were rounded up to
the nearest multiple of εW ′

|I|2 , then Wr is O( |I|2
ε ).

Algorithm 3 iterates through the list at each entry A[j] exactly once if ij
is not the last item in a vertex u; if ij is the last item in a vertex u, then our
algorithm iterates through the list at entry A[j] once for each outgoing edge of
u. Thus, for each feasible subset S with at most K items the algorithm loops
through |I| rows in the profit table, iterates over a particular row at most n = |V |
times, and each row can have at most O( |I|4

ε2 ) quintuples in it; since the number
of feasible subsets S is O(|I| 1

ε ) the running time is O(n|I|5+ 1
ε ). ��

7 Thief Orienteering with Vmin = Vmax

We consider the case when G = (V,E) is undirected, every edge has length at
least 1, Vmin = Vmax, and T is equal to the length L of a shortest path from s to
t plus a constant K. If Vmin = Vmax the travel time for any edge is equal to the
length of the edge and independent of the weight of the items in the knapsack.

For a vertex u, let u.dist be the length of a shortest path from u to t, and let
σ be a path from s to t with length at most L + K. If the length of σ is larger
than L, then σ contains a set of detours; a detour is a subpath σu,v of σ from
u to v such that the length of σu,v is larger than |u.dist − v.dist|. Note that σ
contains a set of detours formed by at most 2K vertices.

Theorem 3. There is a FPTAS for ThOP where Vmin = Vmax and the time T
is equal to the length L of a shortest path from s to t plus a constant K.

Proof. Graph G can be transformed into a set of DAGs that contain all simple
paths from s to t of length at most L+K. To do this, we enumerate all possible
sets of detours D containing at most 2K vertices. For each set D of detours we
build a DAG GD by removing edges from G until every path from s to t travels
through all the detours in D and directing the remaining edges such that (i)
edges belonging to a detour of D form a simple directed path from the start of
the detour to the end of the detour and (ii) edges not belonging to detours are
directed towards t.

Each DAG GD is an instance of ThOP that can be solved using Algorithm
3. We finally choose the path with the most profit among those computed for all
DAGs GD.
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Since Vmin = Vmax, the item weights do not need to be rounded up and,
furthermore, the number of possible sets of detours is polynomial with respect
to the constant K. It is not hard to see that a simple modification of Algorithms
2 and 3 yield a FPTAS. ��

In this paper we presented a PTAS for ThOP for the case when the input
graph is a DAG. Additionally, we showed that ThOP cannot be approximated
within a constant factor, unless P=NP. While our paper focused on DAGs, our
PTAS can be used to solve ThOP on other classes of graphs, such as on chains,
trees, and cycle graphs. Finally, our ideas can be used to design algorithms for
ThOP on other kinds of graphs like outerplanar, series-parallel, and cliques.
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Abstract. A common technique for speeding up shortest path queries
in graphs is to use a bidirectional search, i.e., performing a forward search
from the start and a backward search from the destination until a com-
mon vertex on a shortest path is found. In practice, this has a massive
impact on performance in some real-world networks, while it seems to
save only a constant factor in other types of networks. Although finding
shortest paths is a ubiquitous problem, only few studies have attempted
to explain the apparent asymptotic speedups on some networks using
average case analysis on certain models of real-world network.

In this paper we provide a new perspective on this, by analyzing deter-
ministic properties that allow theoretical analysis and that can be eas-
ily checked on any particular instance. We prove that these parameters
imply sublinear running time for the bidirectional breadth-first search
in several regimes, some of which are tight. Furthermore, we perform
experiments on a large set of real-world networks and show that our
parameters capture the concept of practical running time well.

Keywords: scale-free networks · bidirectional BFS · bidirectional
shortest paths · distribution-free analysis

1 Introduction

A common way to speed up the search for a shortest path between two vertices
is to use a bidirectional search strategy instead of a unidirectional one. The idea
is to explore the graph from both, the start and the destination vertex, until a
common vertex somewhere in between is discovered. Even though this does not
improve upon the linear worst-case running time of the unidirectional search, it
leads to significant practical speedups on some classes of networks. Specifically,
Borassi and Natale [6] found that bidirectional search seems to run asymptot-
ically faster than unidirectional search on scale-free real-world networks. This
does, however, not transfer to other types of networks like for example trans-
portation networks, where the speedup seems to be a constant factor [1].

There are several results aiming to explain the practical run times of the bidi-
rectional search, specifically of the balanced bidirectional breadth-first search
(short: bidirectional BFS). These results have in common that they analyze
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S.-Y. Hsieh et al. (Eds.): IWOCA 2023, LNCS 13889, pp. 99–110, 2023.
https://doi.org/10.1007/978-3-031-34347-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34347-6_9&domain=pdf
http://orcid.org/0000-0003-2450-744X
http://orcid.org/0000-0002-4507-0622
https://doi.org/10.1007/978-3-031-34347-6_9


100 T. Bläsius and M. Wilhelm

the bidirectional BFS on probabilistic network models with different properties.
Borassi and Natale [6] show that it takes O(

√
n) time on Erdös-Rényi-graphs [7]

with high probability. The same holds for slightly non-uniform random graphs as
long as the edge choices are independent and the second moment of the degree
distribution is finite. For more heterogeneous power-law degree distributions with
power-law exponent in (2, 3), the running time is O(nc) for c ∈ [1/2, 1). Note
that this covers a wide range of networks with varying properties in the sense
that it predicts sublinear running times for homogeneous as well as heteroge-
neous degree distributions. However, the proof for these results heavily relies on
the independence of edges, which is not necessarily given in real-world networks.
Bläsius et al. [3] consider the bidirectional BFS on network models that intro-
duce dependence of edges via an underlying geometry. Specifically, they show
sublinear running time if the underlying geometry is the hyperbolic plane, yield-
ing networks with a heterogeneous power-law degree distribution. Moreover, if
the underlying geometry is the Euclidean plane, they show that the speedup is
only a constant factor.

Summarizing these theoretical results, one can roughly say that the bidirec-
tional BFS has sublinear running time unless the network has dependent edges
and a homogeneous degree distribution. Note that this fits to the above obser-
vation that bidirectional search works well on many real-world networks, while
it only achieves a constant speedup on transportation networks. However, these
theoretical results only give actual performance guarantees for networks follow-
ing the assumed probability distributions of the analyzed network models. Thus,
the goal of this paper is to understand the efficiency of the bidirectional BFS in
terms of deterministic structural properties of the considered network.

Intuition. To present our technical contribution, we first give high-level argu-
ments and then discuss where these simple arguments fail. As noted above, the
bidirectional BFS is highly efficient unless the networks are homogeneous and
have edge dependencies. In the field of network science, it is common knowledge
that these are the networks with high diameter, while other networks typically
have the small-world property. This difference in diameter coincides with dif-
ferences in the expansion of search spaces. To make this more specific, let v
be a vertex in a graph and let fv(d) be the number of vertices of distance at
most d from v. In the following, we consider two settings, namely the setting of
polynomial expansion with fv(d) ≈ d2 and that of exponential expansion with
fv(d) ≈ 2d for all vertices v ∈ V . Now assume we use a BFS to compute the
shortest path between vertices s and t with distance d.

To compare the unidirectional with the bidirectional BFS, note that the
former explores the fs(d) vertices at distance d from s, while the latter explores
the fs(d/2) + ft(d/2) vertices at distance d/2 from s and t. In the polynomial
expansion setting, fs(d/2) + ft(d/2) evaluates to 2(d/2)2 = d2/2 = fs(d)/2,
yielding a constant speedup of 2. In the exponential expansion setting, fs(d/2)+
ft(d/2) evaluates to 2 · 2d/2 = 2

√
fs(d), resulting in a polynomial speedup.

With these preliminary considerations, it seems like exponential expansion
is already the deterministic property explaining the asymptotic performance
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improvement of the bidirectional BFS on many real-world networks. However,
though this property is strong enough to yield the desired theoretic result, it is
too strong to actually capture real-world networks. There are two main reasons
for that. First, the expansion in real-world networks is not that clean, i.e., the
actual increase of vertices varies from step to step. Second, and more impor-
tantly, the considered graphs are finite and with exponential expansion, one
quickly reaches the graph’s boundary where the expansion slows down. Thus,
even though search spaces in real-world networks are typically expanding quickly,
it is crucial to consider the number of steps during which the expansion persists.
To actually capture real-world networks, weaker conditions are needed.

Contribution. The main contribution of this paper is to solve this tension
between wanting conditions strong enough to imply sublinear running time and
wanting them to be sufficiently weak to still cover real-world networks. We solve
this by defining multiple parameters describing expansion properties of vertex
pairs. These parameters address the above issues by covering a varying amount of
expansion and stating requirements on how long the expansion lasts. We refer to
Sect. 2 and Sect. 3.1 for the exact technical definitions, but intuitively we define
the expansion overlap as the number of steps for which the exploration cost is
growing exponentially in both directions. Based on this, we give different param-
eter settings in which the bidirectional search is sublinear. In particular, we show
sublinear running time for logarithmically sized expansion overlap (Theorem 1)
and for an expansion overlap linear in the distance between the queried vertices
(Theorem 2, the actual statement is stronger). For a slightly more general set-
ting we also prove a tight criterion for sublinear running time in the sense that
the parameters either guarantee sublinear running time or that there exists a
family of graphs that require linear running time (Theorem 3). Note that the
latter two results also require the relative difference between the minimum and
maximum expansion to be constant. Finally, we demonstrate that our param-
eters do indeed capture the behavior actually observed in practice by running
experiments on more than 3 k real-world networks.

Due to space constraints, some proofs and explanations have been shortened
or omitted. They can be found in the full version of this paper [4].

Related Work. Our results fit into the more general theme of defining
distribution-free [10] properties that capture real-world networks and analyz-
ing algorithms based on these deterministic properties.

Borassi, Crescenzi, and Trevisan [5] analyze heuristics for graph properties
such as the diameter and radius as well as centrality measures such as close-
ness. The analysis builds upon a deterministic formulation of how edges form
based on independent probabilities and the birthday paradox. The authors verify
their properties on multiple probabilistic network models as well as real-world
networks.

Fox et al. [8] propose a parameterized view on the concept of triadic closure
in real-world networks. This is based on the observation that in many networks,
two vertices with a common neighbor are likely to be adjacent. The authors
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thus call a graph c-closed if every pair of vertices u, v with at least c common
neighbors is adjacent. They show that enumerating all maximal cliques is in
FPT for parameter c and also for a weaker property called weak c-closure. The
authors also verify empirically that real-world networks are weakly c-closed for
moderate values of c.

2 Preliminaries

We consider simple, undirected, and connected graphs G = (V,E) with n = |V |
vertices and m = |E| edges. For vertices s, t ∈ V we write d(s, t) for the distance
of s and t, that is the number of edges on a shortest path between s and t.
For i, j ∈ N, we write [i] for the set {1, . . . , i} and [i, j] for {i, . . . , j}. In a
(unidirectional) breadth-first search (BFS ) from a vertex s, the graph is explored
layer by layer until the target vertex t ∈ V is discovered. More formally, for
a vertex v ∈ V , the i-th BFS layer around v (short: layer), �G(v, i), is the
set of vertices that have distance exactly i from v. Thus, the BFS starts with
�G(s, 0) = {s} and then iteratively computes �G(s, i) from �G(s, i−1) by iterating
through the neighborhood of �G(s, i−1) and ignoring vertices contained in earlier
layers. We call this the i-th exploration step from s. We omit the subscript G
from the above notation when it is clear from context.

In the bidirectional BFS, layers are explored both from s and t until a com-
mon vertex is discovered. This means that the algorithm maintains layers �(s, i)
of a forward search from s and layers �(t, j) of a backward search from t and iter-
atively performs further exploration steps in one of the directions. The decision
about which search direction to progress in each step is determined according to
an alternation strategy. Note that we only allow the algorithm to switch between
the search directions after fully completed exploration steps. If the forward search
performs k exploration steps and the backward search the remaining d(s, t) − k,
then we say that the search meets at layer k.

In this paper, we analyze a particular alternation strategy called the balanced
alternation strategy [6]. This strategy greedily chooses to continue with an explo-
ration step in either the forward or backward direction, depending on which is
cheaper. Comparing the anticipated cost of the next exploration step requires
no asymptotic overhead, as it only requires summing the degrees of vertices in
the preceding layer. The following lemma gives a running time guarantee for
balanced BFS relative to any other alternation strategy. This lets us consider
arbitrary alternation strategies in our mathematical analysis, while only costing
a factor of d(s, t), which is typically at most logarithmic.

Lemma 1 ([3, Theorem 3.2]). Let G be a graph and (s, t) a start–destination
pair with distance d(s, t). If there exists an alternation strategy such that the bidi-
rectional BFS between s and t explores f(n) edges, then the balanced bidirectional
search explores at most d(s, t) · f(n) edges.

The forward and backward search need to perform a total of d(s, t) explo-
ration steps. To ease the notation, we say that exploration step i (of the bidirec-
tional search between s and t) is either the step of finding �(s, i) from �(s, i − 1)
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in the forward search or the step of finding �(t, d(s, t)+1− i) from �(t, d(s, t)− i)
in the backward search. For example, exploration step 1 is the step in which
either the forward search finds the neighbors of s or in which s is discovered by
the backwards search. Also, we identify the i-th exploration step with its index i,
i.e., [d(s, t)] is the set of all exploration steps. We often consider multiple consec-
utive exploration steps together. For this, we define the interval [i, j] ⊆ [d(s, t)]
to be a sequence for i, j ∈ [d(s, t)]. The exploration cost of exploration step i
from s equals the number of visited edges with endpoints in �(s, i − 1)), i.e.,
cs(i) =

∑
v∈�(s,i−1) deg(v). The exploration cost for exploration step i from t

is ct(i) =
∑

v∈�(t,d(s,t)−i) deg(v). For a sequence [i, j] and v ∈ {s, t}, we define
the cost cv([i, j]) =

∑
k∈[i,j] cv(k). Note that the notion of exploration cost is an

independent graph theoretic property and also valid outside the context of a par-
ticular run of the bidirectional BFS in which the considered layers are actually
explored.

For a vertex pair s, t we write cbi(s, t) for the cost of the bidirectional search
with start s and destination t. Also, as we are interested in polynomial speedups,
i.e., O(m1−ε) vs. O(m), we use Õ-notation to suppress poly-logarithmic factors.

3 Performance Guarantees for Expanding Search Spaces

We now analyze the bidirectional BFS based on expansion properties. In
Sect. 3.1, we introduce expansion, including the concept of expansion overlap,
state some basic technical lemmas and give an overview of our results. In the
subsequent sections, we then prove our results for different cases of the expansion
overlap.

3.1 Expanding Search Spaces and Basic Properties

We define expansion as the relative growth of the search space between adja-
cent layers. Let [i, j] be a sequence of exploration steps. We say that [i, j] is
b-expanding from s if for every step k ∈ [i, j) we have cs(k+1) ≥ b ·cs(k). Analo-
gously, we define [i, j] to be b-expanding from t if for every step k ∈ (i, j] we have
ct(k −1) ≥ b · ct(k). Note that the different definitions for s and t are completely
symmetrical. With this definition layed out, we investigate its relationship with
logarithmic distances.

Lemma 2. Let G = (V,E) be a graph and let s, t ∈ V be vertices such that the
sequence [1, c · d(s, t)] is b-expanding from s for constants b > 1 and c > 0. Then
d(s, t) ≤ logb(2m)/c.

Proof Sketch. Follows via simple derivation, see full version. �	
Note that this lemma uses s and t symmetrically and also applies to expand-

ing sequences from t. Together with Lemma 1, this allows us to consider arbitrary
alternation strategies that are convenient for our proofs. Next, we show that the
total cost of a b-expanding sequence of exploration steps is constant in the cost
of the last step, which often simplifies calculations.
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ts
cheaps cheaptexpant expans

dα(s, t)

expansion overlap

cost at most mα

b-expanding from tb-expanding from s

cost at most mα

Fig. 1. Visualization of cheapv, expanv and related concepts. Each line stands for an
exploration step between s and t. Additionally, certain steps and sequences relevant
for Theorem 1 and Theorem 2 are marked.

Lemma 3. For b > 1 let f : N 
→ R be a function with f(i) ≥ b · f(i − 1) and
f(1) = c for some constant c. Then f(n)/

∑n
i=1 f(i) ≥ b−1

b .

Proof Sketch. Follows via simple derivation, see full version. �	
We define four specific exploration steps depending on two constant param-

eters 0 < α < 1 and b > 1. First, cheaps(α) is the latest step such
that cs([1, cheaps(α)]) ≤ mα. Moreover, expans(b) is the latest step such
that the sequence [1, expans(b)] is b-expanding from s. Analogously, we define
cheapt(α) and expant(b) to be the smallest exploration steps such that
ct([cheapt(α), d(s, t)]) ≤ mα and [expant(b), d(s, t)] is b-expanding from t, respec-
tively. If expant(b) ≤ expans(b), we say that the sequence [expant(b), expans(b)]
is a b-expansion overlap of size expans(b) − expant(b) + 1. See Fig. 1 for a visu-
alization of these concepts. Note that the definition of expans (reps. expant)
cannot be relaxed to only require expansion behind cheaps (resp. cheapt), as in
that case an existing expansion overlap no longer implies logarithmic distance
between s and t. This allows for the construction of instances with linear running
time. To simplify notation, we often omit the parameters α and b as well as the
subscript s and t if they are clear from the context. Note that cheaps or cheapt

is undefined if cs(1) > mα or ct(d(s, t)) > mα. Moreover, in some cases expanv

may be undefined for v ∈ {s, t}, if the first exploration step of the corresponding
sequence is not b-expanding. Such cases are not relevant in the remainder of this
paper.

Overview of Our Results. Now we are ready to state our results. Our first result
(Theorem 1) shows that for b > 1 we obtain sublinear running time if the
expansion overlap has size at least Ω(log m). Note that this already motivates
why the two steps expans and expant and the resulting expansion overlap are of
interest.

The logarithmic expansion overlap required for the above result is of course
a rather strong requirement that does not apply in all cases where we expect
expanding search spaces to speed up bidirectional BFS. For instance, the expan-
sion overlap is at most the distance between s and t, which might already be too
small. This motivates our second result (Theorem 2), where we only require an
expansion overlap of sufficient relative length, as long as the maximum expan-
sion is at most a constant factor of the minimum expansion b. Additionally,
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we make use of the fact that cheaps and cheapt can give us initial steps of
the search that are cheap. Formally, we define the (α-)relevant distance as
dα(s, t) = cheapt − cheaps −1 and require expansion overlap linear in dα(s, t),
i.e., we obtain sublinear running time if the expansion overlap is at least c·dα(s, t)
(see also Fig 1) for some constant c.

Finally, in our third result (Theorem 3), we relax the condition of Theorem
2 further by allowing expansion overlap that is sublinear in dα(s, t) or even
non-existent. The latter corresponds to non-positive expansion overlap, when
extending the above definition to the case expant > expans. Specifically, we
define S1 = expans, S2 = cheapt − expans −1, T1 = d(s, t) − expant +1, and
T2 = expant − cheaps −1 (see Fig. 2) and give a bound for which values of

ρ =
max{S2, T2}
min{S1, T1} ,

sublinear running time can be guaranteed. We write ρs,t(α, b) if these parameters
are not clear from context. This bound is tight (see Lemma 7), i.e., for all larger
values of ρ we give instances with linear running time.

3.2 Large Absolute Expansion Overlap

We start by proving sublinear running time for a logarithmic expansion overlap.

Theorem 1. For parameter b > 1 let s, t ∈ V be a start–destination pair with
a b-expansion overlap of size at least c logb(m) for a constant c > 0. Then
cbi(s, t) ≤ 8 logb(2m) · b2

b−1 · m1−c/2.

Proof Sketch. We assume the search meets in the middle of the expansion overlap
and note that there are at least c

2 logb(m) more b-expanding layers behind the
last explored layer. The cost of these layers is high enough that this lets us derive
the stated sublinear bound on the cost of the last layer compared to the number
of edges of the graph. See the full version for a complete proof. �	

3.3 Large Relative Expansion Overlap

Note that Theorem 1 cannot be applied if the length of the expansion overlap
is too small. We resolve this in the next theorem, in which the required length
of the expansion overlap is only relative to α-relevant distance between s and t,
i.e., the distance without the first few cheap steps around s and t. Additionally,
we say that b+ is the highest expansion between s and t if it is the smallest
number, such that there is no sequence of exploration steps that is more than
b+-expanding from s or t.

Theorem 2. For parameters 0 ≤ α < 1 and b > 1, let s, t ∈ V be a start–
destination pair with a b-expansion overlap of size at least c · dα(s, t) for some
constant c > 0 and assume that b+ ≥ b is the highest expansion between s and
t. Then cbi(s, t) ∈ Õ (

m1−ε
)
for ε = c(1−α)

logb(b
+)+c > 0.
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Proof Sketch. The proof works via a case distinction on the size of the expansion
overlap. Either, it is large enough to apply Theorem 1. Otherwise, the number of
layers is small enough that even if their cost grows with a factor b+ per step, the
overall cost will be sublinear. See the full version of this paper for the complete
proof. �	

Note that Theorem 2 does not require expant > cheaps or expans < cheapt,
i.e., the expansion overlap may intersect the cheap prefix and suffix. Before
extending this result to an even wider regime, we want to briefly mention a
simple corollary of the theorem, in which we consider vertices with an expansion
overlap region and polynomial degree.

Corollary 1. For parameter b > 1, let s, t ∈ V be a start–destination pair with
a b-expansion overlap of size at least c · d(s, t) for a constant 0 < c ≤ 1. Further,
assume that deg(t) ≤ deg(s) ≤ mδ for a constant δ ∈ (0, 1) and that b+ is the

highest expansion between s and t. Then cbi(s, t) ∈ Õ
(

m
1− c(1−δ)

logb(b+)+c

)
.

This follows directly from Theorem 2, using cheaps(δ) and cheapt(δ).

3.4 Small or Non-existent Expansion Overlap

Theorem 2 is already quite flexible, as it only requires an expansion overlap with
constant length relative to the distance between s and t, minus the lengths of
a cheap prefix and suffix. In this section, we weaken these conditions further,
obtaining a tight criterion for polynomially sublinear running time. In particular,
we relax the length requirement for the expansion overlap as far as possible.
Intuitively, we consider the case in which the cheap prefix and suffix cover almost
all the distance between start and destination. Then, the cost occurring between
prefix and suffix can be small enough to stay sublinear, regardless of whether
there still is an expansion overlap or not.

In the following we first examine the sublinear case, before constructing a
family of graphs with linear running time for the other case and putting together
the complete dichotomy in Theorem 3. We begin by proving an upper bound for
the length of low-cost sequences, such as [1, cheaps] and [cheapt, d(s, t)].

Lemma 4. Let v be a vertex with a b-expanding sequence S starting at v with
cost cv(S) ≤ C. Then |S| ≤ logb(C) + 1.

Proof Sketch. Follows via a similar derivation as for Lemma 2. �	
This statement is used in the following technical lemma that is needed to

prove sublinear running times in the case of small expansion overlap. Recall
from Sect. 3.1 that ρs,t(α, b) = max{S2,T2}

min{S1,T1} ; also see Fig. 2.

Lemma 5. For parameters 0 ≤ α < 1 and b > 1, let s, t ∈ V be a start–
destination pair and assume that b+ is the highest expansion between s and t and
ρs,t(α, b) < 1−α

1−α+α logb(b
+) . There are constants c > 0 and k such that if the size of

the b-expansion overlap is less than c · logb(m)−k, then there is a constant x < 1
such that cs([1, cheaps +T2]) ≤ 21−α·mx and ct([cheapt −S2, d(s, t)]) ≤ 21−α·mx.
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ts
cheaps cheaptexpant expans

S1 S2

T1T2

Fig. 2. Visualization of exploration steps and (lengths of) sequences relevant for Lem-
mas 5 and 6

Proof Sketch. Following the definitions, we can write the size of the expansion
overlap as doverlap = S1 − T2 − cheaps. We use this to derive a suitable upper
bound for S2 and T2 that we use to give a sublinear upper bound for the cost of
cs(cheaps +T2). See the full version of this paper for the complete proof. �	

This lets us prove the sublinear upper bound.

Lemma 6. For parameters 0 ≤ α < 1 and b > 1, let s, t ∈ V be a start–
destination pair and assume that b+ is the highest expansion between s and t. If
ρs,t(α, b) < 1−α

1−α+α logb(b
+) , then cbi(s, t) ∈ Õ (

m1−ε
)
for a constant ε > 0.

Proof Sketch. Similarly to the proof of Theorem 2, we obtain sublinear cost if
the size of the expansion overlap is large, via Theorem 1. Otherwise, Lemma 5
gives sublinear cost for exploration sequences around s and t. If these sequences
intersect, sublinear cost follows immediately. Otherwise, sublinear cost follows
via direct application of Theorem 2, as the expansion steps between the consid-
ered sequences are b-expanding both from s and from t. See the full version of
this paper for the complete proof. �	

The following lemma covers the other side of the dichotomy, by proving a
linear lower bound on the running time for the case where the conditions on ρ in
Lemma 6 are not met. The rough idea is the following. We construct symmetric
trees of depth d around s and t. The trees are b-expanding for (1−ρ)d steps and
b+-expanding for subsequent ρd steps and are connected at their deepest layers.

Lemma 7. For any choice of the parameters 0 < α < 1, b+ > b > 1, ρs,(α, b) ≥
1−α

1−α+α logb(b
+) there is an infinite family of graphs with two designated vertices

s and t, such that in the limit cheaps(α), cheapt(α), expans(b), and expant(b)
fit these parameters, b+ is the highest expansion between s and t and cbi(s, t) ∈
Θ(m).

This lets us state a complete characterization of the worst case running time
of bidirectional BFS depending on ρs,t(α, b). It follows directly from Lemma 6
and Lemma 7.

Theorem 3. Let an instance (G, s, t) be a graph with two designated vertices,
let b+ be the highest expansion between s and t and let 0 < α < 1 and b > 1
be parameters. For a family of instances we have cbi(s, t) ∈ O(m1−ε) for some
constant ε > 0 if ρs,t(α, b) < 1−α

1−α+α logb(b
+) and cbi(s, t) ∈ Θ(m) otherwise.



108 T. Bläsius and M. Wilhelm

0

1000

2000

3000

4000

-1.0 -0.5 0.0 0.5 1.0
expansion overlap / dα(s, t)

co
un

t

Estimated exponent

linear (x > 0.85)

between

sublinear (x < 0.8)

(a) Distribution of parameter c of The-
orem 2 for b = 2 and α = 0.1 for graphs

0.25

0.50

0.75

1.00

0.5 0.6 0.7 0.8 0.9 1.0
Exponent by Theorem 2

E
st
im

at
ed

ex
po

ne
nt

lo
g m

(ĉ
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Fig. 3. Empirical validation of Theorem 2.

4 Evaluation

We conduct experiments to evaluate how well our concept of expansion cap-
tures the practical performance observed on real-world networks. For this, we
use a collection of 3006 networks selected from Network Repository [2,9]. The
data-set was obtained by selecting all networks with at most 1M edges and com-
prises networks from a wide range of domains such as social-, biological-, and
infrastructure-networks. Each of these networks was reduced to its largest con-
nected component and multi-edges, self-loops, edge directions and weights were
ignored. Finally, only one copy of isomorphic graphs was kept. The networks
have a mean size of 12386 vertices (median 522.5) and are mostly sparse with a
median average degree of 5.6.

4.1 Setup and Results

For each graph, we randomly sample 250 start–destination pairs s, t. We mea-
sure the cost of the bidirectional search as the sum of the degrees of explored
vertices. For each graph we can then compute the average cost ĉ of the sampled
pairs. Then, assuming that the cost behaves asymptotically as ĉ = mx for some
constant x, we can compute the estimated exponent as x = logm ĉ.

We focus our evaluation on the conditions in Theorem 2 and Theorem 3.
For this, we compute expans(b), expant(b), cheaps(α), and cheapt(α) for each
sampled vertex pair for all values of α, by implicitly calculating the values of α
corresponding to cheap sequences of different length.

By Theorem 2 a vertex pair has asymptotically sublinear running time, if the
length of the expansion overlap is a constant fraction of the relevant distance
dα(s, t). We therefore computed this fraction for every pair and then averaged
over all sampled pairs of a graph. Note that for any graph of fixed size, there is
a value of α, such that cheaps(α) ≥ cheapt(α). We therefore set α ≤ 0.1 in order
to not exploit the asymptotic nature of the result. Also we set the minimum
base of the expansion b to 2. Outside of extreme ranges, the exact choice of



Deterministic Performance for Bi-BFS on Real-World Networks 109

0.25

0.50

0.75

1.00

-0.3 0.0 0.3
1

1+ρ
1

1+ρmax

E
st
im

at
ed

ex
po

ne
nt

lo
g m

(ĉ
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Fig. 4. Relationship between estimated exponent and δρ = 1/(1 + ρs,t(α, b) − 1/(1 +
ρmax) for b = 2. Theorem 3 predicts sublinear running time for all points with δρ > 0.

these parameters makes only little difference. Figure 3a shows the distribution of
the relative length of the expansion overlap for different values of the estimated
exponent. It separates the graphs into three categories; graphs with estimated
exponent x > 0.85 ((almost) linear), with x < 0.8 (sublinear) and the graphs
in between. We note that the exact choice of these break points makes little
difference.

Note that Theorem 2 states not only sublinear running time but actually
gives the exponent as 1− c(1−α)

2(logb(b
+)+c) . Figure 3b shows the relationship between

this exponent (averaged over the (s, t)-pairs) and the estimated exponent. For
each sampled pair of vertices we chose α optimally to minimize the exponent.
This is valid even for individual instances of fixed size, because even while higher
values of α increase the fraction of the distance that is included in the cheap
prefix and suffix, this increases the predicted exponent.

Finally, Theorem 3 proves sublinear running time if ρs,t(α, b) ≤
1−α

1−α+α logb(b
+) . To evaluate how well real-world networks fit this criterion, we

computed ρs,t(α, b) for each sampled pair (s, t) as well as the upper bound
ρmax := 1−α

1−α+α logb(b
+) . Again, choosing large values for α does not exploit the

asymptotic nature of the statement, as ρmax tends to 0 for large values of α.
For each vertex pair, we therefore picked the optimal value of α, minimizing
ρmax − ρs,t(α, b) and recorded the average over all pairs for each graph. Figure 4
shows the difference between 1/(1 + ρs,t(α, b)) and 1/(1 + ρmax). This limits the
range of these values to [0, 1] and is like dividing S2 by S1 + S2 instead of S2 by
S1 in the definition of ρ.

4.2 Discussion

Both Fig. 4 and Fig. 3a show that our notion of expansion not only covers some
real networks, but actually gives a good separation between networks where the
bidirectional BFS performs well and those where it requires (close to) linear run-
ning time. With few exceptions, exactly those graphs that seem to have sublinear
running time satisfy our conditions for asymptotically sublinear running time.
Furthermore, although the exponent stated in Theorem 2 only gives an asymp-
totic worst-case guarantee, Fig. 3b clearly shows that the estimated exponent of
the running time is strongly correlated with the exponent given in the theorem.
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Abstract. Tropical (or min-plus) convolution is a well-studied algorith-
mic primitive in fine-grained complexity. We exhibit a novel connec-
tion between polyhedral formulations and tropical convolution, through
which we arrive at a dual variant of tropical convolution. We show this
dual operation to be equivalent to primal convolutions. This leads us to
considering the geometric objects that arise from dual tropical convo-
lution as a new approach to algorithms and lower bounds for tropical
convolutions. In particular, we initiate the study of their extended for-
mulations.

1 Introduction

Given two sequences a = (a0, . . . , an) ∈ R
n+1 and b = (b0, . . . , bn) ∈ R

n+1, their
tropical convolution a ∗ b is defined as the sequence c = (c0, . . . , c2n) ∈ R

2n+1,
where

ck = min
i+j=k

ai + bj for k = 0, . . . , 2n. (1)

Other names for this operation include (min,+)-convolution, inf-convolution or
epigraphic sum. It can be equivalently formulated with a max in lieu of the min
by negating a and b point-wise.

In its continuous guise, it is a classic object of study in convex analysis (see
e.g. the monograph of Fenchel [7]). The discrete variant above has been studied
algorithmically for more than half a century, going back at least to the classic
work of Bellman and Karush [2].
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This article initiates the study of tropical convolution from the point of view
of polyhedral geometry and linear programming. This leads to a novel dual
variant of the operation. We prove that this dual convolution is equivalent to the
usual, primal tropical convolution under subquadratic reductions. This motivates
our subsequent study of the associated polyhedra.

Tropical Convolution. There is a trivial quadratic-time procedure to compute
the tropical convolution of two sequences, and significant research efforts have
been directed at improving over this upper bound. While there are o(n2)-time
algorithms for the problem [3,14], there is no known n1.99-time algorithm. More
efficient algorithms are known only in restricted special cases or relaxed models
of computation [3–5]. This has led researchers to considering the quadratic lower
bound on tropical convolution as one of the various hardness assumptions in fine-
grained complexity [6]. To wit, Cygan et al. [6] and, independently, Künnemann
et al. [11] formally conjectured the following statement to hold true:

Conjecture 1. (MinConv-Conjecture). There is no algorithm computing Eq. (1)
with a, b having integral entries of absolute value at most d in time n2−ε ·
polylog(d), for any ε > 0.

This conjecture joins the ranks of several similar conjectures (or hypotheses)
made in the same spirit. These are all part of a line of research that is often
referred to as the study of “hardness in P ,” and has seen a tremendous amount
of progress in recent years.

For example, a classic hardness assumption in computational geometry is
that the well-known 3-Sum problem cannot be solved in truly subquadratic time.
More recent examples include the All-Pairs-Shortest-Paths (APSP) conjecture
(where the assumption is that no truly subcubic algorithms exist) [16] or the
Orthogonal-Vectors problem. The latter gives a connection of these polynomial-
time hardness assumptions to the world of exact exponential-time hardness and
its main hypothesis, the Strong Exponential-Time Hypothesis (SETH) [10,15].

Polyhedral Formulations. It is a fundamental technique of combinatorial opti-
mization to model the solution space of a problem as polyhedra (which are
solution sets of finite systems of linear inequalities over the reals or the ratio-
nals), or rather, polytopes (bounded polyhedra). In this way, polytopes become
a model of computation, which necessitates endowing them with a complexity
measure. This is usually done using their extension complexity. For a polytope P ,
this is the minimum of the number of inequalities needed to describe any poly-
tope that maps to P under linear projections (so-called extended formulations).
There is a large body of work on extended formulations of various fundamental
problems of combinatorial optimization, including recent breakthroughs on lower
bounds [9,13]. On the other hand, surprisingly small extended formulations do
exist for polyhedral formulations of some combinatorial objects, for instance for
spanning trees in minor-closed graph classes, as shown by Aprile et al. [1] (see
also [8]).

Our Contribution. While for many combinatorial optimization problems, there
is an obvious associated polytope such that optimizing over the polytope cor-
responds to solving the combinatorial problem, this is not the case for tropical
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convolutions. It is a natural question to ask whether there is even a way to come
up with such a polytope, and if so, how the resulting optimization problem
relates to the usual tropical convolution.

In this article, we answer this question affirmatively by exhibiting a novel
connection between polyhedral geometry and tropical convolutions. This con-
nection can be seen from a variety of perspectives.

On the one hand, from the point of view of fine-grained complexity, we intro-
duce a new, dual variant of tropical convolution and show its equivalence to
primal convolutions under subquadratic reductions. This can be interpreted as
a new avenue for designing fast algorithms and lower bounds for primal convo-
lutions.

On the other hand, the polyhedral formulations we use to derive this new
problem may provide structural insights into tropical convolutions, and point
towards interesting special cases worth studying. In particular, extended for-
mulations for these polyhedra might shed light on the complexity of tropical
convolutions.

Finally, we find the geometric objects that arise from dual tropical convolu-
tion to be interesting in their own right.

Proofs of the claims in this article and all formal details will be made available
in the full version.

2 Polyhedral Formulations and Dual Convolutions

There is a straightforward way of formulating the solution of the defining Eq. (1)
as a linear program in variables x0, . . . , x2n, given a and b:

max
2n∑

i=0

xi subject to xi+j ≤ ai + bj for i, j = 0, . . . , n. (2)

As it is, this program captures very little of the original problem. It is not helpful
algorithmically, as writing it down amounts to a brute-force computation of all
terms considered in Eq. (1). It is also not interesting geometrically, since the
polytope described by these inequalities is just a translated orthant with a vertex
at a ∗ b.

A Better Formulation. In order to model the geometric structure of Eq. (1) more
faithfully, we can generalize this program from fixed to variable a and b. Consider
the polyhedron Pn defined on (x, y, z)-space as

Pn = {(x, y, z) ∈ R
2n+1 × R

n+1 × R
n+1 | xi+j ≤ yi + zj for i, j = 0, . . . , n}.

(3)

While this formulation is more expressive geometrically, it is still not clear how
to make use of Pn algorithmically: The optimization problem of maximizing∑2n

i=0 xi over Pn is unbounded, and in order to incorporate an instance of Eq. (1),
we need to consider the intersection of Pn with the hyperplanes defined by yi = ai

and zi = bi, which brings us back to the previous formulation.
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The Dual Approach. However, the dual of the linear program resulting from the
intersection of Pn with these hyperplanes sheds more light on the situation. It
can be written down in the variables μi, νj , λi,j with i, j = 0, . . . , n as

min
n∑

i=0

aiμi +
n∑

j=0

bjνj

subject to λ ≥ 0 and
∑

i+j=k

λi,j = 1 for all k = 0, . . . , 2n,

μi =
n∑

j=0

λi,j , νj =
n∑

i=0

λi,j , for all i, j = 0, . . . , n.

(4)

Note that a point in the polyhedron defined by system (4) is fully determined
by its λ-coordinates. It is therefore sensible geometrically to just discard μ and
ν whenever considering the system (4) as a polytope. Let us collect the objects
we have encountered so far in a definition.

Definition 1 (Convolution polyhedra). The polyhedron Pn ⊆ R
4n+1 is

called the primal convolution polyhedron of order n. The projection of the poly-
hedron defined by the inequalities in (4) to λ-space is called the dual convolution
polyhedron of order n and is denoted as Dn ⊆ R

(n+1)×(n+1).

We prove later that dual convolution polyhedra are bounded and integral.
This justifies understanding the dual variable λi,j as a decision variable that
indicates whether or not the k-th entry ck of the result in the tropical convolution
is decomposed by the solution into ck = ai + bj with i+ j = k. Correspondingly,
μi indicates how often ai is chosen as part of any sum ci+j = ai + bj for some
j, and similarly, νj records the multiplicity of bj as part of a sum ci+j = ai + bj

for some i.

Projections to Multiplicities. Now, the program (4) has the desirable property
that the inputs a and b are reflected only in the target functional, and not in the
definition of the underlying polyhedron. Unfortunately, this comes at the price
of introducing a quadratic number of variables λi,j into the program. However,
none of the λ-variables directly enter into the objective function, but only via
the coordinates μ and ν. Optimizing over Dn as in (4) is therefore equivalent to
optimizing over the projection of the dual convolution polyhedron to (μ, ν)-space.

Definition 2 (Multiplicity polytope). The projection of the dual convolution
polyhedron to μ and ν is called the multiplicity polytope of order n. We denote
it with Mn ⊆ R

2n+2.

Note that it is a well-known fact of polyhedral geometry that the projection of
a polyhedron is a polyhedron. Observe further that multiplicity polytopes are
bounded and integral, as dual convolution polyhedra are bounded and integral,
as we are yet to see. Hence, multiplicity polytopes are indeed polytopes.
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Dual Tropical Convolution. This allows us to formulate a dual optimization
variant of tropical convolution:

Definition 3 (Dual tropical convolution). Given a, b ∈ R
n, dual tropical

convolution is the problem of solving the following linear optimization problem:

min aT μ + bT ν subject to (μ, ν) ∈ Mn. (5)

We refer to μ and ν as multiplicities.

In more combinatorial terms, we want to select, for each ai and each bj , how
often it has to appear in order to obtain an optimal solution for the tropical
convolution a ∗ b.

Fine-Grained Complexity. Since Mn is a projection of Dn, every pair of mul-
tiplicities (that is, every point in Mn) corresponds to some point in Dn, which
projects to this pair. Now, suppose we could solve the dual tropical convolution
in time n1.9. Does this imply, say, an n1.999-time algorithm for tropical convolu-
tion, that is: can we efficiently lift the multiplicities in Mn to a solution in Dn,
and hence, a solution for Eq. (1)? We show below that this is indeed the case.
As our main contribution to the fine-grained complexity of tropical convolution,
we show:

Theorem 1. If there is an algorithm that solves dual tropical convolution on
numbers of absolute value at most d in time n2−δ · polylog(d) for some δ > 0,
then there is an algorithm that solves primal tropical convolution on numbers of
absolute value at most d in time n2−ε · polylog(d) for some ε > 0.

In order to prove Theorem 1, we give a fine-grained Turing reduction that works,
roughly speaking, as follows. Given an instance (a, b) of primal tropical convolu-
tion, we use the purported algorithm for solving dual convolutions as an oracle.
We first massage the instance into a more useful form, where every entry of a
and b is triplicated and then carefully perturbed to ensure uniqueness of solu-
tions. We then split this modified instance into small pieces, and we query the
oracle to dual convolution on instances obtained by replacing one of these pieces
by infinite (rather, sufficiently large) values. This way, we can determine succes-
sively which pairs of a and b are matched together to produce the final solution
c = a ∗ b.

We note that the other direction, that is, reading off the multiplicities from
a solution to primal tropical convolution as witnessed by pairs i, j decomposing
each k as k = i + j, is trivial. However, in fine-grained complexity, tropical
convolution is usually considered just as the task of outputting the vector a ∗ b,
not giving the decomposition of indices. Even in this setting, we show that a
converse of Theorem 1 holds:

Theorem 2. If there is an algorithm that outputs a ∗ b given a, b ∈ Z
n+1 con-

taining numbers of absolute value at most d in time n2−ε · polylog(d) for some
ε > 0, then there is an algorithm that solves dual tropical convolution on numbers
of absolute value at most d in time n2−δ · polylog(d) for some δ > 0.
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Theorems 1 and 2 in turn motivate the study of Mn as a geometric object.
If it turned out that Mn can be described in some simple manner that allows
the corresponding linear program to be solved in time n1.99, this would imply a
truly subquadratic algorithm for tropical convolution.

An Equivalent Approach. We now turn to another formulation of tropical con-
volutions in terms of convex optimization, which we show to be equivalent to
the approach laid out above. It is clear that a solution of Eq. (1) is encoded, for
each k, by a choice of i, j such that i + j = k. It is apparent from the definition
(and made explicit in Eq. (2)) that in order to decide optimality of a candidate
solution (that is, a set of pairs (i, j)), it is enough to decide whether the sum of
the entries decomposed in this way is optimal. Formally, this defines a function

σn : Rn × R
n → R, (a, b) �→

2n∑

k=0

ck, where c = a ∗ b. (6)

We can now ask if there is a polytope such that optimizing in direction of (a, b)
over this polytope yields σn(a, b). Naively, this approach for computing σn can
be encoded using the following set:

Definition 4. We denote with Σn the following infinite intersection of half-
spaces:

Σn =
⋂

a,b∈Rn

{(x, y) ∈ R
n+1 × R

n+1 | aT x + bT y ≥ σn(a, b)}. (7)

Since it is an intersection of half-spaces, Σn is a convex set. Furthermore, by
construction, it has the property that

min
(x,y)∈Σn

aT x + bT y ≥ σn(a, b) (8)

holds for all a, b ∈ R
n+1. However, if we were agnostic about the approach via Pn

and Dn from before, it is neither clear whether or not equality holds in Eq. (8),
nor if Σn can be written as a finite intersection of half-spaces. In fact, both
statements hold. Even more, we show the following:

Theorem 3. Σn is equal to the multiplicity polytope of order n, that is, Σn =
Mn for all n.

Given the properties of Mn, Theorem 3 can be shown by using strong duality and
the fact that polytopes are determined by their so-called supporting functions.
However, in order to actually describe how one would arrive at Theorem 3 from
first principles, we proceed to show Mn = Σn via a decomposition of Dn into a
Minkowski sum of simplices of varying dimensions, and then arguing about the
support functions of appropriate projections.

Theorem 3 means that optimizing over Σn is the same as optimizing over
Mn, which is a polytope (hence all minima exist). As an immediate consequence,
we obtain:
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Corollary 1. For all a, b ∈ R
n, the following holds:

min
(x,y)∈Σn

aT x + bT y = σn(a, b). (9)

Reading Theorem 3 as a statement about Mn gives us a representation of Mn as
an intersection of half-spaces, albeit infinite. Conceptually, this justifies under-
standing Mn as the natural polytope capturing tropical convolutions in yet a
different way than the primal-dual approach above.

2.1 Extended Formulations

In light of Theorem 1, it is a natural approach to study the structure of Mn in
order to obtain insights into the complexity of tropical convolutions. In partic-
ular, we are interested in determining the complexity of the polytope Mn as a
surrogate quantity for the complexity of tropical convolutions. Indeed, the com-
plexity measure used on polytopes, as mentioned above, is usually their extension
complexity. In the literature, this has been used as a formal model of computation
that corresponds to dynamic programming based approaches to combinatorial
problems [12]. Insofar, lower bounds on the complexity Mn translate to lower
bounds in restricted computational models on tropical convolution.

Yannakakis’ Algebraic Bound. Recall that the extension complexity of a poly-
tope P is the smallest number of inequalities needed to describe any polytope
Q that maps to P under linear projections, and is usually denoted as xc(P ).
Such polytopes Q are called extended formulations of P . While this quantity by
itself may seem rather intangible, the seminal work of Yannakakis [17] provides
an algebraic approach to lower-bounding xc(P ). It is based on slack matrices of
the polytope P , which we define in a general form as follows:

Definition 5 (Slack matrix). Let V = {v1, . . . , vt} ⊆ R
N , and let L =

{�1, . . . , �m} be a set of affine linear functionals �j : RN → R such that �i(vj) ≥ 0
holds for all i, j. Then, the matrix S ∈ R

m×t defined through Si,j = �i(vj) is
called the slack matrix of V with respect to L.

The crucial quantity related to these matrices studied by Yannakakis is the
following:

Definition 6 (Non-negative rank). For a matrix with non-negative entries
M ∈ R

m×t, its non-negative rank rk+(M) is defined as the smallest num-
ber r such that there exist non-negative column vectors u1, . . . , ur ∈ R

m
+ and

v1, . . . , vr ∈ R
t
+ such that M =

∑r
i=1 uiv

T
i holds.

An extreme point (or vertex ) of a polytope is one that cannot be written as a
convex combination of other points of the polytope. One connection that Yan-
nakakis showed is the following:

Theorem 4 ([17]). Let V be the set of vertices of a polytope P . Let S be the slack
matrix of V with respect to some functionals L. Then, the following inequality
holds:

rk+(S) ≤ xc(P ). (10)
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For an appropriate choice of V and L, equality can be shown to hold in Eq. (10).
Since we are interested in lower bounds, this is not relevant to us.

For a polytope P , the set L is usually given through slack functionals asso-
ciated with a description of P as a system of linear inequalities. Concretely,
suppose that P is represented as P = {x | Ax ≤ b} ⊆ R

N for some matrix
A ∈ R

m×N and b ∈ R
m, and let ai be the i-th row of A. Then, the linear func-

tionals �i are given through �i : x �→ bi − aT
i x. Thus, by definition, �i(p) ≥ 0 for

all p ∈ P . In particular, this holds when p is a vertex of P .
To lower-bound rk+(S), Yannakakis suggested an approach based on non-

deterministic communication complexity, which only features in this article in
its form as rectangle-coverings as follows.

Definition 7 (Rectangle-covering number). For a matrix with non-
negative entries M ∈ R

m×t, let supp(M) ⊆ [m] × [t] be the set of indices where
M is non-zero. The rectangle covering number rc(M) of M is defined as the
smallest number r such that there are sets L1, . . . , Lr ⊆ [m] and R1, . . . , Rr ⊆ [t]
that satisfy supp(M) =

⋃r
i=1 Li ×Ri. The cartesian products of sets Li ×Ri are

referred to as combinatorial rectangles.

Non-negativity of the matrix M then implies:

rc(M) ≤ rk+(M), (11)

which together with Eq. (10) implies a lower bound of rc(S) on xc(P ).
It took some twenty years until this elegant insight of Yannakakis came to

bear fruit. Indeed, in their celebrated work, Fiorini et al. [9] were first to prove
exponential rectangle-covering lower bounds on the slack matrix of a polytope
corresponding to a problem in combinatorial optimization, namely the Traveling
Salesman Problem. Their proof goes via the so-called correlation polytope.

Simultaneously, a central open question at the time revolved around the
extension complexity of the polytope corresponding to matchings in the complete
graph on n vertices. One can show quite easily that the rectangle-covering bound
for all slack matrices of this polytope is polynomially bounded in n. However, this
does not imply polynomial extension complexity, and the existence of extended
formulations of polynomial size for the matching polytope was not known.

In a breakthrough result, Rothvoss [13] finally settled this issue, proving an
exponential lower bound on the extension complexity of the matching polytope.
The central ingredient of his proof is a direct lower bound for the non-negative
rank of slack matrices instead of rectangle-coverings.

Rectangle Coverings for the Multiplicity Polytope. This article studies the exten-
sion complexity of Mn through its rectangle-covering bounds. In fact, we give
results that suggest that arguments along the lines of Rothvoss’ proof may be
necessary if we were to prove lower bounds on xc(Mn) (or rather, the related
polytope Sn that we encounter below).

By its definition as a projection of Dn, we have:
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Proposition 1. The extension complexity of the multiplicity polytope Mn is
bounded as xc(Mn) ≤ O(n2).

Furthermore, we see later that the “hard part” of Mn is not to formulate which
μ or ν appear in some pair in Mn, but when a pair (μ, ν) appears together :

Proposition 2. Let Nn be the projection of Mn to ν-coordinates. That is, Nn =
{ν | (μ, ν) ∈ Mn for some μ}. Then, xc(Nn) ≤ O(n).

The proof proceeds by first decomposing Mn into a Minkowski sum of two poly-
topes that correspond to a truncated version of tropical convolution. For these
truncated polytopes, one can then show a linear upper bound on their exten-
sion complexity. This goes by proving that all ν-projections of the truncated
polytopes arise through a sequence of elementary operations from some initial
point.

One major obstacle to proving bounds on xc(Mn) is that we have no useful
combinatorial description of the extreme points of Mn available (or the integral
points of Mn, for that matter). We therefore have to transform Mn to a closely
related polytope:

Definition 8 (Polar convolution polytopes). Let {(ei, ej , ek)}i,j,k be the
standard basis of R

n+1 ⊕ R
n+1 ⊕ R

2n+1. We define si,j = (ei, ej , ei+j) for all
i, j = 0, . . . , n. The polar convolution polytope Sn is defined as

Sn = conv{si,j}i�=j ⊆ R
n+1 ⊕ R

n+1 ⊕ R
2n+1. (12)

Here, conv X designates the convex hull of the set X. The projected polar con-
volution polytope Sn = π(Sn) ⊆ R

2n+1 is the image of Sn under the projection

π : (ei, ej , ek) �→ ei + ej + ek. (13)

The name of Sn is derived from some formal semblance it carries to the so-called
polar dual of Mn. However, this is not a direct correspondence, and when arguing
about Sn, we do not make use of results from the theory of polarity.

Theorem 5. For the extension complexity of Mn and Sn, the following holds:

xc(Mn) ≤ xc(Sn) + O(n). (14)

Theorem 5 can be seen by realizing Mn as an intersection of a radial cone of Sn

with translates of the coordinate hyperplanes.
While the problem with determining xc(Mn) was that we have no description

of its vertices available, the problem with Sn is now, dually, that we do not have a
description of its facets (that is, an irredundant set of inequalities describing Sn),
although we know its vertices. We give some evidence for the possibility that,
contrary to what one might expect from the MinConv-conjecture, xc(Sn) ≤ o(n2)
could hold.
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Valid Inequalities and a Slack Matrix. As a bit of notation for the following, we
call an inequality that holds for all points of a polyhedron valid for the polyhe-
dron. If, furthermore, the inequality is tight for some point of the polyhedron,
we call this inequality face-defining. In order to lower-bound xc(Sn), the first
step is to exhibit face-defining valid inequalities for Sn that allow us to prove
lower bounds on the non-negative rank of the corresponding slack matrix.

We take inspiration from the inequalities defined by Fiorini et al. [9] for the
correlation polytope: They start with trivially valid quadratic inequalities instead
of linear inequalities. These quadratic inequalities are then reduced modulo equa-
tions on the vertices of the correlation polytope, which then yield linearized valid
inequalities.

The quadratic inequalities used by Fiorini et al. are an encoding of those
pairs (A,B) of subsets of [n] such that |A ∩ B| �= 1. Their exponential lower
bound then follows from the fact that this relation (interpreted as the support
of a non-negative matrix) has high rectangle-covering number. In the same vein,
we can encode the property that two pairs (i, j), (k, �) of size two of [n] satisfy
|(i, j)∩ (k, �)| �= 1 (which is to be read as meaning (i, j) and (k, �) agree in either
none or both of the coordinates) as a quadratic inequality on the variables of
Sn. namely as:

(xk + y� − 1)2 ≥ 0. (15)

Here, we assume the linear functionals on R
n+1 ⊕R

n+1 ⊕R
2n+1 to be endowed

with a standard dual basis in coordinates x, y, z for each of the respective direct
summands, respectively.

Obviously, Ineq. (15) is valid for Sn (after all, it is valid on all of R
n+1 ⊕

R
n+1 ⊕ R

2n+1 ⊃ Sn). It is tight precisely at those vertices si,j of Sn that agree
in either both or no coordinates.

Since Sn is a 0/1-polytope, the vertices of Sn satisfy x2
k = xk and y2

� = x�.
By definition of Sn, the vertices furthermore satisfy xky� ≤ zk+�. Therefore, we
may linearize the left-hand side of the quadratic inequality as

x2
k + y2

� + 1 + 2xky� − 2xk − 2y� ≤ 2zk+� − xk − y� + 1

and obtain

2zk+� ≥ xk + y� − 1 (16)

as a valid linear inequality for Sn, which is again tight at si,j if and only if (i, j)
and (k, �) agree in both or no coordinates, and is hence face-defining.

One may now suspect that the exponential lower bound for subsets of all
sizes translates to quadratic lower bounds for subsets of size two. We see later,
however, that this is not true in terms of rectangle coverings. For k, � = 0, . . . , n,
let

λk,� : Rn+1 ⊕ R
n+1 ⊕ R

2n+1 → R, (x, y, z) �→ 2zk+� − xk − y� + 1

be the corresponding slack functional.
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Theorem 6. The slack matrix Λn of Sn with respect to the slack functionals
λk,� has

rc(Λn) ≤ O(n).

The proof uses a folklore bound on the disjointness relation on sets of fixed size,
and the fact that the (n, 2)-Kneser graph has clique-covers of linear size.

2.2 Open Questions

With this article, we establish a new connection between fine-grained complexity
and polyhedral geometry. While we have initiated the study of its main protag-
onists, this connection leads to an abundance of further questions that, despite
our best efforts, could not be fully resolved.

The most pertinent question is to give a combinatorial description of the
facets and vertices of Mn and Sn, and use this description to give either a
lower bound or a better upper bound on xc(Mn). We remain agnostic as to
whether xc(Mn) is indeed lower bounded by Ω(n2). The only data we do have
on xc(Mn) is a linear upper bound on the rectangle covering number of some
slack matrix of the related polytope Sn, which, if anything, points in the opposite
direction. On the other hand, the fact that the quadratic lower bound on the
computational complexity of tropical convolution is a widely believed conjecture
lends credibility to this bound also holding in the polyhedral model.

Furthermore, beyond mere extension complexity, various questions about the
complexity of optimizing over Mn arise. In particular, it might be interesting to
study the extension complexity of the radial cones of Mn as well as the structure
of the circuits of Mn, which are quantities directly related to the complexity of
optimizing over Mn.
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Abstract. We analyze the proportional online knapsack problem with
removal and limited recourse. The input is a sequence of item sizes; a
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In contrast to the classical online knapsack problem, packed items can
be removed and a limited number of removed items can be re-inserted
to the knapsack. Such re-insertion is called recourse. Without recourse,
the competitive ratio is known to be approximately 1.618 (Iwama and
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and 1 + 1/(k + 1). Motivated by the observation that the lower bounds
heavily depend on the fact that the online algorithm does not know the
end of the input sequence, we look at a scenario where an algorithm is
informed when the instance ends. We show that with this information,
the competitive ratio for a constant number of k ≥ 2 uses of recourse
can be improved to strictly less than 1 + 1/(k + 1). We also show that
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1 Introduction

In the classical knapsack problem, we are given a knapsack of capacity B and a
set of items, each of which has a size and a value. The goal is to pack a subset
of items such that the total size does not exceed the capacity B, maximizing
the value of the packed items. In the proportional variant of the problem (also
called unweighted or simple knapsack problem), the size and the value of each
item coincide. Stated as an online problem, B is given upfront, but the items are
revealed one by one in a sequence of requests. The online algorithm has to decide
whether the requested item is packed or discarded before the subsequent item
arrives and cannot revoke the decision. To measure the quality of the solution,
we use the competitive ratio, i.e., the value attainable by an optimal offline
algorithm divided by the value of the solution computed by the online algorithm
in the worst case. It is well-known that, even in the proportional variant, no
online algorithm for the online knapsack problem achieves a bounded competitive
ratio [20]. This indicates that the classical notion of online algorithms is overly
restrictive for the knapsack problem. Unless otherwise stated, we focus on the
proportional variant in this paper.

In the literature, several ways of relaxing the online requirements have been
considered for various online problems, leading to so-called semi-online problems
[7,10]. Such semi-online problems enable to study the effect of different degrees
of online behavior on the hardness of computational problems. Semi-online prob-
lems can be roughly divided into two classes: On the one hand, one can equip
the algorithm with some extra information about the instance, e.g., the size of
an optimal solution. On the other hand, one can relax the irrevocability of the
algorithm’s decisions. Several models from the second class have already been
considered for the online knapsack problem: In the model of delayed decisions
[23], one grants the online algorithm the right to postpone its decisions until
they are really necessary. This means that the algorithm is allowed to temporar-
ily pack items into the knapsack as long as its capacity allows and to remove
them later on to avoid overpacking of the knapsack [17]. In the reservation model,
the algorithm has the option to reserve some items in an extra storage at some
extra cost, with the possibility of packing them into the knapsack later [2].

In this paper, we consider a semi-online model called recourse. In the model
of recourse, the algorithm is allowed to withdraw a limited number of its pre-
vious decisions. Recourse has mainly been studied for the Steiner tree problem,
MST, and matchings [1,6,12,13,16,21,22]. In case of the knapsack problem, we
distinguish two types of recourse: (i) An item that has been selected previously
is discarded (to make space for a new item); and (ii) an item was previously
discarded and is added afterwards. The second type of recourse is costlier than
the first type, as an unlimited number of items has to stay at disposal.

Applying the first type of recourse directly to the classical online knapsack
problem does not get us too far: The same hard example as for the problem
without recourse, i.e., one instance consisting of the items ε and 1 (for some
arbitrarily small ε > 0) and another one consisting of the ε only, also proves
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Table 1. Our results on the competitive ratio for online knapsack with removal and
limited recourse. Here, f(k) = 2/(

√
k2 + 6k + 5 − k − 1).

Upper bound Lower bound

1 recourse in total 3
2

(Theorem 2) 3
2

(Theorem 1)
k ≥ 2 recourses in total 1√

3−1
≤ 1.367 (Theorem 3) 1 + 1

k+1
(Theorem 1)

k recourses per step f(k) ≤ 1 + 1
k+1

(Theorem 4) f(k) ≥ 1 + 1
k+2

(Theorem 5)

Table 2. Our results on the competitive ratio for online knapsack with removal
and limited recourse, given information on the end of an instance. Here, f(k) =
2/(

√
k2 + 6k + 5 − k − 1).

Upper bound Lower bound

k ≥ 2 recourses in total f(k) ≤ 1 + 1
k+1

(Theorem 6)
1 recourse per step 4

3
(Theorem 8) 18

5+
√
133

≥ 1.088 (Theorem 7)

an unlimited competitive ratio here since discarding the first item makes the
instance stop and does not leave room for any recourse.

We combine the option of unlimited removal with limited recourse, that is, a
limited number of re-packings of discarded items. The resulting upper and lower
bounds on the competitive ratio are shown in Table 1. Classically, in the online
model, upon arrival of an item, the algorithm does not know whether this will
be the last item in the sequence or not. Besides analyzing this standard model,
we additionally consider various ways of communicating information about the
end of the sequence to the algorithm. The problem exhibits a surprisingly rich
structure with respect to this parameter. Our respective bounds are shown in
Table 2. Due to space constraints, some proofs are omitted in this paper.

1.1 Preliminaries

In the online knapsack problem OnlineKP used in this paper, an instance is
given as a sequence of items I = (x1, . . . , xn). For convenience of notation, we
identify an item with its size. In each step 1 ≤ i ≤ n, an algorithm receives
the item xi > 0. At this point, the algorithm has no knowledge of the items
(xi+1, . . . , xn) and no knowledge of the length n of the instance. It maintains a
knapsack S ⊆ I such that, in each step, the items in the knapsack do not exceed
the capacity of the knapsack. We normalize this size to 1 and thus assume that
xi ∈ [0, 1] for all i. All items xj for j < i that are not in S are considered to be
in a buffer of infinite size.

In the framework of this paper, given the item xi, an algorithm first adds
it to the knapsack S, potentially exceeding the size limit. It may then remove
any number of items from S, moving them to the buffer, and possibly return a
certain number of items from the buffer to S afterwards, expending one use of
recourse for each returned item. For simplicity, we say that the algorithm packs
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an item if it is kept in the knapsack upon its arrival, and that it discards an
item if it is immediately removed in the step of its arrival. The number of such
uses available to the algorithm will vary between various scenarios. After this
process, the condition

∑
xi∈S xi ≤ 1 must hold, i.e., the selected items respect

the capacity of the knapsack. In our algorithms, we frequently classify the items
by their sizes: For a bound b with 1/2 < b < 1, we call an item small if it is of
size at most 1 − b, medium if its size is greater than 1 − b but smaller than b,
and large if its size is at least b.

The gain gainAlg(I) of the algorithm Alg on the instance I is given as the
sum

∑
xi∈S xi of the item sizes in S after the last step n. Its strict competitive

ratio ρAlg(I) on I is defined as ρAlg(I) = gainOPT(I)/gainAlg(I). The smaller
the ratio, the better the algorithm performs. The strict competitive ratio ρAlg
of the algorithm is then defined as the worst case over all possible instances,
ρAlg = supI ρAlg(I) . This definition is often generalized to the competitive
ratio of an algorithm, which allows for a constant additive term to be added
to gainAlg(I) in the definition of ρAlg(I). However, since in OnlineKP the
optimal solution for any instance is bounded by 1, this relaxation does not add
any benefit to the analysis of this problem. We will therefore only consider the
strict version and refer to it simply as competitive ratio.

1.2 Related Work

Online problems with recourse date back to Imase and Waxman [16] who have
studied the online Steiner tree problem and utilized the benefit of a limited num-
ber of rearrangements. The number of required recourse steps was subsequently
reduced by a sequence of papers [12,13,22]. Recently, recourse was considered
for further problems, in particular online matching [1,6,21].

Many different kinds of semi-online problems have been considered in the
literature; Boyar et al. [7] give an overview of some of these. In particular, many
results on semi-online algorithms focus on makespan scheduling problems with
some extra information, starting with the work by Kellerer et al. [18]; see the
survey by Dwibety and Mohanty [10] for a recent overview of this line of research.

Many semi-online settings assume the availability of some extra informa-
tion, e.g., the total makespan in scheduling problems. In the model of advice
complexity, one tries to measure the performance of an online algorithm in the
amount of any information conveyed by some oracle that knows the whole input
in advance. This very general approach to semi-onlineness provides a powerful
tool for proving lower bounds. The model was introduced by Dobrev et al. [9] in
2008 and shortly afterwards revised by Emek et al. [11], Böckenhauer et al. [4],
and Hromkovič et al. [15].

Since then, it has been applied to many different online problems; for a survey,
see the work by Boyar et al. [7] and the textbook by Komm [19].

In this paper, we consider a slightly different kind of semi-online problems,
where the online condition is not relaxed by giving some extra information to the
algorithm, but by relaxing the irrevocability of its decisions. In one approach,
the online algorithm is allowed to delay its decisions until there is a real need
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for it. For instance, in the knapsack problem, the algorithm is allowed to pack
all items into the knapsack until it is overpacked, and only then has to decide
which items to remove. Iwama and Taketomi [17] gave the first results for online
knapsack with removal. A version in which the removal is not completely for free,
but induces some extra cost was studied by Han et al. [14]. Delayed decisions
were also studied for other online problems by Rossmanith [23] and by Chen
et al. [8]. Böckenhauer et al. [2] analyzed another semi-online version of online
knapsack which gives the algorithm a third option besides packing or rejecting
an item, namely to reserve it for possible later packing at some reservation cost.
The advice complexity of online knapsack was analyzed by Böckenhauer et al. [5]
in the normal model and later in the model with removal [3].

2 Number of Uses of Recourse Bounded per Instance

In this section, we analyze the scenario in which an algorithm can only use
recourse a limited number of k ≥ 1 times in total. Even if we just allow one use
of recourse per instance, the upper bound of (

√
5+1)/2 ≈ 1.618 proven by Iwama

and Taketomi [17] for the online knapsack problem with removal (but without
recourse) can be improved, as we show in the following. We find a lower bound
of 1 + 1/(k + 1) for the competitive ratio of any algorithm. In the case k = 1
where the algorithm can use recourse exactly once, we present an algorithm that
matches this lower bound of 3/2. In the case k > 1, we find an upper bound of
1/(

√
3 − 1) ≤ 1.367 that does not improve as k gets larger.

2.1 Lower Bound

Theorem 1. Any algorithm that uses recourse at most k ≥ 1 times in total
cannot have a competitive ratio of less than 1 + 1/(k + 1).

Proof. We present a family of instances dependent on ε > 0, such that any
algorithm that uses at most k recourses in total cannot have a competitive
ratio of less than (k + 2)/(k + 1) for at least one of these instances in the limit
ε → 0. These instances are given in Table 3; they all start with k copies of the
item x1 = 1

k+2 + ε. For the proof to work as intended, ε is chosen such that
0 < ε < 1

(k+2)2 . Note that any deterministic algorithm must act identically on
these instances up to the point where they differ.

Now, let Alg be any algorithm that uses at most k recourses in total and
assume that it has a competitive ratio strictly less than (k + 2)/(k + 1).

1. The algorithm must pack item x2 in each instance, removing all previously
packed copies of x1: otherwise, its competitive ratio on instance I1 is at least

ρAlg ≥ (k + 1)/(k + 2) + (k + 2)ε
k · (1/(k + 2) + ε)

→ k + 1
k

>
k + 2
k + 1

as ε → 0 .

2. The algorithm must then pack the item x3, remove x2 and use its entire
recourse to retrieve the k copies of x1 in instances I2 to I5:
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Table 3. A family of instances showing that no algorithm that uses at most k recourses
in total can achieve a competitive ratio better than (k +2)/(k +1). All instances start
with k items of size x1, where x1 = x3 = 1

k+2
+ ε and x2 = k+1

k+2
+ (k + 2)ε.

k copies
︸ ︷︷ ︸

I1 x1 x2

I2 x1 x2 x3

I3 x1 x2 x3 y3 = 1
k+2

− (k + 1)ε

I4 x1 x2 x3 x4 = k+1
k+2

+ ε y4 = 1
k+2

− ε

I5 x1 x2 x3 x4 = k+1
k+2

+ ε x5 = 1
k+2

y5 = k+1
k+2

− ε

I6 x1 x2 x3 x4 = k+1
k+2

+ ε x5 = 1
k+2

– If it packs item x3 but only uses its recourse to retrieve m < k copies of
x1, its competitive ratio on instance I2 is at least

ρAlg ≥
k+1
k+2 + (k + 2)ε

(m + 1)( 1
k+2 + ε)

≥
k+1
k+2 + (k + 2)ε

k( 1
k+2 + ε)

→ k + 1
k

>
k + 2
k + 1

as ε → 0 .

– If it does not pack item x3 and keeps x2, its competitive ratio on instance
I3 is at least

ρAlg ≥ 1
k+1
k+2 + (k + 2)ε

→ k + 2
k + 1

as ε → 0 .

So, from here on, the algorithm cannot use any further recourse.
3. The algorithm must then pack item x4 in instances I4 to I6, removing x3 and

all copies of x1: otherwise, its competitive ratio on instance I4 is at least

ρAlg ≥ 1
k+1
k+2 + (k + 2)ε

→ k + 2
k + 1

as ε → 0 .

4. The algorithm must then pack item x5 and remove x4 in instances I5 and I6:
otherwise, its competitive ratio on instance I5 is at least

ρAlg ≥ 1
k+1
k+2 + ε

→ k + 2
k + 1

as ε → 0 .

5. However, in this situation, its competitive ratio on instance I6 is at least

ρAlg ≥
k+1
k+2 + (k + 2)ε

1
k+2

→ k + 1 >
k + 2
k + 1

as ε → 0 .

Hence, Alg has a competitive ratio of at least (k+2)/(k+1) = 1+1/(k+1). 	
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2.2 Upper Bound

Upper Bound for k = 1. We present an algorithm Alg1 that uses recourse
at most once and that achieves a competitive ratio of 3/2. We set b = 2/3
and distinguish between small, medium, and large items with respect to b as
described in Subsect. 1.1. The algorithm Alg1

– packs any large item immediately, to this end removes some items from the
knapsack if necessary, and discards all other items from there on;

– packs any small item immediately. If a small item does not fit or has to be
discarded to fit a medium item, it discards all other items from there on;

– always keeps the largest medium item. If it encounters a medium item xi that
fits together with a previously encountered medium item xj , it removes the
currently packed one, uses its recourse to retrieve xj and discards all other
items from there on.

Theorem 2. The algorithm Alg1 has a competitive ratio of at most 3/2.

Proof. We prove that Alg1 is either optimal or achieves a gain of at least 2/3 and
thus a competitive ratio of at most 3/2. If there is a large item in the instance,
the algorithm packs it, leading to a gain of at least 2/3. We can therefore assume
that the instance contains no large items.

If the algorithm discards a small item at any point due to size limits, its gain
at that point must be at least 1 − 1/3 = 2/3. We can therefore assume that the
algorithm never discards a small item.

Now, consider the number of medium items in the optimal solution on the
instance, which cannot be more than two. If it contains exactly two, the algorithm
can pack two medium items, leading to a gain of at least 1/3 + 1/3 = 2/3. If
the optimal solution contains zero or one medium item, the algorithm packs all
small items and (if there is one) the largest medium item. Since all small items
in the instance are packed by assumption, the algorithm is optimal in this case.

	


Upper Bound for k > 1. We define b as the unique positive solution of the
equation b2 + 2b − 2 = 0, so b =

√
3 − 1 ≈ 0.73. We present an algorithm Alg2

with a competitive ratio of at most 1/b ≤ 1.367 that uses recourse at most twice.
The algorithm again distinguishes between small, medium, and large items with
respect to b.

– The algorithm Alg2 treats any small or large item the same as Alg1.
– The algorithm only keeps the largest medium item, until it is presented with

a medium item that will fit with one that has already been encountered. If
that is the case, it will spend one use of its recourse to retrieve that item if
it is in the buffer. From there on, it will keep the two smallest medium items
encountered so far. (i) If it encounters a third medium item that will fit with
these two, it will pack it and discard everything else from there on. (ii) If,
however, at any point the algorithm encounters a medium item xi, such that
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there is a previously encountered medium item xj with b ≤ xi + xj ≤ 1, it
packs xi, spends one use of recourse to retrieve xj if it is in the buffer and
discards everything else from there on.

– If at any point a medium item does not fit because of small items that have
already been packed, the algorithm removes small items one by one until the
medium item can be packed and discards everything else from there on.

Theorem 3. The algorithm Alg2 has a competitive ratio of at most 1/(
√
3−1).

3 Number of Uses of Recourse Bounded per Step

In this scenario, an algorithm could use recourse a limited number of k times per
step. We give sharp bounds on the competitive ratio of an optimal algorithm in
this case, tending to 1 when k tends to infinity. Let bk be the unique positive
root of the quadratic equation b2k + (k + 1) · bk − (k + 1) = 0. Then it is easy to
check that 1 + 1/(k + 1) ≤ 1/bk ≤ 1 + 1/(k + 2).

3.1 Upper Bound

Let k ∈ N. We define bk = (
√

k2 + 6k + 5 − k − 1)/2 as the unique positive
solution of the quadratic equation b2k+(k+1) · bk − (k+1) = 0. We construct an
algorithm Algk with a competitive ratio of at most 1/bk that uses recourse at
most k times per step, again distinguishing between small, medium, and large
items with respect to bk.

– The algorithm Algk treats any small or large item the same as Alg1 in
Subsect. 2.2.

– As long as at most k medium items fit, Algk packs them optimally, using
its recourse to do so. As soon as it is presented with a medium item that will
fit with k previous ones, it will use its recourse to retrieve any of these that
are in the buffer. From there on, it will keep the k+1 smallest medium items
encountered so far. (i) If it encounters an additional medium item that will
fit with these k + 1, it will pack it and discard everything else from there on.
(ii) If however at any point the algorithm encounters a medium item that fits
with at most k previously encountered ones, such that their sum is at least
bk, it packs it, uses its recourse to retrieve any of the others that might be in
the buffer and discards everything else from there on.

– If at any point a medium item does not fit because of small items that have
already been packed, Algk removes small items one by one until the medium
item can be packed and discards everything else from there on.

In the case k = 1, this is the algorithm Alg2 that is used in Subsect. 2.2 for
k > 1 uses of recourse in total. The algorithm not only uses recourse at most
twice but never spends both uses in the same step.

Theorem 4. The algorithm Algk has a competitive ratio of at most 1/bk ≤
1 + 1

k+1 .
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3.2 Lower Bound

We now prove that the algorithm provided in Subsect. 3.1 is the best possible.
Let bk be defined as in Subsect. 3.1.

Theorem 5. Any algorithm that uses recourse at most k times per step cannot
have a competitive ratio of less than 1/bk ≥ 1 + 1

k+2 .

Proof (Sketch). We define ak = (1 − bk) + ε and present two instances I1 =
(ak, . . . , ak, bk + (k + 2)ε) and I2 = (ak, . . . , ak, bk + (k + 2)ε, 1 − (k + 1)ak).
Both instances start with k + 1 items of size ak. The competitive ratio of any
algorithm must be at least 1/bk on at least one of these instances. 	


4 Information on the End of the Instance

Previously, all problems were defined in a way where the algorithm had no
information on whether a certain item was the last item of the instance or not.
It might be natural to allow an algorithm access to this information. In the
situation where no recourse is allowed, this distinction does not matter: Any
instance could be followed by a final item of size 0, in which case removing any
items would not lead to a better solution. With recourse however, this might
change.

4.1 Two Different Ways for Handling End of Instance

There appear to be two different ways in which the information that the instance
ends might be encoded. One hand, the instance might be given in the form
(x1, . . . , xn,⊥) where ⊥ informs the algorithm that the previous item was the
last one, allowing it to perform one last round of removal and recourse. On
the other hand, the instance could be given in the form (x1, . . . , xn−1, (xn,⊥)),
where the algorithm is informed that an item is the last of the instance in the
same step that the item is given. It can be shown that an algorithm will always
perform at least as well if it receives the information in the former variant than
in the latter. However, in the scenario where the size of the recourse is bounded
by k uses in total, the chosen variant does not matter.

4.2 Upper Bound for k Uses of Recourse in Total Given Information
on the End of the Instance

When information about the end of an instance is available, k uses of recourse in
total are at least as useful as k uses of recourse per step without that information.
Since the way that information is received does not matter as mentioned in
Subsect. 4.1 we will assume that the instance is given in the form (x1, . . . , xn,⊥).

We can now adapt the algorithm Algk from Subsect. 3.1 to this situation,
where bk is again defined as the unique positive solution of the quadratic equation
b2k+(k+1)·bk−(k+1) = 0 and define small, medium and large items accordingly.
The obtained algorithm Alg(k,⊥) works as follows.
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– It treats any small or large item the same as Alg1 in Subsect. 2.2.
– It only keeps the smallest medium item unless it can achieve a gain of at least

bk using only medium items. In this case, as in the algorithm in Subsect. 3.1,
it retrieves at most k items and discards everything from there on.

– If the algorithm receives the item ⊥ and has not yet decided to discard every-
thing else, it computes the optimal solution on the entire previous instance,
retrieves all medium items in that solution using its recourse and discards all
small items not contained in that solution.

Theorem 6. The algorithm Alg(k,⊥) has a competitive ratio of at most 1/bk.

4.3 Lower Bound for One Use of Recourse per Step Given
Information on the End of the Instance

We will assume that the algorithm handles instances of the form
(x1, . . . , (xn,⊥)).

Theorem 7. No algorithm that uses recourse at most once per step and that
recognizes the last item in an instance can have a competitive ratio of less than
18/(5 +

√
133) ≥ 1.088.

Proof (Sketch). We define b as the unique positive root of the equation 27b2 −
5b−1 = 0, so b = (5+

√
133)/54 ≈ 0.3062. We further define the additional item

a = (1−b)/3+ε ≈ 0.2313+ε and present two instances I1 = (a, a, a, b, b, b, 1−3a)
and I2 = (a, a, a, b, b, b, ε). The competitive ratio of any algorithm must be at
least 1/(3b) on at least one of these instances in the limit ε → 0. 	


4.4 Upper Bound for One Use of Recourse per Step Given
Information on the End of the Instance

We assume that the instance is given in the form (x1, . . . , (xn,⊥)) and present an
algorithm Alg⊥ with a competitive ratio of 4/3 ≈ 1.33, which is strictly better
than the optimal algorithm without that information in Subsect. 3.1. We define
b = 3/4 and distinguish between small, medium and large items, depending on
b as before. The algorithm Alg⊥ then works as follows.

– It treats any small or large item the same as Alg1 in Subsect. 2.2.
– It packs medium items as follows. (i) As long as only one medium item fits,

it keeps the smallest one of these. (ii) As soon as two medium items fit, it
computes the optimal sum of two medium items and keeps the larger of these
two, as well as the smallest medium item encountered so far. (iii) When it
encounters a medium item that fits with two previously encountered ones
(one being w.l.o.g. the smallest medium item, currently packed), it packs it,
retrieves the third of these three and discards everything from there on.
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– If it encounters the item (xn,⊥) and has not yet decided to discard every-
thing else, it computes the optimal solution on the entire instance. (i) If this
solution contains only one medium item, it retrieves it and returns the opti-
mal solution. (ii) If this solution contains two medium items, one of these
must be either xn or already packed. The algorithm retrieves the other one
and returns the optimal solution. (iii) If this solution contains three medium
items, xn must be a medium item and the algorithm proceeds as if it was not
the last one.

Theorem 8. The algorithm Alg⊥ has a competitive ratio of at most 4/3.

5 Conclusion

Besides closing the gap between the upper and lower bounds for k ≥ 2 uses of
recourse in total without knowing the end of the instance and proving a lower
bound in the case of knowing the end, it is an interesting open problem to
consider a model in which the use of removal or recourse is not granted for free,
but incurs some cost for the algorithm.

In the general online knapsack problem, the items have both a size and a
value, and the goal is to maximize the value of the packed items while obeying the
knapsack bound regarding their sizes. If we consider the general online knapsack
problem with removal and one use of recourse per step, we can easily see that
the competitive ratio is unbounded: Suppose there is an online algorithm with
competitive ratio c. The adversary then presents first an item of size and value
1, if the algorithm does not take this item, the instance ends. Otherwise, it
presents up to (c + 1)/ε many items of size ε/(c + 1) and value ε. If the online
algorithm decides at some point to take such an item of value ε and uses its
recourse to fetch another of these from the buffer, the instance ends and the
competitive ratio is 1/(2ε). A similar argument shows that a recourse of size
k per step cannot avoid an unbounded competitive ratio either. But, again,
these arguments heavily depend on the algorithm’s unawareness of the end of
the instance. It remains as an open problem to extend the results for known
instance lengths to the general case.
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Abstract. We consider a tomographic problem on graphs, called Mini-

mum Surgical Probing, introduced by Bar-Noy et al. [2]. Each vertex
v ∈ V of a graph G = (V, E) is associated with an (unknown) label
�v. The outcome of probing a vertex v is Pv =

∑
u∈N [v] �u, where N [v]

denotes the closed neighborhood of v. The goal is to uncover the labels
given probes Pv for all v ∈ V . For some graphs, the labels cannot be
determined (uniquely), and the use of surgical probes is permitted but
must be minimized. A surgical probe at vertex v returns �v.

In this paper, we introduce convexity constraints to Minimum Surgi-

cal Probing. For binary labels, convexity imposes constraints such as
if �u = �v = 1, then for all vertices w on a shortest path between u and
v, we must have that �w = 1.

We show that convexity constraints reduce the number of required sur-
gical probes for several graph families. Specifically, they allow us to recover
the labelswithout using surgical probes for trees and bipartite graphs where
otherwise �|V |/2� surgical probes might be needed. Our analysis is based
on restricting the size of cliques in a graph using the concept of Kh-free
graphs (forbidden induced subgraphs). Utilizing this approach, we analyze
grid graphs, the King’s graph, and (maximal-) outerplanar graphs.

Keywords: Reconstruction Problem · Discrete Tomography · Graph
Convexity · Path Convexity · Kh-free Graphs

1 Introduction

Tomography is rooted in the task of retrieving spatial information about an
object where direct observation is restricted or impossible. Instead, it is only
possible to inspect the object indirectly using projections, e.g., taking aggregate
measurements over spatial regions. The spatial data to be reconstructed from
the projections depends on the specific application. Often, one wants to learn
about the shape and position of one or several objects in order to produce an
image. Tomography finds applications, for example, in the medical domain pro-
viding remarkable imaging technologies, like CT and MRI, which are able to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-Y. Hsieh et al. (Eds.): IWOCA 2023, LNCS 13889, pp. 136–147, 2023.
https://doi.org/10.1007/978-3-031-34347-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34347-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-34347-6_12


Minimum Surgical Probing with Convexity Constraints 137

create detailed internal images of the human body in a non-invasive manner.
Various other engineering and scientific applications feature such indirect-access
constraints constituting tomography as a fundamental field of study.

We are interested in discrete tomography (cf. [12]) where an exemplary prob-
lem asks to reconstruct the entries of a binary matrix given their row and column
sums (horizontal and vertical projections). We investigate a line of research ini-
tiated by Frosini and Nivat [9] and further developed in [1,2,5]. The microscopic
image reconstruction (MRI) problem, introduced in [9], asks to reconstruct the
entries of a binary matrix given two-dimensional window projections or probes.
Probing an entry of the matrix returns the sum of the entries within a window
(of fixed size) around it (see Fig. 1a).

To deal with a wider range of topologies the setting was generalized to graphs
where the local concept of probing windows generalizes naturally to neighbor-
hoods of vertices. The model is defined in [2] as follows. Let G = (V,E) be
a connected and simple graph where V = {1, 2, . . . , n}. Each vertex i ∈ V is
associated with a label �i ∈ R, and the result of probing vertex i is

Pi =
∑

j∈N [i] �j , (1)

where N [i] is the closed neighborhood of i. Label vector � = (�1, �2, . . . , �n) and
probe vector P = (P1,P2, . . . ,Pn) are consistent if Eq. (1) is satisfied for all
i ∈ V . The reconstruction problem asks to uncover a consistent label vector �,
given G and P (see Fig. 1b). We note that topologies specific to the MRI problem
are realized if G is a grid graph.

00100
13320
25530
24420
12210

(a) The colors of the 5 × 5 checkerboard
encode a binary matrix: gray squares are
0 and yellow squares are 1. The numeral
entries result from probing with a square
3 3 window.

3
3

3

21

2

(b) A graph with binary labels on its ver-
tices indicated by their color. Gray ver-
tices have label 0, and yellow vertices
have label 1. The numeral value inside
each vertex is the result of probing it.

Fig. 1. Reconstruction problems on matrices and graphs. (Color figure online)

Attempting to find a consistent label vector raises the question of uniqueness
resp. of counting consistent label vectors1. For example, consider the graph with
two adjacent vertices, and observe that the label vectors � = (1, 0) and �′ = (0, 1)
are both consistent with the probe vector P = (1, 1).

1 It is assumed that there is at least one consistent label vector.
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In [2], it was shown that the number of solutions is tied to the rank of the
adjacency matrix of G. To find a specific solution with respect to a label vector,
the use of surgical probes is proposed. A surgical probe at vertex i returns �i.

The reconstruction problem is refined to the Minimum Surgical Probing

(MSP) problem where, given G and P, the goal is to uncover � uniquely using the
minimum number of surgical probes. The problem can be solved in polynomial
time using techniques from linear algebra. For this solution, it is paramount that
the label vectors have real values.

The motivation for our paper is to analyze MSP with convexity constraints.
Convexity constraints have been studied for various tomography problems as
they are well-motivated by applications. For example, in medical imaging, many
objects of interest have a convex shape naturally.

Consider the exemplary problem of reconstructing a binary matrix from its
row and column sums again. In this context, hv−convexity implies that the 1
entries of the binary matrix are connected in each row (horizontally) and column
(vertically). Note that in Fig. 1a, the 1 entries are hv-convex. Given a row of
length n with k many 1 entries, there are O(n) possible configurations assuming
hv-convexity, otherwise there are Ω(nk).

Several studies show that convexity constraints help solve tomography prob-
lems, e.g., find unique solutions or speed up computation (see [3,4,7,10]).

Our Contribution. MSP with convexity constraints is not only motivated by
the tomography literature but also because the graph theory literature covers
several concepts of convexity (cf. [6,8,13]).

To introduce convexity on graphs, we assume that the label vector � ∈ {0, 1}n

is binary. To the best of our knowledge, MSP with binary labels has not been
studied. The work by Gritzmann et al. [11] suggests that it is NP-hard. But the
result of [2] is partially applicable and provides an upper bound on the minimum
number of surgical probes. We call a vertex v a 1-vertex if �v = 1, otherwise a
0-vertex.

Our study focuses on path convexities, which we introduce formally in Sect. 2.
Informally, given two 1-vertices, path convexity implies that all vertices on par-
ticular path systems connecting them must also be 1-vertices.

Specifically, we consider three different path convexities: (i) g-convexity based
on shortest paths, (ii) m-convexity based on chordless paths, and (iii) t-convexity
based on triangle paths. Recall that a chord of a path is an edge incident to two
non-consecutive vertices on the path. A path is chordless if it does not have a
chord. A path is a triangle path if it does not have chords except short chords,
which connect two vertices of distance 2 along the path. Figure 2 illustrates the
differences between the three path convexities.

We define convex (shorthand for g-convex, m-convex or t-convex) subsets of
vertices as those containing all vertices on the respective path systems between
all pairs of its vertices. We say a label vector is convex if it’s 1-vertices induce a
convex set. Naturally, given G and P, the goal of Convex Minimum Surgical

Probing (CMSP) is to uncover a convex label vector � uniquely using the
minimum number of surgical probes.
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u v

a b c

d e g

Fig. 2. For vertices u and v, let Ig(u, v) be the set of all vertices on a shortest path
between them (analogously, we define Im(u, v) and It(u, v)). For the example graph,
verify that Ig(u, v) = {u, b, c, v}, Im(u, v) = Ig(u, v) ∪ {d, e, g}, and that It(u, v) =
Im(u, v) ∪ {a}.

Considering convex label vectors, our first observation is that a 1-vertex must
have a neighboring 1-vertex (assuming that there is another). This leads to our
first result showing that if Pv ≤ 1, then �v = 0, for any vertex v.

Interestingly, the converse holds for t-convex label vectors. The addition of
short chords to a system of chordless paths, arguably, does not change its charac-
teristics by much. But it simplifies CMSP drastically. We show that for t-convex
labels, the 1-vertices can be identified as those vertices v where Pv ≥ 2.

We structure our analysis of g-convex and m-convex label vectors by bound-
ing the size of cliques in a graph. Observe that in a complete graph of order n,
denoted Kn, any subset of vertices is convex and that the notion of convexity is
immaterial. Already in [2], it was shown that Kn requires a maximum number
of n − 1 surgical probes to uncover a non-convex label vector.

Kh-Free Graphs. In Sect. 3, we use the concept of H-free graphs to bound the
size of the largest clique. We denote G[U ] as the subgraph of G induced by
U ⊆ V . Graph G is H-free if H is not an induced subgraph of G. It follows that
the largest clique in a Kh-free graph is of size at most h − 1.

K3-free graphs have essentially no cliques. We verify our intuition that
CMSP is not a difficult problem on K3-free graphs, showing that vertex v is
a 1-vertex if and only if Pv ≥ 2. Hence, the 1-vertices are identified entirely by
their own probe value, and without using surgical probes. The result holds for
g-convex and m-convex label vectors. We remark that trees and bipartite graphs
are important families of K3-free graphs. Moreover, there are trees requiring
�n/2� surgical probes to uncover a non-convex label vector (cf. [2]).

K4-free graphs can contain triangles but no larger cliques. Worst-case exam-
ples show that O(n) many surgical probes may be necessary to uncover a g-
convex or m-convex label vector. Our main result for K4-free graphs relates the
number of required surgical probes to the number of true twins in a graph.
Recall that a pair of vertices are true twins if they are adjacent and have iden-
tical neighborhoods. A pair of true twins requires using one surgical probe if
their and neighboring vertices’ probes have specific values. We show that for
m-convex label vectors, all necessary surgical probes are due to such true twins.
For g-convex label vectors, additional structures incur the use of surgical probes.
We leave their characterization as an open problem.
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Interesting families of K4-free graphs include outerplanar graphs, and our
result applies directly. Moreover, we argue that maximal outerplanar graphs (of
order 5 or more) cannot contain a pair of true twins. It follows that CMSP can
be solved without using surgical probes on them.

Finally, we remark that our paper is an initial study of CMSP with great
potential for future research. Different directions for MSP were considered in
[1,5], which are also interesting with convexity constraints.

Our results are mostly “stand alone”. Therefore, it would be compelling to
derive deeper implications for CMSP from results that already exist in the graph
theory literature on convexities. Note that the extended abstract omits proofs
but they are presented in the full version of the paper.

2 MINIMUM SURGICAL PROBING with Convex Labels

We start this section by introducing graph convexities. Let G = (V,E) be a
simple graph where V = {1, . . . , n}. A binary label vector � ∈ {0, 1}n assigns a
label to each vertex. The support of label vector � is

∑
i∈V �i.

2.1 Convexity on Graphs

Convexity on graphs is a well-studied concept. We introduce standard definitions
following Pelayo [13]. Let C ⊆ 2|V | be a family of subsets of V . The pair (V, C)
is a convexity space if

The elements of C are the convex sets. For U ⊆ V , the convex hull 〈U〉C is
the smallest convex set containing U . The pair (G, C) is a graph convexity space
if (V, C) is a convexity space and G[U ] is connected for any U ∈ C.

Arguably, the most natural graph convexities are path convexities which are
defined by interval functions I : V ×V 
→ 2V . Interval functions extend to subsets
U ⊆ V as follows: I(U) =

⋃
u,v∈U I(u, v). For path convexities, the convex hull

〈U〉C is given by I(U). Set U is convex if I(U) = U , i.e., U is closed under the
operator I. By definition u, v ∈ I(u, v) and I(v, v) = {v}.

We consider convexities based on shortest paths and chordless paths. Recall
that a chord of a path P is an edge that connects two non-consecutive vertices
in P , and that a chordless path does not have chords. We define the following
interval functions for vertices u, v ∈ V .

IG
g (u, v) = {w ∈ V | w is on a shortest path between u and v in G}.

The shortest paths between two vertices are called the geodesics. A set U ⊆ V
is g-convex if U = IG

g (U), and Cg = {U | U = IG
g (u)} is the geodesic convexity.

IG
m(u, v) = {w ∈ V | w is on a chordless path between u and v in G}.

Chordless paths are induced paths and are called monophonics. A set U ⊆ V
is m-convex if U = IG

m(U), and Cm = {U | U = IG
m(U)} is the monophonic

convexity.
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A short chord of a path P is a chord that connects two vertices with distance
2 along P , i.e., (u, v) is a short chord if (u,w) and (v, w) are path edges, for
some vertex w. Note that u, v, w form a triangle. A triangle path is a path that
has only short chords.

IG
t (u, v) = {w ∈ V | w is on a triangle path between u and v in G}.

A set U ⊆ V is t-convex if U = IG
t (U), and Ct = {U | U = IG

t (U)} is the triangle
path convexity.

If the graph G is clear from the context, we drop the super-script from the
interval functions. Figure 2 illustrates the differences between the path convex-
ities. Observe that Ig(u, v) ⊆ Im(u, v) ⊆ It(u, v), for any u, v ∈ V . Finally,
we remark that the sets I(u, v) (for each path convexity) can be computed in
polynomial time.

2.2 CONVEX MINIMUM SURGICAL PROBING

In this section, we introduce MSP with convexity constraints. Probe vector P
is determined by Eq. (1). We use the term convex, shorthand, for g-convex, m-
convex, or t-convex, and define that a label vector � is convex if �

�
G = {i ∈

V | �i = 1} is a convex subset of V in G.

Definition 1 (Convex Minimum Surgical Probing (CMSP)). Given a
connected graph G and a probe vector P, determine the minimum number of
surgical probes required to uniquely uncover a label vector � that is convex on G.

If a graph is not connected, we consider its components as independent
instances of CMSP. Our first observation shows that the labels of some ver-
tices can be uncovered readily. It also holds for non-convex label vectors.

Observation 1. If Pv = 0, then �u = 0, for all u ∈ N [v].

Path convexities imply that a 1-vertex necessarily has another 1-vertex in its
neighborhood (if the label vector has support 2 or more). This observation may
identify additional 0-vertices. We formalize it in the next lemma.

Lemma 1. Let G = (V,E) be a connected graph with a convex label vector � of
support at least 2, and let P be the corresponding probe vector. If Pv ≤ 1, then
�v = 0, for v ∈ V.

Proof. Let G, �, and P be as in the lemma. Let v ∈ V such that Pv ≤ 1. Towards
a contradiction, suppose that �v = 1.

Since � has support at least 2, there is another vertex u ∈ V such that
�u = 1. If v and u are adjacent, it follows that Pv ≥ 2. Otherwise, v and u
are not adjacent, and since G is connected, there is a vertex w ∈ Ig(u, v) (resp.
Im(u, v) and It(u, v)) that is adjacent to v and �w = 1. It follows that Pv ≥ 2.
We reach the desired contradiction, and �v = 0 holds. �
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We treat label vectors with support 1 as a corner case since the notion of
convexity is immaterial in this case. In the full paper, we show that they can be
recognized efficiently. To close this section, we define the core CG =

⋂
i∈V NG[i]

of G. It is the subset of vertices that are adjacent to all vertices. For this reason,
it’s easy to see that CG is a clique in G.

2.3 Triangle Path Convexity

In this section, we show that short chords simplify CMSP dramatically. Namely,
we prove that the converse of Lemma 1 is true if the label vector is t-convex.

Theorem 1. Let G = (V,E) be a connected graph with t-convex label vector � of
support at least 2, and let P be the corresponding probe vector. Then, the labels �
can be uncovered without using surgical probes. Moreover, �

�
G = {i ∈ V | Pi ≥ 2}.

Proof. Let G, �, and P be as in the theorem. We show that �v = 1 if and only if
Pv ≥ 2, for v ∈ V . Sufficiency follows with Lemma 1.

To show necessity, assume that Pv ≥ 2, for v ∈ V . Either �v = 1 or v has
two neighbors u,w ∈ N(v) such that �u = �w = 1. In the latter case, verify that
v ∈ It(u,w). Since � is t-convex, �v = 1, and the claim follows. �

2.4 Reduction Algorithm

In this section, we describe Algorithm 1 which removes vertices with known
labels from graph G and updates a consistent probe vector P.

Algorithm 1. Reduce(G,P, �i, i)
P ′ ← P \ Pi and G′ ← G \ i
for all j ∈ NG(i) do

P ′
j ← P ′

j − �i
end for
return G′, P ′

Assume that �i is known, for i ∈ V . Let G′ and P ′ be the result of running
Reduce(G,P, �, i). We denote the result of removing �i from � by �−i. The next
observation follows readily.

Observation 2. Probe vector P is consistent with G and � if and only if P ′ is
consistent with G′ and �−i.

One needs to be careful when applying Algorithm 1 as it does not preserve
convexity, and G′ may not be connected. For example, consider the cycle graph
of order n, for n ≥ 7, with a g-convex label vector � of support 3. The three
1-vertices are consecutive along the cycle. If the reduction algorithm is applied to
the central 1-vertex, the resulting graph is a path where only the two vertices at
the ends (having degree one) are 1-vertices. Clearly, the labels are not g-convex.

On the positive side, Algorithm 1 does preserve g-convexity if 0-vertices are
removed as shown by the next lemma.
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Lemma 2. Let G = (V,E) be a graph and � a g-convex label where �i = 0 for
i ∈ V . Then, �−i is a g-convex label vector on the components of G′ = G \ i.

Proof. Let G,G′, and i be as in the lemma. Towards a contradiction, suppose
that �−i is not g-convex on a connected component of G′. Hence, there are
vertices u, v ∈ V ′ such that �v = �u = 1, and a vertex w ∈ IG′

g (u, v) such
that �w = 0. Since � is g-convex on G, we have that w /∈ IG

g (u, v). It follows
that vertices u, v are connected on a path via vertex i that is shorter than the
path via vertex w. Consequently, i ∈ IG

g (u, v), and �i = 1. We reach the desired
contradiction, and the claim follows. �

The claim of Lemma 2 applies to 1-vertices if � is m-convex. Adding a vertex
to a graph and connecting it arbitrarily to existing vertices cannot add a chord
to a path and only increase the number of vertices in Im(u, v).

Observation 3. For any v, u ∈ V ′, we have that IG′
m (u, v) ⊆ IG

m(u, v).

Lemma 3. Let G = (V,E) be a graph, i ∈ V , and � a m-convex label. Then,
�−i is a m-convex label vector on the components of G′ = G \ i.

Proof. Let G,G′, and i be as in the lemma. Suppose that �−i is not m-convex
on a component of G′. Hence, there are vertices u, v ∈ V ′ such that �v = �u = 1,
and a vertex w ∈ IG′

m (u, v) such that �w = 0. With Observation 3 it follows that
w ∈ IG

m(u, v). We reach a contradiction since � is m-convex on G. �

3 Graphs with Small Maximum Cliques

In this section, we analyze CMSP for graphs where the size of a clique is bounded
by considering H-free graphs. As most of the results hold for m-convex and g-
convex label vectors, we say convex, shorthand, for g-convex or m-convex.

3.1 K3-Free Graphs

Triangle-free or K3-free graphs essentially do not have cliques (except two adja-
cent vertices). This allows us to show that the converse of Lemma 1 is true.

Lemma 4. Let G = (V,E) be a connected and K3-free graph with a convex label
vector � of support at least 2, and let P be a consistent probe vector. For v ∈ V ,
we have that �v = 1 if and only if Pv ≥ 2.

Proof. Let G = (V,E), �, and P be as in the lemma. Moreover, let v ∈ V .
Sufficiency follows with Lemma 1.

To show necessity, we assume that Pv ≥ 2. Towards a contradiction, suppose
�v = 0. It follows that there are two neighbors x, y ∈ N(v) such that �x = �y = 1.
Next, verify that (x, y) �∈ E. Otherwise the vertices v, x, y induce K3 in G, which
contradicts that G is K3-free.

It follows that the path (x, v, y) is a shortest and chordless path between x
and y. Since � is convex, we have that �v = 1. We reach the desired contradiction,
and the claim follows. �
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Lemma 4 allows us to uncover � without using surgical probes if � has support
at least 2. In Sect. 1 we already observed, in a small example, that K2 requires
one surgical probe to uncover � if (and only if) it has support 1.

As it turns out this is the only exception when considering K3-free graphs.

Theorem 2. Let G be a connected and K3-free graph with a convex label vector
�, and let P be a consistent probe vector. Then, the labels � can be uncovered
without using surgical probes and �

�
G = {v ∈ V | Pv ≥ 2}, except if G = K2 and

� has support 1. In which case, one surgical probe is necessary and sufficient to
uncover �.

3.2 K4-Free Graphs

In this section, we study K4-free graphs where the largest clique is a triangle.
We start by showing that the local argument of Lemma 4 for K3-free graphs
also applies to K4-free graphs (implying a weaker proposition).

Lemma 5. Let G = (V,E) be a connected K4-free graph with a convex label
vector �, and let P be a consistent probe vector. If Pv ≥ 3, then �v = 1, for
v ∈ V .

Lemma 5 and 1 together allow us to determine the labels of vertices whose
probe is not equal to 2. However, we cannot close this gap and uncover all labels
without using surgical probes. The following example shows that there are K4-
free graphs and probe vectors such that uncovering a convex label vector requires
�n/2� surgical probes.

For an even integer h ≥ 1, consider the K4-free graph Gh = (V,E) such that
V =

⋃h
i=1 vi ∪x, and E =

⋃h
i=1(x, vi)∪

⋃h/2
i=1(v2i−1, v2i). To complete the CMSP

instance, we define probe vector P as follows: Px = 1 + h/2, and Pvi
= 2 for

i = 1, . . . , h. The graph G4 with probes is depicted in Fig. 3.
The label of the central vertex x can be uncovered by Lemma 5 (if h ≥ 2).

The remaining vertices with unknown labels form adjacent pairs, e.g., v1 and
v2. Observe that, for each pair, there are two convex label vectors (0, 1) and
(1, 0) that are consistent with the probe vector. To distinguish between them,
we need to use 1 surgical probe. It follows that h/2 surgical probes are required
to uncover all labels.

3
2

22

2

Fig. 3. A K4-free graph with g-convex labels indicated by the vertices’ color (yellow
vertices have label 1). Numeral values are the result of probing. To uncover the labels
2 surgical probes are necessary. (Color figure online)

Note that to utilize Lemma 5, the support of the label vector � has to be at
least 3. Otherwise, there is no vertex v such that Pv ≥ 3. We treat label vectors
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with support 2 as a special case in the full paper. In the following, we assume
that label vectors have support 3 or more.

For our main result of this section, we relate the number of necessary and
sufficient surgical probes to the number of true twins in G. Recall that a pair of
vertices u, v are true twins if N [u] = N [v], i.e., u and v are adjacent and have
the same open neighborhood. For a graph G = (V,E) and probe vector P, we
define the set TT(G,P) ⊆ E where (u, v) ∈ TT(G,P) if

(i) N [u] = N [v],
(ii) Pv = Pu = 2,
(iii) there is w ∈ N [v] such that Pw ≥ 3, and
(iv) for x ∈ N [v] \ {u, v, w}, we have that Px = 1.

We note that TT(G,P) can be computed in polynomial time. First, we show
that |TT(G,P)| surgical probes are necessary. This lower bound holds for g-convex
and m-convex label vectors.

Lemma 6. Let G be a connected K4-free graph with a convex label vector �
of support 3 or more, and let P be a consistent probe vector. Then, |TT(G,P)|
surgical probes are necessary to uncover �.

However, that |TT(G,P)| surgical probes are sufficient is only true for m-
convex label vectors. Towards proof, we first describe Algorithm 2 which uncovers
1-vertices based on Lemma 5 and removes them by calling Algorithm 1. Its
correctness follows readily for m-convex label vectors.

Algorithm 2. 4ReduceAll-K4(G,P)
1: for all v ∈ V such that Pv ≥ 3 do
2: mark vertex v � based on Lemma 5
3: end for
4: for all marked vertices v do
5: G, P ← Reduce(G, P, 1, v)
6: end for
7: return G, P

Theorem 3. Let G be a connected K4-free graph with a m-convex label vector
� of support 3 or more, and let P be a consistent probe vector. Then, |TT(G,P)|
surgical probes are necessary and sufficient to uncover �.

Proof (Sketch). Let G = (V,E), P, and � be as in the lemma. Necessity follows
with Lemma 6. To show sufficiency, let H,P ′ be the result of applying Algo-
rithm 2 to G,P. As graph H may not be connected, let H1,H2, . . . , Ht be the
subgraphs induced by the connected components of H.

In the following, we analyze the structure of a component Hi, for i ∈ [t].
We show that either u, v ∈ V (Hi) and (u, v) ∈ TT(G,P), or that the labels of
vertices in V (Hi) can be uncovered without using surgical probes.
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Algorithm 2 uses Algorithm 1 to remove vertices from G and update P
correctly. Note that, for v ∈ V (Hi), we have P ′

v ≤ 2. Let �′ be the � restricted
to V (Hi). Due to Lemma 3, �′ is m-convex on V (Hi).

We assume that there is a vertex x ∈ V (Hi) such that �x = 1. Otherwise,
for all v ∈ V (Hi), Pv = 0 and the labels of vertices can be uncovered without
using surgical probes. With Lemma 1 it follows that Px = 2. Moreover, define
Ū = {v ∈ V (Hi) | Pv = 2}.

Claim. If |Ū | = 1, then the labels of the vertices in V (Hi) can be uncovered
without using a surgical probe.

In the following, we assume that |Ū | ≥ 2. Next, define V̄ = {v ∈ V | Pv ≥ 3},
and verify that V̄ is non-empty since � has support at least 3.

Claim. There is a vertex z ∈ V̄ such that (x, z) ∈ E.

Proof. As V̄ is not empty, let y ∈ V̄ and note that �y = 1. The claim follows
immediately if (x, y) ∈ E.

Assume that (x, y) �∈ E. Since G is connected, there is a chordless path
(x, v1, v2, . . . , vs, y) connecting x and y in G where s ≥ 1. Since � is m-convex,
it follows that �vj

= 1, for j ∈ [s]. Then, Pv1 ≥ 3, and consequently, v1 ∈ V̄ .
Vertex v1 = z has the desired properties, and the claim follows. �

Since Px = 2 and �x = 1, vertex z is the only neighbor of x in V̄ . It follows
that P ′

x = 1.

Claim. For all v ∈ V (Hi) \ {x}, we have that �v = 0.

The previous claim shows that �′ has support 1 on Hi. It follows that, for all
v ∈ V (Hi) \ {x}, we have that P ′

v ≤ 1 and that (v, x) ∈ E if and only if P ′
v = 1.

We conclude that x is contained in the core CW̄ where W̄ = {v ∈ V (Hi) | P ′
v =

1}. Note that Ū ⊆ W̄ and that x ∈ Ū ∩ CW̄ .
Next, we use that G is K4-free to restrict the size of CW̄ . Consider a vertex

v ∈ Ū . Either P ′
v = 0 and v is adjacent to two vertices in V̄ , or P ′

v = 1 and v
is adjacent to x and to one vertex in V̄ in G. Verify that if vertex v ∈ Ū ∩ W̄ ,
then (v, z) ∈ E.

Claim. If |Ū | ≥ 3, then |CW̄ | = 1 and the labels of vertices in V (Hi) can be
uncovered without using surgical probes.

In the following, we assume that Ū = {x, u}. To finish the proof, we argue
that (u, x) ∈ TT(G,P). By definition, Px = Pu = 2, and we showed that z ∈ N(x)
where Pz ≥ 3.

Claim. Either N [x] = N [u], or �′ can be uncovered without using surgical probes.

In case, N [x] = N [u], the neighborhood N [x] may contain more vertices
than x, u, z. Verify that if v ∈ N [x] \ {x, u, z}, then Pv = 1. It follows that
(u, x) ∈ TT(G,P) and the theorem follows. �

An important family of K4-free graphs are outerplanar graphs. Recall that an
outerplanar graph can be embedded in the plane such that edges do not intersect
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and all vertices lie on the outer face. Moreover, in a maximal outerplanar graph
each vertex appears exactly once on the outer face implying that it cannot have a
pair of true twins. We conclude that if G is maximal outerplanar, then TT(G,P)

is empty and that � can be uncovered without using surgical probes if its support
is at least 3.

Finally, we observe that Lemma 5 generalizes to Kh-free graphs, for a fixed
integer h. The proof is analog to that of Lemma 5.

Theorem 4. Let G = (V,E) be a connected Kh-free graph with a convex label
vector �, and let P be a consistent probe vector. If Pv ≥ h, then �v = 1, for
v ∈ V .
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dziński, T., Pahl, C., Sikora, F., Wong, P.W.H. (eds.) SOFSEM 2021. LNCS, vol.
12607, pp. 373–386. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67731-2 27
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Abstract. The radio k-chromatic number rck(G) of a graph G is the
minimum integer λ such that there exists a function φ : V (G) →
{0, 1, · · · , λ} satisfying |φ(u) − φ(v)| ≥ k + 1 − d(u, v), where d(u, v)
denotes the distance between u and v. To date, several upper and lower
bounds of rck(·) is established for different graph families. One of the
most notable works in this domain is due to Liu and Zhu [SIAM Journal
on Discrete Mathematics 2005] whose main results were computing the
exact values of rck(·) for paths and cycles for the specific case when k is
equal to the diameter.

In this article, we find the exact values of rck(G) for powers of paths
where the diameter of the graph is strictly less than k. Our proof readily
provides a linear time algorithm for providing such labeling. Further-
more, our proof technique is a potential tool for solving the same problem
for other graph classes with “small” diameter.

Keywords: radio coloring · radio k-chromatic number · Channel
Assignment Problem · power of paths

1 Introduction and Main Results

The theory of radio coloring and its variations are popular and well-known
mathematical models of the Channel Assignment Problem (CAP) in wireless
networks [1,2]. The connection between the real-life problem and the theoretical
model has been explored in different bodies of works. In this article, we focus
on the theoretical aspects of a particular variant, namely, the radio k-coloring.
All the graphs considered in this article are undirected simple graphs and we
refer to the book “Introduction to graph theory” by West [14] for all standard
notations and terminologies used.
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A λ-radio k-coloring of a graph G is a function φ : V (G) → {0, 1, · · · , λ}
satisfying |φ(u) − φ(v)| ≥ k + 1 − d(u, v). For every u ∈ V (G), the value φ(u) is
generally referred to as the color of u under φ. Usually, we pick λ in such a way
that it has a preimage under φ, and then, we call λ to be the span of φ, denoting
it by span(φ). The radio k-chromatic number1 rck(G) is the minimum span(φ),
where φ varies over all radio k-colorings of G.

In particular, the radio 2-chromatic number is the most well-studied restric-
tion of the parameter (apart from the radio 1-chromatic number, which is equiv-
alent to studying the chromatic number of graphs). There is a famous conjecture
by Griggs and Yeh [6] that claims rc2(G) ≤ Δ2 where Δ is the maximum degree
of G. The conjecture has been resolved for all Δ ≥ 1069 by Havet, Reed and
Sereni [7].

As one may expect, finding the exact values of rck(G) for a general graph is
an NP-complete problem [6]. Therefore, finding the exact value of rck(G) for a
given graph (usually belonging to a particular graph family) offers a huge num-
ber of interesting problems. Unfortunately, due to a lack of general techniques
for solving these problems, not many exact values are known till date. One of the
best contributions in this front remains the work of Liu and Zhu [12] who com-
puted the exact value of rck(G) where G is a path or a cycle and k = diam(G).

As our work focuses on finding radio k-chromatic number of powers of paths,
let us briefly recall the relevant related works. For a detailed overview of the
topic, we encourage the reader to consult Chap. 7.5 of the dynamic survey on
this topic maintained in the Electronic Journal of Combinatorics by Gallian [5]
and the survey by Panigrahi [13]. For small paths Pn, that is, with diam(Pn) < k,
Kchikech et al. [8] had established an exact formula for rck(Pn); whereas, recall
that, for paths of diameter equal to k ≥ 2, Liu and Zhu [12] gave an exact formula
for the radio number rck(Pk). Moreover, a number of studies on the parameter
rck(Pn) depending on how k is related to diam(Pn), or n alternatively, have
been done by various authors [3,8–10]. So far as works on powers of paths are
concerned, the only notable work we know is an exact formula for the radio
number rn(P 2

n) of the square of a path Pn by Liu and Xie [11]. Hence the
natural question to ask is whether the results for the paths can be extended to
paths of a general power m, where 1 ≤ m ≤ n.

Progressing along the same line, in this article we concentrate on powers
of paths having “small diameters”, that is, diam(Pm

n ) < k and compute the
exact value of rck(Pm

n ), where Pm
n denotes the m-th power graph of a path Pn

on (n + 1) vertices. In other words, the graph Pm
n is obtained by adding edges

between the vertices of Pn that are at most m distance apart, where m ≤ n.
Notice that, the so-obtained graph is, in particular, an interval graph. Let us
now state our main theorem.

Theorem 1. For all k > diam(Pm
n ) and m ≤ n, we have

1 In the case that diam(G) = k, k + 1 or k + 2, the radio k-chromatic number is alter-
natively known as the radio number denoted by rn(G), the radio antipodal number
denoted by ac(G) and the nearly antipodal number denoted by ac′(G), respectively.
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rck(Pm
n ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nk − n2−m2

2m if � n
m� is odd and m|n,

nk − n2−s2

2m + 1 if � n
m� is odd and m � n,

nk − n2

2m + 1 if � n
m� is even and m|n,

nk − n2−(m−s)2

2m + 1 if � n
m� is even and m � n,

where s ≡ n (mod m) and 1 ≤ s < m.

In this article, we develop a robust graph theoretic tool for the proof. Even
though the tool is specifically used to prove our result, it can be adapted to
prove bounds for other classes of graphs. Thus, we would like to remark that,
the main contribution of this work is not only in proving an important result
that captures a significant number of problems with a unified proof, but also
in devising a proof technique that has the potential of becoming a standard
technique to attack similar problems. We will prove the theorem in the next
section.

Moreover, our proof of the upper bound is by giving a prescribed radio k-
coloring of the concerned graph, and then proving its validity, while the lower
bound proof establishes its optimality. Therefore, as a corollary to Theorem 1,
we can say that our proof provides a linear time algorithm radio k-color powers
of paths, optimally.

Theorem 2. For all k > diam(Pm
n ) and m ≤ n, one can provide an optimal

radio k-coloring of the graph Pm
n in O(n) time.

We prove Theorem 1 in the next section.

2 Proofs of Theorems 1 and 2

This section is entirely dedicated to the proofs of Theorems 1 and 2. The proofs
use specific notations and terminologies developed for making it easier for the
reader to follow. The proof is contained in several observations and lemmas and
uses a modified and improved version of the DGNS formula [4].

As seen from the theorem statement, the graph Pm
n that we work on is the

mth power of the path on (n+1) vertices. One crucial aspect of this proof is the
naming of the vertices of Pm

n . In fact, for convenience, we shall assign two names
to each of the vertices of the graph and use them as required depending on the
context. Such a naming convention will depend on the parity of the diameter of
Pn

m.

Observation 1. The diameter of the graph Pm
n is diam(Pm

n ) = � n
m�.

For the rest of this section, let q = 	diam(Pm
n )

2 
.
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2.1 The Naming Conventions

We are now ready to present the first naming convention for the vertices of Pm
n .

For convenience, let us suppose that the vertices of Pm
n are placed (embedded) on

the X-axis having co-ordinates (i, 0) where i ∈ {0, 1, · · · , n} and two (distinct)
vertices are adjacent if and only if their Euclidean distance is at most m.

We start by selecting the layer L0 consisting of the vertex, named c0, say,
positioned at (qm, 0) for even values of diam(Pm

n ). On the other hand, for odd
values of diam(Pm

n ), the layer L0 consists of the vertices c0, c1, · · · , cm, say,
positioned at (qm, 0), (qm + 1, 0), · · · , (qm + m, 0), respectively, and inducing a
maximal clique of size (m+1). The vertices of L0 are called the central vertices,
and those positioned to the left and the right side of the central vertices are
naturally called the left vertices and the right vertices, respectively.

After this, we define the layer Li as the set of vertices that are at a dis-
tance i from L0. Observe that the layer Li is non-empty for all i ∈ {0, 1, · · · , q}.
Moreover, notice that, for all i ∈ {1, 2, · · · , q}, Li consists of both left and
right vertices. In particular, for i ≥ 1, the left vertices of Li are named
li1, li2, · · · , lim, sorted according to the increasing order of their Euclidean dis-
tances from L0. Similarly, for i ∈ {1, 2, · · · , q − 1}, the right vertices of Li

are named ri1, ri2, · · · , rim, sorted according to the increasing order of their
Euclidean distance from L0. However, the right vertices of Lq are rq1, rq2, · · · , rqs,
where s = (n+1)−(2q−1)m−|L0| (observe that this s is the same as the s men-
tioned in the statement of Theorem 1), again sorted according to the increasing
order of their Euclidean distances from L0. That is, if m � n, then there are
s = (n + 1) − (2q − 1)m − |L0| right vertices in Lq. Besides Lq, every layer Li,
for i ∈ {1, 2, · · · , q − 1}, has exactly m left vertices and m right vertices. This
completes our first naming convention.

Now, we move to the second naming convention. This depends on yet another
observation.

Observation 2. For k ≥ diam(Pm
n ), let φ be a radio k-coloring of Pm

n . Then
φ(x) �= φ(y) for all distinct x, y ∈ V (Pm

n ).

Let φ be a radio k-coloring of Pm
n . Thus, due to Observation 2, it is possible to

sort the vertices of Pm
n according to the increasing order of their colors. That is,

our second naming convention which names the vertices of Pm
n as v0, v1, · · · , vn

satisfying φ(v0) < φ(v1) < · · · < φ(vn). Clearly, the second naming convention
depends only on the coloring φ, which, for the rest of this section, will play the
role of any arbitrary radio k-coloring of Pm

n .

2.2 The Lower Bound

Next, we shall proceed to establish the lower bound of Theorem 1 by showing
it to be a lower bound of span(φ). To do so, however, we need to introduce yet
another notation. Let f : V (Pm

n ) → {0, 1, · · · , q} be the function which indicates
the layer of a vertex, that is, f(x) = i if x ∈ Li. With this notation, we initiate
the lower bound proof with the following result.
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Lemma 1. For any i ∈ {0, 1, · · · , n − 1}, we have

φ(vi+1) − φ(vi) ≥
{

k − f(vi) − f(vi+1) + 1 if diam(Pm
n ) is even,

k − f(vi) − f(vi+1) if diam(Pm
n ) is odd.

Proof. If diam(Pm
n ) is even, then L0 consists of the single vertex c0. Observe

that, as vi is in Lf(vi), it is at a distance f(vi) from c0. Similarly, vi+1 is at a
distance f(vi+1) from c0. Hence, by the triangle inequality, we have

d(vi, vi+1) ≤ d(vi, c0) + d(c0, vi+1) = f(vi) + f(vi+1).

Therefore, by the definition of radio k-coloring,

φ(vi+1) − φ(vi) ≥ k − f(vi) − f(vi+1) + 1.

If diam(Pm
n ) is odd, then L0 is a clique. Thus, by the definition of layers

and the function f , there exist vertices cj and cj′ (j �= j′) in L0 satisfying
d(vi, cj) = f(vi) and d(vi+1, cj′) = f(vi+1). Hence, by triangle inequality again,
we have

d(vi, vi+1) ≤ d(vi, cj) + d(cj , cj′) + d(cj′ , vi+1) = f(vi) + 1 + f(vi+1).

Therefore, by the definition of radio k-coloring,

φ(vi+1) − φ(vi) ≥ k − f(vi) − f(vi+1).

Hence we are done. �
Notice that it is not possible to improve the lower bound of the inequality

presented in Lemma 1. Motivated by this fact, whenever we have

φ(vi+1) − φ(vi) =

{
k − f(vi) − f(vi+1) + 1 if diam(Pm

n ) is even,
k − f(vi) − f(vi+1) if diam(Pm

n ) is odd.

for some i ∈ {0, 1, · · · , n − 1}, we say that the pair (vi, vi+1) is optimally colored
by φ. Moreover, we can naturally extend this definition to a sequence of vertices
of the type (vi, vi+1, · · · , vi+i′) by calling it an optimally colored sequence by φ if
(vi+j , vi+j+1) is optimally colored by φ for all j ∈ {0, 1, · · · , i′ −1}. Furthermore,
a loosely colored sequence (vi, vi+1, vi+2, · · · , vi+i′) is a sequence that does not
contain any optimally colored sequence as a subsequence.

An important thing to notice is that the sequence of vertices (v0, v1, · · · , vn)
can be written as a concatenation of maximal optimally colored sequences and
loosely colored sequences. That is, it is possible to write

(v0, v1, · · · , vn) = Y0X1Y1X2 · · · XtYt

where Yis are loosely colored sequences and Xjs are maximal optimally colored
sequences. Here, we allow the Yis to be empty sequences as well. In fact, for
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1 ≤ i ≤ t − 1, a Yi is empty if and only if there exist two consecutive vertices vs′

and vs′+1 of Pm
n in the second naming convention such that (vs′ , vs′+1) is loosely

colored and that Xi = (vs, vs+1, · · · , vs′) and Xi+1 = (vs′+1, vs′+2, · · · , vs′′) for
some s ≤ s′ < s′′. Moreover, Y0 (resp. Yt) is empty if and only if the pair
(v0, v1) (resp. (vn−1, vn)) is optimally colored. By convention, empty sequences
are always loosely colored and a sequence having a singleton vertex is always
optimally colored. From now onward, whenever we mention a radio k-coloring
φ of Pm

n , we shall also suppose an associated concatenated sequence using the
same notation as mentioned above.

Let us now prove a result which plays an instrumental role in the proof of
the lower bound.

Lemma 2. Let φ be a radio-k coloring of Pm
n such that

(v0, v1, · · · , vn) = Y0X1Y1X2 · · · XtYt.

Then, for even values of diam(Pm
n ), we have

span(φ) ≥
[

n(k + 1) − 2
q∑

i=1

i|Li|
]

+

[

f(v0) + f(vn) +
t∑

i=0

|Yi| + t − 1

]

and, for odd values of diam(Pm
n ), we have

span(φ) ≥
[

nk − 2
q∑

i=1

i|Li|
]

+

[

f(v0) + f(vn) +
t∑

i=0

|Yi| + t − 1

]

,

where |Yi| denotes the length of the sequence Yi.

As we shall calculate the two additive components of Lemma 2 separately,
we introduce short-hand notations for them for the convenience of reference. So,
let

α1 =

{
n(k + 1) − 2

∑q
i=1 i|Li| if diam(Pm

n ) is even,
nk − 2

∑q
i=1 i|Li| if diam(Pm

n ) is odd,

and

α2(φ) = f(v0) + f(vn) +
t∑

i=0

|Yi| + t − 1.

Observe that α1 and α2 are functions of a number of variables and factors such
as, n,m, k, φ, etc. However, to avoid clumsy and lengthy formulations, we have
avoided writing α1 and α2 as multivariate functions, as their definitions are not
ambiguous in the current context. Furthermore, as k and Pm

n are assumed to be
fixed in the current context and, as α1 does not depend on φ (follows from its
definition), it is treated and expressed as a constant as a whole. On the other
hand, α2 is expressed as a function of φ.

Now we shall establish lower bounds for α1 and α2(φ) separately to prove
the lower bound of Theorem 1. Let us start with α1 first.
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Lemma 3. We have

α1 =

{
nk − n2+m2−s2

2m if diam(Pm
n ) is even,

nk − n2−s2

2m if diam(Pm
n ) is odd,

where s = (n + 1) − (2q − 1)m − |L0|.
Next, we focus on α2(φ). We shall handle the cases with odd diam(Pm

n ) first.

Lemma 4. We have

α2(φ) ≥
{

0 if diam(Pm
n ) is odd and m|n,

1 if diam(Pm
n ) is odd and m � n.

Next, we consider the cases with even diam(Pm
n ). Before starting with it

though, we are going to introduce some terminologies to be used during the
proofs. So, let Xi be an optimally colored sequence. As Xi cannot have two
consecutive left (resp., right) vertices as elements, the number of left vertices
can be at most one more than the number of right vertices and the central
vertex, the latter two combined together.

Lemma 5. We have

α2(φ) ≥
{

1 if diam(Pm
n ) is even and m|n,

m − s + 1 if diam(Pm
n ) is even and m � n,

where s ≡ n (mod m).

Combining Lemmas 2, 3, 4 and 5, therefore, we have the following lower
bound for the parameter rck(Pm

n ).

Lemma 6. For all k ≥ diam(Pm
n ) and m ≤ n, we have

rck(Pm
n ) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nk − n2−m2

2m if � n
m� is odd and m|n,

nk − n2−s2

2m + 1 if � n
m� is odd and m � n,

nk − n2

2m + 1 if � n
m� is even and m|n,

nk − n2−(m−s)2

2m + 1 if � n
m� is even and m � n,

where s ≡ n (mod m) and 1 ≤ s < m.

Remark 1. Our lower bound technique can be applied to a graph G of diameter
more than k also. This can be achieved by taking a subgraph H of G induced

on
q⋃

i=0

Li, where q = 	k
2 
 and diam(H) ≤ k. Thus, a lower bound for H serves

as a lower bound for G as well.
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2.3 The Upper Bound

Now let us prove the upper bound. We shall provide a radio k-coloring ψ of Pm
n

and show that its span is the same as the value of rck(Pm
n ) stated in Theorem 1.

To define ψ, we shall use both naming conventions. That is, we shall express the
ordering (v0, v1, · · · , vn) of the vertices of Pm

n with respect to ψ in terms of the
first naming convention.

Let us define some ordering for the right (and similarly for the left) vertices:

(1) rij ≺1 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)j−1i < (−1)j′−1i′;
(2) rij ≺2 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)m−ji < (−1)m−j′

i′;
(3) rij ≺3 ri′j′ if either (i) j < j′ or (ii) j = j′ and i > i′; and
(4) rij ≺4 ri′j′ if either (i) j < j′ or (ii) j = j′ and (−1)ji < (−1)j′

i′.

Observe that, the orderings are based on comparing the second co-ordinate
of the indices of the right (resp., left) vertices, and if they happen to be equal,
then comparing the first co-ordinate of the indices with conditions on their par-
ities. Moreover, all the above four orderings define total orders on the set of all
right (resp., left) vertices. Thus, there is a unique increasing (resp., decreasing)
sequence of right (or the left) vertices with respect to ≺1, ≺2, ≺3, and ≺4. Based
on these orderings, we are going to construct a sequence of vertices of the graph
and then greedy color the vertices to provide our labeling.

The sequences of the vertices are given as follows:

(1) An alternating chain as a sequence of vertices of the form (a1, b1, a2, b2, · · · ,
ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right vertices
with respect to ≺1 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺2.

(2) A canonical chain as a sequence of vertices of the form (a1, b1, a2, b2, · · · ,
ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence of right vertices
with respect to ≺3 and (b1, b2, · · · , bp) is the decreasing sequence of left
vertices with respect to ≺3;

(3) A special alternating chain as a sequence of vertices of the form
(a1, b1, a2, b2, · · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence
of right vertices with respect to ≺2 and (b1, b2, · · · , bp) is the decreasing
sequence of left vertices with respect to ≺1; and

(4) A special canonical chain as a sequence of vertices of the form
(a1, b1, a2, b2, · · · , ap, bp) such that (a1, a2, · · · , ap) is the increasing sequence
of right vertices with respect to ≺4 and (b1, b2, · · · , bp) is the decreasing
sequence of left vertices with respect to ≺4.

Notice that the special alternating chains, the reverse alternating chain and
the canonical chains can exist only when the number of right and left vertices are
equal. Of course, when m|n, both the chains exist. Otherwise, we shall modify
the names of the vertices a little to make them exist.

We are now ready to express the sequence (v0, v1, · · · , vn) by splitting it into
different cases which are depicted in Figs. 1, 2, 3 and 4 for example. In the
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figures, the both naming conventions for each of the vertices are given so that
the reader may cross verify the correctness for that particular instance for each
case. For convenience, also recall that q = 	diam(Pm

n )
2 
.

Case 1: when diam(Pm
n ) is even, m|n and k > diam(Pm

n ). First of all,
(v0, v1, · · · , v2qm−1) is the alternating chain. Moreover, vn = c0.

l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22 r23 r24

4 28 36 60 11 19 43 51 65 0 24 32 56 7 15 39 47

v3 v9 v15 v21 v5 v7 v17 v19 v24 v0 v10 v12 v22 v2 v8 v14 v20

1 61 55 468 196 43 2 140 51 3 326 69 3560 43 56 38 5 24 4288 600 199 515 0 3232 7 393366 11 4343 6565 2424 5656 15

L0 L1L1 L2L2

Fig. 1. Case 1. n = 16, m = 4, diam(P 4
24) = 4, k = 6.

Case 2: when diam(Pm
n ) is odd, m|n and k > diam(Pm

n ). Let the ordering of
the vertices be (v0, v1, · · · , v2qm+m). Now, vj(2q+1) = cj for all 0 ≤ j ≤ m. The
remaining vertices follow the canonical chain.

l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23 r24

18 41 64 87 9 32 55 78 0 23 46 69 92 14 37 60 83 5 28 51 74

v4 v9 v14 v19 v2 v7 v12 v17 v0 v5 v10 v15 v20 v3 v8 v13 v18 v1 v6 v11 v16

4 5 45 36 277 7 68 69 508 99 00 92 8 731 33 22 22 3 13 4 541 7 48 6 1 84 3 54 32 69 37 78 87 55 2 93 2 6 20411 877 322332 7878 233223 6969 14414 6060 5 515644 9 5555 0 4646 9292 3737 8383 282

L0 L1L1 L2L2

Fig. 2. Case 2. n = 20, m = 4, diam(P 4
20) = 5, k = 7.

Case 3: when diam(Pm
n ) is odd, m � n and k > diam(Pm

n ). For any set A,
let A� represent an ordered sequence of the elements of A. Let G ∼= Pm

n and
S = V (G) = {v0, v1, v2, · · · , v2qm+s}. Then S� is defined as described. First,
define

T = {vt : 0 ≤ t ≤ s(2q + 1)} − {vj(2q+1) : 0 ≤ j ≤ s}.

Order T � as a canonical chain. Also, define vj(2q+1) = cj for all 0 ≤ j ≤ s.
Assume G′ to be the subgraph of G induced by the subset S −{rq1, rq2, · · · , rqs}
of S. Then G′ ∼= Pm

n′ , m|n′ and diam(G′) = n′
m is even, where n′ = n − s. Define

vn = l11 and U = {vt : s(2q + 1) + 1 ≤ t < n}.

Note that U ⊂ V (G′). Order U� (as vertices of G′) by the following.

(i) Special alternating chain when m and s have the same parity.
(ii) Alternating chain when m is even and s is odd.
(iii) Special canonical chain when m is odd and s is even.
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l24 l23 l22 l21 l14 l13 l12 l11 c0 c1 c2 c3 c4 r11 r12 r13 r14 r21 r22 r23

18 41 64 79 9 32 55 90 0 23 46 69 84 14 37 60 75 5 28 51

v4 v9 v14 v17 v2 v7 v12 v19 v0 v5 v10 v15 v18 v3 v8 v13 v16 v1 v6 v11

4 5 45 6 37 29 900 66 699 508 8 741 332 2 133 41 90 4 16 74 554 32 6 39 78 7 59 5 2 83 4 60 2411 799 3232 9090 2323 6969 144 6060 5644 9 5555 0 4646 8484 3737 757 282

L0 L1L1 L2L2

Fig. 3. Case 3. n = 19, m = 4, diam(P 4
19) = 5, k = 7, s = 3.

Case 4: when diam(Pm
n ) is even, m � n and k > diam(Pm

n ). Notice that, in
this case, the left vertices are (m − s) more than the right vertices. Also, L0 has
only one vertex in this case. We shall discard some vertices from the set of left
vertices, and then present the ordering. To be specific, we disregard the subset
{l11, l12, · · · , l1(m−s)}, temporarily, from the set of left vertices and consider the
alternating chain. First of all, (v0, v1, · · · , v2qm−2m+2s−1) is the alternating chain.
Additionally, (v2qm−2m+2s, v2qm−2m+2s+1, v2qm−2m+2s+2, · · · , v2qm−m+s) =
(c0, l11, l12, · · · , l1(m−s)).

l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22

4 28 36 44 11 19 61 55 49 0 24 32 40 7 15

v3 v9 v15 v17 v5 v7 v22 v21 v20 v0 v10 v12 v18 v2 v8

1 41 498 196 61 2 144 5 3528 44 19 55 0 32 736 11 61 49 24 40

L0 L1L1 L2L2

Fig. 4. Case 4. n = 14, m = 4, diam(P 4
22) = 4, k = 6, s = 2.

Thus, we have obtained a sequence (v0, v1, · · · , vn) in each case under con-
sideration. Now, we define, ψ(v0) = 0 and ψ(vi+1) = ψ(vi) + k + 1 − d(vi, vi+1),
recursively, for all i ∈ {0, 1, 2, · · · , n − 1}. Next, we note that ψ is a radio k-
coloring.

Lemma 7. The function ψ is a radio k-coloring of Pm
n .

This brings us to the upper bound for rck(Pm
n ).

Lemma 8. For all k > diam(Pm
n ) and m ≤ n, we have

rck(Pm
n ) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nk − n2−m2

2m if � n
m� is odd and m|n,

nk − n2−s2

2m + 1 if � n
m� is odd and m � n,

nk − n2

2m + 1 if � n
m� is even and m|n,

nk − n2−(m−s)2

2m + 1 if � n
m� is even and m � n,

where s ≡ n (mod m) and 1 ≤ s < m.
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Proof. Observe that, rck(Pm
n ) ≤ span(ψ). So, to prove the upper bound, it is

enough to show that for all k > diam(Pm
n ) and s ≡ n (mod m),

span(ψ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nk − n2−m2

2m if � n
m� is odd and m|n,

nk − n2−s2

2m + 1 if � n
m� is odd and m � n,

nk − n2

2m + 1 if � n
m� is even and m|n,

nk − n2−(m−s)2

2m + 1 if � n
m� is even and m � n.

As ψ is explicitly known, it is possible to calculate it and prove the above.
However, we omit the rest of the proof due to space constraint. �

2.4 The Proofs

Finally we are ready to conclude the proofs.

Proof of Theorem 1. The proof follows directly from Lemmas 6 and 8. �

Proof of Theorem 2. Notice that the proof of the upper bound for Theorem 1 is
given by prescribing an algorithm (implicitly). The algorithm requires ordering
the vertices of the input graph, and then providing the coloring based on the
ordering. Each step runs in linear order of the number of vertices in the input
graph. Moreover, we have theoretically proved the tightness of the upper bound.
Thus, we are done. �

For the full version of the paper, please go to https://homepages.iitdh.ac.in/
∼sen/Supraja IWOCA.pdf.
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Abstract. We introduce and discuss the Minimum Capacity-Preser-

ving Subgraph (MCPS) problem: given a directed graph and a reten-
tion ratio α ∈ (0, 1), find the smallest subgraph that, for each pair of
vertices (u, v), preserves at least a fraction α of a maximum u-v-flow’s
value. This problem originates from the practical setting of reducing the
power consumption in a computer network: it models turning off as many
links as possible while retaining the ability to transmit at least α times
the traffic compared to the original network.

Firstwe prove thatMCPS is NP-hard already on directed acyclic graphs
(DAGs). Our reduction also shows that a closely related problem (which
only considers the arguably most complicated core of the problem in the
objective function) is NP-hard to approximate within a sublogarithmic
factor already on DAGs. In terms of positive results, we present a sim-
ple linear time algorithm that solves MCPS optimally on directed series-
parallel graphs (DSPs). Further, we introduce the family of laminar series-
parallel graphs (LSPs), a generalization of DSPs that also includes cyclic
and very dense graphs. Not only are we able to solve MCPS on LSPs in
quadratic time, but our approach also yields straightforward quadratic
time algorithms for several related problems such as Minimum Equiva-

lent Digraph and Directed Hamiltonian Cycle on LSPs.

Keywords: Maximum flow · Minimum equivalent digraph ·
Series-parallel graphs · Inapproximability

1 Introduction

We present the Minimum Capacity-Preserving Subgraph (MCPS) prob-
lem. Interestingly, despite it being very natural, simple to formulate, and practi-
cally relevant, there seems to have been virtually no explicit research regarding
it. We may motivate the problem by recent developments in Internet usage and
routing research: Not only does Internet traffic grow rapidly [22], current Inter-
net usage shows distinct traffic peaks in the evening (when people, e.g., are
streaming videos) and lows at night and in the early morning [19]. This has
sparked research into the reduction of power consumption in backbone Internet
providers (Tier 1) by turning off unused resources [4,23]: One natural way is to
turn off as many connections between servers as possible, while still retaining
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the ability to route the occurring traffic. Typically, one assumes that (a) the
original routing network is suitably dimensioned and structured for the traffic
demands at peak times, and (b) the traffic demands in the low times are mostly
similar to the peak demands but “scaled down” by some ratio.

Graph-theoretically, we are given a directed graph G = (V,E), a capacity
function cap : E → R

+ on its edges, and a retention ratio α ∈ (0, 1). All graphs
are simple (i.e., contain no self-loops nor parallel edges). For every pair of ver-
tices (s, t) ∈ V 2, let cG(s, t) denote the value of a maximum flow (or equivalently,
a minimum cut) from s to t in G according to the capacity function cap. Thus,
in the following we unambiguously refer to cG(s, t) as the capacity of the ver-
tex pair (s, t) in G, which intuitively represents how much flow can be sent
from s to t in G. The lowest capacity among all vertex pairs corresponds to the
size c(G) of the global minimum cut. One may ask for an edge-wise minimum
subgraph G′ = (V,E′), E′ ⊆ E, such that c(G′) ≥ α · c(G). We call this problem
Minimum Global Capacity-Preserving Subgraph (MGCPS):

Observation 1. MGCPS is NP-hard, both on directed and undirected graphs,
already with unit edge capacities.

Proof. Identifying a Hamiltonian cycle in a directed strongly-connected (or undi-
rected 2-edge-connected) graph G is NP-hard [12]. Consider an optimal MGCPS
solution for G with unit edge capacities and α = 1/c(G) (2/c(G)): every vertex pair
is precisely required to have a capacity of at least �α · c(G)� = 1 (�α · c(G)� = 2).
Hence, an α-MGCPS of G must also be strongly-connected (2-edge-connected,
respectively) and is a Hamiltonian cycle if and only if one exists in G. �	

However, in our practical scenario, MGCPS is not so interesting. Thus, we
rather consider the problem where the capacities cG(u, v) have to be retained
for each vertex pair (u, v) individually: In the Minimum Capacity-Preserving

Subgraph (MCPS) problem, we are given a directed graph G = (V,E) includ-
ing edge capacities cap and a retention ratio α ∈ (0, 1). We ask for a set of
edges E′ ⊆ E with minimum size |E′| yielding the subgraph G′ = (V,E′), such
that cG′(s, t) ≥ α · cG(s, t) for all (s, t) ∈ V 2. For an MCPS instance (G,α),
we will call a vertex pair (s, t) (or edge st) covered by an edge set E′ if the
graph G′ = (V,E′) satisfies cG′(s, t) ≥ α · cG(s, t). In the following, we discuss
the special setting where the capacity function cap assigns 1 to every edge—in
this setting, cG(s, t) equals the maximum number of edge-disjoint s-t-paths in G.

Related Work. Capacity-preserving subgraphs are related to the research field
of sparsification. There, given a graph G, one is typically interested in an upper
bound on the size of a graph H that preserves some of G’s properties up to
an error margin ε. Graph H may be a minor of G, a subgraph of G, or a
completely new graph on a subset of G’s vertices (in which case it is called a
vertex sparsifier [15]). Such research does not necessarily yield approximation
algorithms w.r.t. minimum sparsifier size as the obtained upper bound may not
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Fig. 1. Two examples of subgraphs in red whose stretch (left: |V | − 1, right: 2) differs
greatly from their retention ratio (left: 1

2
, right: 1

|V |−1
). All edge lengths and edge

capacities are 1, showing that using the reciprocals of the edge lengths as edge capacities
does not lead to a direct relation between stretch and capacity either.

be easily correlated to the instance-specific smallest possible H (e.g., the general
upper bound may be |E(H)| = O( |V | log |V |

ε2 ) whereas there are instances where
an optimal H is a path); however, sparsifiers often can be used as a black box in
other approximation algorithms. A majority of cut/flow sparsification research
only concerns undirected graphs (for more details, see [5]).

Closely related to sparsifiers are spanners (see, e.g., [1] for a survey on this rich
field). These are subgraphs that preserve the length of a shortest path within a
given ratio (stretch factor) between each pair of vertices. However, even the most
basic results in this line of work cannot be applied to MCPS due to fundamental
differences between shortest paths and minimum cuts (as Fig. 1 illustrates).

When the capacity is equal to the number of edge-disjoint paths (i.e. for unit
edge capacities), MCPS is a special case of the Directed Survivable Net-

work Design (DSND) problem, where one asks for the smallest subgraph of a
directed graph that satisfies given edge-connectivity requirements for each vertex
pair. Dahl [6,7] studied DSND from a polyhedral point of view and presented an
ILP approach that can easily be adapted to solve MCPS. But algorithmically,
DSND has not received as much attention as its undirected counterpart [13] (for
which a 2-approximation algorithm exists [11]).

Lastly, MCPS can be seen as a generalization of the well-established Minimum

Equivalent Digraph (MED) problem [2,14,21]: Given a directed graph G =
(V,E), one asks for a cardinality-wise minimum edge set E′ ⊆ E such that the
subgraph G′ = (V,E′) preserves the reachability relation for every pair of vertices.
We may think of the MED as a directed version of the Minimum Spanning Tree

(despite not being tree-like)—the latter contains an undirected path from each
vertex to every other reachable vertex, the former contains a directed one. MED
has been shown to be NP-hard via a reduction from Directed Hamiltonian

Cycle [10,12,18]. The NP-hardness of MCPS follows from a simple observation:

Observation 2. MED is the special case of MCPS with α = min(s,t)∈V 2 1/cG(s,t).

There exist several polynomial approximation algorithms for MED, which
are all based on the contraction of cycles [14,24]; the currently best ratio
is 1.5 [21]. Moreover, MED can be solved optimally in linear time on graphs
whose shadow—the underlying undirected graph obtained by ignoring edge
orientations—is series-parallel [17], and in quadratic time on DAGs [2]. The
latter algorithm simply deletes all those edges uv for which there exists another
u-v-path.
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Our Contribution. In this paper, we introduce the natural problem MCPS,
which we assume may be of wider interest to the algorithmic community.

Based on the fact that MED is simple on DAGs, one might expect to sim-
ilarly find a polynomial algorithm for MCPS on DAGs as well. However, in
Sect. 2 we show that the arguably most complex core of MCPS cannot even be
approximated within a sublogarithmic factor, already on DAGs, unless P = NP.

In Sect. 3 we introduce the class of laminar series-parallel graph (LSPs)—
a generalization of directed series-parallel graphs (DSPs) that also allows, e.g.,
cycles and dense subgraphs. LSPs have the potential to allow simple algorithms
and proofs for a wider array of problems, not just MCPS, due to their structural
relation to DSPs. For example, the MCPS-analogue of a well-known spanner
property [3] holds on LSPs but not on general graphs: if the retention constraint
is satisfied for all edges, it is also satisfied for every vertex pair (see Theorem
11).

In Sect. 4, we complement the hardness result by a linear-time algorithm for
MCPS on DSPs, and a quadratic one on LSPs. While the latter algorithm’s proof
requires the one of the former, both algorithms themselves are independent and
surprisingly simple. Lastly, we show a further use of LSPs: our algorithms can
directly be applied to other related problems, and we prove that the algorithm
for MED on DAGs described in [2] in fact also works on general LSPs (Sect. 4.3).

2 Inapproximability on DAGs

Since a capacity-preserving subgraph always contains an MED (which might be
quite large), MCPS can be approximated on sparse graphs by simply returning
an arbitrary feasible solution (i.e., a set of edges such that the corresponding
subgraph satisfies the capacity requirement for every vertex pair).

Observation 3. Every feasible solution for a connected MCPS instance is an
m/n−1-approximation.

Proof. Every feasible MCPS solution must contain at least as many edges as an
MED to ensure a capacity of 1 for all vertex pairs (u, v) where v is reachable from
u. An MED of a connected graph is also connected. Thus, an optimal MCPS
solution contains at least n − 1 of all m original edges. �	

Hence, it seems sensible to consider a slightly altered version MCPS* of the
MCPS with a tweaked objective function |E′| − mMED, which does not take
into account the number of edges mMED in an MED but aims at focusing on
the problem’s core complexity beyond the MED. We show that it is NP-hard
to approximate MCPS* on DAGs to within a sublogarithmic factor using a
reduction from the decision variant of Set Cover (SC): given a universe U and
a family of sets S = {Si ⊆ U | i = 1, . . . , k} with k ∈ O(poly(|U |)), one asks
for a subfamily C ⊆ S with minimum size |C| such that

⋃
S∈C S = U . For an

SC instance (U,S), let f(u) := |{S ∈ S | S 
 u}| denote u’s frequency, i.e., the
number of sets that contain u, and f := maxu∈U f(u) the maximum frequency.
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Theorem 4. Any polynomial algorithm can only guarantee an approximation
ratio in Ω(log |E|) for MCPS*, unless P=NP. This already holds on DAGs with
maximum path length 4.

Proof. We give a reduction from SC to MCPS* on DAGs such that any feasible
solution for the new MCPS* instance can be transformed into a feasible solution
for the original SC instance with an equal or lower objective function value
in linear time. The size |E| of our MCPS* instance is linear in the size N ∈
O(|U |·k) = O(|U |r) of the SC instance, i.e., |E| = c·|U |r for some constants c, r:
if it was possible to approximate MCPS* on DAGs within a factor in o(log |E|) =
o(log(c · |U |r)) = o(log |U |), one could also approximate SC within o(log |U |).
However, it is NP-hard to approximate SC within a factor of ε ln(|U |) for any
positive ε < 1 [8,16]. To create the MCPS* instance (G,α), let α := 1

2 and
construct G as follows (see Fig. 2 for a visualization of G):

G := (VU ∪ V U
S ∪ VS ∪ V S

t ∪ {t}, EU ∪ ES ∪ EG ∪ ER)
VU := {vu | ∀u ∈ U} VS := {vS | ∀S ∈ S}
V U

S := {xu
S , yu

S | ∀S ∈ S, u ∈ S} V S
t := {zS | ∀S ∈ S}

EU := {vuxu
S , vuyu

S , xu
SvS , yu

SvS | ∀S ∈ S, u ∈ S} ES := {vSzS , zSt | s ∈ S}
EG := VS × {t} ER := VU × {t}

As G is a DAG, its MED is unique [2]. This MED is formed by EU ∪ ES and
already covers all vertex pairs except VU ×{t}. Let (vu, t) ∈ VU ×{t}: Its capacity
in G is 2f(u) + 1 and this pair thus requires a capacity of � 1

2 · (2f(u) + 1)� =
f(u) + 1 in the solution. Since the MED already has a vu-t-capacity of f(u),
only one additional edge is needed to satisfy the capacity requirement: either
the corresponding red edge vut ∈ ER, or one of the corresponding green edges
{vSt ∈ EG | S 
 u}. After choosing a corresponding red or green edge for each
item u ∈ U , the number of these edges is the value of the resulting solution.

Given an SC solution C, we can construct an MCPS* solution EU∪ES∪{vSt ∈
EG | S ∈ C} with the same value. Since every item is covered by the sets in C,
the constructed MCPS* solution includes at least one corresponding green edge
for each item, ensuring its feasibility.

To turn a feasible solution E′ for the MCPS* instance into a feasible solution
for the original SC instance with an equal or lower value, we remove all red edges
vut ∈ ER from the MCPS* solution and replace each of them—if necessary—by
one green edge vSt ∈ EG with S 
 u. Since the MCPS* solution has at least
one corresponding green edge for each item u ∈ U , the resulting SC solution
{S | vSt ∈ EG ∩ E′} also contains at least one covering set for each item. �	

The same reduction shows the NP-hardness of MCPS on DAGs: an optimal
SC solution {S | vSt ∈ EG ∩ E′} can be easily obtained from an optimal solu-
tion E′ for the MCPS instance (G,α), α = 1

2 . Moreover, the largest capacity
between any two vertices in G is 2f + 1. Since SC is already NP-hard for f = 2
(in the form of Vertex Cover [10,12]), we arrive at the following corollary:
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Fig. 2. MCPS instance constructed from the SC instance (U, S) with U = {a, b, c, d},
S = {{a, b, c}, {c, d}, {b, c}}. An optimal solution contains the MED (drawn in black)
as well as one corresponding red or green edge for each u ∈ U . Edges are directed from
upper to lower vertices. (Color figure online)

Corollary 5. MCPS is NP-hard already on DAGs G with maximum path
length 4 and max(u,v)∈V 2 cG(u, v) = 5.

The above reduction for MCPS* with α = 1
2 can be generalized to MCPS*

for every α = p
p+1 with p ∈ N>0. This only requires a small change in the

construction: EU must contain p + 1 vu-vS-paths of length 2 for all (vu, vS) ∈
VU × VS , and ES must contain p vS-t-paths of length 2 for all vS ∈ VS .

3 Laminar Series-Parallel Graphs

In this section, we introduce laminar series-parallel graph (LSPs)—a rich graph
family that not only includes the directed series-parallel graph (DSPs) but also
cyclic graphs and graphs with multiple sources and sinks. A (directed) graph G
is (directed) s-t-series-parallel ( s-t-(D)SP) if and only if it is a single edge st
or there exist two (directed, resp.) si-ti-series-parallel graphs Gi, i ∈ {1, 2},
such that G can be created from their disjoint union by one of the following
operations [9]:

1. P-composition: Identify s1 with s2 and t1 with t2. Then, s = s1 and t = t1.
2. S-composition: Identify t1 with s2. Then, s = s1 and t = t2.

There also exists a widely known forbidden subgraph characterization of DSPs:

Theorem 6 (see [20]). A directed graph G = (V,E) is a DSP if and only if it
is acyclic, has exactly one source, exactly one sink, and G does not contain a
subgraph that is a subdivision of W (displayed in Fig. 3(left)).

Given a directed graph G = (V,E), for every vertex pair (u, v) ∈ V 2, let
G〈u, v〉 be the graph induced by the edges on u-v-paths. Note that such a path-
induced subgraph may contain cycles but a single path may not. If e = uv
is an edge, we call G〈u, v〉 an edge-anchored subgraph (EAS) and may use the
shorthand notation G〈e〉. Based on these notions, we can define LSPs:

Definition 7 (Laminar Series-Parallel Graph). A directed graph G =
(V,E) is a laminar series-parallel graph (LSP) if and only if it satisfies:

P1. For every (s, t) ∈ V 2, G〈s, t〉 is either an s-t-DSP or contains no edges;
and
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u

s

t

v

Fig. 3. (Left) The graph W , whose subdivisions cannot be contained in DSPs. (Right)
Graph W with two added paths of length 2, see Observation 12. The u-v-capacity is 3.
For α = 1

2
, all edges of the original graph are covered by the MED (black edges) but

the vertex pair (u, v) is not. Observe that the graph is not a DSP but its shadow is
s-t-series-parallel.

Fig. 4. Examples of LSPs. Every edge represents a DSP of arbitrary size.

P2. {E(G〈e〉)}e∈E form a laminar set family, i.e., for all edges e1, e2 ∈ E
we have

G〈e1〉 ⊆ G〈e2〉 ∨ G〈e2〉 ⊆ G〈e1〉 ∨ E(G〈e1〉) ∩ E(G〈e2〉) = ∅.

Figure 4 shows some example LSPs. LSPs not only include the graphs whose
biconnected components are all DSPs but also some cyclic graphs, e.g., cyclic
DSPs constructed by identifying the source and sink of a DSP. Moreover, there
exist very dense LSPs, e.g., the natural orientations of complete bipartite graphs.
Below, we present some interesting properties of LSPs; for proofs see [5, App. A].

Theorem 8. A directed graph G = (V,E) satisfies P1 if and only if G does not
contain a subgraph that is a subdivision of W (displayed in Fig. 3(left)).

Theorem 9. Every directed graph G has a subdivision Ḡ that satisfies P2.

Theorem 10. Every DSP G is an LSP.

4 Efficient Algorithms

We first present an algorithm that finds an optimal MCPS solution for
DSPs in linear time (Sect. 4.1) and then a quadratic-time algorithm for
LSPs (Section 4.2), which can also be applied to several related problems
(Sect. 4.3).

4.1 MCPS on Directed Series-Parallel Graphs

Our linear-time algorithm will exploit a useful property of capacities in P1-
graphs: if every edge is covered, then all vertex pairs are covered.
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Theorem 11. Given a retention ratio α ∈ (0, 1), let G = (V,E) be a P1-graph
and G′ = (V,E′), E′ ⊆ E, with cG′(u, v) ≥ α · cG(u, v) for all edges uv ∈ E.
Then, E′ is a feasible α-MCPS solution, i.e., cG′(u, v) ≥ α·cG(u, v) for all vertex
pairs (u, v) ∈ V 2.

Proof. Consider any vertex pair (u, v) ∈ V 2 with u �= v (as vertex pairs with
u = v are trivially covered). We can assume w.l.o.g. that a maximum flow from
u to v passes only over edges of H := G〈u, v〉: for any maximum flow from u to v
that uses cycles outside of H, we can find one of the same value in H by simply
removing these cycles. As G is a P1-graph, H is a u-v-DSP. We use induction over
the series-parallel composition of H to prove that (u, v) is covered. If uv ∈ E,
the edge is already covered as asserted in the hypothesis of the theorem; this
includes the base case of H containing a single edge.

Let H be created from the disjoint union of two smaller ui-vi-DSPs Hi,
i ∈ {1, 2}, for which the theorem holds. Further, let X ′ := (V (X), E(X) ∩
E(G′)) for any subgraph X ∈ {H,H1,H2} of G. If H is constructed from
an S-composition, i.e. u = u1, v = v2, and v1 = u2, each maximum u-v-
flow in H (H ′) passes through both H1 and H2 (H ′

1 and H ′
2, resp.): cH′(u, v) =

min{cH′
1
(u, v1), cH′

2
(v1, v)} ≥ min{α·cH1(u, v1), α·cH2(v1, v)} = α·cH(u, v). If H

is constructed from a P-composition, i.e. u = u1 = u2 and v = v1 = v2, its u-v-
capacity in H (H ′) is the sum of u-v-capacities in H1 and H2 (H ′

1 and H ′
2, resp.):

cH′(u, v) = cH′
1
(u, v) + cH′

2
(u, v) ≥ α · cH1(u, v) + α · cH2(u, v) = α · cH(u, v). �	

Observation 12. Theorem 11 does not even hold for the smallest graph without
property P1 when only two paths of length 2 are added to it, see Fig. 3(right).

We give a simple linear-time algorithm to solve MCPS in DSPs. The algo-
rithm requires the series-parallel decomposition tree to be clean, i.e., if there are
multiple P-compositions of several s-t-DSPs H0, . . . , Hk where E(H0) = {st} is
a single edge, we first compose H1, . . . , Hk into a common s-t-DSP H before
composing H with H0. Standard decomposition algorithms can easily achieve
this property; the proof below also describes an independent linear-time method
to transform a non-clean decomposition tree into a clean one.

Theorem 13. Algorithm 1 solves MCPS on DSPs in O(|V |) time.

Algorithm 1. Compute an optimal MCPS in DSPs.
Input: DSP G = (V, E), retention ratio α ∈ (0, 1).
1: E′ ← E
2: T ← clean series-parallel decomposition tree for G
3: for each tree node σ in a bottom-up traversal of T
4: (H, (s, t)) ← graph and terminal pair corresponding to σ
5: if σ is a P-composition and st∈E(H) and (s, t) is covered by (E′ ∩E(H))\{st}
6: remove st from E′

7: return E′
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Proof. We use induction over the clean series-parallel decomposition tree T of
G, maintaining the following invariants: at the end of each for-loop iteration
with (H, (s, t)) as the graph and terminal pair for the respective tree node,
E′ ∩ E(H) is an optimal solution for H, and all optimal solutions of H have
equal s-t-capacity.

Let σ be a leaf of T : A graph H with a single edge st only allows one feasible
(and hence optimal) solution consisting of its only edge. The edge is added to
E′ during the algorithm’s initialization and is not removed from it before σ has
been processed. Now observe S-compositions and those P-compositions where
no edge st exists in any of the components: They produce no additional paths
between the endpoints of any edge (which are the only vertex pairs that have
to be covered, see Theorem 11). Thus, the feasible (optimal) solutions of H are
exactly those that can be created by taking the union of one feasible (optimal,
respectively) solution for each respective component. The algorithm proceeds
accordingly by keeping E′ unchanged. Since the components’ respective optimal
solutions all have the same source-sink-capacity (per induction hypothesis), this
also holds true for their unions, i.e., the optimal solutions of H.

Now consider a P-composition with st ∈ E(H). As T is clean, there are two
components H1 and H2 with E(H2) = {st}, and G〈s, t〉 = H. All edges e ∈ H1

are covered optimally by E′ ∩E(H1) both in H1 and in H since (s, t) /∈ E(H〈e〉).
Case 1: If one optimal solution for H1 already covers st in H, then all optimal
solutions for H1 do so (as they all have the same s-t-capacity per induction
hypothesis). Then, the optimal solutions for H1 are exactly the optimal solutions
for H, and the algorithm finds one of them by keeping its solution for H1 intact
and removing st from E′. Note that this removal does not affect the feasibility
of E′ for subgraphs of G \ G〈s, t〉 that have already been processed.

Case 2: If st is not yet covered by our optimal solution for H1, it is not covered
by any optimal solution for H1. Our algorithm chooses the edge st by keeping
its optimal solutions for both H1 and H2. An optimal solution S for H must
contain an optimal solution for H1: S′ := S \ {st} covers all edges of H1. If S′

were not optimal, there would exist another solution S′′ that covers all edges
and thus vertex pairs of H1 with |S′′| < |S′|. But S′′′ := S′′ ∪ {st} is feasible
for H because the capacity requirements for vertex pairs in H and H1 only differ
by at most one. We arrive at |S′′′| = |S′′| + 1 < |S′| + 1 ≤ |S|, a contradiction.
— In addition to an optimal solution for H1, we need exactly one more edge to
increase the s-t-capacity and cover st in H: this additional edge is either st itself
or another edge from H1. Assume that adding an additional edge e1 ∈ E(H1)
(instead of st) increases the capacity for st or a later source-sink-pair by 1,
then st by construction does so as well. Thus, adding st instead of e1 is never
worse; furthermore, all optimal solutions for H have the same s-t-capacity.

For the running time, note that a (clean) series-parallel decomposition tree T
can be computed and traversed in linear time [20]. If T were not clean, it is trivial
to establish this property in linear time: Traverse T bottom-up; whenever a leaf λ
is the child of a P-node, ascend the tree as long as the parents are P-nodes. Let �
be the final such P-node, and γ the other child of � that was not part of the
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ascent. Swap λ with γ. Observe that the ascents for different leafs are disjoint,
and thus this operation requires overall only O(|T |) = O(|V |) time.

In each step during the traversal in line 3, we can compute the capacity
of the current source and sink—for both the current solution and G overall—
in constant time using the values computed in previous steps: a single edge is
assigned a capacity of 1, and an S-composition (P-composition) is assigned the
minimum (sum, respectively) of the capacities of its two components. �	

4.2 MCPS on Laminar Series-Parallel Graphs

An intuitive approach to solve MCPS on an LSP G = (V,E) is based on the
observation that every LSP can be partitioned into a set of edge-disjoint DSPs:
Consider the maximal edge-anchored subgraphs (MEASs), i.e., those G〈e〉 for
e ∈ E such that there is no other edge e′ ∈ E \ {e} with E(G〈e〉) ⊆ E(G〈e′〉).
Since LSPs are P1-graphs, each of these MEAS must be a DSP, and it suf-
fices to cover its edges (see Theorem 11). Further, the EAS G〈e′′〉 for each edge
e′′ ∈ E is contained in a single MEAS (as LSPs are P2-graphs). Hence, one
could identify the MEASs and run Algorithm 1 on each of them to obtain an
optimal MCPS solution. We give a more straightforward but functionally equiv-
alent Algorithm 2.

Theorem 14. Algorithm 2 solves MCPS on LSPs in O(|E|2) time.

Proof. We prove by induction over μe that for each DSP (and hence for each
MEAS), Algorithm 2 returns the same result as Algorithm 1: Edges e with μe = 1
(i.e., MED-edges) are added to E′ by Algorithm 2 in order to cover themselves.
Similarly, Algorithm 1 will add such edges during its initialization and never
remove them: edge e would only be removed if e connected the source and sink
of a subgraph constructed with a P-composition, a contradiction to μe = 1.

Now assume that the edges with a μ-value smaller than i for some i > 1
are already processed equivalently to Algorithm 1. Consider any edge e = uv
with μe = i. Since G is a P1-graph, H := G〈e〉 is a u-v-DSP. As e ∈ E(H),
H can be constructed with a P-composition from two graphs H1 and H2 where
E(H2) = {e}. All edges in H1 have already been processed (they have a μ-value
smaller than i), and the solutions of Algorithm 2 and Algorithm 1 thus coincide
on H1. Hence, both algorithms produce the same solution for H as they both
contain e if and only if e is not already covered by the current solution for H1.

Algorithm 2. Compute an optimal MCPS in LSPs.
Input: LSP G = (V, E), retention ratio α ∈ (0, 1).
1: E′ ← ∅
2: for each edge e ∈ E: μe ← number of edges in G〈e〉
3: sort all edges e ∈ E by non-descending μe

4: for each edge e = uv ∈ E in order: if uv is not covered by E′, add e to E′

5: return E′
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For each MEAS, Algorithm 1 and, as we have now shown, Algorithm 2 both
find the smallest subgraph that covers all of its edges. As LSPs are P1-graphs,
this suffices to guarantee an optimal MCPS solution for the MEAS by Theorem
11. Further, we can consider the different MEASs in isolation since their solutions
are independent of each other: LSPs are P2-graphs, and thus, for any edge uv ∈
E(G), all u-v-paths are completely contained in a single MEAS.

It remains to argue the running time. For each e = uv ∈ E, we compute μe

by starting a depth-first search at u and counting tree- and cross-edges when
backtracking from v. Overall, this results in O(|E|2) time. The sorting of the
edges can be done in O(|E|) time as the domain are integer values between 1
and |E|. Lastly, to check whether an edge uv is covered, we precompute the
s-t-capacity for every edge st ∈ E on G〈s, t〉 and then, when needed, compute
the u-v-capacity on the graph G[E′ ∩ E(G〈u, v〉)] for the current solution E′.
Note that both of these subgraphs are DSPs as G is a P1-graph. This allows us
to compute a series-parallel decomposition tree in O(|E|) time and traverse it
bottom-up to obtain the capacity (cf. the proof of Theorem 13). Doing so twice
for every edge takes O(|E|2) time overall. �	

4.3 Applications of Algorithm 2 to Other Problems

Consider the Minimum Strongly Connected Subgraph (MSCS) prob-
lem [14,21], the special case of MED on strongly connected graphs, i.e., graphs
where every vertex is reachable from every other vertex. Since there are straight-
forward reductions from Directed Hamiltonian Cycle to MSCS to MED to
MCPS that all use the original input graph of the instance, Algorithm 2 can be
adapted to solve these problems as well: To solve MED, one simply has to set
α = min(s,t)∈V 2 1/cG(s,t) and then run the algorithm on the input graph. How-
ever, with α set this way, Algorithm 2 does precisely the same as the algorithm
for finding the MED on DAGs [2]: it returns all those edges for which there is
only one path between their endpoints (namely the edge itself). Hence, our new
insight with regards to the MED is that the aforementioned approach does not
only solve MED optimally on DAGs, but on arbitrary LSPs as well. Moreover, if
the input graph is strongly connected (Hamiltonian), the returned MED forms
the MSCS (directed Hamiltonian cycle, respectively).

Corollary 15. There are quadratic time algorithms that return optimal solu-
tions for Directed Hamiltonian Cycle, Minimum Strongly Connected

Subgraph and Minimum Equivalent Digraph on any LSP.

5 Conclusion and Open Questions

We have laid the groundwork for research into capacity-preserving subgraphs
by not only showing the NP-hardness of MCPS on DAGs but also presenting a
first inapproximability result as well as two algorithmically surprisingly simple
algorithms for MCPS on DSPs and LSPs. Several questions remain, for example:
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Is MCPS on undirected graphs (which is a generalization of Minimum Spanning

Tree) NP-hard? Is it NP-hard to approximate MCPS within a sublogarithmic
factor? Is there a linear-time algorithm for MCPS on LSPs? Moreover, one may
investigate MCPS with non-unit edge capacities, or other problems on LSPs.
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Abstract. In this paper we study a variant of vertex cover on temporal
graphs that has been recently introduced for timeline activities summa-
rization in social networks. The problem has been proved to be NP-hard,
even in restricted cases. In this paper, we present algorithmic contribu-
tions for the problem. First, we present an approximation algorithm of
factor O(T log n), on a temporal graph of T timestamps and n vertices.
Then, we consider the restriction where at most one temporal edge is
defined in each timestamp. For this restriction, which has been recently
shown to be NP-hard, we present a 4(T − 1) approximation algorithm
and a parameterized algorithm when the parameter is the cost (called
span) of the solution.

1 Introduction

Novel representations of entity interactions have been considered in network
science and graph literature, in order to take into account their dynamics and
heterogeneity. This has led to the definition of novel graph models, a notable
example being temporal networks [14,15,19]. Temporal networks or temporal
graphs represent how interactions (or edges) evolve in a discrete time domain
for a given set of entities (or vertices) [14,17]. The time domain consists of a
sequence of timestamps and, for each timestamp of the considered time domain,
a temporal graph defines a static graph (also called snapshot) on the same vertex
set. Thus a temporal graph can be seen as sequence of static graphs, one for each
timestamp, over the same vertex set, while the edge sets can change from one
timestamp to the other. In particular, an edge observed in a timestamp, is called
a temporal edge.

The main aspects of temporal graphs considered in the literature have been
finding paths and studying their connectivity [2,7,10,17,18,22–24], but other
problems have been studied, for example dense subgraph discovery [9,20]. A
fundamental problem in computer science that has been recently considered for
temporal graphs is Vertex Cover [3,21]. In this contribution we will consider a
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variant of Vertex Cover on temporal graphs that has been introduced for inter-
action timeline summarization, a problem called MinTCover [21]. The problem
considers a sequence of observed interactions between entities (for example, users
of a social platform) and aims to explain these interactions with intervals of entity
activities that, following a parsimony approach, have minimum length. From a
graph theory perspective, the MinTCover problem is defined over a temporal
graph, whose vertices represents entities and whose temporal edges represent
interactions between entities. MinTCover then asks, for each vertex, for the def-
inition of a temporal interval where the vertex is considered to be active such
that each temporal edge e is covered, that is at least one of its endpoints has
an interval activity that includes the timestamp where e is present. The length
of an interval activity of a vertex is called the span of the vertex. The objective
function of MinTCover asks to minimize the sum of the vertex spans.

MinTCover is NP-hard [21], also for some restrictions: when each timestamp
contains at most one temporal edge [8], a restriction we denote by 1-MinTCover,
when each vertex has degree at most two in each timestamp and the temporal
graph is defined over three timestamps [8], and when the temporal graph is
defined over two timestamps [11].

MinTCover has been considered also in the parameterized complexity frame-
work. MinTCover admits a parameterized algorithm when parameterized by the
span of a solution, when the temporal graph is defined over two timestamps [11].

Two results given in [11] can be applied also for the approximation complex-
ity of MinTCover. A lower bound on the approximability of the problem can be
proved by observing that the reduction from the Odd Cycle Transversal problem1

to MinTCover on two timestamps presented in [11] is indeed an approximation
preserving reduction. Since assuming the Unique Games conjecture Odd Cycle
Transversal is known to be not approximable within constant factor [5], the fol-
lowing result holds.

Theorem 1 [11]. MinTCover cannot be approximated within constant factor,
assuming the Unique Games Conjecture, even on temporal graphs defined over
two timestamps.

The authors of [11] give a parameterized algorithm, when the problem is
parameterized by the span of a solution and the temporal graph is defined
over two timestamps. This parameterized algorithm is based on a parameter-
ized reduction from MinTCover on a time domain of two timestamps to the
Almost 2-SAT problem2. This reduction can be easily modified so that it is
an approximation preserving reduction from MinTCover on two timestamps to
Almost 2-SAT. Since Almost 2-SAT is approximable within factor O(

√
log n), for

a graph having n vertices [1], the following result holds.

1 We recall that the Odd Cycle Transversal problem, given a graph, asks for the removal
of the minimum number of edges such that the resulting graph is bipartite.

2 We recall that the Almost 2-SAT, given a formula consisting of clauses on two literals,
asks for the removal of the minimum number of clauses so that the resulting formula
is satisfiable.
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Theorem 2 [11]. MinTCover on two timestamps can be approximated within
factor O(

√
log n), for a temporal graph having n vertices.

Related Works. In [21] different variants of the MinTCover problem have been
introduced, considering the cases that vertex activity is defined in one interval
(as for MinTCover) or in more than one interval (but in a bounded number), and
that the objective function asks for the minimization of (1) the sum of vertex
spans (as for MinTCover) or (2) the maximum activity span of a vertex.

The computational complexity of the variants of the MinTCover problem has
been analyzed recently. Unlike MinTCover, when the vertex activity is defined
in one interval and the objective function is the minimization of the maximum
activity span of a vertex, the problem admits a polynomial-time algorithm [21].
The variants where the vertex activity is defined as k ≥ 2 intervals are NP-
hard for both objective functions considered [21] and they also do not admit
any polynomial-time approximation algorithm, as deciding whether there exists
a solution of cost equal to 0 is already an NP-complete problem [21].

In [11] the parameterized complexity of the variants of MinTCover has been
explored, considering as parameters the number of vertices of the temporal
graph, the length of the time domain, the number of intervals of vertex activity
and the span of a solution.

Two other variants of Vertex Cover in temporal graphs have been considered
in [3,12]. A first variant, given a temporal graph, asks for the minimum number
of pairs (u, t), where u is a vertex and t is a timestamp, such that each non-
temporal edge e = {a, b} is temporally covered, that is there exists a timestamp
t where e is present and at least one of (a, t) and (b, t) belongs to the cover.
A second variant asks for each temporal edge to be temporally covered at least
once for every interval of a given length Δ.

Our Results. In this paper, we give algorithmic contributions for MinTCover, in
particular for its approximability, and for 1-MinTCover (the restriction of MinT-
Cover where at most one temporal edge is present in each timestamp, a restric-
tion also known to be NP-hard [8]). First, we present in Sect. 3 a randomized
polynomial-time approximation algorithm for MinTCover of factor O(T log n),
for a temporal graph defined over T timestamps and n vertices. Then in Sect. 4
we focus on 1-MinTCover and we provide a parameterized algorithm, where the
parameter is the span of the solution, and a polynomial-time approximation
algorithm of factor 4(T −1). In the next section we introduce the main concepts
related to MinTCover and we formally define the MinTCover problem. Due to
space restrictions some proofs are placed in the appendix.

2 Preliminaries

We start this section by introducing the definition of discrete time domain over
which a temporal graph is defined. A temporal graph is defined over a sequence
T of timestamps between 1 and T , denoted by [1 . . . , T ] (hence in what follows T
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denotes the number of timestamp of the temporal graph). An interval I = [i, j],
with 1 ≤ i ≤ j ≤ T , is the sequence of timestamps with value between i and j.

We present now the definition of temporal graph, where recall that the vertex
set is not changing in the time domain.

Definition 1. A temporal graph G = (V,E, T ) consists of a set V of n vertices,
a time domain T = [1, 2, . . . , T ], a set E ⊆ V ×V ×T of m temporal edges, where
a temporal edge of G is a triple {u, v, t}, with u, v ∈ V and t ∈ T .

Given an interval I of T , EI denotes the set of active edges in the timestamps
of I, that is: EI = {{u, v, t}|{u, v, t} ∈ E ∧ t ∈ I}. Et denotes the set of active
edges in timestamp t.

Given a vertex v ∈ V , an activity interval of v is defined as an interval Iv =
[lv, rv] of the time domain where v is considered active, while in any timestamp
not in Iv, v is considered inactive. Notice that if Iv = [lv, rv] is an activity
interval of v, there may exist temporal edges {u, v, t}, with t < lv or t > rv
(see the example in Fig. 1). An activity timeline A is a set of activity intervals,
defined as A = {Iv : v ∈ V }.

Given a temporal graph G = (V,E, T ), a timeline A covers G = (V,E, T )
if for each temporal edge {u, v, t} ∈ E, t belongs to Iu or to Iv, where Iu (Iv,
respectively) is the activity interval of u (of v, respectively) defined by A.

The span s(Iv) of an interval Iv = [lv, rv], for some v ∈ V , is defined as
s(Iv) = |rv − lv|. Notice that for an interval Iv = [lv, rv] consisting of a single
timestamp, that is where lv = rv, it holds that s(Iv) = 0. The overall span of an
activity timeline A is equal to s(A) =

∑
Iv∈A s(Iv).

Now, we are ready to define the problem we are interested into (see the
example of Fig. 1).

Problem 1. (MinTCover)
Input: A temporal graph G = (V,E, T ).
Output: An activity timeline of minimum span that covers G.

Given a temporal graph G = (V,E, T ) and a vertex v ∈ V , the local degree
of v in a timestamp t, denoted by ΔL(v, t), is the number of temporal edges
{v, u, t}, with u ∈ V . The local degree ΔL of G is the maximum over v and t of
ΔL(v, t). The global degree Δ(v) of a vertex v ∈ V is the number of temporal
edges incident in v in the overall time domain, that is Δ(v) =

∑T
t=1 ΔL(v, t).

The global degree Δ of G is the maximum over v of Δ(v).
Consider a set V1 ⊆ V of vertices and an activity timeline A1 for V1. Given

a set V2 ⊆ V , an activity timeline A2 for V2 is in agreement with A1 if, for each
v ∈ V1 ∩V2, the activity interval of v in A1 is identical to the activity interval of
v in A2. Furthermore, we define as A = A1 + A2 the activity timeline of V1 ∪ V2

that is in agreement with both A1 and A2.
Given a temporal graph G = (V,E, T ), it is possible to check in polynomial

time whether there exists a solution of MinTCover on G of span 0.
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v1

v2

v3

v4

t = 1 t = 2 t = 3

Fig. 1. An example of MinTCover on a temporal graph G consisting of four vertices
(v1, v2, v3, v4) and three timestamps (1, 2, 3). For each timestamp, the temporal edges
defined in that timestamp are presented. The activity interval of each vertex is repre-
sented in gray. The overall span is equal to 3.

Lemma 1 ([21]). Let G be an instance of MinTCover. We can compute in
polynomial time whether there exists a solution of MinTCover on G that has
span equal to 0.

Given a temporal graph G = (V,E, T ), we can associate a labeled static
graph, called union graph, where all the temporal edges are represented.

Definition 2. Given a temporal graph G = (V,E, T ), the union graph associ-
ated with G is a labeled graph GU = (V,EU , λ), where EU = {{u, v} : {u, v, t} ∈
E, for some t ∈ T } and λ ⊆ (EU × T ) is a labeling of the edges in EU defined
as λ({u, v}) = {t : {u, v, t} ∈ E, for some t ∈ T }.

In the paper we consider a variant of MinTCover, denoted by 1-MinTCover,
when there exists at most one active temporal edge in each timestamp.

2.1 Preprocessing a Temporal Graph

We present a preprocessing procedure of a temporal graph and the corresponding
union graph that allows to remove some easy to cover parts. The preprocessing
consist of two phases. In the first phase, while there exists a vertex u with global
degree 1, the preprocessing removes u and the single temporal edge {u, v, t}
incident in u from G (and GU ); u is defined to be active in t (that is u covers
{u, v, t}) with span 0.

Lemma 2. Consider a temporal graph G and the temporal graph G′ obtained
after the first phase of preprocessing. Then there exists a solution of MinTCover
on G having span at most k if and only if there exists a solution of MinTCover
on G′ having span at most k.
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The second phase of preprocessing considers a simple cycle C in the union
graph GU such that each edge in C has exactly one label and C a connected
component of the union graph. The preprocessing removes C from GU (and
the vertices and temporal edges corresponding to C from G) and computes a
solution of MinTCover for C having span equal to 0, by covering each temporal
edge with one endpoint of span 0 (it is possible since C contains z vertices and
z temporal edges).

Lemma 3. Consider a temporal graph G and the temporal graph G′ obtained
after the second phase of preprocessing. Then there exists a solution of MinTCover
on G having span at most k if and only if there exists a solution of MinTCover
on G′ having span at most k.

3 An Approximation Algorithm for MinTCover

In this section we present an approximation algorithm for MinTCover. First, we
recall that by Lemma 1 it is possible to compute in polynomial time whether
there exists a solution of MinTCover having span 0, so in what follows we assume
that an optimal solution of MinTCover on instance G requires a span greater than
0. In this section we give an O(T log n) randomized approximation algorithm for
the MinTCover problem (recall that n is the number of vertices of G and T is
the number of timestamps).

The algorithm consists of two phases: (1) first it computes an approximated
solution that covers the temporal edges having at least three occurrences, then
(2) it computes a solution of the remaining part of graph.

3.1 Temporal Edges with at Least Three Occurrences

In the first phase, the approximation algorithm considers the subgraph G′
U =

(V,E′
U ) of the underlying static graph GU that contains edges representing tem-

poral edges of G with at least three occurrences. E′
U is then defined as follows:

E′
U = {{u, v} : ∃{u, v, t1}, {u, v, t2}, {u, v, t3} ∈ E, with 1 ≤ t1 < t2 < t3 ≤ T}.

Now, consider G′
U = (V,E′

U ) and compute in polynomial time a vertex cover
V ′
U ⊆ V of G′

U , by applying a factor 2 approximation algorithm for Vertex Cover
(for example with the approximation algorithm given in [16]). Define then the
activity of vertices in V ′

U as follows: Iv = [1, T ], for each v ∈ V ′
U .

Let A1 be the activity of vertices in V ′
U . We prove the following result on A1.

Lemma 4. Consider the set of vertices V ′
U and an optimal solution A∗ of MinT-

Cover on instance G. Then, it holds that (1) every temporal edge with an endpoint
in V ′

U is covered by A1 and (2) it holds that s(A1) ≤ 2Ts(A∗).

Now, the approximation algorithm removes from G the vertices in V ′
U and

the temporal edges covered by V ′
U (hence all the temporal edges incident in one

vertex of V ′
U ). We present now the second phase of the approximation algorithm.
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3.2 Temporal Edges with at Most Two Occurrences

We present an approximation algorithm on graph G, where we assume that each
pair of vertices is connected by at most two temporal edges. It follows that the
number of temporal edges is bounded by 2

(
n
2

)
≤ n2.

The approximation algorithm is based on randomized rounding and it is
inspired by the approximation algorithm for Set Cover [13]. First of all, we present
an ILP formulation to model the following variant of the problem, called Min-
imum Non-Consecutive Timeline Cover (Min-NC-TCover), where: (1) each vertex
can be active in several non necessarily consecutive timestamps and (2) if each
vertex is active in x timestamps, 1 ≤ x ≤ |T |, it has a span of x − 1, hence it
contributes x − 1 to the objective function. Notice that since Min-NC-TCover is
less restrictive than MinTCover, the optimum of Min-NC-TCover on a temporal
graph G is not greater than the optimum of MinTCover on the same instance,
since any solution of MinTCover on G is also a solution of Min-NC-TCover on the
same instance. Furthermore, notice that Min-NC-TCover is an NP-hard prob-
lem, since on a temporal graph defined on two timestamps the two problems are
identical and MinTCover is known to be NP-hard in this case [11].

We use a randomized rounding algorithm to find an O(log n) approximation
solution to the Min-NC-TCover problem. Then, we transform the solution for the
Min-NC-TCover into a solution for the MinTCover problem increasing the cost
within a factor of at most T . Thus, we obtain a O(T log n) approximation for
the MinTCover problem. The integer program formulation of the Min-NC-TCover
problem is presented in Fig. 2.

minimize
v∈V

(

T

t=1

xt
v − 1) (1)

subject to

T

t=1

xt
v ≥ 1 ∀v ∈ V (2)

xt
v + xt

u ≥ 1 ∀{u, v, t} ∈ E (3)

xt
v 0, 1 v V, t 1, 2, . . . , T (4)

Fig. 2. ILP formulation for the timeline cover problem for the Min-NC-TCover problem

The O(T log n) approximation for the MinTCover problem is presented in
Algorithm 1. We prove now the correctness and the approximation ratio of Algo-
rithm 1.

Lemma 5. Algorithm 1 is a O(T log n) approximation algorithm for the MinT-
Cover problem on a temporal graph where each pair of vertices is connected by
at most two temporal edges.
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Algorithm 1. O(T log n) approximation algorithm for the MinTCover problem.
1. Solve the LP relaxation of the ILP formulation from Fig. 2, where we relax con-

straint (4) to be 0 ≤ xt
v ≤ 1.

2. Define c = 4n2.
3. For every variable xt

v, define a boolean variable Xt
v, initialized to 0.

4. Repeat log4 c times the following point (point 5)
5. For every variable xt

v, assign Xt
v to 1 with probability xt

v.
6. For every vertex v such that there exist at least two variables Xt

v = Xt
v = 1, let

tmin be the smallest t such that Xt
v = 1 and tmax be the maximum t such that

Xt
v = 1. We make the vertex v active in interval [tmin, tmax].

We can prove now that the overall algorithm has an approximation factor
O(T log n).

Theorem 3. MinTCover can be approximated within factor O(T log n) in poly-
nomial time.

Proof. Let A1 be the activity assignment of the first phase of the algorithm
and let A2 be the activity assignment of the second phase of the algorithm.
Let Af = A1 + A1 be the solution consisting of the assignment of A1 and A2.
Notice that, since all the vertices defined to be active by A1 are removed, Af is
well-defined.

Let A∗ be an optimal solution of MinTCover on instance G, recall that by
Lemma 4 it holds that s(A1) ≤ 2Ts(A∗), while by Theorem 5 it holds that
s(A2) ≤ O(T log n s(A∗).

Now, if s(A1) ≥ s(A2), it follows that

s(Af ) = s(A1) + s(A2) ≤ 2 s(A1) ≤ 4(T − 1)s(A∗) ≤ O(T log n)s(A∗).

If s(A1) < s(A2), it follows that

s(Af ) = s(A1) + s(A2) ≤ 2 s(A2) ≤ O(Ts(A∗) ≤ O(T log n)s(A∗).

thus concluding the proof. ��

4 Algorithms for 1-MinTCover

In this section we study a variant of the timeline cover problem in which the
graph from each timestamp contains a single edge. We give a fixed-parameter
algorithm for this variant and we also show an approximation algorithm with
approximation factor 4(T − 1).

4.1 A Fixed-Parameter Algorithm

In this section we give a fixed-parameter algorithm for 1-MinTCover when param-
eterized by k (the span of the solution). Consider a solution A of 1-MinTCover
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on a temporal graph G. We assume that the instance has been preprocessed
as described in Subsect. 2.1, hence the union graph GU does not contain dis-
joint simple cycles and there is no vertex having global degree one. Moreover,
we assume that the union graph GU is connected, otherwise we can solve 1-
MinTCover on each connected component independently.

Denote by D ⊆ V the set of vertices in G having global degree greater than
two (that is those vertices having at least three incident temporal edges). We
start by proving the following result on G.

Lemma 6. Let G be an instance of 1-MinTCover that admits a solution of span
k. Let D ⊆ V be the set of vertices in G having global degree greater than two.
Then, (1) |D| ≤ 2k; (2) There are at most 6k temporal edges incident to vertices
of D.

Now, we prove that the union graph G′
U obtained from GU by removing the

vertices in D consists of disjoint paths.

Lemma 7. Let G′ be the temporal graph obtained by removing the vertices in D.
Then, the union graph G′

U associated with G′ consists of a set of disjoint paths.

Based on Lemma 6 and Lemma 7, we present our fixed-parameter algorithm
for 1-MinTCover (Algorithm 2). Informally, since |D| ≤ 2k and the edges incident
in some vertex of D are at most 6k, we can iterate over the possible covers of
temporal edges incident to D and then solve the problem on resulting graph.

Algorithm 2. The FPT Algorithm for the 1-MinTCover problem.
1. For each edge e = {u, v, t}, with u ∈ D or v ∈ D, decide whether e is covered by

u (which is then defined active by the activity timeline A in timestamp t) or by v
(which is then defined active by activity timeline A in timestamp t);

2. Let G′ be the temporal graph obtained by removing the vertices of D: compute
in polynomial time an optimal solution A′ of 1-MinTCover on G′, where A′ is in
agreement with A;

3. return A + A′.

Algorithm 2 at step 2, starts from an activity timeline A and computes an
optimal solution A′ of 1-MinTCover on G′ that is in agreement with A. We
describe in the following how A′ is computed.

A timeline A′ of minimum span in agreement with A is computed indepen-
dently for each connected component (which is a path) P in G′

U . Notice that A
may have already defined an endpoint of P active in a timestamp. Given a path
P in G′

U having endpoints u and v, then the algorithm:

Case 1) If A defines at most one of u and v to be active in some timestamp t,
then A′ is defined to be an activity timeline for P in agreement with A
having span 0.
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Case 2) If A defines u active in timestamp t and v to be active timestamp t′,
then A′ is computed as follows. For each vertex x of P , the algorithm
computes an activity timeline Ax in agreement with A so that x covers
each temporal edge of P incident in x, while each other vertex of P
covers exactly one temporal edge and has a span of 0. Then A′ is defined
to be the timeline activity having minimum span among Ax, with x a
vertex of P .

The computation on paths requires polynomial time, thus leading to an algo-
rithm of complexity O∗(26k).

Theorem 4. 1-MinTCover can be solved in O∗(26k) time.

4.2 Approximation Algorithm

In this subsection we present a polynomial time 4(T − 1)-approximation algo-
rithm for the 1-MinTCover problem. We start by showing that starting from a
union graph GU where edges can have multiple labels, we can compute a cor-
responding simple union graph G′

U where each edge has a single label and such
that GU has a feedback vertex set of size k if and only if G′

U has a feedback
vertex set of size k. Consider GU , then compute G′

U by subdividing each edge of
GU with more than one label in a set of edges as follows: for each {u, v} ∈ EU

labeled by t, a new vertex eu,v,t is added in G′
U connected to u and v.

Lemma 8. Consider a multigraph GU , then compute G′
U by subdividing each

multiedge of GU . Then GU has a feedback vertex set of size k if and only if G′
U

has a feedback vertex set of size k.

Algorithm 3. 4(T − 1)-approximation algorithm for 1-MinTCover

1. Construct the union graph GU = (V,E) of G and the corresponding simple union
graph G′

U .
2. Compute a 2-approximate feedback vertex set F of G′

U (and GU ) [4,6]
3. Make each vertex v ∈ F active in the time interval [1, T ].
4. Cover the graph G−F using the first reduction rule from Subsect. 2.1, since G−F

is acyclic.

The key to the analysis of the algorithm is the following structural lemma
that relates the size of the optimal solution to the size of a minimum feedback
vertex set.

Lemma 9. Let G be a temporal graph, input of 1-MinTCover (each timestamp
has precisely one edge). Let GU = (V,E) be the corresponding union graph
and G′

U be the corresponding simple union graph. If the optimal solution of 1-
MinTCover on G has a span of k, then a feedback vertex set of GU and G′

U has
at most 2k vertices.
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We analyze now the correctness and the performance of Algorithm 3.

Theorem 5. Algorithm 3 is a polynomial 4(T −1)-approximation algorithm for
the 1-MinTCover problem.

Proof. Algorithm 3 produces a valid cover of G, since F is a feedback vertex set
of G′

U and G′
U \F is acyclic and thus, we can iteratively apply the first rule from

Subsect. 2.1 and obtain a timeline activity of span 0 for G − F .
We analyze now the approximation ration of Algorithm 3. First, observe that

the global span of the activity timeline returned by the algorithm is ALG =
2(|T | − 1)|F ∗|, where F ∗ is a minimum feedback vertex set in the graph G′

U .
From Lemma 9 we have that |F ∗| ≤ 2·OPT , where OPT is the minimum span of
any activity timeline on the graph G. Thus, it holds that ALG = 2(T −1)|F ∗| ≤
2(T − 1)2OPT ≤ 4(T − 1)OPT , concluding the proof. ��

5 Conclusion

In this paper we have presented algorithmic contributions on MinTCover and on
the 1-MinTCover restriction. There are several interesting open problems related
to MinTCover. There is a gap in the approximation complexity of the problem. In
particular is it possible to obtain an approximation algorithm whose factor does
not depend on T? Another interesting open problem is whether it is possible
to obtain a fixed-parameter tractable algorithm with parameter the span of the
solution.
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Abstract. (I) We revisit the algorithmic problem of finding all triangles
in a graph G = (V, E) with n vertices and m edges. According to a result
of Chiba and Nishizeki (1985), this task can be achieved by a combina-
torial algorithm running in O(mα) = O(m3/2) time, where α = α(G) is
the graph arboricity. We provide a new very simple combinatorial algo-
rithm for finding all triangles in a graph and show that is amenable to
the same running time analysis. We derive these worst-case bounds from
first principles and with very simple proofs that do not rely on classic
results due to Nash-Williams from the 1960s.

(II) We extend our arguments to the problem of finding all small com-
plete subgraphs of a given fixed size. We show that the dependency on
m and α in the running time O(α�−2 · m) of the algorithm of Chiba and
Nishizeki for listing all copies of K�, where � ≥ 3, is asymptotically tight.

(III) We give improved arboricity-sensitive running times for counting
and/or detection of copies of K�, for small � ≥ 4. A key ingredient in our
algorithms is, once again, the algorithm of Chiba and Nishizeki. Our new
algorithms are faster than all previous algorithms in certain high-range
arboricity intervals for every � ≥ 7.

Keywords: triangle · subgraph detection/counting · graph
arboricity · rectangular matrix multiplication

1 Introduction

The problem of deciding whether a given graph G = (V,E) contains a complete
subgraph on k vertices is among the most natural and easily stated algorithmic
graph problems. If the subgraph size k is part of the input, this is the Clique
problem which is NP-complete [15]. For every fixed k, determining whether a
given graph G = (V,E) contains a complete subgraph on k vertices can be
accomplished by a brute-force algorithm running in O(nk) time.

For k = 3, deciding whether a graph contains a triangle and finding one if
it does, or counting all triangles in a graph, can be done in O(nω) time by the
algorithm of Itai and Rodeh [14], where ω < 2.373 is the exponent of matrix mul-
tiplication [1,6]. The algorithm compares M and M2, where M is the graph adja-
cency matrix. Alternatively, this task can be done in O(m2ω/(ω+1)) = O(m1.408)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-Y. Hsieh et al. (Eds.): IWOCA 2023, LNCS 13889, pp. 185–196, 2023.
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time by the algorithm of Alon, Yuster, and Zwick [2]. Itai and Rodeh [14] and
also Papadimitriou and Yannakakis [26] as well as Chiba and Nishizeki [5] showed
that triangles in planar graphs can be found in O(n) time.

For k = 4, deciding whether a graph contains a K4 and finding one if it does
(or counting all K4’s in a graph) can be done in O(nω+1) = O(n3.373) time by
the algorithm of Alon, Yuster, and Zwick [2], in O(n3.252) time by the algorithm
of Eisenbrand and Grandoni [10], and in O(m(ω+1)/2) = O(m1.687) time by the
algorithm of Kloks, Kratsch, and Müller [16].

In contrast to the problem of detecting the existence of subgraphs of a
certain kind, the analogous problem of listing all such subgraphs has usually
higher complexity, as expected. For example, finding all triangles in a given
graph (each triangle appears in the output list) can be accomplished in O(m3/2)
time and with O(n2) space by an extended version of the algorithm of Itai and
Rodeh [14]. Bar-Yehuda and Even [3] improved the space complexity of the
algorithm from O(n2) to O(n) by avoiding the use of the adjacency matrix.
Chiba and Nishizeki [5] further refined the time complexity in terms of graph
arboricity (the minimum number of edge-disjoint forests into which its edges
can be partitioned); their algorithm lists all triangles in a graph in O(mα) time,
where α is the arboricity. They also showed that α = O(

√
m); consequently,

the running time is O(m3/2). If G is planar, α(G) ≤ 3 (see [13, p. 124]), so
the algorithm runs in O(m) = O(n) (i.e., linear) time on planar graphs. Since
there are graphs G with α(G) = Θ(m1/2), this does not improve the worst-case
dependence on m (which, in fact, cannot be improved). More general, for every
fixed � ≥ 3, the same authors gave an algorithm for listing all copies of K� in
O(α�−2 · m) = O(m�/2) time.

We distinguish several variants of the general problem of finding triangles
in a given undirected graph G = (V,E): (i) the triangle detection (or finding)
problem is that of finding a triangle in G or reporting that none exists; (ii) the
triangle counting problem is that of determining the total number of triangles in
G; (iii) the triangle listing problem is that of listing (reporting) all triangles in
G, with each triangle appearing in the output list. Obviously any algorithm for
listing all triangles can be easily transformed into one for triangle detection or
into one for listing a specified number of triangles (by stopping after the required
number of triangles have been output).

Our Results. We obtain the following results for the problem of finding small
complete subgraphs of a given size.

(i) We provide a new combinatorial algorithm for finding all triangles in a graph
running in O(mα) = O(m3/2) time, where α = α(G) is the graph arboricity
(Algorithm Hybrid in Sect. 2). We derive these worst-case bounds from first
principles and with very simple proofs that do not rely on classic results due
to Nash-Williams from the 1960s.

(ii) For every n, b ≤ n/2 and a fixed � ≥ 3, there exists a graph G of order n
with m edges and α(G) ≤ b that has Ω(α�−2 · m) copies of K� (Lemma 3 in
Sect. 3). As such, the dependency on m and α in the running time O(α�−2·m)
for listing all copies of K�, is asymptotically tight.
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(iii) We give improved arboricity-sensitive running times for counting and/or
detection of copies of K�, for small � ≥ 4 (Sect. 4). A key ingredient in our
algorithms is the algorithm of Chiba and Nishizeki. Our new algorithms beat
all previous algorithms in certain high-range arboricity intervals for every
� ≥ 7. Up-to-date running times based on rectangular matrix multiplication
times are included.

Preliminaries and Notation. Let G = (V,E) be an undirected graph. The neigh-
borhood of a vertex v ∈ V is the set N(v) = {w : (v, w) ∈ E} of all adjacent
vertices, and its cardinality deg(v) = |N(v)| is called the degree of v in G. A
clique in a graph G = (V,E) is a subset C ⊂ V of vertices, each pair of which is
connected by an edge in E. The Clique problem is to find a clique of maximum
size in G. An independent set of a graph G = (V,E) is a subset I ⊂ V of vertices
such that no two of them are adjacent in G.

Graph Parameters. For a graph G, its arboricity α(G) is the minimum number
of edge-disjoint forests into which G can be decomposed [5]. For instance, it is
known and easy to show that α(Kn) = �n/2�. A characterization of arboricity
is provided by the following classic result [22,23,29]; see also [8, p. 60].

Theorem 1. (Nash-Williams 1964; Tutte 1961) A multigraph G = (V,E) can
be partitioned into at most k forests if and only if every set U ⊆ V induces at
most k(|U | − 1) edges.

The degeneracy d(G) of an undirected graph G is the smallest number d for
which there exists an acyclic orientation of G in which all the out-degrees are
at most d. The degeneracy of a graph is linearly related to its arboricity, i.e.,
α(G) = Θ(d(G)); more precisely α(G) ≤ d(G) ≤ 2α(G) − 1; see [2,11,21,31].

1.1 Triangle Finding Algorithms

To place our algorithm in Sect. 2 in a proper context, we first present a summary
of previous work in the area of triangle finding and enumeration.

The Algorithms of Itai and Rodeh (1978). The authors gave three methods for
finding triangles. Initially intended for triangle detection, the first algorithm [14]
runs in O(m3/2) time. It can be extended to list all triangles within the same
overall time and works as follows:
Itai-Rodeh(G)

Input: an undirected graph G = (V,E)
1 Find a spanning tree for each connected component of G
2 List all triangles containing at least one tree edge
3 Delete the tree edges from G and go to Step 1

The second is a randomized algorithm that checks whether there is an edge
contained in a triangle. It runs in O(mn) worst-case time and O(n5/3) expected
time. The third algorithm relies on Boolean matrix multiplication and runs in
O(nω) time.
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The Algorithm of Chiba and Nishizeki (1985). The algorithm uses a vertex-
iterator approach for listing all triangles in G. It relies on the observation that
each triangle containing a vertex v corresponds to an edge joining two neighbors
of v. The graph is represented with doubly-linked adjacency lists and mutual
references between the two stubs of an edge ensure that each deletion takes
constant time. A more compact version described by Ortmann and Brandes [25]
is given below.
Chiba-Nishizeki(G)

Input: an undirected graph G = (V,E)
1 Sort vertices such that deg(v1) ≥ deg(v2) ≥ . . . deg(vn)
2 for u = v1, v2, . . . , vn−2 do
3 foreach vertex v ∈ N(u) do mark v
4 foreach vertex v ∈ N(u) do
5 foreach vertex w ∈ N(v) do
6 if w is marked then output triangle uvw
7 end
8 unmark v

9 end
10 G ← G − u

11 end

The authors [5] showed that their algorithm runs in O(mα) time. As a corol-
lary, the number of triangles is O(mα) as well. The O(m3/2) upper bound on the
number of triangles in a graph is likely older than these references indicate. In
any case, other proofs are worth mentioning [9,17], including algebraic ones [27].
We derive yet another one in Sect. 2.

Corollary 1 ([5,14]). For any graph G of order n with m edges and arboricity
α, G contains O(mα) = O(m3/2) triangles.

Ortmann and Brandes [25] gave a survey of other approaches, including edge-
iterators. Algorithms in this category iterate over all edges and intersect the
neighborhoods of the endpoints of each edge. A straightforward neighborhood
merge requires O(deg(u)+deg(v)) time per edge uv, but this is not good enough
to list all triangles in O(m3/2) time. Two variants developed by Shanks [28]
use O(m) extra space to represent neighborhoods in hash sets and obtain the
intersection in O(min(deg(u),deg(v))) time, which suffices for listing all triangles
in O(m3/2) time.

The Algorithm of Alon, Yuster and Zwick (1997). The authors showed that
deciding whether a graph contains a triangle and finding one if it does (or
counting all triangles in a graph) can be done in O(m2ω/(ω+1)) = O(m1.408)
time [2]. The idea is to find separately triangles for which at least one vertex
has low degree (for an appropriately set threshold) and triangles whose all three
vertices have high degree. Triangles of the latter type are handled using matrix
multiplication in a smaller subgraph.
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Recent Algorithms. Björklund et al. [4] obtained output-sensitive algorithms
for finding (and listing) all triangles in a graph; their algorithms are tailored for
dense and sparse graphs. Several approaches [12,18] provide asymptotic improve-
ments by taking advantage of the bit-level parallelism offered by the word-RAM
model. If the number of triangles is small, Zechner and Lingas [30] showed how
to list all triangles in O(nω) time.

2 A Simple Hybrid Algorithm for Listing All Triangles

In this section we present a new algorithm for listing all triangles. While its gen-
eral idea is not new, the specific hybrid data structure therein does not appear to
have been previously considered. Using both an adjacency list representation and
an adjacency matrix representation of the graph allows one to obtain a very time-
efficient neighborhood merge (intersection) procedure. Let V = {1, 2, . . . , n} and
let M be the adjacency matrix of G. A triangle ijk with i < j < k is reported
when edge ij is processed, and so each triangle is reported exactly once. For each
edge ij, the algorithm scans the adjacency list of the endpoint of lower degree
(among i and j) and for each neighbor it checks for the needed entry in the
adjacency matrix M corresponding to the third triangle edge.
Hybrid(G)

Input: an undirected graph G = (V,E)
1 foreach edge ij ∈ E, (i < j) do
2 if deg(i) ≤ deg(j) then x ← i, y ← j
3 else x ← j, y ← i
4 foreach k ∈ ADJ(x) do
5 if j < k and M(y, k) = 1 then report triangle ijk
6 end
7 end

We subsequently show that the algorithm runs in time O(mα). Whereas the
space used is quadratic, the hybrid algorithm appears to win by running time
and simplicity. In particular, no additional data structures nor hashing are used,
no sorting (by degree or otherwise) and no doubly linked lists are needed, etc.

2.1 The Analysis

Define the following function on edges of G. For uv = e ∈ E, let

f(e) = min(deg(u),deg(v)) and F (G) =
∑

e∈E

f(e). (1)

There are at most f(e) triangles based on edge e = ij and overall at most
F (G) triangles in G. The runtime of the algorithm is proportional to this quan-
tity; the space used is quadratic. A short and elegant decomposition argument
by Chiba and Nishizeki [5, Lemma 2] shows that

F (G) ≤ 2mα, (2)
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thus our algorithm runs in time O(mα). The same analysis applies to the algo-
rithm of Chiba and Nishizeki [5]. By Theorem 1, the above authors deduced that
α(G) ≤ �(2m + n)1/2/2�, which implies that α(G) = O(m1/2) for a connected
graph G. As such, both algorithms run in O(m3/2) time on any graph.

Lemma 1 below shows how to bypass the Nash-Williams arboricity bound
(Theorem 1) and deduce the O(m3/2) upper bound for listing all triangles in a
graph from first principles.

Lemma 1. Let G be a graph on n vertices with m edges. Then

F (G) ≤ 4m3/2.

Proof (folklore). There are two types of edges uv:

1. min(deg(u),deg(v)) ≤ 2
√

m
2. min(deg(u),deg(v)) > 2

√
m

There are at most m edges of type 1 and each contributes at most 2
√

m to
F (G), so the total contribution from edges of this type is at most 2m3/2.

Each edge of type 2 connects two nodes of degree > 2
√

m, and there are at
most 2m/(2

√
m) =

√
m such nodes. The degree of each of them thus contributes

to F (G) at most
√

m times and the sum of all degrees of such nodes is at most
2m. It follows that the total contribution from edges of type 2 is at most 2m3/2.

Overall, we have F (G) ≤ 4m3/2. ��

Remarks. Lemma 1 immediately gives an upper bound of 4m3/2 on the number
of triangles in a graph. It is in fact known [27] that this number is at most
(21/2/3)m3/2 (and this bound is sharp). More generally, for every fixed � ≥ 3,
the number of copies of K� is O(α�−2 · m) = O(m�/2); see [5, Thm. 3].

3 Constructions

Due to page limitations, the proofs in this section are omitted.

Lemma 2. For every n ≥ 3 and 3 ≤ m ≤ (
n
2

)
, there exists a graph G of order

n with m edges that contains Θ(m3/2) triangles.

Lemma 3. Let � ≥ 3 be a fixed integer. For every n and b ≤ n/2, there exists
a graph G of order n with α ≤ b that has Ω(α�−2 · m) copies of K�, where m is
the number of edges in G and α is the arboricity of G.

4 Finding Small Complete Subgraphs Efficiently

In this section we address the problem of detecting the presence of K� for a
fixed � ≥ 4. We combine and refine several approaches existent in the literature
of the last 40 years to obtain faster algorithms in general and for a large class
of graphs with high arboricity. In particular, we will use the algorithm of Chiba
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and Nishizeki [5] for listing all copies of K� in O(α�−2 · m) time. Our algorithms
are formulated for the purpose of counting but they can be easily adapted for
the purpose of detection.

Recall that ω < 2.373 is the exponent of matrix multiplication [1,6], namely
the infimum of numbers τ such that two n × n real matrices can be multiplied
in O(nτ ) time (operations). Similarly, let ω(p, q, r) stand for the infimum of
numbers τ such that an np × nq matrix can be multiplied by an nq × nr matrix
in O(nτ ) time (operations). For simplicity and as customary (see, e.g., [2,24]),
we write that two n × n matrices can be multiplied in O(nω) time, since this
does not affect our results; and similarly when multiplying rectangular matrices.

The Extension Method. Let T (n,m, �) denote the running time of the algorithm
running on a graph with n vertices and m edges. Write � = �1 + �2 for some
�1, �2 ≥ 2. At the beginning, we run the algorithm of Chiba and Nishizeki to form
a list of subgraphs isomorphic to K�1 , and then for each subgraph G1 = (V1, E1)
on the list, (i) we construct the subgraph G2 of G induced by vertices in V \ V1

that are adjacent to all vertices in V1. (ii) we count (or find a) the subgraphs
isomorphic to K�2 in G2 (this is a recursive call on a smaller instance); and so
the algorithm can be viewed as recursive. In other words, we count the number
of extensions of the subgraph isomorphic to K�1 to a K�. Another formulation
of this method can be found in [19]. There are O(α�1−2 · m) copies of K�1 that
can be found in O(α�1−2 · m) time. For each fixed copy of K�1 , the time spent
in G2 is at most T (n,m, �2), and so the overall time satisfies the recurrence

T (n,m, �) = O(α�1−2 · m · T (n,m, �2)).

Each copy of K� is generated exactly
(

�
�1

)
times and so the total count needs to

be divided by this number in the end.

The Triangle Method. Nešetřil and Poljak [24] showed an efficient reduction of
detecting and counting copies of any complete subgraph to the aforementioned
method of Itai and Rodeh [14] for triangle detection and counting. To start with,
consider the detection of complete subgraphs of size � = 3j. For a given graph
G with n vertices, construct an auxiliary graph H with O(nj) vertices, where
each vertex of H is a complete subgraph of order j in G. Two vertices V1, V2 in
H are connected by an edge if V1 ∩ V2 = ∅ and all edges in V1 × V2 are present
in G. The detection (or counting) of triangles in H yields an algorithm for the
detection (or counting) of K�’s in G, running in O(njω) time. For detecting
complete subgraphs of size � = 3j + i, where i ∈ {1, 2}, the algorithm can be
adapted so that it runs in O(njω+i) time.

For convenience, define the following integer functions

β(�) = ω(��/3�, �(� − 1)/3�, ��/3�), (3)
γ(�) = ��/3�ω + � (mod 3). (4)

With this notation, the algorithm runs in O(nγ(�)) time. Two decades later,
Eisenbrand and Grandoni [10] refined the triangle method by using fast algo-
rithms for rectangular matrix multiplication instead of those for square matrix
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multiplication. It partitions the graph intro three parts roughly the same size:
�1 = ��/3�, �2 = �(� − 1)/3�, �3 = ��/3�). The refined algorithm runs in time
O(nβ(�)) time. If the rectangular matrix multiplication is carried out via the
straightforward partition into square blocks and fast square matrix multiplica-
tion (see, e.g., [7, Exercise 4.2-6]), one recovers the time complexity of the algo-
rithm of Nešetřil and Poljak; that is, β(�) ≤ γ(�), see [10] for details. Eisenbrand
and Grandoni [10] showed that the above inequality is strict for a certain range:
if � (mod 3) = 1 and � ≤ 16, or � (mod 3) = 2. In summary, their algorithm is
faster than that of Nešetřil and Poljak in these cases. Another refinement of the
triangle method is considered in [19].

A Problem of Kloks, Kratsch, and Müller. The authors asked [16] whether there
is an O(m�ω/6) algorithm for recognizing whether a graph contains a K�, if � is a
multiple of 3. Eisenbrand and Grandoni showed that this true for every multiple
of 3 at least 6. Indeed, by their Theorem 2 [10], this task can be accomplished
in time O(mβ(�)/2) for every � ≥ 6, with β(�) as in (3). If � = 3j, where j ≥ 2,
then

β(�) = ω(��/3�, �(� − 1)/3�, ��/3�) = ω(j, j, j) = j · ω(1, 1, 1) = jω.

It follows that the running time is O(mβ(�)/2) = O(mjω/2) = O(m�ω/6). The
proof of the theorem is rather involved. Here we provide an alternative simpler
argument that also yields an arboricity-sensitive bound (item (i) below).

General Case Derivations. We first consider the general cases: � = 3j, j ≥ 3,
and � = 3j+1, j ≥ 2; and � = 3j+2, j ≥ 2. It will be evident that our algorithms
provide improved bounds for every � ≥ 7. For a given j ≥ 2, consider the interval

Ij =
(

ω − 1
j(3 − ω) + 2(ω − 1)

,
1
2

)
.

(i) � = 3j, j ≥ 3. We use the triangle method with a refined calculation. The
vertices of the auxiliary graph H are subgraphs isomorphic to Kj . By the
result of Chiba and Nishizeki [5], H has O(αj−2 ·m) vertices. The algorithm
counts triangles in H in time proportional to

(
αj−2 · m

)ω
= α(j−2)ω · mω.

Since α = O(m1/2), the above expression is bounded from above as follows.

α(j−2)ω · mω = O
((

m(j−2)/2 · m
)ω)

= O
(
mjω/2

)
= O

(
m�ω/6

)
.

Next, we show that for a certain high-range of α, the new bound α(j−2)ω ·mω

beats all previous bounds, namely mjω/2 and α3j−2 · m, for j ≥ 3 (or � =
9, 12, 15, . . .). Let α = Θ(mx), where x ∈ Ij . We first verify that

α(j−2)ω · mω � mjω/2, or ((j − 2)x + 1)ω < jω/2,
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which holds for x < 1/2. Second, we verify that

α(j−2)ω · mω � α3j−2 · m, or ((j − 2)x + 1)ω < (3j − 2)x + 1, or

x >
ω − 1

j(3 − ω) + 2(ω − 1)
,

which holds by the choice of the interval Ij . In particular, for � = 9, this

occurs for x ∈
(

ω−1
7−ω , 1

2

)
⊃ (0.297, 0.5); for � = 12, this occurs for x ∈

(
ω−1

10−2ω , 1
2

)
⊃ (0.262, 0.5); for � = 15, this occurs for x ∈

(
ω−1

13−3ω , 1
2

)
⊃

(0.234, 0.5). Moreover, if ω = 2, as conjectured, these intervals extend to
(1/5, 1/2), (1/6, 1/2), and (1/7, 1/2), respectively.

(ii) � = 3j + 1, j ≥ 2. The refined triangle method with �1 = j, �2 = j + 1,
�3 = j, leads to rectangular matrix multiplication [O(αj−2m)×O(αj−1m)] ·
[O(αj−1m) × O(αj−2m)]. Its complexity is at most O(α) times that of the
square matrix multiplication with dimension αj−2m, the latter of which is
O(α(j−2)ω · mω). It follows that

T (n,m, �) = O(α · α(j−2)ω · mω) = O(α(j−2)ω+1 · mω).

As before, we show that for a certain high-range of α, the new bound
α(j−2)ω+1 · mω beats all previous bounds, namely m(jω+1)/2 and α3j−1 · m,
for j ≥ 2 (or � = 7, 10, 13, . . .). Let α = Θ(mx), where x ∈ Ij . We first verify
that

α(j−2)ω+1 · mω � m(jω+1)/2, or ((j − 2)x + 1)ω < jω/2,

which holds for x < 1/2. Second, we verify that

α(j−2)ω+1 · mω � α3j−1 · m, or ((j − 2)x + 1)ω + x < (3j − 1)x + 1, or

x >
ω − 1

j(3 − ω) + 2(ω − 1)
,

which holds by the choice of the interval Ij . In particular, for � = 7, this
occurs for x ∈ (

ω−1
4 , 1

2

) ⊃ (0.344, 0.5); for � = 10, this occurs for x ∈(
ω−1
7−ω , 1

2

)
⊃ (0.297, 0.5); for � = 13, this occurs for x ∈

(
ω−1

10−2ω , 1
2

)
⊃

(0.262, 0.5). Moreover, if ω = 2, as conjectured, these intervals extend to
(1/4, 1/2), (1/5, 1/2), and (1/6, 1/2), respectively.

(iii) � = 3j + 2, j ≥ 2. The refined triangle method with �1 = j + 1, �2 = j, �3 =
j + 1, leads to rectangular matrix multiplication [O(αj−1m) × O(αj−2m)] ·
[O(αj−2m) × O(αj−1m)]. Its complexity is at most O(α2) times that of the
square matrix multiplication with dimension αj−2m, the latter of which is
O(α(j−2)ω · mω). It follows that

T (n,m, �) = O(α2 · α(j−2)ω · mω) = O(α(j−2)ω+2 · mω).

Again, we show that for a certain high-range of α, this bound beats all pre-
vious bounds, namely m(jω+2)/2 and α3j ·m, for j ≥ 2 (or � = 8, 11, 14, . . .).
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Let α = Θ(mx), where x ∈ Ij . We first verify that

α(j−2)ω+2 · mω � m(jω+2)/2, or ((j − 2)x + 1)ω < jω/2,

which holds for x < 1/2. Second, we verify that

α(j−2)ω+2 · mω � α3j · m, or ((j − 2)x + 1)ω + 2x < 3jx + 1, or

x >
ω − 1

j(3 − ω) + 2(ω − 1)
,

which holds by the choice of the interval Ij . In particular, for � = 8, this
occurs for x ∈ (

ω−1
4 , 1

2

) ⊃ (0.344, 0.5); for � = 11, this occurs for x ∈(
ω−1
7−ω , 1

2

)
⊃ (0.297, 0.5); for � = 14, this occurs for x ∈

(
ω−1

10−2ω , 1
2

)
⊃

(0.262, 0.5). Moreover, if ω = 2, as conjectured, these intervals extend to
(1/4, 1/2), (1/5, 1/2), and (1/6, 1/2), respectively.

Running Time Derivations for Small �. The previous general case derivations
together with the instantiations below yield the running times listed in Table 1.

Table 1. Running time comparison for finding/counting complete subgraphs. The
column on new results includes bounds in terms of m, based on up-to-date matrix
multiplication times, and new arboricity-sensitive bounds in terms of m and α.

� Previous best This paper

3 O(α · m) [5], O(n2.373), O(m1.408) [2,14]

4 O(α2 · m) [5], O(n3.334), O(m1.687) [10,16] O(n3.252)

5 O(α3 · m) [5], O(n4.220), O(m2.147) [10,16] O(n4.090)

6 O(α4 · m) [5], O(n4.751), O(m2.373) [10,16]

7 O(α5 · m) [5], O(n5.714), O(m2.857) [10,16] O(m2.797), O(α · m2.373)

8 O(α6 · m) [5], O(m3.373) [10,16] O(m3.252), O(α2 · m2.373)

9 O(α7 · m) [5], O(m3.560) [10,16] O(α2.373 · m2.373)

10 O(α8 · m) [5], O(m4.060) [10,16] O(m4), O(α3.373 · m2.373)

11 O(α9 · m) [5], O(m4.560) [10,16] O(m4.376), O(α4.373 · m2.373)

12 O(α10 · m) [5], O(m4.746) [10,16] O(α4.746 · m2.373)

13 O(α11 · m) [5], O(m5.16) [10,16] O(α5.746 · m2.373)

14 O(α11 · m) [5], O(m5.556) [10,16] O(α6.746 · m2.373)

15 O(α13 · m) [5], O(m5.933) [10,16] O(α7.119 · m2.373)

(i) � = 4. The refined triangle method with �1 = 1, �2 = 1, �3 = 2, leads to
rectangular matrix multiplication [n × n] · [n × m] or [n × n] · [n × n2] in
the worst case. Since according to [20, Table 3], ω(1, 1, 2) = ω(1, 2, 1) ≤
3.252, it follows that T (n,m, 4) = O(n3.252). By [10, Table 1], T (n,m, 4) =
O(m1.682), but this entry appears unjustified.

(ii) � = 5. The refined triangle method with �1 = 2, �2 = 1, �3 = 2, leads to
rectangular matrix [n2 × n] · [n × n2] in the worst case. Since according
to [20, Table 3], ω(2, 1, 2) = 2ω(1, 0.5, 1) ≤ 2 · 2.045 = 4.090, it follows that
T (n,m, 5) = O(n4.090).
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(iii) � = 7. The refined triangle method with �1 = 2, �2 = 3, �3 = 2, leads
to rectangular matrix multiplication [m × αm] · [αm × m] or [m × m3/2] ·
[m3/2 × m] in the worst case. Since ω(1, 1.5, 1) ≤ 2.797, it follows that
T (n,m, 7) = O(m2.797).

(iv) � = 8. The refined triangle method with �1 = �2 = �3 = �4 = 2, leads to
counting K4’s in a graph with m vertices. Since ω(1, 1, 2) ≤ 3.252, we have
T (n,m, 8) = O(m3.252).

(v) � = 10. By [10, Thm. 2], it takes O(mβ(10)/2), where β(10) = ω(3, 3, 4).
Since according to [20, Table 3], ω(1, 4/3, 1) ≤ 8/3, we have ω(3, 3, 4) =
3ω(1, 4/3, 1) ≤ 3 × 8/3 = 8, thus T (n,m, 10) = O(mβ(10)/2) = O(m4).

(vi) � = 11. By [10, Thm. 2], it takes O(mβ(11)/2), where β(11) = ω(3, 4, 4).
Since according to [20, Table 3], ω(1, 0.75, 1) ≤ 2.188, we have ω(3, 4, 4) =
4ω(1, 0.75, 1) ≤ 4 × 2.188 = 8.752, thus T (n,m, 11) = O(mβ(11)/2) =
O(m4.376).

(vii) � = 13. By [10, Thm. 2], it takes O(mβ(13)/2), where β(13) = ω(4, 4, 5).
Since according to [20, Table 3], ω(1, 5/4, 1) ≤ 2.58, we have ω(4, 4, 5) =
4ω(1, 5/4, 1) ≤ 4 × 2.58 = 10.32, thus T (n,m, 13) = O(mβ(13)/2) =
O(m5.16).

(viii) � = 14. By [10, Thm. 2], it takes O(mβ(14)/2), where β(14) = ω(5, 4, 5).
Since according to [20, Table 3], ω(1, 0.8, 1) ≤ 2.2223, we have ω(4, 4, 5) =
5ω(1, 0.8, 1) ≤ 5 × 2.2223 = 11.1115, thus T (n,m, 14) = O(mβ(14)/2) =
O(m5.556).
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Abstract. For a polygon P with holes in the plane, we denote by �(P )
the ratio between the geodesic and the Euclidean diameters of P . It is
shown that over all convex polygons with h convex holes, the supremum
of �(P ) is between Ω(h1/3) and O(h1/2). The upper bound improves
to O(1 + min{h3/4Δ, h1/2Δ1/2}) if every hole has diameter at most Δ ·
diam2(P ); and to O(1) if every hole is a fat convex polygon. Furthermore,
we show that the function g(h) = supP �(P ) over convex polygons with
h convex holes has the same growth rate as an analogous quantity over
geometric triangulations with h vertices when h → ∞.

1 Introduction

Determining the maximum distortion between two metrics on the same ground
set is a fundamental problem in metric geometry. Here we study the maximum
ratio between the geodesic (i.e., shortest path) diameter and the Euclidean
diameter over polygons with holes. A polygon P with h holes (also known as
a polygonal domain) is defined as follows. Let P0 be a simple polygon, and
let P1, . . . , Ph be pairwise disjoint simple polygons in the interior of P0. Then
P = P0 \

(⋃h
i=1 Pi

)
.

The Euclidean distance between two points s, t ∈ P is |st| = ‖s − t‖2, and
the shortest path distance geod(s, t) is the minimum arclength of a polygo-
nal path between s and t contained in P . The triangle inequality implies that
|st| ≤ geod(s, t) for all s, t ∈ P . The geometric dilation (also known as the stretch
factor) between the two distances is sups,t∈P geod(s, t)/|st|. The geometric dila-
tion of P can be arbitrarily large, even if P is a (nonconvex) quadrilateral.

The Euclidean diameter of P is diam2(P ) = sups,t∈P |st| and its geodesic
diameter is diamg(P ) = sups,t∈P geod(s, t). It is clear that diam2(P ) ≤
diamg(P ). We are interested in the distortion

�(P ) =
diamg(P )
diam2(P )

. (1)

Note that �(P ) is unbounded, even for simple polygons. Indeed, if P is a zig-zag
polygon with n vertices, contained in a disk of unit diameter, then diam2(P ) ≤ 1
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and diamg(P ) = Ω(n), hence �(P ) ≥ Ω(n). It is not difficult to see that this
bound is the best possible, that is, �(P ) ≤ O(n).

In this paper, we consider convex polygons with convex holes. Specifically,
let C(h) denote the family of polygonal domains P = P0 \

(⋃h
i=1 Pi

)
, where

P0, P1, . . . , Ph are convex polygons; and let

g(h) = sup
P∈C(h)

�(P ). (2)

It is clear that if h = 0, then geod(s, t) = |st| for all s, t ∈ P , which implies
g(0) = 1. Or main result is the following.

Theorem 1. For every h ∈ N, we have Ω(h1/3) ≤ g(h) ≤ O(h1/2).

The lower bound construction is a polygonal domain in which all h holes
have about the same diameter Θ(h−1/3) ·diam2(P ). We prove a matching upper
bound for all polygons P with holes of diameter Θ(h−1/3) ·diam2(P ). In general,
if the diameter of every hole is o(1) · diam2(P ), we can improve upon the bound
g(h) ≤ O(h1/2) in Theorem 1.

Theorem 2. If P ∈ C(h) and the diameter of every hole is at most Δ·diam2(P ),
then �(P ) ≤ O(1 +min{h3/4Δ,h1/2Δ1/2}). In particular for Δ = O(h−1/3), we
have �(P ) ≤ O(h1/3).

However, if we further restrict the holes to be fat convex polygons, we can
show that �(P ) = O(1) for all h ∈ N. In fact for every s, t ∈ P , the distortion
geod(s, t)/|st| is also bounded by a constant.

Informally, a convex body is fat if its width is comparable with its diameter.
The width of a convex body C is the minimum width of a parallel slab enclos-
ing C. For 0 ≤ λ ≤ 1, a convex body C is λ-fat if the ratio of its width to
its diameter is at least λ, that is, width(C)/diam2(C) ≥ λ; and C is fat if the
inequality holds for a constant λ. For instance, a disk is 1-fat, a 3 × 4 rectangle
is 3

5 -fat and a line segment is 0-fat. Let Fλ(h) be the family of polygonal domain

P = P0 \
(⋃h

i=1 Pi

)
, where P0, P1, . . . , Ph are λ-fat convex polygons.

Proposition 1. For every h ∈ N and P ∈ Fλ(h), we have �(P ) ≤ O(λ−1).

The special case when all holes are axis-aligned rectangles is also easy.

Proposition 2. Let P ∈ C(h), h ∈ N, such that all holes are axis-aligned rect-
angles. Then �(P ) ≤ O(1).

Triangulations. In this paper, we focus on the diameter distortion �(P ) =
diamg(P )/diam2(P ) for polygons P ∈ C(h) with h holes. Alternatively, we can
also compare the geodesic and Euclidean diameters in n-vertex triangulations. In
a geometric graph G = (V,E), the vertices are distinct points in the plane, and
the edges are straight-line segments between pairs of vertices. The Euclidean
diameter of G, diam2(G) = maxu,v∈V |uv| is the maximum distance between
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two vertices, and the geodesic diameter diamg(G) = maxu,v∈V dist(u, v), where
dist(u, v) is the shortest path distance in G, i.e., the minimum Euclidean length
of a uv-path in G. With this notation, we define �(G) = diamg(G)/diam2(G),

A Euclidean triangulation T = (V,E) is a planar straight-line graph where
all bounded faces are triangles, and their union is the convex hull conv(V ). Let

f(n) = sup
G∈T (n)

�(G), (3)

where the supremum is taken over the set T (n) all n-vertex triangulations. Recall
that g(n) is the supremum of diameter distortions over polygons with n convex
holes; see (2). We prove that f(n) and g(n) have the same growth rate.

Theorem 3. We have g(n) = Θ(f(n)).

Alternative Problem Formulation. The following version of the question studied
here may be more attractive to the escape community [9,16]. Given n pairwise
disjoint convex obstacles in a convex polygon of unit diameter (e.g., a square),
what is the maximum length of a (shortest) escape route from any given point
in the polygon to its boundary? According to Theorem 1, it is always O(n1/2)
and sometimes Ω(n1/3).

Related Work. The geodesic distance in polygons with or without holes has
been studied extensively from the algorithmic perspective; see [19] for a com-
prehensive survey. In a simple polygon P with n vertices, the geodesic distance
between two given points can be computed in O(n) time [17]; trade-offs are also
available between time and workspace [12]. A shortest-path data structure can
report the geodesic distance between any two query points in O(log n) time after
O(n) preprocessing time [11]. In O(n) time, one can also compute the geodesic
diameter [13] and radius [1].

For polygons with holes, more involved techniques are needed. Let P be
a polygon with h holes, and a total of n vertices. For any s, t ∈ P , one can
compute geod(s, t) in O(n+h log h) time and O(n) space [23], improving earlier
bounds in [14,15,18,24]. A shortest-path data structure can report the geodesic
distance between two query points in O(log n) query time using O(n11) space;
or in O(h log n) query time with O(n+h5) space [6]. The geodesic radius can be
computed in O(n11 log n) time [3,22], and the geodesic diameter in O(n7.73) or
O(n7(log n + h)) time [2]. One can find an (1 + ε)-approximation in O((n/ε2 +
n2/ε) log n) time [2,3]. The geodesic diameter may be attained by a point pair
s, t ∈ P , where both s and t lie in the interior or P ; in which case it is known [2]
that there are at least five different geodesic paths between s and t.

The diameter of an n-vertex triangulation with Euclidean weights can be
computed in Õ(n5/3) time [5,10]. For unweighted graphs in general, the diameter
problem has been intensely studied in the fine-grained complexity community.
For a graph with n vertices and m edges, breadth-first search (BFS) yields a
2-approximation in O(m) time. Under the Strong Exponential Time Hypothesis
(SETH), for any integer k ≥ 2 and ε > 0, a (2 − 1

k − ε)-approximation requires
mn1+1/(k−1)−o(1) time [7]; see also [20].
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2 Convex Polygons with Convex Holes

In this section, we prove Theorem 1. A lower bound construction is presented in
Lemma 1, and the upper bound is established in Lemma 2 below.

Lower Bound. The lower bound is based on the following construction.

Lemma 1. For every h ∈ N, there exists a polygonal domain P ∈ C(h) such
that g(P ) ≥ Ω(h1/3).

Proof. We may assume w.l.o.g. that h = k3 for some integer k ≥ 3. We construct
a polygon P with h holes, where the outer polygon P0 is a regular k-gon of unit
diameter, hence diam2(P ) = diam2(P0) = 1. Let Q0, Q1, . . . , Qk2 be a sequence
of k2 + 1 regular k-gons with a common center such that Q0 = P0, and for
every i ∈ {1, . . . , k2}, Qi is inscribed in Qi−1 such that the vertices of Qi are the
midpoints of the edges of Qi−1; see Fig. 1. Enumerate the k3 edges of Q1, . . . , Qk2

as e1, . . . , ek3 . For every j = 1, . . . , k3, we construct a hole as follows: Let Pj be
an (|e|−2ε)× ε

2 rectangle with symmetry axis e that contains e with the exception
of the ε-neighborhoods of its endpoints. Then P1, . . . , Pk3 are pairwise disjoint.
Finally, let P = P0 \

⋃k3

j=1 Pj .

π/k

π/k

s

s

Q0

Q0
Q1

Q2

Q3

P0
P1

P2

P3

P4
P5

P6

P7

t

γ

c1

c2

c3

Fig. 1. Left: hexagons Q0, . . . , Q3 for k = 6. Right: The 18 holes corresponding to the
edges of Q1, . . . , Q3.

Assume, w.l.o.g., that ei is an edge of Qi for i ∈ {0, 1, . . . , k2}. As P0 = Q0 is
a regular k-gon of unit diameter, then |e0| ≥ Ω(1/k). Let us compare the edge
lengths in two consecutive k-gons. Since Qi+1 is inscribed in Qi, we have

|ei+1| = |ei| cos
π

k
≥ |ei|

(
1 − π2

2k2

)
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using the Taylor estimate cosx ≥ 1 − x2/2. Consequently, for every i ∈
{0, 1, . . . , k2},

|ei| ≥ |e0| ·
(
1 − π2

2k2

)k2

≥ |e0| · Ω(1) ≥ Ω

(
1
k

)
.

It remains to show that diamg(P ) ≥ Ω(k). Let s be the center of P0 and t and
arbitrary vertex of P0. Consider an st-path γ in P , and for any two points a, b
along γ, let γ(a, b) denote the subpath of γ between a and b. Let ci be the first
point where γ crosses the boundary of Qi for i ∈ {1, . . . , k2}. By construction,
ci must be in an ε-neighborhood of a vertex of Qi. Since the vertices of Qi+1 are
at the midpoints of the edges of Qi, then |γ(ci, ci+1)| ≥ 1

2 |ei| − 2ε ≥ Ω(|ei|) ≥
Ω(1/k). Summation over i = 0, . . . , k2 − 1 yields |γ| ≥

∑k2−1
i=0 |γ(ci, ci+1)| ≥

k2 · Ω(1/k) ≥ Ω(k) = Ω(h1/3), as required. ��

Upper Bound. Let P ∈ C(h) for some h ∈ N and let s ∈ P . For every hole Pi,
let 
i and ri be points on the boundary of Pi such that

−→
s
i and −→sri are tangent

to Pi, and Pi lies on the left (resp., right) side of the ray
−→
s
i (resp., −→sri).

Fig. 2. Left: A polygon P ∈ C(7) with 7 convex holes, a point s ∈ P , and a path
greedyP (s,u) from s to a point t on the outer boundary of P . Right: A boundary arc
p̂q, where |p̂q| ≤ |pr| + |rq|.

We construct a path from s to some point in the outer boundary of P by
the following recursive algorithm; refer to Fig. 2 (left). For a unit vector u ∈ S

1,
we construct path greedyP (s,u) as follows. Start from s along a ray emanating
from s in direction u until reaching the boundary of P at some point p. While
p /∈ ∂P0 do: Assume that p ∈ ∂Pi for some 1 ≤ i ≤ h. Extend the path along ∂Pi

to the point 
i or ri such that the distance from s monotonically increases; and
then continue along the ray

−→
s
i or −→sri until reaching the boundary of P again.

When p ∈ ∂P0, the path greedyP (s,u) terminates at p.

Lemma 2. For every P ∈ C(h), every s ∈ P and every u ∈ S
1, we have

|greedyP (s,u)| ≤ O(h1/2) · diam2(P ), and this bound is the best possible.
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Proof. Let P be a polygonal domain with a convex outer polygon P0 and h
convex holes. We may assume w.l.o.g. that diam2(P ) = 1. For a point s ∈ P and
a unit vector u, consider the path greedyP (s,u). By construction, the distance
from s monotonically increases along greedyP (s,u), and so the path has no self-
intersections. It is composed of radial segments that lie along rays emanating
from s, and boundary arcs that lie on the boundaries of holes. By monotonicity,
the total length of all radial segments is at most diam2(P ). Since every boundary
arc ends at a point of tangency 
i or ri, for some i ∈ {1, . . . , h}, the path
greedyP (s,u) contains at most two boundary arcs along each hole, thus the
number of boundary arcs is at most 2h. Let A denote the set of all boundary
arcs along greedyP (s,u); then |A| ≤ 2h.

Along each boundary arc p̂q ∈ A, from p to q, the distance from s increases
by Δpq = |sq| − |sp|. By monotonicity, we have

∑
p̂q∈A Δpq ≤ diam2(P ). We

now give an upper bound for the length of p̂q. Let p′ be a point in sq such
that |sp| = |sp′|, and let r be the intersection of sq with a line orthogonal to sp
passing through p; see Fig. 2 (right). Note that |sp| < |sr|. Since the distance
from s monotonically increases along the arc p̂q, then q is in the closed halfplane
bounded by pr that does not contain s. Combined with |sp| < |sr|, this implies
that r lies between p′ and q on the line sq, consequently |p′r| < |p′q| = Δpq and
|rq| < |p′q| = Δpq. By the triangle inequality and the Pythagorean theorem,
these estimates give an upper bound

|p̂q| ≤ |pr| + |rq| =
√

|sr|2 − |sp|2 + |rq| ≤
√

(|sp′| + |p′r|)2 − |sp|2 + |rq|

≤
√

(|sp| + Δpq)2 − |sp|2 + Δpq ≤ O

(√
|sp|Δpq + Δpq

)

≤ O

(√
diam2(P ) · Δpq + Δpq

)
.

Summation over all boundary arcs, using Jensen’s inequality, yields

∑
p̂q∈A

|p̂q| ≤
∑

p̂q∈A
O

(√
diam2(P ) · Δpq + Δpq

)

≤
√
diam2(P ) · O

⎛
⎝ ∑

p̂q∈A

√
Δpq

⎞
⎠ + O

⎛
⎝ ∑

p̂q∈A
Δpq

⎞
⎠

≤
√
diam2(P ) · O

⎛
⎝|A| ·

√
1

|A|
∑

p̂q∈A
Δpq

⎞
⎠ + O(diam2(P ))

≤
√
diam2(P ) · O

(√
|A| · diam2(P )

)
+ O(diam2(P ))

≤ O
(√

|A|
)

· diam2(P ) ≤ O
(√

h
)

· diam2(P ),

as claimed.
We now show that the bound |greedyP (s,u)| ≤ O(h1/2) · diam2(P ) is the

best possible. For every h ∈ N, we construct a polygon P ∈ C(h) and a point s
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such that for every u ∈ S
1, we have |greedyP (s,u)| ≥ Ω(h1/2). Without loss of

generality, we may assume diam2(P ) = 1 and h = 3(k2 + 1) for some k ∈ N.
We start with the construction in Lemma 1 with k3 rectangular holes in a

regular k-gon P0, where s is the center of P0. We modify the construction in
three steps: (1) Let T be a small equilateral triangle centered at s, and construct
three rectangular holes around the edges of T ; to obtain a total of k3 + 3 holes.
(2) Rotate each hole Pj counterclockwise by a small angle, such that when the
greedy path reaches Pj in an ε-neighborhood of its center, it would always turn
left. (3) For any u ∈ S

1, the path greedyP (s,u) exit the triangle T at a small
neighborhood of a corner of T . From each corner of T , greedyP (s,u) continues to
the outer boundary along the same k2 holes. We delete all holes greedyP (s,u)
does not touch for any u ∈ S

1, thus we retain h = 3k2 + 3 holes. For every
u ∈ S

1, we have |greedyP (s,u)| ≥ Ω(k) according to the analysis in Lemma 1,
hence |greedyP (s,u)| ≥ Ω(h1/2), as required. ��

Corollary 1. For every h ∈ N and every polygon P ∈ C(h), we have
diamg(P ) ≤ O(h1/2) · diam2(P ).

Proof. Let P ∈ C(h) and s1, s2 ∈ P . By Lemma 2, there exist points t1, t2 ∈
∂P0 such that geod(s1, t1) ≤ O(h1/2) · diam2(P ) and geod(s2, t2) ≤ O(h1/2) ·
diam2(P ). There is a path between t1 and t2 along the perimeter of P0. It is
well known [21,25] that |∂P0| ≤ π · diam2(P0) for every convex body P0, hence
geod(t1, t2) ≤ O(diam2(P )). The concatenation of these three paths yields a
path in P connecting s1 and s2, of length geod(s1, s2) ≤ O(h1/2) · diam2(P ). ��

3 Improved Upper Bound for Holes of Bounded Diameter

In this section we prove Theorem 2. Similar to the proof of Theorem 1, it is
enough to bound the geodesic distance from an arbitrary point in P to the outer
boundary. We give three such bounds in Lemmas 3, 4 and 7.

Lemma 3. Let P ∈ C(h) such that diam2(Pi) ≤ Δ ·diam2(P ) for every hole Pi.
If Δ ≤ O(h−1), then there exists a path of length O(diam2(P )) in P from any
point s ∈ P to the outer boundary ∂P0.

Proof. Let s ∈ P and t ∈ ∂P0. Construct an st-path γ as follows: Start with the
straight line segment st, and whenever st intersects the interior of a hole Pi, then
the segment st ∩ Pi is replaced by an arc along ∂Pi. Since |∂Pi| ≤ π · diam2(Pi)
for every convex hole Pi [21,25], then |γ| ≤ |st| +

∑h
i=1 |∂Pi| ≤ diam2(P ) +∑h

i=1 O(diam2(Pi)) ≤ O(1 + hΔ) · diam2(P ) ≤ O(diam2(P )), as claimed. ��

Lemma 4. Let P ∈ C(h) such that diam2(Pi) ≤ Δ ·diam2(P ) for every hole Pi.
Then there exists a path of length O(1 + h3/4Δ) · diam2(P ) in P from any point
s ∈ P to the outer boundary ∂P0.

Proof. Assume without loss of generality that diam2(P ) = 1, and s is the origin.
Let 
 ∈ N be a parameter to be specified later. For i ∈ {−
,−
 + 1, . . . , 
}, let
Hi : y = i · Δ be a horizontal line, and Vi : x = i · Δ a vertical line. Since any
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two consecutive horizontal (resp., vertical) lines are distance Δ apart, and the
diameter of each hole is at most Δ, then the interior of each hole intersects at
most one horizontal and at most one vertical line. By the pigeonhole principle,
there are integers a, b, c, d ∈ {1, . . . , 
} such that H−a, Hb, V−c, and Vd each
intersects the interior of at most h/
 holes; see Fig. 3.

Fig. 3. Illustration for � = 5 (assuming that P is a unit square centered at s).

Let B be the axis-aligned rectangle bounded by the lines H−a, Hb, V−c, and
Vd. Due to the spacing of the lines, we have diam2(B) ≤ 2 ·

√
2 · 
Δ = O(
Δ).

We construct a path from s to ∂P0 as a concatenation of two paths γ =
γ1 ⊕ γ2. Let γ1 be the initial part of greedyP (s,u) from s until reaching the
boundary of B ∩ P0 at some point p. If p ∈ ∂P0, then γ2 = (p) is a trivial one-
point path. Otherwise p lies on a line L ∈ {H−a,Hb, V−c, Vd} that intersects the
interior of at most h/
 holes. Let γ2 follow L from p to the boundary of P0 such
that when it encounters a hole Pi, it makes a detour along ∂Pi.

It remains to analyze the length of γ. By Lemma 2, we have |γ1| ≤ O(
√

h) ·
diam2(B) ≤ O(h1/2
Δ). The path γ2 has edges along the line L and along the
boundaries of holes whose interior intersect L. The total length of all edges along
L is at most diam2(P ) = 1. It is well known that per(C) ≤ π ·diam2(C) for every
convex body [21,25], and so the length of each detour is O(diam2(Pi)) ≤ O(Δ),
and the total length of O(h/
) detours is O(hΔ/
). Consequently,

|γ| ≤ O(h1/2
Δ + hΔ/
 + 1). (4)

Finally, we set 
 = �h1/4 to balance the first two terms in (4), and obtain
|γ| ≤ O(h3/4Δ + 1), as claimed. ��

When all holes are line segment, we construct a monotone path from s to
the outer boundary. A polygonal path γ = (p0, p1, . . . , pm) is u-monotone for a
unit vector u ∈ S

1 if u · −−−→vi−1vi ≥ 0 for all i ∈ {1, . . . , m}; and γ is monotone if
it is u-monotone for some u ∈ S

1.

Lemma 5. Let P ∈ C(h) such that every hole is a line segments of length at
most Δ · diam2(P ). If Δ ≥ h−1, then there exists a monotone path of length
O(h1/2Δ1/2) · diam2(P ) in P from any point s ∈ P to the outer boundary ∂P0.
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Proof. We may assume w.l.o.g. that diam2(P ) = 1. Denote the line segments
by aibi, for i = 1, . . . , h, such that x(ai) ≤ x(bi). Let 
 = �h1/2Δ1/2, and note
that 
 = Θ(h1/2Δ1/2) when Δ ≥ h−1. Partition the right halfplane (i.e., right
of the y-axis) into 
 wedges with aperture π/
 and apex at the origin, denoted
W1, . . . ,W�. For each wedge Wi, let wi ∈ S be the direction vector of its axis of
symmetry.

Partition the h segments as follows: For j = 1, . . . , 
, let Hj be the set of
segments aibi such that

−−→
aibi is in Wj . Finally, let Hj∗ be a set with minimal

cardinality, that is, |Hj∗ | ≤ h/
 = O(h1/2/Δ1/2). Let v = w⊥
j∗ . We construct

a v-monotone path γ from s to the outer boundary ∂P0 as follows. Start in
direction v until reaching a hole aibi at some point p. While p /∈ ∂P0, continue
along aibi to one of the endpoints: to ai if v · −−→aibi ≥ 0, and to bi otherwise; then
continue in direction v. By monotonicity, γ visits every edge at most once.

It remains to analyze the length of γ. We distinguish between two types of
edges: let E1 be the set of edges of γ contained in Hj∗ , and E2 be the set of all
other edges of γ. The total length of edges in E1 is at most the total length of
all segments in Hj∗ , that is,

∑
e∈E1

|e| ≤ |Hj∗ | · Δ ≤ O(h1/2/Δ1/2) · Δ = O(h1/2Δ1/2).

Every edge e ∈ E2 makes an angle at least π/(2
) with vector v. Let proj(e)
denote the orthogonal projection of e to a line of direction v. Then |proj(e)| ≥
|e| sin(π/(2
)). By monotonicity, the projections of distinct edges have disjoint
interiors. Consequently,

∑
e∈E2

|proj(e)| ≤ diam2(P ) = 1. This yields

∑
e∈E2

|e| ≤
∑
e∈E2

|proj(e)|
sin(π/(2
))

=
1

sin(π/(2
))

∑
e∈E2

|proj(e)|

= O(
) = O(h1/2Δ1/2).

Overall, |γ| =
∑

e∈E1
|e| +

∑
e∈E2

|e| = O(h1/2Δ1/2), as claimed. ��

For extending Lemma 5 to arbitrary convex holes, we need the following
technical lemma. (All omitted proofs are available in the full paper [8].)

Lemma 6. Let P be a convex polygon with a diametral pair a, b ∈ ∂P , where
|ab| = diam2(P ). Suppose that a line L intersects the interior of P , but does
not cross the line segment ab. Let p, q ∈ ∂P such that pq = L ∩ P , and points
a, p, q, and b appear in this counterclockwise order in ∂P ; and let p̂q be the
counterclockwise pq-arc of ∂P . Then |p̂q| ≤ 4π

√
3

9 |pq| < 2.42|pq|.

The final result is as follows.

Lemma 7. Let P ∈ C(h) such that diam2(Pi) ≤ Δ ·diam2(P ) for every hole Pi.
If Δ ≥ h−1, then there exists a path of length O(h1/2Δ1/2) ·diam2(P ) in P from
any point s ∈ P to the outer boundary ∂P0.
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4 Polygons with Fat or Axis-Aligned Convex Holes

In this section, we show that in a polygonal domain P with fat convex holes, the
distortion geod(s, t)/|st| is bounded by a constant for all s, t ∈ P . Let C be a con-
vex body in the plane. The geometric dilation of C is δ(C) = sups,t∈∂C

geod(s,t)
|st| ,

where geod(s, t) is the shortest st-path along the boundary of C.

Lemma 8. Let C be a λ-fat convex body. Then δ(C) ≤ min{πλ−1, 2(λ−1+1)} =
O(λ−1).

Corollary 2. Let P = P0 \
(⋃h

i=1 Pi

)
be a polygonal domain, where

P0, P1, . . . , Ph are λ-fat convex polygons. Then for any s, t ∈ P , we have
geod(s, t) ≤ O(λ−1|st|).

Proof. If the line segment st is contained in P , then geod(s, t) = |st|, and the
proof is complete. Otherwise, segment st is the concatenation of line segments
contained in P and line segments piqi ⊂ Pi with pi, qi ∈ ∂Pi, for some indices
i ∈ {1, . . . , h}. By replacing each segment piqi with the shortest path on the
boundary of the hole Pi, we obtain an st-path γ in P . Since each hole is λ-fat,
we replaced each line segment piqi with a path of length O(|piqi|/λ) by Lemma 8.
Overall, we have |γ| ≤ O(|st|/λ), as required. ��

Corollary 3. If P = P0\
(⋃h

i=1 Pi

)
be a polygonal domain, where P0, P1, . . . , Ph

are λ-fat convex polygons for some 0 < λ ≤ 1, then diamg(P ) ≤
O(λ−1diam2(P )), hence �(P ) ≤ O(λ−1).

Proposition 3. Let P ∈ C(h), h ∈ N, such that every hole is an axis-aligned
rectangle. Then from any point s ∈ P , there exists a path of length at most
diam2(P ) in P to the outer boundary ∂P0.

Proof. Let B = [0, a]× [0, b] be a minimal axis-parallel bounding box containing
P . We may assume w.l.o.g. that x(s) ≥ a/2, y(s) ≥ b/2, and b ≤ a. We construct
a staircase path γ as follows. Start from s in horizontal direction d1 = (1, 0) until
reaching the boundary ∂P at some point p. While p /∈ ∂P0, make a 90◦ turn
from d1 = (1, 0) to d2 = (0, 1) or vice versa, and continue. We have |γ| ≤ a+b

2 ≤
a ≤ diam2(P ), as claimed. ��

5 Polygons with Holes Versus Triangulations

The proof of Theorem 3 is the combination of Lemmas 9 and 10 below (the proof
of Lemma 9 is deferred to the full version of this paper [8]).

Lemma 9. For every triangulation T ∈ T (n), there exists a polygonal domain
P ∈ C(h) with h = Θ(n) holes such that �(P ) = Θ(�(T )).
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Every planar straight-line graph G = (V,E) can be augmented to a triangula-
tion T = (V,E′), with E ⊆ E′. A notable triangulation is the Constrained Delau-
nay Triangulation, for short, CDT(G). Bose and Keil [4] proved that CDT(G)
has bounded stretch for so-called visibility edges: if u, v ∈ V and uv does not
cross any edge of G, then CDT(G) contains a uv-path of length O(|uv|).

Lemma 10. For every polygonal domain P ∈ C(h), there exists a triangulation
T ∈ T (n) with n = Θ(h) vertices such that �(T ) = Θ(�(P )).

Proof. Assume that P = P0 \
⋃h

i=1 Pi. For all j = 1, . . . , h, let ai, bi ∈ ∂Pi

be a diametral pair, that is, |aibi| = diam2(Pi). The line segments {aibi : i =
1, . . . , h}, together with the four vertices of a minimum axis-aligned bounding
box of P , form a planar straight-line graph G with 2h + 4 vertices. Let T =
CDT(G) be the constrained Delaunay triangulation of G.

We claim that �(T ) = Θ(�(P )). We prove this claim in two steps. For an
intermediate step, we define a polygon with h line segment holes: P ′ = P0 \⋃h

i=1{aibi}. For any point pair s, t ∈ P , denote by dist(s, t) and dist′(s, t), resp.,
the shortest distance in P and P ′. Since P ⊆ P ′, we have dist′(s, t) ≤ dist(s, t).
By Lemma 6, dist(s, t) < 2.42 · dist′(s, t) so dist′(s, t) = Θ(dist(s, t)), ∀s, t ∈ P .

Every point s ∈ P lies in one or more triangles in T ; let s′ denote a closest
vertex of a triangle in T that contains s. For s, t ∈ P , let dist′′(s, t) be the
length of the st-path γ composed of the segment ss′, a shortest s′t′-path in the
triangulation T , and the segment t′t.

Since γ does not cross any of the line segments ajbj , we have dist′(s, t) ≤
dist′′(s, t) for any pair of points s, t ∈ P . Conversely, every vertex in the shortest
s′t′-path in P ′ is an endpoint of an obstacle ajbj . Consequently, every edge is
either an obstacle segment ajbj , or a visibility edge between the endpoints of two
distinct obstacles. By the result of Bose and Keil [4], for every such edge pq, T
contains a pq-path τpq of length |τpq| ≤ O(|pq|). The concatenation of these paths
is an s′t′-path τ of length |τ | ≤ O(dist′(s′, t′)). Finally, note that the diameter
of each triangle in T is at most diam2(P ′). Consequently, if s, t ∈ P maximizes
dist(s, t), then dist′′(s, t) = |ss′|+ |γ|+ |t′t| ≤ 2 ·diam2(P )+ |τ | ≤ O(dist′(s′t′)).
Consequently, diamg(T ) = Θ(diamg(P )), which yields �(T ) = Θ(�(P )). ��
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Abstract. Given a mixed graph G, we consider the problem of comput-
ing the maximal sets of vertices C1, C2, . . . , Ck with the property that
by removing any edge e from G, there is an orientation Ri of G \ e such
that all vertices in Ci are strongly connected in Ri. We study proper-
ties of those sets, and show how to compute them in linear time via a
reduction to the computation of the 2-edge twinless strongly connected
components of a directed graph. A directed graph G is twinless strongly
connected if it contains a strongly connected spanning subgraph without
any pair of antiparallel (or twin) edges. The twinless strongly connected
components (TSCCs) of G are its maximal twinless strongly connected
subgraphs. A 2-edge twinless strongly connected component (2eTSCC) of
G is a maximal subset of vertices C such that any two vertices u, v ∈ C
are in the same twinless strongly connected component TSCC of G \ e,
for any edge e. These concepts are motivated by several diverse applica-
tions, such as the design of road and telecommunication networks, and
the structural stability of buildings.

Keywords: Connectivity · Orientations · Mixed Graphs

1 Introduction

We investigate some connectivity problems in mixed graphs and in directed
graphs (digraphs). A mixed graph G contains both undirected edges and directed
edges. We denote an edge with endpoints u and v by {u, v} if it is undirected, and
by (u, v) if it is directed from u to v. An orientation R of G is formed by orienting
all the undirected edges of G, i.e., converting each undirected edge {u, v} into
a directed edge that is either (u, v) or (v, u). Several (undirected or mixed)
graph orientation problems have been studied in the literature, depending on the
properties that we wish an orientation R of G to have. See, e.g., [3,15,34,36]. An
orientation R of G such that R is strongly connected is called a strong orientation
of G. More generally, an orientation R of G such that R is k-edge strongly
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Fig. 1. (a)–(b) Vertices u and v are not in the same edge-resilient strongly orientable
block of G. After the deletion of edge e (which is directed in (a) and undirected in (b)),
there is no orientation of G \ e such that u and v are strongly connected. (c) Here u
and v are in the same edge-resilient strongly orientable block of G, since for any edge
e, there is an orientation of G \ e such that u and v are strongly connected.

connected is called a k-edge strong orientation of G. Motivated by recent work
in 2-edge strong connectivity in digraphs [19,22,26], we introduce the following
strong connectivity orientation problem in mixed graphs. Given a mixed graph G,
we wish to compute its maximal sets of vertices C1, C2, . . . , Ck with the property
that for every i ∈ {1, . . . , k}, and every edge e of G (directed or undirected), there
is an orientation R of G \ e such that all vertices of Ci are strongly connected in
R. We refer to these maximal vertex sets as the edge-resilient strongly orientable
blocks of G. See Fig. 1. Note that when G contains only directed edges, then this
definition coincides with the usual notion of 2-edge strong connectivity, i.e., each
Ci is a 2-edge strongly connected component of G. We show how to solve this
problem in linear time, by providing a linear-time algorithm for computing the
2-edge twinless strongly connected components [30], that we define next.

We recall some concepts in directed graphs. A digraph G = (V,E) is strongly
connected if there is a directed path from each vertex to every other vertex.
The strongly connected components (SCCs) of G are its maximal strongly con-
nected subgraphs. We refer to a pair of antiparallel edges, (x, y) and (y, x),
of G as twin edges. A digraph G = (V,E) is twinless strongly connected if it
contains a strongly connected spanning subgraph (V,E′) without any pair of
twin edges. The twinless strongly connected components (TSCCs) of G are its
maximal twinless strongly connected subgraphs. Two vertices u, v ∈ V are twin-
less strongly connected if they belong to the same twinless strongly connected
component of G. Raghavan [35] provided a characterization of twinless strongly
connected digraphs, and, based on this characterization, presented a linear-time
algorithm for computing the TSCCs. An edge (resp., a vertex) of a digraph G
is a strong bridge (resp., a strong articulation point) if its removal increases the
number of strongly connected components. A strongly connected digraph G is
2-edge strongly connected if it has no strong bridges, and it is 2-vertex strongly
connected if it has at least three vertices and no strong articulation points.
Two vertices u, v ∈ V are said to be 2-edge strongly connected (resp., 2-vertex
strongly connected) if there are two edge-disjoint (resp., two internally vertex-
disjoint) directed paths from u to v and two edge-disjoint (resp., two internally
vertex-disjoint) directed paths from v to u. By Menger’s theorem [32] we have
that u and v are 2-edge strongly connected if they remain in the same SCC
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after the deletion of any edge. A 2-edge strongly connected component (resp.,
2-vertex strongly connected component) of a digraph G = (V,E) is defined as a
maximal subset C ⊆ V such that every two vertices u, v ∈ C are 2-edge strongly
connected (resp., 2-vertex strongly connected).

An edge e ∈ E is a twinless strong bridge of G if the deletion of e increases the
number of TSCCs of G. Similarly, a vertex v ∈ V is a twinless strong articulation
point of G if the deletion of v increases the number of TSCCs of G. All twinless
strong bridges and twinless strong articulation points can be computed in linear
time [21]. A 2-edge twinless strongly connected component (2eTSCC) of G is a
maximal subset of vertices C such that any two vertices u, v ∈ C are in the
same TSCC of G \ e, for any edge e. Two vertices u and v are 2-edge twinless
strongly connected if they belong to the same 2eTSCC. Jaberi [30] studied some
properties of 2-edge twinless strongly connected components, and presented an
O(mn)-time algorithm for a digraph with m edges and n vertices. We provide a
linear-time algorithm that is based on two notions: (i) a collection of auxiliary
graphs H that preserve the 2-edge twinless strongly connected components of G
and, for any H ∈ H, the SCCs of H after the deletion of any edge have a very
simple structure, and (ii) a reduction to the problem of computing the connected
components of an undirected graph after the deletion of certain vertex-edge cuts.

The notions of twinless strong connectivity and mixed graph orientations are
motivated by several applications, such as the design of road and telecommuni-
cation networks, the structural stability of buildings [1,7,10,35], and the analysis
of biological networks [12]. The computation of edge-resilient strongly orientable
blocks is related to 2-edge strong orientations of mixed graphs in the following
sense. A mixed graph G has a 2-edge strong orientation only if it consists of
a single edge-resilient strongly orientable block. While finding a strong orienta-
tion of a mixed graph is well understood and can be solved in linear time [7,9],
computing a k-edge strong orientation for k > 1 seems much harder. Frank [14]
gave a polynomial-time algorithm for this problem based on the concept of sub-
modular flows. Faster algorithms were presented in [16,29]. Also, more efficient
algorithms exist for undirected graphs [6,18,33].

Due to space constraints, we omit some technical details and proofs. They
can be found in the full version of the paper [23].

2 Preliminaries

Let G be a (directed or undirected) graph. In general, we allow G to have multiple
edges, unless otherwise specified. We denote by V (G) and E(G), respectively,
the vertex set and the edge set of G. For a set of edges (resp., vertices) S, we let
G \ S denote the graph that results from G after deleting the edges in S (resp.,
the vertices in S and their incident edges). We extend this notation for mixed
sets S, that may contain both vertices and edges of G, in the obvious way. Also,
if S has only one element x, we abbreviate G \ S by G \ x. Let C ⊆ V (G). The
induced subgraph of C, denoted by G[C], is the subgraph of G with vertex set
C and edge set {e ∈ E | both endpoints of e are in C}.



212 L. Georgiadis et al.

For any two vertices x and y of a directed graph G, the notation x
G↔ y means

that x and y are strongly connected in G, and the notation x
G↔t y means that x

and y are twinless strongly connected in G. We omit the reference graph G from
the G↔ notation when it is clear from the context. Thus we may simply write
x ↔ y and x ↔t y. Similarly, we let x

G↔2e y and x
G↔2et y denote, respectively,

that the vertices x and y are 2-edge strongly connected and 2-edge twinless
strongly connected in G. Let G = (V,E) be a strongly connected digraph. The
reverse digraph of G, denoted by GR = (V,ER), is the digraph that results from
G by reversing the direction of all edges. In a digraph G, we say that a vertex x
reaches y if there is a path in G from x to y. We say that an edge e of a strongly
connected digraph G separates two vertices x and y if x and y belong to different
strongly connected components of G \ e.

For any digraph G, the associated undirected graph Gu is the simple undi-
rected graph with vertices V (Gu) = V (G) and edges E(Gu) = {{u, v} | (u, v) ∈
E(G) ∨ (v, u) ∈ E(G)}. Let H be an undirected graph. An edge e ∈ E(H) is
a bridge if its removal increases the number of connected components of H. A
connected graph H is 2-edge-connected if it contains no bridges. Raghavan [35]
showed that a strongly connected digraph G is twinless strongly connected if
and only if its underlying undirected graph Gu is 2-edge-connected.

We introduce the concept of marked vertex-edge blocks of an undirected
graph, which will be needed in our algorithm for computing the 2-edge twinless
strongly connected components. (We note that Heinrich et al. [25] introduced
the related concept of the 2.5-connected components of a biconnected graph.)
Let G be an undirected graph where some vertices of G are marked. Let V ′ be
the set of the marked vertices of G. Then, a marked vertex-edge block of G is a
maximal subset B of V (G) \ V ′ with the property that all vertices of B remain
connected in G \ {v, e}, for every marked vertex v and any edge e. In Sect. 5 we
provide a linear-time algorithm for computing the marked-vertex edge blocks of
a biconnected undirected graph G, by exploiting properties of the SPQR-tree of
the triconnected components of G [4,5].

Let G be a mixed graph. By splitting a directed edge (x, y) of a graph
G, we mean that we remove (x, y) from G, and we introduce a new aux-
iliary vertex z and two edges (x, z), (z, y). By replacing with a gadget an
undirected edge {x, y} of a graph G, we mean that we remove {x, y} from
G, and we introduce three new auxiliary vertices z, u, v and the edges
(x, z), (z, x), (z, u), (u, v), (v, y), (y, u), (v, z). We show that after splitting every
directed edge and replacing every undirected edge of G with a gadget, we reduce
the computation of the edge-resilient strongly orientable blocks of a mixed graph
to the computation of the 2eTSCC of a digraph.

3 Connectivity-Preserving Auxiliary Graphs

In this section we describe how to construct a set of auxiliary graphs that pre-
serve the 2-edge twinless strongly connected components of a twinless strongly
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connected digraph, and moreover have the property that their strongly connected
components after the deletion of any edge have a very simple structure. We base
our construction on the auxiliary graphs defined in [19] for computing the 2-edge
strongly connected components of a digraph, and perform additional operations
in order to achieve the desired properties. We note that a similar construction
was given in [20] to derive auxiliary graphs (referred to as 2-connectivity-light
graphs) that enable the fast computation of the 3-edge strongly connected com-
ponents of a digraph. Still, we cannot apply directly the construction of [20],
since we also need to maintain twinless strong connectivity.

Flow Graphs and Dominator Trees. A flow graph is a directed graph with a
distinguished start vertex s such that every vertex is reachable from s. For a
digraph G, we use the notation Gs in order to emphasize the fact that we consider
G as a flow graph with source s. Let G = (V,E) be a strongly connected graph.
We will let s be a fixed but arbitrary start vertex of G. Since G is strongly
connected, all vertices are reachable from s and reach s, so we can refer to the
flow graphs Gs and GR

s .
Let Gs be a flow graph with start vertex s. A vertex u is a dominator of

a vertex v (u dominates v) if every path from s to v in Gs contains u; u is a
proper dominator of v if u dominates v and u �= v. The dominator relation is
reflexive and transitive. Its transitive reduction is a rooted tree, the dominator
tree D(Gs): u dominates v if and only if u is an ancestor of v in D(Gs). For
every vertex x �= s of Gs, d(x) is the immediate dominator of x in Gs (i.e., the
parent of x in D(Gs)). For every vertex r of Gs, we let D(r) denote the subtree
of D(Gs) rooted at r. The dominator tree can be computed in almost-linear
time [31] or even in truly-linear time [2,8,13,17]. An edge (u, v) is a bridge of a
flow graph Gs if all paths from s to v include (u, v).1

Property 1. ( [28]) Let s be an arbitrary start vertex of G. An edge e = (u, v) is
strong bridge of G if and only if it is a bridge of Gs, in which case u = d(v), or
a bridge of GR

s , in which case v = dR(u), or both.

Let Gs be a strongly connected digraph. For every bridge (x, y) of Gs, we
say that y is a marked vertex. (Notice that s cannot be marked.) Property 1
implies that the bridges of Gs induce a decomposition of D(Gs) into rooted
subtrees. More precisely, for every bridge (x, y) of Gs, we remove the edge (x, y)
from D(Gs). (By Property 1, this is indeed an edge of D(Gs).) Thus we have
partitioned D(Gs) into subtrees. Every tree T in this decomposition inherits the
parent relation from D(Gs), and thus it is rooted at a vertex r. We denote T as
T (r) to emphasize the fact that the root of T is r. Observe that the root r of a
tree T (r) is either a marked vertex or s. Conversely, for every vertex r that is
either marked or s, there is a tree T (r).

1 Throughout the paper, to avoid confusion we use consistently the term bridge to
refer to a bridge of a flow graph and the term strong bridge to refer to a strong
bridge in the original graph.
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Construction of Auxiliary Graphs. Now let Gs be a strongly connected digraph,
and let r be either a marked vertex of Gs or s. We define the auxiliary graph
H(Gs, r) as follows. In Gs we shrink every D(z), where z is a marked vertex
such that d(z) ∈ T (r), into z. Also, if r �= s, we shrink D(s) \ D(r) into d(r).
During those shrinkings we maintain all edges, except for self-loops. Also, in
[19] multiple edges are converted into single edges. Here, multiple edges are
converted into double edges, in order to avoid introducing new strong bridges in
the auxiliary graphs. The resulting graph is H(Gs, r). We consider H(Gs, r) as
a flow graph with start vertex r. Notice that it consists of the subgraph of Gs

induced by T (r), plus some extra vertices and edges. To be specific, the vertex
set of H(Gs, r) consists of the vertices of T (r), plus all marked vertices z of Gs

such that d(z) ∈ T (r), plus d(r) if r �= s. The vertices of T (r) are called ordinary
in H(Gs, r). The vertices of H(Gs, r) \ T (r) are called auxiliary in H(Gs, r). In
particular, if r �= s, d(r) is called the critical vertex of H(Gs, r), and (d(r), r) is
called the critical edge of H(Gs, r). (Thus, H(Gs, s) is the only auxiliary graph
of Gs that has no critical vertex and no critical edge.)

The above construction guarantees that each path in Gs whose endpoints lie
in some auxiliary graph H(Gs, r) has a corresponding path in H(Gs, r) with the
same endpoints and vice versa. In particular, this implies that each H(Gs, r) is
strongly connected. Moreover, we have the following results:

Theorem 1. ([19]) Let Gs be a strongly connected digraph, and let r1, . . . , rk be
the marked vertices of Gs.

(i) For any two vertices x and y of Gs, x
Gs↔2e y if and only if there is a vertex

r (a marked vertex of Gs or s), such that x and y are both ordinary vertices

of H(Gs, r) and x
H(Gs,r)↔ 2e y.

(ii) The collection H(Gs, s), H(Gs, r1), . . . , H(Gs, rk) of all the auxiliary graphs
of Gs can be computed in linear time.

We provide the analogous result for 2-edge twinless strong connectivity.

Proposition 1. Let x, y be two vertices of a strongly connected digraph Gs.
Then x

Gs↔2et y if and only if there is a vertex r (a marked vertex of Gs or s),

such that x and y are both ordinary vertices of H(Gs, r) and x
H(Gs,r)↔ 2et y.

Now let G be a strongly connected digraph and let (x, y) be a strong bridge
of G. We will define the S-operation on G and (x, y), which produces a set of
digraphs as follows. Let C1, . . . , Ck be the strongly connected components of
G \ (x, y). Now let C ∈ {C1, . . . , Ck}. We will construct a graph C ′ as follows.
First, notice that either x /∈ C and y ∈ C, or y /∈ C and x ∈ C, or {x, y}∩C = ∅.
Then we set V (C ′) = V (C) ∪ {x}, or V (C ′) = V (C) ∪ {y}, or V (C ′) = V (C) ∪
{x, y}, respectively. Every edge of G with both endpoints in C is included in C ′.
Furthermore, for every edge (u, v) of G such that u ∈ C and v /∈ C, we add the
edge (u, x) to C ′. Also, for every edge (u, v) of G such that u /∈ C and v ∈ C,
we add the edge (y, v) to C ′. Finally, we also add the edge (x, y) to C ′. Now we
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define S(G, (x, y)) := {C ′
1, . . . , C

′
k}. Note that for a strongly connected digraph

G and a strong bridge e of G, every graph of S(G, e) is strongly connected.
Furthermore, the next proposition shows that the S-operation maintains the
relation of 2-edge twinless strong connectivity.

Proposition 2. Let G be a strongly connected digraph and let (x, y) be a strong
bridge of G. Then, for any two vertices u, v ∈ G, we have u

G↔2et v if and only
if u and v belong to the same graph C of S(G, (x, y)) and u

C↔2et v.

We can combine Propositions 1 and 2 in order to derive some auxiliary graphs
that maintain the relation of 2-edge twinless strong connectivity of the original
graph. Then we can exploit properties of those graphs in order to provide a linear-
time algorithm for computing the 2-edge twinless strongly connected compo-
nents. First we introduce some notation. Let Gs be a strongly connected digraph,
and let r be either a marked vertex of Gs or s. Then we denote H(Gs, r) as Hr.
Furthermore, if r′ is either a marked vertex of Hr or r, we denote H(HR

r , r′) as
Hrr′ . A vertex that is ordinary in both Hr and Hrr′ is called an ordinary vertex
of Hrr′ ; otherwise, it is called auxiliary.

Corollary 1. Let Gs be a strongly connected digraph, and let x, y be two vertices
of Gs. Then x

Gs↔2et y if and only if x and y are both ordinary vertices in
H and x

H↔2et y, where H is either (1) Hss, or (2) Hrr, or (3) a graph in
S(Hsr, (d(r), r)), or (4) a graph in S(Hrr′ , (d(r′), r′)) (where r and r′ are marked
vertices).

Now we can describe the structure of the strongly connected components of
the graphs that appear in Corollary 1 when we remove a strong bridge from
them.

Proposition 3. Let H be one of the auxiliary graphs that appear in Corollary 1,
and let e = (x, y) be a strong bridge of H. Then the strongly connected compo-
nents of H \ e are given by one of the following:

(i) {x} and H \ {x}, where x is an auxiliary vertex
(ii) {y} and H \ {y}, where y is an auxiliary vertex
(iii) {x}, {y}, and H \ {x, y}, where x, y are both auxiliary vertices

4 Computing 2eTSCCs

We assume that G is a twinless strongly connected digraph, since otherwise
we can compute the twinless strongly connected components in linear time and
process each one separately [35]. We let Et denote the set of twinless strong
bridges of G, and let Es denote the set of strong bridges of G. (Note that
Es ⊆ Et.) Jaberi [30] gave an O(mn)-time algorithm for computing the 2eTSCCs
of G. We provide a faster algorithm that processes separately the edges in Et\Es

and the edges in Es, and partitions the vertices of G accordingly.
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Let e be an edge in Et \Es. Then the TSCCs of G\e are given by the 2-edge-
connected components of Gu \ {eu}, where eu is the undirected counterpart of
e [35]. Thus, we can simply remove the bridges of Gu \ {eu}, in order to get the
partition into the TSCCs that is due to e. To compute the partition that is due
to all edges in Et \ Es at once, we may use the cactus graph Q which is given
by contracting the 3-edge-connected components of Gu into single nodes [11].
Q comes together with a function φ : V (Gu) → V (Q) (the quotient map) that
maps every vertex of Gu to the node of Q that contains it, and induces a natural
correspondence between edges of Gu and edges of Q. The cactus graph of the
3-edge-connected components provides a clear representation of the 2-edge cuts
of an undirected graph; by definition, it has the property that every edge of it
belongs to exactly one cycle. Thus, Algorithm 1 shows how we can compute in
linear time the partition of 2eTSCCs that is due to the edges in Et \ Es.

Algorithm 1: Compute the partition of 2eTSCCs of G that is due to the
twinless strong bridges that are not strong bridges.
1 compute the cactus Q of the 3-edge-connected components of Gu, and let

φ : V (Gu) → V (Q) be the quotient map
2 foreach edge e of Q do
3 if e corresponds to a single edge of G that has no twin and is not a strong

bridge then remove from Q the edges of the cycle that contains e

4 end
5 let Q′ be the graph that remains after all the removals in the previous step
6 let C1, . . . , Ck be the connected components of Q′

7 return φ−1(C1), . . . , φ
−1(Ck)

Now we consider the problem of computing the partition of the 2eTSCCs
of G due to the strong bridges. Here we reduce the problem to the auxiliary
graphs that appear in Corollary 1, and we apply the information provided by
Proposition 3 as follows. Let H be one of those auxiliary graphs. For every strong
bridge e of H, we define the subset Xe of V (H) as Xe = {x}, or Xe = {y}, or
Xe = {x, y}, depending on whether e satisfies (i), (ii), or (iii), respectively, of
Proposition 3. Then, Xe satisfies (1) H[V \Xe] is a strongly connected component
of H \ e, and (2) Xe contains only auxiliary vertices.

Now we can apply the following procedure to compute the partition of 2-edge
twinless strongly connected components of the ordinary vertices of H due to the
strong bridges. Initially, we let P be the trivial partition of V (i.e., P = {V }).
Then, for every strong bridge e of H, we compute the TSCCs of H \Xe, and we
refine P according to those TSCCs. By [35], the computation of the TSCCs of
H\Xe is equivalent to determining the 2-edge-connected components of Hu\Xe.
Observe that this procedure does not run in linear time in total, since it has to
be performed for every strong bridge e of H.

Thus our goal is to perform the above procedure for all strong bridges e of
H at once. We can do this by first taking Hu, and then shrinking every Xe in
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Hu into a single marked vertex, for every strong bridge e of H. Let H ′ be the
resulting graph. Then we simply compute the marked vertex-edge blocks of H ′.
The whole procedure is shown in Algorithm 2. We note that, given an auxiliary
graph H as above, we can compute all sets Xe in linear time by first computing
all strong bridges of H [28], and then checking which case of Proposition 3 applies
for each strong bridge.

Algorithm 2: A linear-time algorithm for computing the partition of 2-edge
twinless strongly connected components of an auxiliary graph H due to the
strong bridges
input : An auxiliary graph H equipped with the following information: for

every strong bridge e of H, the set Xe defined as above
output: The partition of 2-edge twinless strongly connected components of the

ordinary vertices of H due to the strong bridges
1 begin
2 compute the underlying undirected graph Hu

3 foreach strong bridge e of H do
4 contract Xe into a single vertex in Hu, and mark it
5 end
6 let H ′ be the graph with the marked contracted vertices derived from Hu

7 compute the partition Bve of the marked vertex-edge blocks of H ′

8 let O be the partition of V consisting of the set of the ordinary vertices of
H and the set of the auxiliary vertices of H

9 return Bve refined by O
10 end

The final 2eTSCCs of (the subset of the ordinary vertices of) an auxiliary
graph are given by the mutual refinement of the partitions computed by Algo-
rithms 1 and 2. (The mutual refinement of two partitions can be computed in
linear time using bucket sort.) Hence, by Corollary 1, we obtain the 2eTSCCs
of the original strongly connected digraph.

It remains to establish that Algorithm 2 runs in linear time. For this we
provide a linear-time procedure for Step 7. Observe that the marked vertices
of H ′ have the property that their removal from H leaves the graph strongly
connected, and thus they are not articulation points of the underlying graph
Hu. This allows us to reduce the computation of the marked vertex-edge blocks
of H ′ to the computation of marked vertex-edge blocks in biconnected graphs.
Specifically, we first partition H ′ into its biconnected components, which can be
done in linear time [37]. Then we process each biconnected component separately,
and we compute the marked vertex-edge blocks that are contained in it. Finally,
we “glue” the marked vertex-edge blocks of all biconnected components, guided
by their common vertices that are articulation points of the graph. In the next
section we provide a linear-time algorithm for computing the marked vertex-edge
blocks of a biconnected graph.
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5 Computing Marked Vertex-Edge Blocks

Here we consider the problem of computing the marked vertex-edge blocks of
a biconnected undirected graph G. Let V ′ be the set of the marked vertices of
G. We provide a linear-time algorithm for computing all marked-vertex edge
blocks of G, by exploiting properties of the SPQR-tree [4,5] of the triconnected
components of G [27].

An SPQR tree T for G represents the triconnected components of G [4,5].
It has several applications in dynamic graph algorithms and graph drawing, and
can be constructed in linear time [24]. Each node α ∈ T is associated with an
undirected graph Gα. Each vertex of Gα corresponds to a vertex of the original
graph G. An edge of Gα is either a virtual edge that corresponds to a separation
pair of G, or a real edge that corresponds to an edge of the original graph G.
Let e = {x, y} be an edge of G such that {v, e} is a vertex-edge cut-pair of G.
Then, T must contain an S-node α such that v, x and y are vertices of Gα and
{x, y} is not a virtual edge. The above observation implies that we can use T to
identify all vertex-edge cut-pairs of G as follows. A vertex-edge cut-pair (v, e) is
such that v ∈ V (Gα) and e is a real edge of Gα that is not adjacent to v, where
α is an S-node [21,25]. Now we define the split operation of v as follows. Let
e1 and e2 be the edges incident to v in Gα. We split v into two vertices v1 and
v2, where v1 is incident only to e1 and v2 is incident only to e2. (In effect, this
makes S a path with endpoints v1 and v2.) To find the connected components
of G \ {v, e}, we execute a split operation on v and delete e from the resulting
path. Note that e �= e1, e2, and e does not have a copy in any other node of the
SPQR tree since it is a real edge. Then, the connected components of G \ {v, e}
are represented by the resulting subtrees of T .

Here, we need to partition the ordinary vertices of G according to the vertex-
edge cut-pairs (v, e), where v is a marked auxiliary vertex. To do this efficiently,
we can process all vertices simultaneously as follows. First, we note that we only
need to consider the marked vertices that are in S-nodes that contain at least
one real edge. Let α be such an S-node. We perform the split operation on each
marked (auxiliary) vertex v, and then delete all the real edges of α. This breaks
T into subtrees, and the desired partition of the ordinary vertices is formed by
the ordinary vertices of each subtree. Hence, we obtain:

Theorem 2. The marked vertex-edge blocks of an undirected graph can be com-
puted in linear time.

By Sect. 4 we now have:

Theorem 3. The 2-edge twinless strongly connected components of a directed
graph can be computed in linear time.

Finally, by the reduction of Sect. 2, we have:

Theorem 4. The edge-resilient strongly orientable blocks of a mixed graph can
be computed in linear time.
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Abstract. A directed graph D is singly connected if for every ordered
pair of vertices (s, t), there is at most one path from s to t in D. Graph
orientation problems ask, given an undirected graph G, to find an orien-
tation of the edges such that the resultant directed graph D has a certain
property. In this work, we study the graph orientation problem where the
desired property is that D is singly connected. Our main result concerns
graphs of a fixed girth g and coloring number c. For every g, c ≥ 3,
the problem restricted to instances of girth g and coloring number c, is
either NP-complete or in P. As further algorithmic results, we show that
the problem is NP-hard on planar graphs and polynomial time solvable
distance-hereditary graphs.

Keywords: directed graphs · chromatic number · girth

1 Introduction

Graph orientation problems are well-known class of problems in which given an
undirected graph, the task is to decide whether we can assign a direction to
each edge such that a particular desired property is satisfied on the resulting
directed graph. One can ask questions like, for an undirected graph, can we
assign directions to all edges such that the digraph thus formed is acyclic, or it
is strongly connected, or it contains a directed Euler circuit, and many more such
interesting properties. These problems are important because of the emerging
field of networks designing; networks are modeled by directed graphs. Consider
the problem of converting an undirected graph to a directed acyclic graph by
means of such an orientation of edges. All simple graphs can be converted into
directed acyclic graphs by simply considering a DFS tree on the graph and
directing all edges from the ancestor to the descendant. This trivially solves the
decision version of the graph orientation problem for all simple graphs.

In this work we consider ‘singly-connected’ as the desired property of the
graph orientation property. A directed graph D is singly connected if for every
ordered pair of vertices (s, t), there is at most one path from s to t in D. For an
undirected graph G, an E(G)-orientation is a mapping σ that maps each edge
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{u, v} ∈ E(G) to either of its endpoints u or v, which results into a directed
graph Gσ. An E(G)-orientation σ is an sc-orientation if Gσ is singly connected.
A graph G is said to be sc-orientable if there exists an sc-orientation of G. Hence
we study the following problem.

Problem: SC-Orientation (SCO)
Input: A simple undirected graph G = (V,E).
Question: Is G sc-orientable?

There has been several studies around the singly connected graphs in the
literature. The problem of testing whether a graph is singly connected or not
was introduced in an exercise in Cormen et al. in [4]. Buchsbaum and Carlisle,
in 1993, gave an algorithm running in time O(n2) [3]. There has been other
attempts to improve this result, for example [8,12]. For our SC-Orientation

problem, this means that the edge orientation σ that makes Gσ singly connected
serves as an NP-certificate. Thus SCO is in NP.

Das et al. [6] studied the vertex deletion version of the problem. They asked,
given a directed graph D, does there exists a set of k vertices whose deletion ren-
ders a singly connected graph. Alongside, they pointed a close link of the Singly
Connected Vertex Deletion (SCVD) problem to the classical Feedback
Vertex Set (FVS) problem. They argued how SCVD is a directed counter-
part of FVS, which makes it theoretically important. Our problem is a natural
follow-up question in this direction which looks at the graph orientation version.

In the next section we prove that if a graph has an sc-orientation, then it also
has an acyclic sc-orientation. So, in addition for a graph to orient to an acyclic
digraph, SC-Orientation also demands the orientation to a singly connected
digraph. As discussed earlier, it is trivial to find an acyclic orientation of the
graph. However, in contrast to that, we prove, the additional singly connected
condition makes it harder to even decide whether such an orientation exits or
not.

1.1 Our Results

First, we prove that SC-Orientation is NP-complete even for planar graphs.
Thus the hardness also holds for all graphs restricted to girth at most 4. Com-
plementing this result, we show that planar graphs of girth at least 5 are always
sc-orientable, hence, the decision problem is trivial.

We aim to show analogous dichotomy for general graphs. As an upper bound,
we show, for any graph with girth at least twice the chromatic number, the
graph is sc-orientable. Hence the problem is trivially solvable for such inputs. To
account for this, we study SC-Orientation restricted to the graph class Gg,c,
the class of graphs that have girth g and chromatic number c, for some positive
integers g, c. Our main result is that, for each pair g, c ≥ 3, SC-Orientation

restricted to Gg,c is either NP-complete or trivially solvable. We do not pinpoint
the exact boundary for the values of g and c where the transformation occurs.
The approach is to compile an NP-hardness proof that solely relies upon a single
no-instance of the given girth g and chromatic number c.
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Fig. 1. From left to right: a diamond, a house, a domino (a G2,3), a gem, and a gadget
for the construction of Lemma 5. Non-sc-orientable are the diamond, the house and
hence also the gem. The domino is sc-orientable.

As further results, we provide polynomial time algorithms of SCO for a special
graph class such as distance-hereditary graphs. Here, we give a concise definition
of the yes-instances by forbidden subgraphs.

From the technical sides, we provide two simplification of the problem. First,
one can restrict the search for an sc-orientation to the orientations that also
avoid directed cycles. Second, we show how we can assume that the input is
triangle free.

In Sect. 2, we begin with the Preliminaries and the structural results.
Section 3 shows NP-completeness of SC-Orientation on planar graphs.
Section 4 contains our dichotomy result. Then, Sect. 5 considers perfect and
distance-hereditary graphs. We conclude with Sect. 6.

2 Notation and Technical Preliminaries

For a graph G, let V (G) be its vertex set, and E(G) be its set of edges. Elements
in V (G) are called nodes or vertices. A k-coloring of a graph G, for k ∈ N, is
a mapping f : V (G) → {1, . . . , k} such that f(u) �= f(v) if {u, v} ∈ E(G).
The coloring number, χ(G), of graph G is the smallest integer k such that G
has a k-coloring. A graph has girth g if the length of the shortest cycle in the
graph is g. By definition, a graph without any cycles has girth ∞. Given a path
P = v1, v2, . . . , vn, we denote the length of a path to be the total number of
vertices in the path. Throughout the paper we consider different small graphs,
typically as forbidden induced subgraphs, drawn in Fig. 1. We denote the grid
graph of width x and height y as Gx,y. For further reading related to the concepts
in graph theory we refer reader to the book by Diestel [7].

The following technical observations are useful for our later results. The
upcoming lemma shows when looking for an sc-orientation of a graph, it suffices
to look for an sc-orientation that additionally avoids cycles of length greater
than 3.
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Lemma 1. (�)1 A graph G is sc-orientable if and only if there is an sc-
orientation σ of G where Gσ contains no directed cycle of length ≥ 4.

Proof (Sketch). Consider an sc-orientation that forms a directed graph with a
directed cycle C of length at least 4. Then select two non-adjacent edges of C
and flip their orientations. This modification does not introduce new directed
cycles, and the resultant digraph is still singly connected. ��

Further, we can remove triangles from the input graph unless it contains a
diamond or a house as an induced subgraph. It is easy to see, if a graph G
contains a diamond or a house graph as an induced subgraph, then G is not
sc-orientable.

Lemma 2. (�) Let a (diamond, house)-free graph G contain a triangle uvw.
Then G has an sc-orientation, if and only if G′, resulting from G by contracting
the edges in uvw, has an sc-orientation.

Proof (Sketch). Note that an sc-orientation of G must form a directed cycle of
uvw. Then an sc-orientation of G is essentially also an sc-orientation of G′. ��

3 NP-Hardness on Planar Graphs

This section derives NP-hardness of SC-Orientation on planar graphs. As
observed in the Sect. 1, SC-Orientation is in NP. To show hardness, we give
a reduction from a variant (to be shortly defined) of the Planar 3-SAT prob-
lem. Given a 3-SAT formula φ, a variable-clause graph is a graph obtained by
taking variables and clauses representatives as the vertex set, and the edge set
contains an edge between a variable-clause pair if the variable appears in the
clause. We use the variant of 3-SAT where there is a planar embedding of the
variable-clause graph, in which there are some additional edges (only connect-
ing clause nodes) which form a cycle traversing through all clause nodes. We
denote this cycle as clause-cycle, and the problem as Clause-linked Planar

3-SAT. Kratochv́ıl et al. proved the NP-hardness of Clause-linked Planar

3-SAT [13].

Problem: Clause-linked Planar 3-SAT

Input: A boolean formula φ with clauses C = {c1, . . . , cm} and variables
X = {v1, . . . , vn}, and a planar embedding of the variable-clause graph together
with a clause-cycle.
Question: Is φ satisfiable?

Theorem 1. (�) SC-Orientation is NP-complete even for planar graphs.

1 The full proofs of the statements marked with (�) have been omitted due to limited
space availability.
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Fig. 2. Type 1 (left) and type 2 (right) of clause nodes according to their neighbour-
hoods in the planar embedding Π of Gη(φ).

Proof. Our idea is to take the given planar embedding, and use this as a backbone
for our construction. Let η be an ordering of clause nodes such that the clause-
cycle traverses through C as per the ordering η. Let the given planar embedding
be Π, and the underlying graph be Gη(φ). For the reduction, we define a clause
gadget and a variable gadget to replace the clause nodes and variable nodes in
Π. To begin with, let us start with the following interesting graph structure:

Ladder. The domino (the 2×3-grid graph, see Fig. 1), has exactly two possible
sc-orientations. If we fix the orientation of one edge, all orientations of the domino
are fixed up to singly-connectedness (every vertex becomes either a sink or a
source for the domino). Specifically, we are interested in the following properties
regarding the bottom edge {a1, b1} and the top edge {a2, b2}:

(1) (a1, b1), (a2, b2) are coupled, that is, for every sc-orientation σ, either
σ({ax, bx}) = bx for x ∈ {1, 2}, or σ({ax, bx}) = ax for x ∈ {1, 2},

(2) there is an sc-orientation without any directed path from {a1, b1} to {a2, b2}.

Since the directions of coupling edges matter, we refer to them as ordered
pairs, for example, edge {a, b} ∈ V (G) becomes (a, b) or (b, a). The coupling
property is transitive, in the sense that, when we take 2 dominos and identify
the top edge of one to the bottom edge of another (forming a 2×5-grid), the very
top and the very bottom edges are also coupled. Further extrapolation can be
made to form a ladder (a 2 × n-grid). Additionally, the bottom and the middle
edges of a domino are in the reverse direction in every sc-orientation. Hence they
are the reverse-coupled edges. The coupling property of dominos helps us attach
as many 4-cycles as we want to a ladder without affecting the two possible sc-
orientations of the structure. Let us call the ladder with the additional 4-cycles
an extended ladder (L). For our refernce, let us call the bottom of the ladder the
0th-step. Let us call the set of edges which are coupled with the 0th-step by even
edges, and the set of reverse-coupled edges by odd edges. All in all, if we fix the
orientation of the 0th-step, the orientation of the whole ladder is fixed up to an
sc-orientation. Let us construct a large enough extended ladder LU , we call this
the universal ladder.
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Fig. 3. Clause gadget for type 1 (left) and type 2 (right)

Clause Gadget. In the planar embedding Π, each clause node c is adjacent
to three variable nodes, say x, y, z, and two more clause nodes, say c1 and c2.
There are two types in which c can be surrounded by nodes x, y, z, c1, c2 in Π:
only two variables appear together on one side of the clause-cycle, or all three
variables appear consecutively on one side of the clause cycle, see Fig. 2. For a
replacement to these two types of configurations, we define two different clause
gadgets (see Fig. 3). For c ∈ C, the basic structure of the clause gadget Gc

includes an 8-cycle which contains 3 edges ec
x, ec

y, and ec
z (corresponding to x, y,

and z), and five generic edges ec
1, e

c
2, e

c
3, e

c
4, ec

5. In addition, the universal ladder
LU passes through the gadget as shown in Fig. 3. For each of the two types of
clause gadgets, we distinguish two edges of the clause gadget from where the
universal ladder enters and exits by the notations inc and outc respectively.

Variable Gadget. Each variable node x in Π is replaced by a sufficiently
large ladder-cycle LCx, see Fig. 4. The bold edges in Fig. 4 correspond to the
0th-steps of LCx. The orientation of all 0th-steps in LCx can either be clockwise
or anticlockwise in an sc-orientation of the graph. This is because of the cyclic
ladder formed in the gadget. The two types of orientations are in one-to-one
correspondence with the two boolean assignments of the variable in the 3-SAT

formula.

Construction. We make the following replacements while constructing our
input graph G of SCO from the planar embedding Π given in the input of the
Clause-linked Planar 3-SAT problem:

– Replace each clause node c in Π by a clause gadget Gc in G.
– Replace each variable node x in Π by a variable gadget LCx in G.
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Fig. 4. Variable gadget (the laddercycle LCx)

– Replace each edge {x, c} in Π by extending a ladder from the variable gadget
LCx to the edge ec

x of the clause gadget Gc. If x̄ appears in C, then we identify
an odd step of LCx to ec

x. If x appears in c, then we identify an even step of
LCx to the corresponding edge ec

x.
– For a {ci, cj} edge in Π, where ci appears before cj in η, we identify the

dangling edges next to outci to that of the dangling edges next to incj while
maintaining the planarity. Moreover, let us fix the 0th-step of the universal
ladder LU to be the inc1 edge of the clause gadget Gc1 .

Note that all clause and variable gadgets are planar, and the edge replace-
ments by ladder also maintains the planarity of the resulting graph. As per our
construction of the clause gadgets, for each structure Gc, the inc and outc edges
together are either oriented clockwise or anti-clockwise in every sc-orientation of
Gη(φ). Moreover, all the inc edges are oriented in one direction for all c ∈ C, and
all the outc edges are oriented in the other direction. If we fix the orientation of
the 0th-step of LU , it fixes the orientation of all edges associated with LU and
consequently fixes the orientation of the inc and outc edges for all c ∈ C. It also
fixes the orientation of all generic edges in Gc for all c ∈ C. We remain to prove
that the Clause-linked Planar 3-SAT instance is a yes-instance if and only
if the corresponding constructed instance of the SC-Orientation problem is a
yes-instance. The proof of correctness of the above statement can be found in
the appendix. ��

4 Girth and Coloring Number

Notably the NP-hardness reduction so far heavily relied on a cycle of length 4,
as part of a ‘ladder’. Hence the constructed graphs have girth 4. We recall the
girth of a graph is the length of its shortest cycle. Can we extend this result to
girth 5 graphs or for graphs of even higher girth?
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4.1 Upper Bounds

The NP-hardness proof cannot be extended to planar graphs of girth 5, since
such graphs are always sc-orientable.

Lemma 3. (�) Planar graphs with girth at least 5 are sc-orientable.

Also, for general graphs, if the girth is at least twice the coloring number,
the graph is sc-orientable.

Theorem 2. Let girth(G) ≥ 2χ(G) − 1. Then G is sc-orientable.

Proof. Consider a proper vertex-coloring c : V (G) → {1, . . . , |χ(G)|}. Let σ be
an orientation which orients each edge {u, v} to the vertex which corresponds
to the higher color class, that is, to argmaxw∈{u,v} c(w). We claim that Gσ is
singly connected. Assuming the contrary, there are s, t ∈ V (G) with disjoint s, t-
paths P1, P2. Then P1, P2 form a cycle of length at least girth(G) ≥ 2|χ(G)|− 1.
At least one of the paths, say P1, consists of > χ(G) vertices. Then there are
vertices u, v on path P1 with the same color. Without loss of generality say u
appears before v in P1. To form an s, t-path the successor of u on path P1 must
have a higher color than u and so on. Thus a later vertex v with the same color
contradicts that P1 is an s, t-path. ��

As a remark, by Grötzsch’s Theorem every planar graph of girth at least 4
is 3-colorable [10]. Hence, Lemma 3 also follows from Theorem 2.

4.2 The Dichotomy

We do not know whether there even exists a graph of girth at least 5 that is
not sc-orientable. Intriguingly, however, we do not need to answer this question
to follow a dichotomy between the P-time and NP-completeness. That is, for
every g, c ≥ 3, SC-Orienation when restricted to graphs of girth g and coloring
number c is either NP-complete or trivially solvable. Let the class of graphs of
girth g and chromatic number c be Gg,c. Our proof does not pinpoint the exact
boundary between P-time and NP-completeness. We only know, for a fixed c,
there is some upper bound g′ for the values of g such that the hardness is only
unclear on Gg,c, where g < g′. See Theorem 2. Moreover, we showed in Sect. 3,
the NP-hardness on Gg,c for g = 3, 4. The key ingredient for our dichotomy result
is to compile an NP-hardness proof that only relies upon a single no-instance of
a certain girth g and coloring number c.

The main building block of our construction is a coupling gadget. It is a graph
that couples the orientation of two special edges but that does not enforce a
coloring depending on the orientation. An sc-orientable graph H with special
edges {a1, b1}, {a2, b2} ∈ E(H) is a coupling gadget on (a1, b1), (a2, b2) if

(1) (a1, b1), (a2, b2) are coupled, that is, for every sc-orientation σ, either
σ({ax, bx}) = bx for x ∈ {1, 2}, or σ({ax, bx}) = ax for x ∈ {1, 2},
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(2) there is an sc-orientation without any directed path from {a1, b1} to {a2, b2},
and

(3) there are two χ(H)-colorings f, f ′ of H such that f(a1) = f(a2), f(b1) =
f(b2) and f ′(a1) = f ′(b2), f ′(b1) = f ′(a2).

For example, G2,3 ladder (which we use for Theorem 1) satisfies only prop-
erties (1) and (2). In turn, G2,4 ∪ K3 is a coupling gadget.

Lemma 4. For every g, c ≥ 3, there is an sc-orientable graph G ∈ Gg,c.

Proof. We know that there is at least one graph Gg′,c of girth g′ and chromatic
number c, see [9]. When g = g′ ≥ 2c − 1, Theorem 2 yields that Gg,c is sc-
orientable. For g = g′ < 2c − 1, the graph, G2c−1,c ∪ Cg, is sc-orientable; it has
girth g and chromatic number c. ��
Lemma 5. (�) For g ≥ 3, c ≥ 4, there is a non-sc-orientable graph G ∈ Gg,c,
if and only if there is a coupling gadget H ∈ Gg,c.

Proof (Sketch). (⇒) Consider a non-sc-orientable graph G ∈ Gg,c. We assume
that G contains at least one edge {u, v} such that subdividing {u, v} yields an
sc-orientable graph. If that is not the case, pick an edge {u, v} and consider the
graph G′ resulting from G where {u, v} is subdivided into a path uwv. To assure
termination, initially assume all edges unmarked, and consider subdividing an
unmarked edge {u, v} before considering the marked edges. Whenever an edge
{u, v} is subdivided, mark the new edges {u,w} and {w, v}. The procedure
terminates at the latest when all edges are marked since then the resulting
graph is bipartite and hence trivially sc-orientable.

Now, let H ′ consists of a copy of G where edge {u, v} is subdivided resulting
in a path uwv. Then H ′ has an sc-orientation σ. Crucially, σ couples edges
(u,w), (w, v), meaning it orientates {u,w}, {w, v} either both away from w or
both towards w. To see this, assume an sc-orientation σ′ that, up to symmetry,
has σ′({u,w}) = w and σ′({w, v}) = v. Then σ′ extended with σ′({u, v}) = v
forms an sc-orientation of G, despite it being non-sc-orientable. Thus indeed
edges (u,w), (w, v) are coupled.

To construct H (which also satisfies properties (2), (3)), we introduce
four copies H1,H2,H3,H4 of H ′ naming their vertices with subscript 1, 2, 3, 4
respectively. We identify the vertices w1, u2 and vertices v1, w2, u3 and vertices
v2, w3, u4 and vertices v3, w4; see the gadget in Fig. 1. Then H forms a coupling
gadget on edges (u1, w1), (w4, v4). So far, the construction does not decrease the
girth and does not increase the coloring number. By adding suitable sc-orientable
components to H, we can ensure the girth and chromatic number remains the
same as that of G. ��
Theorem 3. (�) For g, c ≥ 3, SC-Orientation restricted to the graphs in
Gg,c is either NP-complete or trivially solvable.

Proof (Sketch). Consider fixed g, c ≥ 3. If all graphs G ∈ Gg,c are sc-orientable,
then an algorithm may simply always answer ‘yes’. Otherwise, Lemma 5 provides
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a coupling gadget H ∈ Gg,c. Due to Property 2 of the coupling gadgets, all
coupled edges are disjoint; this allows us to couple an arbitrary pair of disjoint
edges by introducing a coupling gadget between them. To follow NP-hardness
for graphs in Gg,c, we adapt the NP-hardness construction of Theorem 1 to
output graphs in Gg,c. ��

5 Perfect Graphs

This section considers perfect graphs. First we show that the NP-hardness proof
from Theorem 1 can be adapted to perfect graphs. Then later we study the
distance-hereditary graphs as a special case.

We modify our NP-hardness reduction from Theorem 1 as follows: In the
reduced instance, for each edge e = {u, v}, introduce two new vertices we and
w′

e. Delete edge e, and instead add edges such that there is a path uwev, and a
triangle uwew

′
e.

Then according to Lemma 2, the modified instance is equivalent to the orig-
inal instance in the sense that the modified graph is sc-orientable if and only if
the originally constructed graph is sc-orientable. Further, the modified graph is
3-colorable and has a maximum clique of size 3; hence it is perfect. From this
we conclude the following result.

Theorem 4. SC-Orientation is NP-hard even for perfect graphs.

5.1 Distance-Hereditary Graphs

Now we derive two classifications of the distance hereditary graphs that are
sc-orientable. One way is to simply restrict the recursive definition to (locally)
avoid a diamond subgraph. The second is a concise classification by forbidden
subgraphs.

A graph is distance hereditary if it can be constructed starting from a single
isolated vertex with the following operations [1]: a pendant vertex to u ∈ V (G),
that is, add a vertex v and edge {u, v}; true twin on a vertex u ∈ V (G), that is,
add a vertex v with neighborhood N(v) = N(u) and edge {u, v}; false twin on
a vertex u ∈ V (G), that is, add a vertex v with neighborhood N(v) = N(u).

We denote a graph as strongly distance hereditary if it can be constructed
from a single isolated vertex with the following restricted operations:

– a pendant vertex to u ∈ V (G);
– true twin on a vertex u ∈ V (G), restricted to u where |N(u)| = 1; and
– false twin on a vertex u ∈ V (G), restricted to u where N(u)2 ∩ E(G) = ∅.

Observe that the forbidden operations would immediately imply a diamond
as a subgraph. Thus every distance hereditary graph that has an sc-orientation
must be strongly distance hereditary. Now, we show also the converse is true.

Theorem 5. (�) The sc-orientable distance hereditary graphs are exactly the
strongly distance hereditary graphs. They can be recognized in polynomial time.
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Note that distance hereditary graphs are exactly the (house, hole, domino,
gem)-free graphs [1], where a hole is any cycle of length ≥ 5. When we replace
‘gem’ with ‘diamond’ we exactly end up with the strongly distance hereditary
graphs.

Lemma 6. (�) The strongly distance hereditary graphs are exactly the graphs
with house, hole, domino and diamond as forbidden subgraph.

6 Conclusion

Among others results, we have shown that for every g, c ≥ 3, the restriction to
graphs of girth g and chromatic number c is either NP-complete or in P. While
we know NP-completeness for low girth and chromatic number and we know
that for relatively large girth compared to χ(G) the problem is trivial, it yet
remains to pinpoint the exact boundary of the NP-hard and P cases. As shown,
to extend the NP-hardness result, one needs to simply find a no-instance of
the girth and chromatic number of interest (or alternatively merely a coupling
gadget), for example graphs of girth 5 and chromatic number 4. On the other
hand, one might improve Theorem 2 to also hold for smaller values of girth g.
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Abstract. In this paper, we consider the (weighted) one-center prob-
lem of uncertain points on a cactus graph. Given are a cactus graph
G and a set of n uncertain points. Each uncertain point has m possi-
ble locations on G with probabilities and a non-negative weight. The
(weighted) one-center problem aims to compute a point (the center) x∗

on G to minimize the maximum (weighted) expected distance from x∗ to
all uncertain points. No previous algorithm is known for this problem. In
this paper, we propose an O(|G|+mn logmn)-time algorithm for solving
it. Since the input is O(|G| +mn), our algorithm is almost optimal.

Keywords: Algorithms · One-Center · Cactus Graph · Uncertain
Points

1 Introduction

Problems on uncertain data have attracted an increasing amount of attention
due to the observation that many real-world measurements are inherently accom-
panied with uncertainty. For example, the k-center model has been considered
a lot on uncertain points in many different settings [1,3,4,9,10,12,15,18]. In
this paper, we study the (weighted) one-center problem of uncertain points on
a cactus graph.

Let G = (V,E) be a cactus graph where any two cycles do not share edges.
Every edge e on G has a positive length. A point x = (u, v, t) on G is character-
ized by being located at a distance of t on edge (u, v) from vertex u. Given any
two points p and q on G, the distance d(p, q) between p and q is defined as the
length of their shortest path on G.

Let P be a set of n uncertain points P1, P2, · · · , Pn on G. Each Pi ∈ P has m
possible locations (points) pi1, pi2, · · · , pim on G. Each location pij is associated
with a probability fij ≥ 0 for Pi appearing at pij . Additionally, each Pi ∈ P has
a weight wi ≥ 0.

Assume that all given points (locations) on any edge e ∈ G are given sorted
so that when we visit e, all points on e can be traversed in order.

Consider any point x on G. For any Pi ∈ P, the (weighted) expected distance
Ed(Pi, x) from Pi to x is defined as wi · ∑m

j=1 fijd(pij , x). The center of G with
respect to P is defined to be a point x∗ on G that minimizes the maximum
expected distance max1≤i≤n Ed(Pi, x). The goal is to compute center x∗ on G.
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If G is a tree network, then center x∗ can be computed in O(mn) time by [17].
To the best of our knowledge, however, no previous work exists for this problem
on cacti. In this paper, we propose an O(|G| + mn logmn)-time algorithm for
solving the problem where |G| is the size of G. Note that our result matches
the O(|G| + n log n) result [6] for the weighted deterministic case where each
uncertain point has exactly one location.

1.1 Related Work

The deterministic one-center problem on graphs have been studied a lot.
On a tree, the (weighted) one-center problem has been solved in linear time
by Megiddo [14]. On a cactus, an O(|G| + n log n) algorithm was given by
Ben-Moshe [6]. Note that the unweighted cactus version can be solved in
linear time [13]. When G is a general graph, the center can be found in
O(|E| · |V | log |V |) time [11], provided that the distance-matrix of G is given.
See [5,19,20] for variations of the general k-center problem.

When it comes to uncertain points, a few of results for the one-center problem
are available. When G is a path network, the center of P can be found in O(mn)
time [16]. On tree graphs, the problem can be addressed in linear time [18] as
well. See [9,12,18] for the general k-center problem on uncertain points.

1.2 Our Approach

Lemma 5 shows that the general one-center problem can be reduced in linear
time to a vertex-constrained instance where all locations of P are at vertices of
G and every vertex of G holds at least one location of P. Our algorithm focuses
on solving the vertex-constrained version.

As shown in [8], a cactus graph is indeed a block graph and its skeleton is
a tree where each node uniquely represents a cycle block, a graft block (i.e., a
maximum connected tree subgraph), or a hinge (a vertex on a cycle of degree at
least 3) on G. Since center x∗ lies on an edge of a circle or a graft block on G,
we seek for that block containing x∗ by performing a binary search on its tree
representation T . Our O(mn logmn) algorithm requires to address the following
problems.

We first solve the one-center problem of uncertain points on a cycle. Since
each Ed(Pi, x) is piece-wise linear but non-convex as x moves along the cycle,
our strategy is computing the local center of P on every edge. Based on our
useful observations, we can resolve this problem in O(mn logmn) time with the
help of the dynamic convex-hull data structure [2,7].

Two more problems are needed to be addressed during the search for the
node containing x∗. First, given any hinge node h on T , the problem requires
to determine if center x∗ is on h, i.e., at hinge Gh h represents, and otherwise,
which split subtree of h on T contains x∗, that is, which hanging subgraph of
Gh on G contains x∗. In addition, a more general problem is the center-detecting
problem: Given any block node u on T , the goal is to determine whether x∗ is
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on u (i.e., on block Gu on G), and otherwise, which split tree of the H-subtree
of u on T contains x∗, that is, which hanging subgraph of Gu contains x∗.

These two problems are more general problems on cacti than the tree ver-
sion [17] since each Ed(Pi, x) is no longer a convex function in x on any path of
G. We however observe that the median of any Pi ∈ P always fall in the hanging
subgraph of a block whose probability sum of Pi is at least 0.5. Based on this,
with the assistance of other useful observations and lemmas, we can efficiently
solve each above problem in O(mn) time.

Outline. In Sect. 2, we introduce some notations and observations. In Sect. 3,
we present our algorithm for the one-center problem on a cycle. In Sect. 4, we
discuss our algorithm for the problem on a cactus.

2 Preliminary

In the following, unless otherwise stated, we assume that our problem is the
vertex-constrained case where every location of P is at a vertex on G and every
vertex holds at least one location of P. Note that Lemma 5 shows that any
general case can be reduced in linear time into a vertex-constrained case.

Some terminologies are borrowed from the literature [8]. A G-vertex is a vertex
on G not included in any cycle, and a hinge is one on a cycle of degree greater than
2. A graft is a maximum (connected) tree subgraph on G where every leaf is either
a hinge or a G-vertex, all hinges are at leaves, and no two hinges belong to the same
cycle. A cactus graph is indeed a block graph consisting of graft blocks and cycle
blocks so that the skeleton of G is a tree T where for each block on G, a node is
joined by an edge to its hinges. See Fig. 1 for an example.

Fig. 1. (a) Illustrating a cactus G that
consists of 3 cycles, 5 hinges (squares)
and 6 G-vertices (disks); (b) Illustrating
G’s skeleton T where circular and disk
nodes represent cycles and grafts of G
(e.g., nodes u, uC and uB respectively
representing hinge h, cycle C and graft
B on G).

Fig. 2. (a) Cycle C on G has 7 split
subgraphs (blue dash doted lines) and
accordingly 7 hanging subgraphs (red
dashed lines); (b) on T , the H-subtree of
node uc representing cycle C has 7 split
subtrees each of which represents a dis-
tinct hanging subgraph of C on G. (Color
figure online)
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In fact, T represents a decomposition of G so that we can traverse nodes on
T in a specific order to traverse G blocks by blocks in the according order. Our
algorithm thus works on T to compute center x∗. Tree T can be computed by
a depth-first-search on G [6,8] so that each node on T is attached with a block
or a hinge of G. We say that a node u on T is a block (resp., hinge) node if it
represents a block (resp., hinge) on G. In our preprocessing work, we construct
the skeleton T with additional information maintained for nodes of T to fasten
the computation.

Denote by Gu the block (resp., hinge) on G of any block (resp., hinge) node
u on T . More specifically, we calculate and maintain the cycle circumstance for
every cycle node on T . For any hinge node h on T , h is attached with hinge Gh

on G (i.e., h represents Gh). For each adjacent node u of h, vertex Gh also exists
on block Gu but with only adjacent vertices of Gu (that is, there is a copy of
Gh on Gu but with adjacent vertices only on Gu). We associate each adjacent
node u in the adjacent list of h with vertex Gh (the copy of Gh) on Gu, and also
maintain the link from vertex Gh on Gu to node h.

Clearly, the size |T | of T is O(mn) due to |G| = O(mn). It is not difficult
to see that all preprocessing work can be done in O(mn) time. As a result, the
following operations can be done in constant time.

1. Given any vertex v on G, finding the node on T whose block v is on;
2. Given any hinge node h on T , finding vertex Gh on the block of every adjacent

node of h on T ;
3. Given any block node u on T , for any hinge on Gu, finding the hinge node

on T representing it.

Consider every hinge on the block of every block node on T as an open vertex
that does not contain any locations of P. To be convenient, for any point x on
G, we say that a node u on T contains x or x is on u if x is on Gu; note that
x may be on multiple nodes if x is at a hinge on G; we say that a subtree on T
contains x if x is on one of its nodes.

Let x be any point on G. Because T defines a tree topology of blocks on G
so that vertices on G can be traversed in some order. We consider computing
Ed(Pi, x) for all 1 ≤ i ≤ n by traversing T . We have the following lemma and its
proof is in the full paper. Note that it defines an order of traversing G, which is
used in other operations of our algorithm.

Lemma 1. Given any point x on G, Ed(Pi, x) for all 1 ≤ i ≤ n can be computed
in O(mn) time.

We say that a point x on G is an articulation point if x is on a graft block;
removing x generates several connected disjoint subgraphs; each of them is called
a split subgraph of x; the subgraph induced by x and one of its split subgraphs
is called a hanging subgraph of x.

Similarly, any connected subgraph G′ of G has several split subgraphs caused
by removing G′, and each split subgraph with adjacent vertice(s) on G′ con-
tributes a hanging subgraph. See Fig. 2 (a) for an example.
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Consider any uncertain point Pi ∈ P. There exists a point x∗
i on G so that

Ed(Pi, x) reaches its minimum at x = x∗
i ; point x∗

i is called the median of Pi on
G. For any subgraph G′ on G, we refer to value

∑
pij∈G′ fij as Pi’s probability

sum of G′; we refer to value wi ·
∑

pij∈G′ fij ·d(pij , x) as Pi’s (weighted) distance
sum of G′ to point x.

Notice that we say that median x∗
i of Pi (resp., center x∗) is on a hanging

subgraph of a subgraph G′ on G iff x∗
i (resp., x∗) is likely to be on that split

subgraph of G′ it contains. The below lemma holds and its proof is in the full
paper.

Lemma 2. Consider any articulation point x on G and any uncertain point
Pi ∈ P.

1. If x has a split subgraph whose probability sum of Pi is greater than 0.5, then
its median x∗

i is on the hanging subgraph including that split subgraph;
2. The point x is x∗

i if Pi’s probability sum of each split subgraph of x is less
than 0.5;

3. The point x is x∗
i if x has a split subgraph with Pi’s probability sum equal to

0.5.

For any point x ∈ G, we say that Pi is a dominant uncertain point of x if
Ed(Pi, x) ≥ Ed(Pj , x) for each 1 ≤ j ≤ n. Point x may have multiple dominant
uncertain points. Lemma 2 implies the following corollary.

Corollary 1. Consider any articulation point x on G.

1. If x has one dominant uncertain point whose median is at x, then center x∗

is at x;
2. If two dominant uncertain points have their medians on different hanging

subgraphs of x, then x∗ is at x;
3. Otherwise, x∗ is on the hanging subgraph that contains all their medians.

Let u be any block node on T ; denote by TH
u the subtree on T induced by u

and its adjacent (hinge) nodes; we refer to TH
u as the H-subtree of u on T . Each

hanging subgraph of block Gu on G is represented by a split subtree of TH
u on

T . See Fig. 2 (b) for an example. Lemma 2 also implies the following corollary.

Corollary 2. Consider any block node u on T and any uncertain point Pi of
P.

1. If the H-subtree TH
u of u has a split subtree whose probability sum of Pi is

greater than 0.5, then x∗
i is on the split subtree of TH

u ;
2. If the probability sum of Pi on each of TH

u ’s split subtree is less than 0.5, then
x∗
i is on u (i.e., block Gu of G);

3. If TH
u has a split subtree whose probability sum of Pi is equal to 0.5, then x∗

i

is on that hinge node on TH
u that is adjacent to the split subtree.

Moreover, we have the following lemma. The proof is in the full paper.
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Lemma 3. Given any articulation point x on G, we can determine in O(mn)
time whether x is x∗, and otherwise, which hanging subgraph of x contains x∗.

Consider any hinge node u on T . Lemma 3 implies the following corollary.

Corollary 3. Given any hinge node u on T , we can determine in O(mn) time
whether x∗ is on u (i.e., at hinge Gu on G), and otherwise, which split subtree
of u contains x∗.

3 The One-Center Problem on a Cycle

In this section, we consider the one-center problem for the case of G being a
cycle. A general expected distance is considered: each Pi ∈ P is associated with
a constant ci so that the (weighted) distance of Pi to x is equal to their (weighted)
expected distance plus ci. With a little abuse of notations, we refer to it as the
expected distance Ed(Pi, x) from Pi to x.

Our algorithm focuses on the vertex-constrained version where every location
is at a vertex on G and every vertex holds at least one location. Since G is a
cycle, it is easy to see that any general instance can be reduced in linear time to
a vertex-constrained instance.

Let u1, u2, · · · , uM be the clockwise enumeration of all vertices on G, and
M ≤ mn. Let l(G) be G’s circumstance. Every ui has a semicircular point xi′

with d(ui, xi′) = l(G)/2 on G. Because sequence x1′ , · · · , xM ′ is in the clockwise
order. x1′ , · · · , xM ′ can be computed in order in O(mn) time by traversing G
clockwise.

Join these semicircular points x1′ , · · · , xM ′ to G by merging them and
u1, · · · , uM in clockwise order; simultaneously, reindex all vertices on G clock-
wise; hence, a clockwise enumeration of all vertices on G is generated in O(mn)
time. Clearly, the size N of G is now at most 2mn. Given any vertex ui on
G, there exists another vertex uic so that d(ui, uic) = l(G)/2. Importantly,
ic = [(i − 1)c + 1]%N for 2 ≤ i ≤ N and 1c = (N c + 1).

Fig. 3. Consider y = Ed(Pi, x) in x, y-coordinate system by projecting cycle G onto
x-axis; Ed(Pi, x) of each Pi ∈ P is linear in x on any edge of G; center x∗ is decided by
the projection on x-axis of the lowest point on the upper envelope of all y = Ed(Pi, x)’s.
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Let x be any point on G. Consider the expected distance y = Ed(Pi, x)
in the x, y-coordinate system. We set u1 at the origin and project vertices
u1, u2, · · · , uN uN+1, · · · , u2N on x-axis in order so that uN+i = ui. Denote
by xi the x-coordinate of ui on x-axis. For 1 ≤ i < j ≤ N , the clockwise dis-
tance between ui and uj on G is exactly (xj − xi) and their counterclockwise
distance is equal to (xi+N − xj).

As shall be analyzed below, each Ed(Pi, x) is linear in x ∈ [xs, xs+1] for each
1 ≤ s ≤ N but may be neither convex nor concave for x ∈ [x1, xN+1], which
is different to the deterministic case [6]. See Fig. 3. Center x∗ is determined
by the lowest point of the upper envelope of all Ed(Pi, x) for x ∈ [x1, xN+1].
Our strategy is computing the lowest point of the upper envelope on interval
[xs, xs+1], i.e., computing the local center x∗

s,s+1 of P on [xs, xs+1], for each
1 ≤ s ≤ N ; center x∗ is obviously decided by the lowest one among all of them.

For each 1 ≤ s ≤ N + 1, vertex us has a semicircular point x′ on x-axis
with xs − x′ = l(G)/2; x′ must be at a vertex on x-axis in that us on G has its
semicircular point at vertex usc ; we still let usc be us’s semicircular vertex on
x-axis. Clearly, for each 1 ≤ s ≤ N , (s+1)c = sc+1, and the semicircular point
of any point in [xs, xs+1] lies in [xsc , x(s+1)c]]. Indices 1c, 2c, · · · , (N +1)c can be
easily determined in order in O(mn) time and so we omit the details.

Consider any uncertain point Pi of P. Because for any 1 ≤ s ≤ N , inter-
val [xs+1, xs+N ] contains all locations of P uniquely. We denote by xij the x-
coordinate of location pij in [xs+1, xs+N ]; denote by Fi(xs, xsc) the probability
sum of Pi’s locations in [xs, xsc ]; let Di(xs+1, xsc) be value wi · ∑

pij∈[xs+1,xsc ]

fijxij and Dc
i (xsc+1, xs+N ) be value wi · ∑

pij∈[xsc+1,xs+N ] fij(l(G) − xij). Due
to Fi(xs+1, xsc) +Fi(xsc+1, xs+N ) = 1, we have that Ed(Pi, x) for x ∈ [xs, xs+1]
can be formulated as follows.

Ed(Pi, x) = ci + wi

∑

pij∈[xs+1,xsc ]

fij · (xij − x) + wi

∑

pij∈[xsc+1,xs+N ]

fij · [l(G)− (xij − x)]

= ci + wi(
∑

pij∈[xsc+1,xs+N ]

fij −
∑

pij∈[xs+1,xsc ]

fij) · x+ wi

∑

pij∈[xs+1,xsc ]

fijxij

− wi

∑

pij∈[xsc+1,xs+N ]

fij(l(G)− xij)

= wi[1− 2Fi(xs+1, xsc )] · x+ ci +Di(xs+1, xsc )−Dc
i (xsc+1, xs+N )

It turns out that each Ed(Pi, x) is linear in x ∈ [xs, xs+1] for each 1 ≤ s ≤ N ,
and it turns at x = xs if Pi has locations at points us, usc , or us+N . Note that
Ed(Pi, x) may be neither convex nor concave. Hence, each Ed(Pi, x) is a piece-
wise linear function of complexity at most m for x ∈ [x1, xN+1]. It follows that
the local center x∗

s,s+1 of P on [xs, xs+1] is decided by the x-coordinate of the
lowest point of the upper envelope on [xs, xs+1] of functions Ed(Pi, x)’s for all
1 ≤ i ≤ n.

Consider the problem of computing the lowest points on the upper envelope
of all Ed(Pi, x)’s on interval [xs, xs+1] for all 1 ≤ s ≤ N from left to right.
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Let L be the set of lines by extending all line segments on Ed(Pi, x) for all
1 ≤ i ≤ n, and |L| ≤ mn. Since the upper envelope of lines is geometric dual
to the convex (lower) hull of points, the dynamic convex-hull maintenance data
structure of Brodal and Jacob [7] can be applied to L so that with O(|L| log |L|)-
time preprocessing and O(|L|)-space, our problem can be solved as follows.

Suppose that we are about to process interval [xs, xs+1]. The dynamic convex-
hull maintenance data structure Φ currently maintains the information of only
n lines caused by extending the line segment of each Ed(Pi, x)’s on [xs−1, xs].
Let Ps be the subset of uncertain points of P whose expected distance functions
turn at x = xs. For each Pi ∈ Ps, we delete from Φ function Ed(Pi, x) for
x ∈ [xs−1, xs] and then insert the line function of Ed(Pi, x) on [xs, xs+1] into Φ.
After these 2|Ps| updates, we compute the local center x∗

s,s+1 of P on [xs, xs+1]
as follows.

Perform an extreme-point query on Φ in the vertical direction to compute
the lowest point of the upper envelope of the n lines. If the obtained point falls
in [xs, xs+1], x∗

s,s+1 is of same x-coordinate as this point and its y-coordinate is
the objective value at x∗

s,s+1; otherwise, it is to left of line x = xs (resp., to right
of x = xs+1) and thereby x∗

s,s+1 is of x-coordinate equal to xs (resp., xs+1);
accordingly, we then compute the objective value at x = xs (resp., x = xs+1)
by performing another extreme-point query in direction y = −xs · x (resp.,
y = −xs+1 · x).

Note that P1 = P for interval [x1, x2] and
∑N

s=1 |Ps| = |L| ≤ mn.
Since updates and queries each takes O(log |L|) amortized time, for each inter-
val [xs, xs+1], we spend totally O(|Ps| · log |L|) amortized time on computing
x∗
s,s+1. It implies that the time complexity for all updates and queries on Φ is

O(mn logmn) time. Therefore, the total running time of computing the local
centers of P on [xs, xs+1] for all 1 ≤ s ≤ N is O(mn logmn) plus the time on
determining functions Ed(Pi, x) of each Pi ∈ Ps on [xs, xs+1] for all 1 ≤ s ≤ N .

We now present how to determine Ed(Pi, x) of each Pi ∈ Ps in x ∈ [xs, xs+1]
for all 1 ≤ s ≤ N . Recall that Ed(Pi, x) = wi · [1 − 2Fi(xs+1, xsc)] · x +
Di(xs+1, xsc) − Dc

i (xsc+1, xs+N ) + ci for x ∈ [xs, xs+1]. It suffices to compute
the three coefficients Fi(xs+1, xsc), Di(xs+1, xsc) and Dc

i (xsc+1, xs+N ) for each
1 ≤ i ≤ n and 1 ≤ s ≤ N .

We create auxiliary arrays X[1 · · · n], Y [1 · · · n] and Z[1 · · · n] to maintain the
three coefficients of Ed(Pi, x) for x in the current interval [xs, xs+1], respectively;
another array I[1 · · · n] is also created so that I[i] = 1 indicates that Pi ∈ Ps

for the current interval [xs, xs+1]; we associate with us for each 1 ≤ s ≤ N an
empty list As that will store the coefficients of Ed(Pi, x) on [xs, xs+1] for each
Pi ∈ Ps. Initially, X[1 · · · n], Y [1 · · · n], and Z[1 · · · n] are all set as zero; I[1 · · · n]
is set as one due to P1 = P.

For interval [x1, x2], we compute Fi(x2, x1c), Di(x2, x1c) and Dc
i (x1c+1, xN+1)

for each 1 ≤ i ≤ n: for every location pij in [x2, x1c ], we set X[i] = X[i] + fij and
Y [i] = Y [i] + wi · fij · xij ; for every location pij in [x1c+1, xN+1], we set Z[i] =
Z[i] + wi · (l(G) − xij). Since x1c is known in O(1) time, it is easy to see that for
all Pi ∈ P1, functions Ed(Pi, x) for x ∈ [x1, x2] can be determined in O(mn) time.
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Next, we store in list A1 the coefficients of Ed(Pi, x) of all Pi ∈ P1 on [x1, x2]: for
each I[i] = 1, we add tuples (i, wi ·X[i], ci+Y [i]−Z[i]) to A1 and then set I[i] = 0.
Clearly, list A1 for u1 can be computed in O(mn) time.

Suppose we are about to determine the line function of Ed(Pi, x) on [xs, xs+1],
i.e., coefficients Fi(xs+1, xsc), Di(xs+1, xsc) and Dc

i (xsc+1, xs+N ), for each Pi ∈
Ps. Note that if Pi has no locations at us, usc and us+N , then Pi is not in Ps;
otherwise, Ed(Pi, x) turns at x = xs and we need to determine Ed(Pi, x) for
x ∈ [xs, xs+1].

Recall that for x ∈ [xs−1, xs], Ed(Pi, x) = ci + wi · [1 − 2Fi(xs, x(s−1)c)] ·
x + Di(xs, x(s−1)c) − Dc

i (x(s−1)c+1, xs−1+N ). On account of sc = (s − 1)c + 1,
for x ∈ [xs, xs+1], we have Fi(xs+1, xsc) = Fi(xs, x(s−1)c) − Fi(xs, xs) +
Fi(xsc , xsc), Di(xs+1, xsc) = Di(xs, x(s−1)c) − Di(xs, xs) + Di(xsc , xsc), and
Dc

i (xsc+1, xs+N ) = Dc
i (x(s−1)c+1, xs−1+N ) − Dc

i (xsc , xsc) + Dc
i (xs+N , xs+N ).

Additionally, for each 1 ≤ i ≤ n, Ed(Pi, x) on [xs−1, xs] is known, and its three
coefficients are respectively in entries X[i], Y [i], and Z[i]. We can determine
Ed(Pi, x) of each Pi ∈ Ps on [xs, xs+1] as follows.

For each location pij at us, we set X[i] = X[i] − fij , Y [i] = Y [i] − wifijxij

and I[i] = 1; for each location pij at usc , we set X[i] = X[i] + fij , Y [i] = Y [i] +
wifijxij , Z[i] = Z[i] − wifij(l(G) − xij) and I[i] = 1; further, for each location
pij at us+N , we set Z[i] = Z[i] + wifij(l(G) − xij) and I[i] = 1. Subsequently,
we revisit locations at us, usc and us+N : for each location pij , if I[i] = 1 then we
add a tuple (i, wi · X[i], ci + Y [i] − Z[i]) to As and set I[i] = 0, and otherwise,
we continue our visit.

For each 2 ≤ s ≤ N , clearly, functions Ed(Pi, x) on [xs, xs+1] of all Pi ∈ Ps

can be determined in the time linear to the number of locations at the three
vertices us, usc and us+N . It follows that the time complexity for determining
Ed(Pi, x) of each Pi ∈ Ps for all 1 ≤ s ≤ N , i.e., computing the set L, is
O(mn); that is, the time complexity for determining Ed(Pi, x) for each Pi ∈ P
on [x1, xN+1] is O(mn).

Combining all above efforts, we have the following theorem.

Theorem 1. The one-center problem of P on a cycle can be solved in O(|G| +
mn logmn) time.

4 The Algorithm

In this section, we shall present our algorithm for computing the center x∗ of
P on cactus G. We first give the lemma for solving the base case where a node
of T , i.e., a block of G, is known to contain center x∗. The proof is in the full
paper.

Lemma 4. If a node u on T is known to contain center x∗, then x∗ can be
computed in O(mn logmn) time.

Now we are ready to present our algorithm that performs a recursive search
on T to locate the node, i.e., the block on G, that contains center x∗. Once the
node is found, Lemma 4 is then applied to find center x∗ in O(mn logmn) time.
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On the tree, a node is called a centroid if every split subtree of this node
has no more than half nodes, and the centroid can be found in O(|T |) time by a
traversal on the tree [11,14].

We first compute the centroid c of T in O(|T |) time. If c is a hinge node,
then we apply Corollary 3 to c, which takes O(mn) time; if x∗ is on c, we then
immediately return its hinge Gc on G as x∗; otherwise, we obtain a split subtree
of c on T representing the hanging subgraph of hinge Gc on G that contains x∗.

On the other hand, c is a block node. We then solve the center-detecting
problem for c that is to decide which split subtree of c’s H-subtree TH

c on T
contains x∗, that is, determine which hanging subgraph of block Gc contains x∗.
As we shall present in Sect. 4.1, the center-detecting problem can be solved in
O(mn) time. It follows that x∗ is either on one of TH

c ’s split subtrees or TH
c . In

the later case, since Gc is represented by TH
c , we can apply Lemma 4 to c so

that the center x∗ can be obtained in O(mn logmn) time.
In general, we obtain a subtree T ′ that contains center x∗. The size of T ′ is

no more than half of T . Further, we continue to perform the above procedure
recursively on the obtained T ′. Similarly, we compute the centroid c of T ′ in
O(|T ′|) time; we then determine in O(mn) time whether x∗ is on node c, and
otherwise, find the subtree of T ′ containing x∗ but of size at most |T ′|/2.

As analyzed above, each recursive step takes O(mn) time. After O(logmn)
recursive steps, we obtain one node on T that is known to contain center x∗. At
this moment, we apply Lemma 4 to this node to compute x∗ in O(mn logmn)
time. Therefore, the vertex-constrained one-center problem can be solved in
O(mn logmn) time.

Recall that in the general case, locations of P could be anywhere on the given
cactus graph rather than only at vertices. To solve the general one-center prob-
lem, we first reduce the given general instance to a vertex-constrained instance
by Lemma 5, and then apply our above algorithm to compute the center. The
proof for Lemma 5 is in the full paper.

Lemma 5. The general case of the one-center problem can be reduced to a
vertex-constrained case in O(|G| + mn) time.

Theorem 2. The one-center problem of n uncertain points on cactus graphs
can be solved in O(|G| + mn logmn) time.

4.1 The Center-Detecting Problem

Given any block node u on T , the center-detecting problem is to determine which
split subtree of u’s H-subtree TH

u on T contains x∗, i.e., which hanging subgraph
of block Gu contains x∗. If G is a tree, this problem can be solved in O(mn)
time [17]. Our problem is on cacti and a new approach is proposed below.

Let G1(u), · · · , Gs(u) be all hanging subgraphs of block Gu on G; for each
Gk(u), let vk be the hinge on Gk(u) that connects its vertices with G/Gk(u).
G1(u), · · · , Gs(u) are represented by split subtrees T1(u), · · · , Ts(u) of TH

u on T ,
respectively.
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Let u be the root of T . For each 1 ≤ k ≤ s, Tk(u) is rooted at a block node
uk; hinge vk is an (open) vertex on block Guk

; the parent node of uk on T is
the hinge node hk on TH

u that represents vk; note that hk might be ht for some
1 ≤ t �= k ≤ s. For all 1 ≤ k ≤ s, Tk(u), hk, and vk on block Guk

can be obtained
in O(mn) time via traversing subtrees rooted at h1, · · · , hs.

For each 1 ≤ k ≤ s, there is a subset Pk of uncertain points so that each
Pi ∈ Pk has its probability sum of Gk(u)/{uk}, i.e., Tk(u), greater than 0.5.
Clearly, Pi ∩ Pj = ∅ holds for any 1 ≤ i �= j ≤ s.

Define τ(Gk(u)) = maxPi∈Pk
Ed(Pi, vk). Let γ be the largest value of

τ(Gk(u))’s for all 1 ≤ k ≤ s. We have the below observation whose proof is
in the full paper.

Observation 1. If τ(Gk(u)) < γ, then center x∗ cannot be on Gk(u)/{vk}; if
τ(Gr(u)) = τ(Gt(u)) = γ for some 1 ≤ r �= t ≤ s, then center x∗ is on block Gu.

Below, we first describe the approach for solving the center-detecting problem
and then present how to compute values τ(Gk(u)) for all 1 ≤ k ≤ s.

First, we compute γ = maxsk=1 τ(Gk(u)) in O(s) time. We then determine
in O(s) time if there exists only one subgraph Gr(u) with τ(Gr(u)) = γ. If yes,
then center x∗ is on either Gr(u) or Gu. Their only common vertex is vr, and
vr and its corresponding hinge hr on T are known in O(1) time. For this case,
we further apply Corollary 3 to hr on T ; if x∗ is at vr then we immediately
return hinge vr on G as the center; otherwise, we obtain the subtree on T that
represents the one containing x∗ among Gr(u) and Gu, and return it.

On the other hand, there exist at least two subgraphs, e.g., Gr(u) and Gt(u),
so that τ(Gr(u)) = τ(Gt(u)) = γ for 1 ≤ r �= t ≤ s. By Observation 1, x∗ is on
Gu and thereby node u on T is returned. Due to s ≤ mn, we can see that all
the above operations can be carried out in O(mn) time.

To solve the center-detecting problem, it remains to compute τ(Gk(u)) for
all 1 ≤ k ≤ s. We first consider the problem of computing the distance d(vk, x)
for any given point x and any given vk on G. We have the following result and
its proof is in the full paper.

Lemma 6. With O(mn)-time preprocessing work, given any hinge vk and any
point x on G, the distance d(vk, x) can be known in constant time.

We now consider the problem of computing τ(Gk(u)) for each 1 ≤ k ≤ s,
which is solved as follows.

First, we determine the subset Pk for each 1 ≤ k ≤ s: Create auxiliary arrays
A[1 · · · n] initialized as zero and B[1 · · · n] initialized as null. We do a pre-order
traversal on Tk(u) from node uk to compute the probability sum of each Pi on
Gk(u)/vk; during the traversal, for each location pij , we add fij to A[i] and
continue to check if A[i] > 0.5; if yes, we set B[i] as uk, and otherwise, we
continue our traversal on Tk(u); once we are done, we traverse Tk(u) again to
reset A[i] = 0 for every location pij on Tk(u). Clearly, B[i] = uk iff Pi ∈ Pk.
After traversing T1(u), · · · , Ts(u) as the above, given any 1 ≤ i ≤ n, we can
know to which subset Pi belongs by accessing B[i].
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To compute τ(Gk(u)) for each 1 ≤ k ≤ s, it suffices to compute Ed(Pi, vk)
for each Pi ∈ Pk. In details, we first create an array L[1 · · · n] to maintain values
Ed(Pi, vk) of each Pi ∈ Pk for all 1 ≤ k ≤ s. We then traverse G directly to
compute values Ed(Pi, vk). During the traversal on G, for each location pij , if
B[i] is uk, then Pi is in Pk; we continue to compute in constant time the distance
d(pij , vk) by Lemma 6; we then add value wi · fij · d(pij , vk) to L[i]. It follows
that in O(mn) time we can compute values Ed(Pi, vk) of each Pi ∈ Pk for all
1 ≤ k ≤ s.

With the above efforts, τ(Gk(u)) for all 1 ≤ k ≤ s can be computed by
scanning L[1 · · · n]: Initialize each τ(Gk(u)) as zero; for each L[i], supposing
B[i] is uk, we set τ(Gk(u)) as the larger of τ(Gk(u)) and L[i]; otherwise, either
L[i] = 0 or B[i] is null, and hence we continue our scan. These can be carried
out in O(n) time.

In a summary, with O(mn)-preprocessing work, values τ(Gk(u)) for all 1 ≤
k ≤ s can be computed in O(mn) time. Once values τ(Gk(u)) are known, as the
above stated, the center-detecting problem for any given block node u on T can
be solved in O(mn) time. The following lemma is thus proved.

Lemma 7. Given any block node u on T , the center-detecting problem can be
solved in O(mn) time.
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Abstract. For a simple graph G = (V, E) without any isolated ver-
tex, a cosecure dominating set S of G satisfies two properties, (i) S is
a dominating set of G, (ii) for every vertex v ∈ S, there exists a vertex
u ∈ V \S such that uv ∈ E and (S \ {v})∪{u} is a dominating set of G.
The minimum cardinality of a cosecure dominating set of G is called the
cosecure domination number of G and is denoted by γcs(G). The Mini-
mum Cosecure Domination problem is to find a cosecure dominating
set of a graph G of cardinality γcs(G). The decision version of the prob-
lem is known to be NP-complete for bipartite, planar, and split graphs.
Also, it is known that the Minimum Cosecure Domination problem is
efficiently solvable for proper interval graphs and cographs.

In this paper, we work on various important graph classes in an effort
to reduce the complexity gap of the Minimum Cosecure Domination
problem. We show that the decision version of the problem remains NP-
complete for doubly chordal graphs, chordal bipartite graphs, star-convex
bipartite graphs and comb-convex bipartite graphs. On the positive side,
we give an efficient algorithm to compute the cosecure domination num-
ber of chain graphs, which is an important subclass of bipartite graphs.
In addition, we show that the problem is linear-time solvable for bounded
tree-width graphs. Further, we prove that the computational complexity
of this problem varies from the classical domination problem.

Keywords: Cosecure Domination · Bipartite Graphs · Doubly
Chordal Graphs · Bounded Tree-width Graphs · NP-completeness

1 Introduction

In this paper, G = (V,E) denotes a graph, where V is the set of vertices and
E is the set of edges in G. The graphs considered in this article are assumed to
be finite, simple, and undirected. A set D ⊆ V is a dominating set of a graph
G, if the closed neighbourhood of D is the vertex set V , that is, N [D] = V .
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The domination number of G, denoted by γ(G), is the minimum cardinality of
a dominating set of G. Given a graph G, the Minimum Domination (MDS)
problem is to compute a dominating set of G of cardinality γ(G). The decision
version of the MDS problem is Domination Decision problem, notated as
DM problem; takes a graph G and a positive integer k as an input and asks
whether there exists a dominating set of cardinality at most k. The Minimum
Domination problem and many of its variations has been vastly studied in the
literature and interested readers may refer to [8,9].

One of the important variations of domination is secure domination and this
concept was first introduced by Cockayne et al. [6] in 2005. A set S ⊆ V is a
secure dominating set of G, if S is dominating set of G and for every u ∈ V \ S,
there exists v ∈ S such that uv ∈ E and (S\{v})∪{u} forms a dominating set of
G. The minimum cardinality of a secure dominating set of G is called the secure
domination number of G and is denoted by γs(G). The Secure Domination
problem is to compute a secure dominating set of G of cardinality γs(G). Several
researchers have contributed to the study of this problem and its many variants
[1,4,6,14,15,21]. For a detailed survey of this problem, one can refer to [8].

Consider a situation in which the goal is to protect the graph by using a subset
of guards and simultaneously provide a backup or substitute (non-guard) for each
guard such that the resultant arrangement after one substitution still protects the
graph. Motivated by the above situtaion, another interesting variation of domina-
tion known as the cosecure domination was introduced in 2014 by Arumugam et al.
[2], which was then further studied in [12,16,18,23]. This variation is partly related
to secure domination and it is, in a way, a complement to secure domination. A set
S ⊆ V is said to be a cosecure dominating set, abbreviated as CSDS of G, if S is a
dominating set of G and for every u ∈ S, there exists a vertex v ∈ V \ S (replace-
ment of u) such that uv ∈ E and (S \ {u}) ∪ {v} is a dominating set of G. In this
definition, we simply can say that v S-replaces u or v is replacement for u. A sim-
ple observation is that V can never be a cosecure dominating set of G. It should be
noted that no cosecure dominating set exists, if the graph have isolated vertices.
Also, we remark that the cosecure domination number of a disconnected graph G
is simply sum of the cosecure domination number of the connected components of
G. So, in this paper, we will just consider only the connected graphs without any
isolated vertics.

Given a graph G without isolated vertex, the Minimum Cosecure Dom-
ination problem (MCSD problem) is an optimization problem in which we
need to compute a cosecure dominating set of G of cardinality γcs(G). Given a
graph G without isolated vertex and a positive integer k, the Cosecure Dom-
ination Decision problem, abbreviated as CSDD problem, is to determine
whether there exists a cosecure dominating set of G of cardinality at most k.
Clearly, γ(G) ≤ γcs(G).

The CSDD problem is known to be NP-complete for bipartite, chordal or
planar graphs [2]. The bound related study on the cosecure domination number
is done for some families of the graph classes [2,12]. The Mycielski graphs having
the cosecure domination number 2 or 3 are characterized and a sharp upper
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bound was given for γcs(μ(G)), where μ(G) is the Mycielski of a graph G. In 2021,
Zou et al. proved that γcs(G) of a proper interval graph G can be computed in
linear-time [23]. Recently in [16], Kusum et al. augmented the complexity results
and proved that the cosecure domination number of cographs can be determined
in linear-time. They also demonstrated that the CSDD problem remains NP-
complete for split graphs. In addition, they proved that the problem is APX-
hard for bounded degree graphs and provided an inapproximability result for
the problem. Further, they proved that the problem APX-complete for perfect
graphs with bounded degree.

In this paper, we build on the existing research by examining the complexity
status of the Minimum Cosecure Domination problem in many graph classes
of significant importance, namely, doubly chordal graphs, bounded tree-width
graphs, chain graphs, chordal bipartite graphs, star-convex bipartite graphs and
comb-convex bipartite graphs. The content and structure of the paper is as fol-
lows. In Sect. 2, we give some preliminaries. In Sect. 3, we reduce the gap regard-
ing the complexity status of the problem by showing that the CSDD problem
is NP-complete for chordal bipartite graphs, star-convex bipartite graphs, and
comb-convex bipartite graphs, which are all subclasses of bipartite graphs. In
Sect. 4, we prove that the complexity of the cosecure domination and that of
domination varies for some graph classes and we identify two of those. We prove
that the CSDD problem remains NP-complete for doubly chordal graphs, for
which the domination problem is easily solvable. In Sect. 5 and 6, we present
some positive results, we prove that the MCSD problem is linear-time solvable
for bounded tree-width graphs, and we present a polynomial-time algorithm
for computing the cosecure domination number of chain graphs, respectively.
Finally, in Sect. 7, we conclude the paper.

2 Preliminaries

We refer to [22] for graph theoretic definitions and notations. A graph G = (V,E)
is said to be a bipartite graph, if V can be partitioned into P and Q such that for
any uv ∈ E, either u ∈ P and v ∈ Q, or u ∈ Q and v ∈ P . Such a partition (P,Q)
of V is said to be a bipartition of V and the sets P , Q are called the partites of V .
We denote a bipartite graph G = (V,E) with bipartition (P,Q) as G = (P,Q,E)
with n1 = |P | and n2 = |Q|. A bipartite graph G = (P,Q,E) is said to be a chordal
bipartite graph, if every cycle of length at least six has a chord.

A bipartite graph G = (P,Q,E) is said to be a tree-convex (star-convex or
comb-convex) bipartite graph, if we can define a tree (star or comb) T = (P, F )
such that for every u ∈ Q, T [NG(u)] forms a connected induced subgraph of T
[11]. A bipartite graph G = (P,Q,E) is said to be a chain graph (also known
as bipartite chain graph or bi-split graph), if there exists a linearly ordering
(p1, p2, . . . , pn1) of the vertices of the partite P such that N(p1) ⊆ N(p2) ⊆
· · · ⊆ N(pn1). If G = (P,Q,E) is a chain graph, then a linear ordering, say
(q1, q2, . . . , qn2) of the vertices of the partite Q also exists such that N(q1) ⊇
N(q2) ⊇ · · · ⊇ N(qn2). For a chain graph G = (P,Q,E), a chain ordering is an
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ordering α = (p1, p2, . . . , pn1 , q1, q2, . . . , qn2) of P ∪Q such that N(p1) ⊆ N(p2) ⊆
· · · ⊆ N(pn1) and N(q1) ⊇ N(q2) ⊇ · · · ⊇ N(qn2). Note that a chain ordering of
a chain graph can be computed in linear-time [10].

Let G = (V,E) be a graph. A vertex x ∈ V is called a simplicial vertex of
G, if the subgraph induced on N [x] is complete. A vertex y ∈ N [x] is said to
be a maximum neighbour of x, if for each z ∈ N [x], N [z] ⊆ N [y]. A vertex
x ∈ V is said to be a doubly simplicial vertex, if x is a simplicial vertex and has
a maximum neighbour. A doubly perfect elimination ordering of the vertex set
V of G, abbreviated as DPEO of G, is an ordering (u1, u2, . . . , un) of V such
that for every i ∈ [n], ui is a doubly simplicial vertex of the subgraph induced
on {ui, ui+1, . . . , un} of G. A graph is said to be doubly chordal, if it is chordal
as well as dually chordal. A characterization of doubly chordal graph says that
a graph G is doubly chordal if and only if G has a DPEO [19].

The following results regarding the cosecure domination are already known
in the literature [2].

Lemma 1. [2] For a complete bipartite graph G = (X,Y,E) with |X| ≤ |Y |,

γcs(G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Y | if |X| = 1;
2 if |X| = 2;
3 if |X| = 3;
4 otherwise.

(1)

Lemma 2. [2] Let Lu be the set of pendent vertices that are adjacent to a vertex
u in graph G. If |Lu| ≥ 2, then for every cosecure dominating set D of G, Lu ⊆ D
and u /∈ D.

The proofs of the results marked with � are omitted due to space constraints
and are included in the full version of the paper [17].

3 NP-Completeness in Some Subclasses of Bipartite
Graphs

In this section, we study the NP-completeness of the CSDD problem. The CSDD
problem is known to be NP-complete for bipartite graphs and here we strengthen
the complexity status of the CSDD problem by showing that it remains NP-
complete for chordal bipartite graphs, star-convex bipartite graphs and comb-
convex bipartite graphs, which are subclasses of bipartite graphs. For that we
will be using an already known result regarding the NP-completeness of the DM
problem for bipartite graphs.

Theorem 1. [3,20] The DM problem is NP-complete for chordal bipartite
graphs, and bipartite graphs.
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3.1 Chordal Bipartite Graphs

In this subsection, we prove that the decision version of the Minimum Cose-
cure Domination problem is NP-complete, when restricted to chordal bipar-
tite graphs. The proof of this follows by using a polynomial-time reduction from
the Domination Decision problem to the Cosecure Domination Decision
problem.

Now, we illustrate the reduction from an instance G, k, where G is a chordal
bipartite graph and k is a positive integer, of the DM problem to an instance
G′, k′ of the CSDD problem. Given a graph G = (V,E) with V = {vi | 1 ≤ i ≤
n}, we construct a graph G′ = (V ′, E′) from G by attaching a path (vi, vi1 , vi2)
to each vertex vi ∈ V , where V ′ = V ∪ {vi1 , vi2 | 1 ≤ i ≤ n} and E′ =
E ∪ {vivi1 , vi1vi2 | 1 ≤ i ≤ n}. It is easy to see that the above defined reduction
can be done in polynomial-time. Note that if G is a chordal bipartite graph, then
G′ is also a chordal bipartite graph.

Lemma 3. � G has a dominating set of cardinality at most k if and only if G′

has a cosecure dominating set of cardinality at most k′ = k + |V (G)|.
The proof of following theorem directly follows from Theorem 1 and

Lemma 3.

Theorem 2. The CSDD problem is NP-complete for chordal bipartite graphs.

3.2 Star-Convex Bipartite Graphs

In this subsection, we prove that the decision version of the Minimum Cosecure
Domination problem is NP-complete, when restricted to connected star-convex
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Fig. 1. Illustrating the construction of graph G′ from a graph G.
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bipartite graphs. The proof of this follows by using a reduction from a polynomial-
time reduction from theDominationDecision problem to theCosecureDom-
ination Decision problem.

Theorem 3. The CSDD problem is NP-complete for star-convex bipartite
graphs.

Proof. Clearly, the CSDD problem is in NP for star-convex bipartite graphs.
In order to prove the NP-completeness, we give a polynomial-time reduction
from the DM problem for bipartite graphs to the CSDD problem for star-convex
bipartite graphs.

Suppose that a bipartite graph G = (X,Y,E) is given, where X = {xi | 1 ≤
i ≤ n1} and Y = {yi | 1 ≤ i ≤ n2}. We construct a star-convex bipartite graph
G′ = (X ′, Y ′, E′) from G in the following way:

– X ′ = X ∪ {x, x′, x′
0, x

′
1, x

′
2},

– Y ′ = Y ∪ {y, y′, y′
0, y

′
1, y

′
2}, and

– E′ = E ∪ {xyi, x
′yi | 1 ≤ i ≤ n2} ∪ {yxi, y

′xi | 1 ≤ i ≤ n1} ∪ {xy′
i, yx′

i | 1 ≤
i ≤ 2} ∪ {xy, xy′, x′y, x′y′, x′y′

0, y
′x′

0}.

Here, |X ′| = n1 + 5, |Y ′| = n2 + 5 and |E′| = |E| + 2n1 + 2n2 + 10. It is easy
to see that G′ can be constructed from G in polynomial-time. Also, the newly
constructed graph G′ is a star-convex bipartite graph with star T = (X ′, F ),
where F = {xxi | 1 ≤ i ≤ n1} ∪ {xx′, xx′

i | 0 ≤ i ≤ 2} and x is the center of the
star T . Figure 1 illustrates the construction of G′ from G.

Claim 1 � G has a dominating set of cardinality at most k if and only if G′

has a cosecure dominating set of cardinality at most k + 6.

This completes the proof of the result. �	

3.3 Comb-Convex Bipartite Graphs

In this subsection, we prove that the decision version of the Minimum Cosecure
Domination problem is NP-complete for comb-convex bipartite graphs. The
proof of this follows by using a polynomial-time reduction from an instance of
the DM problem to an instance of the CSDD problem.

Theorem 4. � The CSDD problem is NP-complete for comb-convex bipartite
graphs.

4 Complexity Difference Between Domination
and Cosecure Domination

In this section, we demonstrate that the complexity of the Minimum Domi-
nation problem may vary from the complexity of the Minimum Cosecure
Domination problem for some graph classes and we identify two such graph
classes.
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4.1 GY4-Graphs

In this subsection, we define a graph class which we call as GY4-graphs, and
we prove that the MCSD problem is polynomial-time solvable for GY4-graphs,
whereas the decision version of the MDS problem is NP-complete.

Let S4 denote a star graph on 4 vertices. For 1 ≤ i ≤ n, let {S4
i | 1 ≤ i ≤ n}

be collection of n star graphs of order 4 such that v1
i , v2

i , v3
i denote the pendent

vertices and v4
i denote the center vertex. Now, we formally define the graph class

GY4-graphs as follows:

Definition 1. GY4-graphs: A graph GY = (V Y , EY ) is said to be a GY4-graph,
if it can be constructed from a graph G = (V,E) with V = {v1, v2, . . . , vn}, by
making pendent vertex v1

i of a star graph S4
i adjacent to vertex vi ∈ V , for each

1 ≤ i ≤ n.

Note that |V Y | = 5n and |EY | = 4n + |E|. So, n = |V Y |/5. First, we show
that the cosecure domination number of GY4-graphs can be computed in linear-
time.

Theorem 5. � For a GY4-graph GY = (V Y , EY ), γcs(GY ) = 3
5 |V Y |.

Next, we show that the DM problem is NP-complete for GY4-graphs. In
order to do this, we prove that the Minimum Domination problem for general
graph G is efficiently solvable if and only if the problem is efficiently solvable for
the corresponding GY4-graph GY .

Lemma 4. � Let GY = (V Y , EY ) be a GY4-graph corresponding to a graph
G = (V,E) of order n and k ≤ n. Then, G has a dominating set of cardinality
at most k if and only if GY has a dominating set of cardinality at most k + n.

As the Domination Decision problem is NP-complete for general graphs
[3]. Thus, the NP-completeness of the Domination Decision problem follows
directly from Lemma 4.

Theorem 6. The DM problem is NP-complete for GY4-graphs.

4.2 Doubly Chordal Graphs

Note that the MDS problem is already known to be linear-time solvable for
doubly chordal graphs [5]. In this subsection, we show the NP-completeness of
the CSDD problem for doubly chordal graphs. In order to prove this, we give a
reduction from an instance of the Set Cover Decision problem to an instance
of the Cosecure Domination Decision problem.

Before doing that, first, we formally define the Set Cover Decision prob-
lem. Given a pair (A,S) and a positive integer k, where A is a set of p elements
and S is a collection of q subsets of A, the Set Cover Decision problem
asks whether there exists a subset S′ of C such that ∪B∈S′B = A. The NP-
completeness of the Set Cover Decision problem is already known [13].

Theorem 7. � The CSDD problem is NP-complete for doubly chordal graphs.
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5 Bounded Tree-Width Graphs

In this section, we prove that the Minimum Cosecure Domination problem
can be solved in linear-time. First, we formally define the parameter tree-width
of a graph. For a graph G = (V,E), its tree decomposition is a pair (T, S), where
T = (U,F ) is a tree, and S = {Su | u ∈ U} is a collection of subsets of V such
that

– ∪u∈USu = V ,
– for each xy ∈ E, there exists u ∈ U such that x, y ∈ Su, and
– for all x ∈ V , the vertices in the set {u ∈ U | x ∈ Su} forms a subtree of T .

The width of a tree decomposition (T, S) of a graph G is defined as (max{|Su| |
u ∈ U} − 1). The tree-width of a graph G is the minimum width of any tree
decomposition of G. A graph is said to be a bounded tree-width graph, if its tree-
width is bounded. Now, we prove that the cosecure domination problem can be
formulated as CMSOL.

Theorem 8. � For a graph G = (V,E) and a positive integer k, the CSDD
problem can be expressed in CMSOL.

The famous Courcelle’s Theorem [7] states that any problem which can be
expressed as a CMSOL formula is solvable in linear-time for graphs having
bounded tree-width. From Courcelle Theorem and above theorem, the following
result directly follows.

Theorem 9. For bounded tree-width graphs, the CSDM problem is solvable in
linear-time.

6 Algorithm for Chain Graphs

In this section, we present an efficient algorithm to compute the cosecure domina-
tion number of chain graphs. Recall that a bipartite graph G = (X,Y,E) is a chain
graph, if there exists a chain ordering α = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of X∪Y
such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yn2).
For a chain graph, its chain ordering can be computed in linear-time [10].

Now, we define a relation R on X as follows: xi and xj are related if N(xi) =
N(xj). Observe that R is an equivalence relation. Assume that X1,X2, . . . , Xk

is the partition of X based on the relation R. Define Y1 = N(X1) and Yi =
N(Xi) \ ∪i−1

j=1N(Xj) for i = 2, 3, . . . k. Then, Y1, Y2, . . . , Yk forms a partition
of Y . Such partition X1,X2, . . . , Xk, Y1, Y2, . . . , Yk of X ∪ Y is called a proper
ordered chain partition of X ∪ Y . Note that the number of sets in the partition
of X (or Y ) are k. Next, we remark that the set of pendent vertices of G is
contained in X1 ∪ Yk.

Throughout this section, we consider a chain graph G with a proper ordered
chain partition X1,X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y , respectively. For
i ∈ [k], let Xi = {xi1, xi2, . . . , xir} and Yi = {yi1, yi2, . . . , yir}. Note that k = 1
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if and only if G is a complete bipartite graph. From now onwards, we assume
that G is a connected chain graph with k ≥ 2.

The following lemma directly follows from Lemma 2.

Lemma 5. If there are more than one pendent from X, then every cosecure
dominating set S contains X1 and does not contain y11.

Now, we assume that there are more than one pendent from X in the chain
graph G. In Lemma 6, we prove that the cosecure domination number of G[X1 ∪
Y1] and the remaining graph can be computed independently and their sum will
give the cosecure domination number of G. Similar result follows when there are
more than one pendent from Y .

Lemma 6. � Let G be a chain graph such that there are more than one pendent
vertex from X. Define G1 = G[X1 ∪Y1], G2 = G[∪k

i=2(Xi ∪Yi)]. Then, γcs(G) =
γcs(G1) + γcs(G2).

In a chain graph G, if there are more than one pendent vertex from both X
and Y . Let G1 = G[X1 ∪Y1], G2 = G[∪k−1

i=2 (Xi ∪Yi)] and G3 = G[Xk ∪Yk], then
using Lemma 6, it follows that γcs(G) =

∑3
i=1 γcs(Gi).

Now, we consider a chain graph G having |X| ≥ 4 and |Y | ≥ 4. In Lemma 7,
we give a lower bound on the cosecure domination number of G.

Lemma 7. � Let G be a chain graph such that |X| ≥ 4 and |Y | ≥ 4. Then,
γcs(G) ≥ 4.

In the next lemma, we consider the case when G is a chain graph with k = 2
and determine the cosecure domination number in all the possible cases.

Lemma 8. � Let G be a chain graph such that k = 2. Then, one of the following
case occurs.

1. If there does not exist any pendent vertex in G and |X| = 3 or |Y | = 3, then
γcs(G) = 3, otherwise, γcs(G) = 4.

2. If there exist more than one pendent vertex from X or Y or both. Define
G1 = G[X1 ∪ Y1] and G2 = G[X2 ∪ Y2]. Then, γcs(G) = γcs(G1) + γcs(G2).

3. If there exist at most one pendent vertex from X and Y both. If |X| = 2
or |Y | = 2, then γcs(G) = 2. Else-if |X| = 3 or |Y | = 3, then γcs(G) = 3,
otherwise, γcs(G) = 4.

From now onwards, we assume that G is a chain graph and k ≥ 3. In the
following lemma, we will consider the case when the chain graph G has no
pendent vertex and we give the exact value of the cosecure domination number
of G.

Lemma 9. � If G is a chain graph without any pendent vertices, then γcs(G) =
4.

Now, we assume that there is at most one pendent from X and Y both in a
chain graph G. In Lemma 10, we determine the value of the cosecure domination
number of G.



Cosecure Domination: Hardness Results and Algorithms 255

Algorithm 1: CSDN Chain(G, k)
Input: A connected chain graph G = (V, E) with proper ordered chain
partition X1, X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y .
Output: Cosecure domination number of G, that is, γcs(G).
if (k = 2) then

if (|Y1| > 1 and |X2| > 1) then
X = X1 ∪ X2, Y = Y1 ∪ Y2;
if (|X| = 3 or |Y | = 3) then

γcs(G) = 3;

else
γcs(G) = 4;

else if ((|X1| > 1 and |Y1| = 1) or (|X2| = 1 and |Y2| > 1)) then
Let G1 = G[X1 ∪ Y1] and G2 = G[X2 ∪ Y2];
Let p1 =min{|X1|, |Y1|}, q1 =max{|X1|, |Y1|}, p2 =min{|X2|, |Y2|} and
q2 =max{|X2|, |Y2|};
γcs(G) =CSDN CB(G1, p1, q1)+CSDN CB(G2, p2, q2);

else if ((|X1| = |Y1| = 1) or (|X2| = |Y2| = 1)) then
if (|X| = 2 or |Y | = 2) then

γcs(G) = 2;

else if (|X| = 3 or |Y | = 3) then
γcs(G) = 3;

else if (|X| ≥ 4 and |Y | ≥ 4) then
γcs(G) = 4;

if (k ≥ 3) then
if (|Y1| > 1 and |Xk| > 1) then

γcs(G) = 4;

else if ((|X1| > 1 and |Y1| = 1) and (|Yk| > 1 and |Xk| = 1)) then

Let G′ = G[∪k−1
i=2 (Xi ∪ Yi)];

γcs(G) = |X1| + |Yk|+CSDN Chain(G′, k − 2);

else if (|X1| > 1 and |Y1| = 1) then

Let G′ = G[∪k
i=2(Xi ∪ Yi)];

γcs(G) = |X1|+CSDN Chain(G′, k − 1);

else if (|Yk| > 1 and |Xk| = 1) then

Let G′ = G[∪k−1
i=1 (Xi ∪ Yi)];

γcs(G) = |Yk|+CSDN Chain(G′, k − 1);

else
if (|X| = 3 or |Y | = 3) then

γcs(G) = 3;

else
γcs(G) = 4;

return γcs(G);
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Lemma 10. � Let G be a chain graph with at most one pendent vertex from X
and Y both. If |X| = 3 or |Y | = 3 then γcs(G) = 3, otherwise, γcs(G) = 4.

Finally, we assume that G is a chain graph such that there are at least two
pendent from X or Y or both. In Lemma 11, we give an expression to determine
the value of the cosecure domination number of G in every possible case.

Lemma 11. � Let G be a chain graph with k ≥ 3. Then,

1. If there exist more than one pendent vertex from X and at most one pendent
from Y . Define G′ = G[∪k

i=2(Xi ∪ Yi)]. Then, γcs(G) = |X1| + γcs(G′).
2. If there exist more than one pendent vertex from Y and at most one pendent

from X. Define G′ = G[∪k−1
i=1 (Xi ∪ Yi)]. Then, γcs(G) = |Yk| + γcs(G′).

3. If there exist more than one pendent vertex from X and Y both. G′ =
G[∪k−1

i=2 (Xi ∪ Yi)]. Then, γcs(G) = |X1| + |Yk| + γcs(G′).

Assume that an algorithm, namely CSDN CB(G, p, q) is designed using
Lemma 1, which takes a complete bipartite graph and cardinalities of the partite
sets, namely p, q (satisfying p ≤ q) as input and returns γcs(G) as output.

Now, on the basis of above lemmas, we design a recursive algorithm, namely,
CSDN Chain(G, k) to find the cosecure domination number of chain graphs.

The algorithm takes a connected chain graph G = (V,E) with a proper
ordered chain partition X1,X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y as an
input. While executing the algorithm, we call the algorithm CSDN CB(G, p, q)
whenever we encounter a complete bipartite graph.

Let G be a connected chain graph and X1,X2, . . . , Xk and Y1, Y2, . . . , Yk be
the proper ordered chain partition of X and Y , respectively. The case when
k = 2 works as base case of our algorithm. The correctness of the base case
follows from Lemma 8. Then, Lemma 11 helps us in designing the algorithm
using the recursive approach and proves that the correctness of the algorithm.

Now, we state the main result of this section. The proof of the following
theorem directly follows from combining Lemma 9, Lemma 10 and Lemma 11. As
the running time of our algorithm CSDN Chain(G, k) is polynomial, therefore,
the cosecure domination number of a connected chain graph can be computed
in polynomial-time.

Theorem 10. Given a connected chain graph G = (X,Y,E) with proper ordered
chain partition X1,X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y . Then, the cosecure
domination number of G can be computed in polynomial-time.

7 Conclusion

We have resolved the complexity status of the Minimum Cosecure Domina-
tion problem on various important graph classes, namely, chain graphs, chordal
bipartite graphs, star-convex bipartite graphs, comb-convex bipartite graphs,
doubly chordal graphs and bounded tree-width graphs. It was known that
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the Cosecure Domination Decision problem is NP-complete for bipartite
graphs. Extending this, we showed that the problem remains NP-complete even
when restricted to star-convex bipartite graphs, comb-convex bipartite graphs
and chordal bipartite graphs, which are all subclasses of bipartite graphs. We
have also proved that the problem is NP-complete for doubly chordal graphs.
Further, we showed that the computational complexity the CSDD problem varies
from that of the classical domination problem, as the domination problem is
efficiently solvable for doubly chordal graphs. Additionally, we have defined a
graph class for which the MCSD problem is solvable in linear-time, whereas the
domination problem is NP-complete. On the positive side, we have proved that
the Minimum Cosecure Domination problem is efficiently solvable for chain
graphs and bounded tree-width graphs. Naturally, it would be interesting to
do the complexity study of the Minimum Cosecure Domination problem in
many other important graphs classes for which the problem is still open.
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Abstract. The Hospital Residents setting models important problems
like school choice, assignment of undergraduate students to degree pro-
grams, among many others. In this setting, fixed quotas are associated
with programs that limit the number of agents that can be assigned to
them. Motivated by scenarios where all agents must be matched, we pro-
pose and study the cost-based allocation setting, which allows controlled
flexibility with respect to quotas.

In our model, we seek to compute a matching that matches all agents
and is optimal with respect to preferences, and minimizes either a local
or a global objective on costs. We show that there is a sharp contrast
– minimizing the local objective is polynomial-time solvable, whereas
minimizing the global objective is hard to approximate within a specific
constant factor unless P = NP. On the positive side, we present approx-
imation algorithms for the global objective in the general case and a
particular hard case. We achieve the approximation guarantee for the
particular case via a linear programming based algorithm.

Keywords: Matchings under two-sided preferences · Envy-freeness ·
Cost-based allocation · Approximation algorithms · Linear
Programming

1 Introduction

The problem of computing optimal many-to-one matchings under two-sided pref-
erences is extensively investigated in the literature [2,4,10,12,17]. This setting is
commonly known as the Hospital Residents (HR) setting. It captures important
applications like assigning medical interns to hospitals [17], allocating under-
graduate students to degree programs [4] and assigning children to schools [2].

This setting can be modelled as a bipartite graph G = (A ∪ P, E) where
A and P denote a set of agents and a set of programs respectively. An edge
(a, p) ∈ E indicates that agent a and program p are mutually acceptable. For
a vertex v, let N (v) denote the vertices adjacent to v. Each agent and every
program has a preference ordering over its mutually acceptable partners. For a
vertex v ∈ A ∪ P, if v prefers u over w then we write it as u �v w. A program
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p has an upper-quota q(p) denoting the maximum number of agents that can
be assigned to it. The goal is to compute a matching, that is, an assignment
between agents and programs such that an agent is matched to at most one
program and a program is matched to at most its upper-quota many agents.

In certain applications of the HR setting, every agent must be matched. For
instance, in school choice [2] every child must find a school; while matching
sailors to billets in the US Navy [16,19], every sailor must be assigned to some
billet. In the HR setting, the rigid upper-quotas limit the number of agents that
can be matched in any matching. Thus, a matching that matches every agent
(an A-perfect matching) cannot be guaranteed.

Motivated by the need to match a large number of agents, the problem of
capacity expansion is investigated very recently in [3,5–7]. In the capacity expan-
sion problem, the quotas of programs are augmented to improve the welfare of
the agents. In another work, Gajulapalli et al. [9] study a two-round mechanism
for school admissions wherein the goal of the second round is to accommodate
more students by suggesting quota increments to schools. However, in none of the
works mentioned above except [7], A-perfect matchings are guaranteed. Further-
more, the above models assume that the upper-quotas of programs are flexible.
Allowing unbounded flexibility can lead to skewed assignments since certain pro-
grams are popular. For instance, to ensure A-perfectness in one of the problems
investigated in [7], the capacity of a single program may have to be increased by
a huge amount. Thus, there is a need to control flexibility.

Cost-based allocations are recently studied in [1] under one-sided preferences,
wherein only agents have preferences. Costs allow controlled flexibility w.r.t. quo-
tas. We propose the cost-based setting under two-sided preferences to achieve A-
perfectness and denote it as the cost-controlled quota (CCQ) setting. An instance
in the CCQ setting is similar to the HR instance, except that instead of an upper-
quota, every program p specifies a non-negative integral, finite cost c(p) that
denotes the cost of matching a single agent to p. Our goal is to compute an A-
perfect matching that is optimal with respect to preferences as well as costs.

Optimality w.r.t. Preferences. Let M be a matching. Then, M(a) denotes
the program matched to agent a (if unmatched, M(a) = ⊥) and M(p) denote
the set of agents matched to program p. Program p is under-subscribed in M if
|M(p)| < q(p). Stability [10] is a de-facto notion of optimality in the HR setting.

Definition 1 (Stable matchings in HR setting). A pair (a, p) ∈ E \ M is
a blocking pair w.r.t. the matching M if p �a M(a) and p is either under-
subscribed in M or there exists at least one agent a′ ∈ M(p) such that a �p a′.
A matching M is stable if there is no blocking pair w.r.t. M .

It is well known that every HR instance admits a stable matching that can be
computed efficiently [10]. The notion of stability inherently assumes the existence
of input quotas. In the CCQ setting, quotas are not a part of the input, and we
let the costs control the extent to which a program is matched. Envy-freeness,
a relaxation of stability is defined independent of input quotas.

Definition 2 (Envy-free matchings). Given a matching M , an agent a has
a justified envy (here onwards called envy) towards a matched agent a′, where
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M(a′) = p and (a, p) ∈ E if p �a M(a) and a �p a′. The pair (a, a′) is an
envy-pair w.r.t. M . A matching M is envy-free if there is no envy-pair w.r.t. M .

Let M be an envy-free matching in a CCQ instance H. Let G denote the HR
instance wherein the preferences are borrowed from H and for every program
p, q(p) is set to |M(p)|, then M is stable in G. Thus, envy-freeness is a natural
substitute for stability in the CCQ setting.

While we use envy-freeness in the CCQ setting, prior to this, structural prop-
erties of envy-free matchings in HR setting are studied in [18]. Envy-free match-
ings are also studied in HR setting with lower-quotas [8,14,20].

Optimality with Respect to Costs. Recall that the cost of a program p
denotes the cost of matching a single agent to p which implicitly captures the
logistic constraints. Thus, minimizing a cost-based criterion results in an optimal
way of assigning agents. Let M be a matching in a CCQ instance. Then the
maximum cost spent at any program in M is defined as maxp∈P{|M(p)| · c(p)}
and the total cost of M is defined as

∑
p∈P(|M(p)| · c(p)) We consider the

following two natural criteria w.r.t. costs: (i) a local criterion, that is, to minimize
the maximum cost spent at any program and (ii) a global criterion, that is, to
minimize the total cost spent.

Problem Definition. Based on the two optimality notions defined, we pro-
pose and investigate the following two optimization problems: let H be a CCQ
instance. Let MINMAX denote the problem of computing an A-perfect envy-free
matching in H that minimizes the maximum cost spent at any program. Let
MINSUM denote the problem of computing an A-perfect envy-free matching in
H that minimizes the total cost.

Example. Consider a CCQ instance with three agents and three programs.
The preference lists of agents and programs are as follows: p1 �a1 p0, p2 �a2 p1
and a3 ranks only p1; p0 ranks only a1, p2 ranks only a2 and a1 �p1 a2 �p1

a3. Let c(p0) = 0, c(p1) = 1 and c(p2) = 2. The matchings M1 = {(a1, p1),
(a2, p1), (a3, p1)} and M2 = {(a1, p1), (a2, p2), (a3, p1)} are both envy-free and
M1 with total cost of 3 is optimal for MINSUM whereas M2 with a max-cost of
2 is optimal for MINMAX.

1.1 Our Contributions

This is the first work that investigates the cost-controlled quotas under two-sided
preferences. We show that there exists an efficient algorithm for the MINMAX
problem whereas in a sharp contrast, the MINSUM turns out to be NP-hard.
The proofs of the results marked with (�) can be found in the full version [15].

Theorem 1. MINMAX problem is solvable in O(m log m) time where m = |E|.
Theorem 2 (�). MINSUM problem is strongly NP-hard even when the instance
has two distinct costs. MINSUM problem cannot be approximated within a factor
7
6 − ε, ε > 0, unless P = NP.
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The inapproximability result above does not imply the NP-hardness for two
distinct costs – a special hard case that we work with later in the paper. We
complement our hardness results with the following approximation algorithms
for general instances.

Theorem 3. MINSUM problem admits an �p-approximation algorithm and a
|P|-approximation algorithm where �p denotes the length of the longest preference
list of a program.

The analysis of our �p-approximation algorithm uses a natural lower bound on
the MINSUM problem. We show that �p is the best approximation guarantee one
can achieve using this lower bound. We establish that the optimal cost of the
MINMAX problem also serves as a lower bound for the MINSUM problem on the
same instance and this gives us the |P|-approximation algorithm.

A Special Hard Case ofMINSUM. Let CCQc1,c2 denote the CCQ instance with
two distinct costs c1 and c2 such that 0 ≤ c1 < c2. This particular case occurs
when programs can be partitioned as – one set having all low-cost programs
of cost c1 and another set having all high-cost programs of cost c2. As stated
in Theorem 2, MINSUM problem is NP-hard even for CCQc1,c2. We show an
improved approximation algorithm for this special case.

Let �a denote the length of the longest preference list of an agent. In prac-
tice, �a is typically small compared to �p and |P|, many times a constant [11,13].
We show that the MINSUM problem on CCQc1,c2 instances is �a-approximable.
We achieve our approximation guarantee via a technically involved linear pro-
gramming (LP) based algorithm. Although our approximation guarantee is for
a particular hard case, our linear program is for general CCQ instances.

Theorem 4. MINSUM problem admits an �a-approximation algorithm on
CCQc1,c2 instances.

1.2 Other Models and Relation to CCQ Setting

Firstly, we remark that there are alternate ways to formulate an optimization
problem in the CCQ setting: (i) given a total budget B, compute a largest envy-
free matching with cost at most B. (ii) given an HR instance and a cost for
every program, augment the input quotas to compute an A-perfect envy-free
matching with minimum total cost. The NP-hardness for both these problems
can be proved by easily modifying the NP-hardness reduction for MINSUM.

Next, we discuss the approaches proposed in the literature to circumvent
rigid upper quotas. As mentioned earlier, the capacity planning problem with
similar motivation as ours is studied in [3,5–7,9]. In the two-round school choice
problem studied by Gajulapalli et al. [9], their goal in round-2 is to match all
agents in a particular set. This set is derived from the matching in round-1 and
they need to match the agents in an envy-free manner (called stability preserving
in their work). This can still leave certain agents unassigned. It can be shown
that the CCQ setting generalizes the matching problems in round-2. We remark
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that in [9] the authors state that a variant of MINSUM problem (Problem 33,
Sect. 7) is NP-hard. However, they do not investigate the problem in detail.

In the very recent works [3,5,6] the authors consider the problem of dis-
tributing extra seats (beyond the input quotas) limited by a budget that leads
to the best outcome for agents. Their setting does not involve costs, and impor-
tantly, A-perfectness is not guaranteed. Bobbio et al. [6] show the NP-hardness
of their problem. Bobbio et al. [5] and Abe et al. [3] propose a set of approaches
which include heuristics along with empirical evaluations. In our work, we present
algorithms with theoretical guarantees. Chen and Csáji [7] investigate a variant
of the capacity augmentation problem mentioned earlier and present hardness,
approximation algorithms and parameterized complexity results.

Finally, Santhini et al. [1] consider cost-based quotas under one-sided pref-
erences. The signature of a matching allows encoding requirements about the
number of agents matched to a particular rank. They consider the problem of
computing a min-cost matching with a desired signature and show that it is effi-
ciently solvable. This result is in contrast to the hardness and inapproximability
results we show for a similar optimization problem under two-sided preferences.

2 Algorithmic Results: General Case

In this section we present an approximation algorithm for MINSUM with guaran-
tee of �p. Next, we present a polynomial time algorithm for the MINMAX problem
and prove that the output is a |P|-approximation to the MINSUM problem.

2.1 �p-approximation for MINSUM

Let H be a CCQ instance. For an agent a, let p∗
a denote the least-cost program

in its preference list. If multiple programs have the same least cost, we let p∗
a

be the most-preferred such program. It is easy to observe that any A-perfect
matching in H has cost at least

∑

a∈A
c(p∗

a). Let OPT denote an optimal solution,

and c(OPT) be its cost. Since OPT is A-perfect, c(OPT) ≥ ∑

a∈A
c(p∗

a). We use

this lower bound, denoted as lb1, to prove our approximation guarantee.1

Our algorithm (Algorithm 1) starts by matching every agent a to p∗
a. Note

that this matching is A-perfect and has a minimum cost but is not necessarily
envy-free. Now the algorithm considers programs in an arbitrary order. For a
program p, we consider agents in the reverse preference list ordering of p. If there
exists agent a /∈ M(p) such that p �a M(a) and there exists a′ ∈ M(p) such
that a �p a′, then (a, a′) form an envy-pair. We resolve this by promoting a to
p. The algorithm stops after considering every program.

Note that in Algorithm 1 an agent may get promoted (line 5) but never gets
demoted. Further, program p is assigned agents in the for loop (line 2) only when
at least one agent is matched to p in line 1. Therefore, if program p is assigned at

1 �p is the best guarantee achievable using lb1. See [15] for the details.
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Algorithm 1. An �p-approximation algorithm for MINSUM

1: let M = {(a, p) | a ∈ A and p = p∗
a}

2: for every program p do
3: for a in reverse preference list ordering of p do
4: if ∃a′ ∈ M(p) s.t. a �p a′ and p �a M(a) then
5: M = M \ {(a, M(a))} ∪ {(a, p)}
6: return M

least one agent in the final output matching, then p = p∗
a for some agent a ∈ A.

It is clear that the computed matching M is A-perfect. In Lemma 1, we show
envy-freeness and an approximation guarantee of M .

Lemma 1 (�). The matching M is envy-free and an �p-approximation to
MINSUM.

2.2 MINMAX and Its Relation to MINSUM

In this section, we present an efficient algorithm for MINMAX. Let H be a CCQ
instance. Let t∗ denote the cost of an optimal solution for the MINMAX problem
in H. Note that t∗ must be an integral multiple of c(p) for some program p.
Therefore, considering a specific set of cost values as described below suffices.
We show that there exists O(m) distinct possibilities for t∗, among which the
optimal one can be found using a binary search. We further establish that t∗ is
a lower bound on the optimal cost for MINSUM in H and use this to show the
approximation guarantee of |P| for MINSUM.

Algorithm for MINMAX. Let M∗ be an optimal solution for the MINMAX
problem on H. Then t∗ = maxp∈P {c(p) · |M∗(p)|}. For any integer t, we define
an HR instance Gt where the preference lists are borrowed from H and for each
p ∈ P, q(p) =

⌊
t

c(p)

⌋
. Our algorithm is based on the following observations:

– For any t < t∗, the HR instance Gt does not admit an A-perfect stable
matching. Otherwise, this contradicts the optimality of M∗ since stability
implies envy-freeness.

– The optimal value t∗ lies in the range minp∈P {c(p)} to maxp∈P {(len(p) ·
c(p))}, where len(p) denotes the length of the preference list of program p.

– For any t ≥ t∗, Gt admits an A-perfect stable matching.

1

t∗
0

t

F (t)
The adjoining plot illustrates these observations.
For an integer t, let F (t) be 1 if Gt admits an
A-perfect stable matching, 0 otherwise. Our algo-
rithm constructs a sorted array ĉp for each pro-
gram p ∈ P such that for 1 ≤ i ≤ len(p), we have

ĉp[i] = i · c(p). Therefore, these arrays together contain
∑

p∈P len(p) = |E| = m
many values. We merge these arrays to construct a sorted array ĉ of distinct
costs. Then we perform a binary search for the optimal value of t∗ in the sorted
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array ĉ: for a particular value t = ĉ[k] we construct Gt by setting appropriate
upper-quotas. If a stable matching in Gt is not A-perfect, then we search in the
upper-range; otherwise, we check if Gt′ admits an A-perfect stable matching for
t′ = ĉ[k − 1]. If not, we return t; otherwise, we search for the optimal in the
lower-range.

Construction of array ĉ takes O(m log m) time. We perform binary search
over O(m) distinct values, and in each iteration, we compute at most two stable
matchings in O(m) time [10]. Therefore the algorithm runs in time O(m log m).
This establishes Theorem 1.

Relation to MINSUM. We prove that an optimal solution for the MINMAX
problem is a |P|-approximation for the MINSUM problem.

Lemma 2 (�). The optimal solution for the MINMAX problem is a |P|-
approximation for the MINSUM problem on the same instance.

Proof (sketch). Let H be a CCQ instance. Let M∗ and N∗ be an optimal solution
respectively for the MINMAX problem and for the MINSUM problem on H. Let
t∗ and y∗ denote the cost of M∗ and N∗ respectively. We show that y∗ ≥
t∗. Further, we note that since t∗ denotes the maximum cost incurred at any
program in M∗, the total cost of M∗ is upper bounded by |P|·t∗ ≤|P|·y∗.

This establishes Theorem 3.

3 MINSUM: A Special Case

Recall that CCQc1,c2 denotes the CCQ instance with two distinct costs c1, c2 such
that 0 ≤ c1 < c2. By Theorem 2 we know that MINSUM is NP-hard even under
this restriction. Recall that �a denotes the length of the longest preference list
of any agent, and in practice, it can be much smaller than �p and |P|.
Linear Program for General Instances. We present an LP relaxation (pri-
mal and dual) for general instances of MINSUM. We use this LP relaxation to
design an �a-approximation algorithm for CCQc1,c2.

a

p

p′

a′

...

−za′ ,p,a

+za′,p,a

+za′ ,p,a

Fig. 2. The edges shown in the
figure are those whose dual con-
straint contains the variable za′,p,a
in either positive or negative form
for a valid triplet (a′, p, a) and any
p′ �a′ p.

Let H = (A ∪ P, E) be a CCQ instance.
Figure 1(a) shows primal for the MINSUM
problem. Let xa,p be a variable for the edge
(a, p) ∈ E: xa,p is 1 if a is matched to
p, 0 otherwise. The objective of the primal
LP (Eq. 1) is to minimize the total cost
of all matched edges. Equation 2 encodes
the envy-freeness constraint: if agent a is
matched to p, then every agent a′ �p a must
be matched to either p or a higher-preferred
program than p, otherwise, a′ envies a. In
the primal LP, the envy-freeness constraint
is present for a triplet (a′, p, a) where a′ �p

a. We call such a triplet a valid triplet. Equa-
tion 3 encodes A-perfectness constraint.
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Fig. 1. Linear Program relaxation for MINSUM problem

In the dual LP (Fig. 1(b)), we have two kinds of variables, the y variables,
which correspond to every agent, and the z variables that correspond to every
valid triplet in the primal program. The dual constraint (Eq. 6) is for every
edge (a, p) in E. The ya variable corresponding to an agent a appears in the
dual constraint corresponding to every edge incident on a. For a valid triplet
(a′, p, a), the corresponding dual variable za′,p,a appears in negative form in
exactly one constraint, and it is for the edge (a, p). The same variable za′,p,a
appears in positive form in the constraint for every edge (a′, p′) such that p′ = p
or p′ �a′ p (refer Fig. 2).

3.1 �a-Approximation Algorithm for CCQc1,c2

For a given dual setting, an edge is tight if Eq. 6 is satisfied with equality;
otherwise, it is slack. Let M be a matching in H. For every program p, the
threshold agent of p, denoted as thresh(p), is the most-preferred agent a such
that p �a M(a), if such an agent exists, otherwise we let thresh(p) to be ⊥.
For an envy-free matching M , and an agent a (matched or unmatched), we say
that an edge (a, p) /∈ M is matchable if (a, p) is tight and a = thresh(p),
otherwise the edge is non-matchable. It is straightforward to verify that for
an envy-free matching M , if we match agent a along a matchable edge, then
the resultant matching remains envy-free. Note that an update in dual variables
can make edges tight but not necessarily matchable. However, a subset of these
tight edges may become matchable as the algorithm proceeds. Our algorithm
uses free-promotions routine that takes care of matching such edges (see [15]).
Recall that for an unmatched agent a, we let M(a) = ⊥.

Description of the Algorithm. Algorithm 2 gives the pseudo-code. We begin
with an empty matching M and by setting all y variables to c1 and all z variables
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Algorithm 2. compute an �a-approximation of MINSUM on CCQc1,c2

1: let M = ∅, all y variables are set to c1 and all z variables are set to 0
2: for every agent a ∈ A s.t. ∃p ∈ N (a) such that c(p) = c1 do
3: let p be the most-preferred program in N (a) s.t. c(p) = c1 and let M = M ∪

{(a, p)}
4: compute thresh(p) for every program p ∈ P
5: while M is not A-perfect do
6: let a be an unmatched agent
7: while a is unmatched do
8: set ya = ya + c2 − c1
9: if there exists a matchable edge incident on a then

10: M = M ∪ {(a, p) | (a, p) is the most-preferred matchable edge for a}
11: perform free-promotions routine and re-compute thresholds
12: else
13: P(a) = {p ∈ N (a) | p �a M(a), (a, p) is tight and thresh(p) �= a}
14: while P(a) �= ∅ do
15: let a′ be the threshold agent of some program in P(a)
16: let P(a, a′) denote the set of programs in P(a) whose threshold agent

is a′

17: let p be the least-preferred program for a′ in P(a, a′)
18: set za′,p,a = c2 − c1
19: let (a′, p′) be the most-preferred matchable edge incident on a′.

Unmatch a′ if matched and let M = M ∪ {(a′, p′)}
20: execute free-promotions routine, re-compute thresholds and the set

P(a)

21: return M

to 0. For this dual setting, all edges incident on programs with cost c1 are tight.
For every agent a which has a program with cost c1 in its list we match a with
the most-preferred tight edge (for loop, line 2). We observe that after this step,
if an agent is unmatched, then all programs in its preference list have cost c2.

Our goal is to match these unmatched agents without introducing envies. We
compute threshold agents for all programs w.r.t. M (line 4). As long as M is
not A-perfect, we perform the following steps: we pick an arbitrary unmatched
agent a. We maintain an invariant that allows us to update the dual variable ya
(line 8) such that the dual setting is feasible and at least one edge incident on a
becomes tight (but not necessarily matchable). If at least one edge incident on
a also becomes matchable, then we match a along the most-preferred such edge
(line 10). Since M is modified, some non-matchable tight edges may become
matchable now. We execute the free-promotions routine to match such edges
and re-compute the threshold agents.

Otherwise, every tight edge incident on a is non-matchable. It implies that
for every program p such that (a, p) is tight, we have thresh(p) �p a. We pick a
threshold agent a′, which could be a threshold agent at multiple programs. We
carefully select the program p (line 17) and update za′,p,a variable. The choice of
p and an invariant maintained by our algorithm together ensure that this update
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is dual feasible and at least one edge incident on a′, which is higher-preferred
over M(a′) becomes matchable.

We unmatch a′ if matched. If (a′, p′) is the most-preferred matchable edge
incident on a′, we match a′ to p′. Since M is updated, like before, we execute
the free-promotions routine and re-compute the threshold agents. We repeat
this process till either a is matched along the most-preferred edge or all higher-
preferred edges incident on a become slack (line 14).

3.2 Proof of Correctness of Algorithm 2

We present the important observations and the proof sketch. Refer [15] for the
detailed proofs. We observe the following properties.

(P1) At line 4, no agent is assigned to any program with cost c2 and for every
agent a (matched or unmatched), every program p �a M(a) has cost c2.

(P2) A matched agent never gets demoted.
(P3) A tight edge incident on a matched agent remains tight.
(P4) All matched edges are tight at the end of the algorithm.

Property (P1) is a simple observation about the matching at line 4. When-
ever a matched agent a changes its partner from M(a) to p′, we have thresh(p′) =
a. By the definition of the threshold agent, p′ �a M(a), which implies (P2). Note
that the only edge that can become slack during the execution is the edge (a, p)
which is incident on an unmatched agent a (line 18). This implies (P3). We
observe that when the edge is matched, it is tight. By (P3), a matched edge
(being incident on a matched agent) always remains tight, implying (P4).

Proving Envy-Freeness. We prove envy-freeness using induction on the iter-
ations of the for loop in line 5. By the induction hypothesis, the matching is
envy-free before an iteration. Only matchable edge (a, p) is matched during an
iteration. By definition, thresh(p) = a; therefore, no other agent envies a. Since
a is promoted, a doesn’t envy other agents. This observation and the induction
hypothesis ensure that the matching is envy-free before the next iteration.

Dual Feasibility, A-Perfectness and Termination. For the edge (a, p), let
slack(a, p) denote its slack. We categorize agents as follows (see Fig. 3): an agent
a is called a type-1 agent if for every program p �a M(a), slack(a, p) = c2 − c1.
An agent a is called a type-2 agent if a is matched and for every program
p �a M(a), slack(a, p) = 0 and thresh(p) �= a, that is, (a, p) is a non-matchable
tight edge. A type-1 agent could be matched or unmatched, but a type-2 agent is
always matched. We show that our algorithm maintains the following invariant.

Lemma 3 (�). Before every iteration of the loop starting at line 7, an agent is
either a type-1 or a type-2 agent.

The slack value of the edges incident on type-1 or type-2 agents, Lemma 3
and the dual updates performed in line 8 and line 18 together guarantee that
the dual setting is feasible. Using Lemma 3 and the dual updates, we claim that
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Fig. 3. Types of agents defined in the proof of correctness of Algorithm 2

the algorithm makes progress. Then by observing the condition of the while
loop (line 5), we show that our algorithm terminates by computing an A-perfect
matching.

�a-Approximation Guarantee. The cost of the matching is the summation
of the left-hand side of Eq. 6 of every matched edge. We charge a unit update
in za′,p,a variable to a unit update in ya variable such that at most �a many
z variables are charged to a fixed ya variable. This charging argument and the
update in y variables give us an approximation guarantee of �a + 1. To improve
the guarantee to �a, we carefully inspect the cases wherein a z variable appearing
as a positive term in Eq. 6 for a matched edge is canceled with that appearing as
a negative term in Eq. 6 of another matched edge (refer Fig. 2). This enables us
to charge at most �a − 1 (instead of �a) many z variables to a fixed ya variable,
thereby improving the guarantee to �a.

This establishes Theorem 4.

Discussion: In this work, we propose and investigate the cost-controlled quota
setting for two-sided preferences. A specific open direction is to bridge the gap
between the upper bound and lower bound for MINSUM. It is also interesting to
extend the LP-based algorithm for general instances.
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Abstract. We present a simple algorithm that generates cyclic rotation Gray
codes for stamp foldings and semi-meanders, where consecutive strings differ
by a stamp rotation. These are the first known Gray codes for stamp foldings and
semi-meanders, and we thus solve an open problem posted by Sawada and Li
in [Electron. J. Comb. 19(2), 2012]. The algorithm generates each stamp fold-
ing and semi-meander in constant amortized time and O(n)-amortized time per
string respectively, using a linear amount of memory.

Keywords: Stamp foldings · Meanders · Semi-meanders · Reflectable
language · Binary reflected Gray code · Gray code · CAT algorithm

1 Introduction

A stamp folding is a way to fold a linear strip of n stamps into a single pile, with
the assumption that the perforations between the stamps are infinitely elastic. As an
example, Fig. 1 illustrates the sixteen stamp foldings for n = 4. We always orient a
pile of stamps horizontally, with the stamps facing left and right and the perforations
facing up and down. Additionally, the perforation between stamp 1 and stamp 2 is
located at the bottom. The sixteen piles of stamps for n = 4 can thus be obtained
by contracting the horizontal lines in Fig. 1. Each stamp folding can be represented by a
unique permutation (π(1)π(2) · · · π(n)), where π(i) is the stamp at position i in the pile
when considering it from left to right. The permutations that correspond to the sixteen
stamp foldings in Fig. 1 for n = 4 are as follows:

1234, 1243, 1342, 1432, 2134, 2143, 2341, 2431,
3124, 3214, 3412, 3421, 4123, 4213, 4312, 4321.

In the rest of this paper, we use this permutation representation to represent stamp fold-
ings. An alternative permutation representation can be found in [4]. Note that not all
permutations correspond to valid stamp foldings. For example, the permutation 1423
requires the strip of stamps to intersect itself and is not a valid stamp folding.

A semi-meander is a stamp folding with the restriction that stamp n can be seen
from above when n is even, and stamp n can be seen from below when n is odd (i.e.
stamp n is not blocked by perforations between other stamps and can be seen from
either above or below depending on its parity). For example, 1234 is a semi-meander,
while 2143 is not a semi-meander since stamp 4 is blocked by the perforation between

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-Y. Hsieh et al. (Eds.): IWOCA 2023, LNCS 13889, pp. 271–281, 2023.
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Fig. 1. Stamp foldings of order four. The stamp with a dot is stamp 1. Stamp foldings that are
underlined (in red color) are semi-meanders. (Color figure online)

stamp 2 and stamp 3 and cannot be seen from above. The permutations that correspond
to the ten semi-meanders in Fig. 1 for n = 4 are given as follows:

1234, 1432, 2134, 2341, 3124, 3214, 4123, 4213, 4312, 4321.

The study of stamp foldings and relatives has a long history and has traditionally
attracted considerable interest from mathematicians [1–3,6–8,10,11,14,15,19,20]. For
example, the five foldings of four blank stamps appear at the front cover of the book A
Handbook of Integer Sequences by Sloane [19], which is the ancestor of the well-known
Online Encyclopedia of Integer Sequences [13]. Lucas [10] first stated the enumeration
problem for stamp foldings in 1891 by asking in how many ways a strip of n stamps
can be folded. See [8] for a brief history of the development of the enumeration prob-
lem of stamp foldings. Stamp foldings and relatives have lots of applications, ranging
from robot coverage path planning [21] and conditioned random walks [5], to protein
folding [18].

The enumeration sequences for stamp foldings and semi-meanders are A000136
and A000682 in the Online Encyclopedia of Integer Sequences, respectively [13]. The
first ten terms for the enumeration sequences of stamp foldings and semi-meanders are
as follows:

– Stamp foldings: 1, 2, 6, 16, 50, 144, 462, 1392, 4536, and 14060;
– Semi-meanders: 1, 2, 4, 10, 24, 66, 174, 504, 1406, and 4210.

Although a large number of terms of the folding sequences have been computed, no
closed formula has been found for both enumeration sequences.
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One of the most important aspects of combinatorial generation is to list the instances
of a combinatorial object so that consecutive instances differ by a specified closeness
condition involving a constant amount of change. Lists of this type are called Gray
codes. This terminology is due to the eponymous binary reflected Gray code (BRGC)
by Frank Gray, which orders the 2n binary strings of length n so that consecutive strings
differ by one bit. For example, when n = 4 the order is

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,
0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

We note that the order above is cyclic because the last and first strings also differ by
the closeness condition, and this property holds for all n. The BRGC listing is a 1-Gray
code in which consecutive strings differ by one symbol change. In this paper, we focus
on rotation Gray code in which consecutive strings differ by a stamp rotation.

An interesting related problem is thus to discover Gray codes for stamp foldings
and semi-meanders. There are several algorithms to generate stamp foldings and semi-
meanders. Lunnon [11] in 1968 provided a backtracking algorithm that exhaustively
generates stamp foldings after considering rotational equivalence and equivalence of
the content between the first crease and the second crease. More recently, Sawada and
Li [15] provided an efficient algorithm that exhaustively generates stamp foldings and
semi-meanders in constant amortized time per string. However, the listings produced
by these algorithms are not Gray codes. The problem of finding Gray codes for stamp
foldings and semi-meanders is listed as an open problem in the paper by Sawada and
Li [15], and also in the Gray code survey byMütze [12]. In this paper, we solve this open
problem by providing the first known cyclic rotation Gray codes for stamp foldings and
semi-meanders, where consecutive strings differ by a stamp rotation. The formal defini-
tion of stamp rotation is provided in Sect. 2. The algorithm generates each stamp folding
in constant amortized time per string, and each semi-meander in O(n)-amortized time
per string respectively, using a linear amount of memory.

The rest of the paper is outlined as follows. In Sect. 2, we describe a simple algo-
rithm to generate cyclic rotation Gray codes for stamp foldings and semi-meanders.
Then in Sect. 3, we prove the Gray code property and show that the algorithm generates
each stamp folding and semi-meander in constant amortized time and O(n)-amortized
time per string respectively, using a linear amount of memory.

2 Gray Codes for Semi-meanders and Stamp Foldings

In this section, we first describe a simple recursive algorithm to generate a cyclic rota-
tion Gray code for semi-meanders. We then describe simple modifications to the algo-
rithm to generate a cyclic rotation Gray code for stamp foldings.

Consider a stamp folding α = p1p2 · · · pn. A stamp rotation of the i-th to j-th sym-
bols of a stamp folding α into its k-th position with k < i ≤ j ≤ n, denoted by
rotateα(i, j, k), is the string p1p2 · · · pk−1pipi+1 · · · pjpkpk+1 · · · pi−1pj+1pj+2 · · · pn.
As an example, given a stamp folding (semi-meander) α = 6345127, Fig. 2 illustrates
the stamp folding (semi-meander) 6512347 obtained by applying rotateα(4, 6, 2) on α
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Fig. 2. Stamp rotation. The stamp folding 6512347 can be obtained by applying a stamp rotation
rotateα(4, 6, 2) on α = 6345127.

(illustrated as 6
←−−−
345127 −→ 6512347). Note that not all stamp rotations with k < i ≤

j ≤ n can generate a valid stamp folding. To simplify the notation, we also define two
special stamp rotations. A left rotation of the suffix starting at position i of a stamp fold-
ing α, denoted by

←−−−
rotateα(i), is the string obtained by rotating the suffix pipi+1 · · · pn to

the front of α, that is
←−−−
rotateα(i) = rotateα(i, n, 1) = pipi+1 · · · pnp1p2 · · · pi−1. Sim-

ilarly, a right rotation of the prefix ending at position j of a stamp folding α, denoted
by

−−−→
rotateα(j), is the string obtained by rotating the prefix p1p2 · · · pj to the end of

α, that is
−−−→
rotateα(j) = rotateα(j + 1, n, 1) = pj+1pj+2 · · · pnp1p2 · · · pj . Observe

that
←−−−
rotateα(t + 1) = −−−→

rotateα(t). A string rotation of a string α = p1p2 · · · pn is the
string p2p3 · · · pnp1 which is obtained by taking the first character p1 of α and plac-
ing it in the last position. The set of stamp foldings that are equivalent to a stamp
folding α under string rotation is denoted by Rots(α). For example, Rots(1243) =
{1243, 2431, 4312, 3124}. The strings inRots(α) can be obtained by applying left rota-
tion

←−−−
rotateα(i) on α for all integers 1 ≤ i ≤ n, or applying right rotation

−−−→
rotateα(j) on

α for all integers 1 ≤ j ≤ n. We also define I(e, α) as the index of an element e within
a string α. For example, I(p2, α) = 2 and I(5, 6512347) = 2.

Lemma 1. [14] If α = p1p2 · · · pn is a stamp folding, then β ∈ Rots(α) is also a
stamp folding.

Lemma 1 implies that the set of stamp foldings is partitioned into equivalence
classes under string rotation. Also, note that this property does not hold for semi-
meanders. For example, the string 3124 is a semi-meander but 1243 ∈ Rots(3124)
is not a semi-meander.

The following lemmas follow from the definition of semi-meander.

Lemma 2. The string α = p1p2 · · · pn with p1 = n is a stamp folding of order n if and
only if p2p3 · · · pn is a semi-meander of order n − 1.

Proof. The backward direction is trivial. For the forward direction, assume by contra-
positive that p2p3 · · · pn is not a semi-meander. If p2p3 · · · pn is not even a stamp folding
of order n−1, then clearly α is not a stamp folding. Otherwise if p2p3 · · · pn is a stamp
folding but not a semi-meander, now suppose pt = n − 1 and 2 ≤ t ≤ n. Observe that
by the definition of semi-meander, pt is blocked by a perforation between other stamps
and thus it cannot connect to p1 = n without crossing any stamp. Thus α is also not a
stamp folding.

Corollary 1. If α = p1p2 · · · pn is a semi-meander with p1 = n, then p2p3 · · · pnp1 is
also a semi-meander.
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Proof. By Lemma 2, α is a stamp folding and thus p2p3 · · · pn is a semi-meander of
order n− 1. Thus stamp n− 1 of p2p3 · · · pn is not blocked by any perforation between
other stamps and can connect to a stamp at position 1 or at position n to produce the
string α or p2p3 · · · pnp1. Lastly, stamps at position 1 and position n are at the boundary
and cannot be blocked by any perforation between other stamps, thus p2p3 · · · pnp1 is a
semi-meander.

Lemma 3. Suppose α = p1p2 · · · pn is a semi-meander where pn �= n and β =←−−−
rotateα(n − k + 1) with k ≥ 1 being the smallest possible integer such that β is a
semi-meander, then

– k = 1 if pn = 1 and n is even;
– k = n − I(pn + 1, α) + 1 if pn and n have the same parity;
– k = n − I(pn − 1, α) + 1 if pn and n have different parities.

Proof. If pn = 1 and n is even, then clearly k = 1 since pn only connects to pi = 2
for some i < n and the perforation between pn and pi is at the bottom while stamp n
is extending in the upward direction. Otherwise, if pn and n have the same parity, then
assume W.L.O.G. that the perforation between pn and pn + 1 is at the bottom. Clearly,
pt = n is also extending in the downward direction. Since α is a semi-meander, pt = n
can be seen from below and thus t < I(pn + 1, α) < n. Now consider the string
β = ←−−−

rotateα(n − k + 1). When 1 < k < I(pn + 1, α), the perforation between pn + 1
and pn of β is at the bottom and would block stamp nmaking β not a semi-meander, and
thus k ≥ I(pn+1, α). Furthermore, observe that there is no perforation between pi and
pj at the bottom with I(pn+1, α) < i and j < I(pn+1, α) as otherwise the perforation
intersects with the perforation between pn + 1 and pn. Thus, β = ←−−−

rotateα(n − k + 1)
is a semi-meander when k = I(pn + 1, α). The proof is similar when pn and n have
different parities.

Lemma 4. Suppose α = p1p2 · · · pn is a semi-meander where p1 �= n and β =−−−→
rotateα(k) with k ≥ 1 being the smallest possible integer such that β is a semi-meander,
then

– k = 1 if p1 = 1 and n is even;
– k = I(p1 + 1, α) if p1 and n have the same parity;
– k = I(p1 − 1, α) if p1 and n have different parities.

Proof. The proof is similar to the one for Lemma 3.

In [9], Li and Sawada developed a framework to generate Gray codes for reflectable
languages. A language L over an alphabet set σ is said to be reflectable if for every
i > 1 there exist two symbols xi and yi in σ such that if w1w2 · · · wi−1 is a prefix of a
word in L, then both w1w2 · · · wi−1xi and w1w2 · · · wi−1yi are also prefixes of words
in L. By reflecting the order of the children and using the special symbols xi and yi as
the first and last children of each node at level i − 1, Li and Sawada devised a generic
recursive algorithm to generate Gray codes for reflectable languages which include lots
of combinatorial objects such as k-ary strings, restricted growth functions and k-ary
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Fig. 3. Recursive computation tree constructed by our algorithm that outputs stamp foldings and
semi-meanders for n = 4 in cyclic rotation Gray code order. The nodes at the last level are
generated by the PRINT function and carry no sign. For nodes from level 1 to level n − 1, the
nodes in bold (in blue color) carry a positive sign, and the rest of the nodes (in red color) carry a
negative sign. A dashed arrow indicates applying right rotations to generate its neighbors, while
a dotted arrow indicates applying left rotations to generate its neighbors. The underlined strings
are semi-meanders. (Color figure online)

trees. For example, the algorithm generates the binary reflected Gray code in Sect. 1
when we set xi = 0 and yi = 1 for every i > 1.

Here we use a similar idea to recursively generate a Gray code for semi-meanders.
The algorithm can be easily modified to generate stamp foldings. Depending on the
level of a node in the recursive computation tree, there are two possibilities for its chil-
dren at level t:

– The root of the recursive computation tree is the stamp 1 of order 1;
– If a node p1p2 · · · pt−1 is at level t − 1 where t − 1 ≥ 1, then its children are the
semi-meanders in Rots(tp1p2 · · · pt−1), which includes the strings tp1p2 · · · pt−1

and p1p2 · · · pt−1t (by Corollary 1).

To generate the Gray code for semi-meanders, we maintain an array q1q2 · · · qn which
determines the sign of a new node in the recursive computation tree. The current level
of the recursive computation tree is given by the parameter t. The sign of a new node
at level t is given by the parameter qt, where qt = 1 denotes the new node has a
positive sign, and qt = 0 denotes the new node has a negative sign. We also initialize
the sign qt at each level as positive (qt = 1) at the beginning of the algorithm. The word
being generated is stored in a doubly linked list p = p1p2 · · · pn. Now if the current
node has a positive sign, we generate the child p1p2 · · · pt−1t and then keep applying
right rotation to generate all semi-meanders in Rots(p1p2 · · · pt−1t) until it reaches the
string tp1p2 · · · pt−1. Then if the current node has a negative sign, we generate the child
tp1p2 · · · pt−1 and then keep applying left rotation to generate all semi-meanders in
Rots(tp1p2 · · · pt−1) until it reaches the string p1p2 · · · pt−1t. Finally when we reach



Generating Cyclic Rotation Gray Codes for Stamp Foldings and Semi-meanders 277

Algorithm 1. The algorithm that finds the number of left rotations or right rotations
required to reach the next semi-meander.
1: function NEXTSEMIMEANDER(p, t, d)
2: if d = 1 then j ← p1

3: elsej ← pt

4: if j = 1 and t is even then return 1
5: else if j and t have the same parity then
6: if d = 1 then return I(j + 1, p)
7: else return t − I(j + 1, p) + 1
8: else
9: if d = 1 then return I(j − 1, p)
10: else return t − I(j − 1, p) + 1

Algorithm 2. The recursive algorithm that generates rotation Gray codes for stamp
foldings and semi-meanders.
1: procedure GEN(p, t)
2: i ← 1
3: j ← 0
4: while i ≤ t do
5: if t ≥ n then PRINT(p)
6: else
7: if qt+1 = 1 then GEN(p · (t + 1), t + 1)
8: else GEN((t + 1) · p, t + 1)
9: qm+1 ← ¬qm+1

10: if t ≥ n and generating stamp foldings then j ← 1
11: else j ←NEXTSEMIMEANDER(p, t, qm)
12: if qm = 1 then p ← −−−→

rotate(j) � right rotation
13: else p ← ←−−−

rotate(n − j + 1) � left rotation

14: i ← i + j

level t = n, we print out the semi-meanders that are in Rots(p1p2 · · · pn−1n). The next
semi-meander to be obtained by applying left rotation or right rotation is determined by
the function NextSemiMeander(p, t, d), which is a direct implementation of Lemma 3
and Lemma 4 (Algorithm 1). We also complement qt every time a node is generated at
level t. This way, at the start of each recursive call we can be sure that the previous word
generated had stamp t at the same position. Finally to generate stamp foldings, notice
that removing stamp n from a stamp folding always creates a semi-meander of order
n − 1 (Lemma 2). The recursive computation tree for stamp foldings is thus the same
as the one generating semi-meanders, except at level n we print all stamp foldings that
are in Rots(p1p2 · · · pn−1n), that is all strings in Rots(p1p2 · · · pn−1n). Pseudocode of
the algorithm is shown in Algorithm 2. To run the algorithm, we make the initial call
Gen(1, 1) which sets p = 1 and t = 1.

As an example, the algorithm generates the following cyclic rotation Gray codes for
stamp foldings and semi-meanders of length five respectively:
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–
←−−−
12345,

←−−−
23451,

←−−−
34512,

←−−−
45123, 5

←−−
1234,

←−−−
52341,

←−−−
15234,

←−−−
41523,

←−−−
34152,

←−−
23415,

←−−−
41235,

←−−−
12354,←−−−

23541,
←−−−
35412, 54

←−
123,

←−−−
54312,

←−−−
25431,

←−−−
12543,

←−−−
31254,

←−−
43125,

←−−−
31245,

←−−−
12453,

←−−−
24531,

←−−−
45312,

53
←−
124,

←−−−
53214,

←−−−
45321,

←−−−
14532,

←−−−
21453,

←−−
32145,

←−−−
14325,

←−−−
43251,

←−−−
32514,

←−−−
25143, 5

←−−
1432,

←−−−
54321,←−−−

15432,
←−−−
21543,

←−−−
32154, 4

←−
3215,

←−−−
42135,

←−−−
21354,

←−−−
13542,

←−−−
35421, 5

←−−
4213,

←−−−
52134,

←−−−
45213,

←−−−
34521,←−−−

13452,
←−
21345;

–
←−−−
12345,

←−−−
34512, 5

←−−
1234,

←−−−
52341,

←−−
23415,

←−−−
41235, 54

←−
123,

←−−−
54312,

←−−−
12543,

←−−
43125,

←−−−
31245, 53

←−
124,←−−−

53214,
←−−
32145,

←−−−
14325, 5

←−−
1432,

←−−−
54321,

←−−−
21543, 4

←−
3215,

←−−−
42135, 5

←−−
4213,

←−−−
52134,

←−−−
34521,

←−
21345.

The Gray code listing of semi-meanders can be obtained by filtering the Gray code
listing of stamp foldings. For more about filtering Gray codes, see [16,17]. Figure 3
illustrates the recursive computation tree when n = 4.

3 Analyzing the Algorithm

In this section, we prove that our algorithm generates cyclic rotation Gray codes for
stamp foldings and semi-meanders in constant amortized time andO(n)-amortized time
per string respectively.

We first prove the Gray code property for semi-meanders. The proof for the Gray
code property for stamp foldings follows from the one for semi-meanders.

Lemma 5. Each consecutive semi-meanders in the listing generated by the algorithm
GEN differ by a stamp rotation rotateα(i, j, k) for some k < i ≤ j ≤ n.

Proof. The proof is by induction on n. In the base case when n = 2, the generated
semi-meanders are 12 and 21 and clearly they differ by a stamp rotation. Inductively,
assume consecutive semi-meanders generated by the algorithm GEN differ by a stamp
rotation when n = k − 1. Consider the case when n = k, clearly the first k − 1
levels of the recursive computation tree for n = k are exactly the same as the recursive
computation tree for n = k − 1. If two consecutive nodes at level k have the same
parent at level k − 1, then clearly the semi-meanders differ by a left rotation or a right
rotation. Otherwise if two consecutive nodes at level k have different parents α and β
at level k − 1. Observe that by the algorithm GEN, α and β are consecutive nodes at
level k − 1 and W.L.O.G. assume α comes before β. Then by the inductive hypothesis
the corresponding semi-meanders for α and β differ by a stamp rotation. Also, since α
and β are consecutive nodes at level k−1, their signs are different by the algorithm and
thus the two children can only be the last child of α and the first child of β. If α carries
a positive sign, then the two children are n ·α and n ·β. Otherwise, the two children are
α · n and β · n. In both cases, the two children differ by a stamp rotation.

Lemma 6. The first and last strings generated by the algorithm GEN are 123 · · · n and
2134 · · · n respectively.

Proof. The leftmost branch of the recursive computation tree corresponds to the first
string generated by the algorithm. Observe that all nodes of the leftmost branch carry
positive signs and are the first child of their parents. Thus the first string generated by
the algorithm is 123 · · · n. Similarly, the rightmost branch of the recursive computation
tree corresponds to the last string generated by the algorithm. The rightmost node at
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level two of the recursive computation tree corresponds to the string 21. Furthermore,
observe that the number of semi-meanders and the number of stamp foldings are even
numbers when n > 1 (for each stamp folding (semi-meander) p1p2 · · · pn, its reversal
pnpn−1 · · · p1 is also a stamp folding (semi-meander)). Thus the rightmost nodes at
each level t > 1 carry negative signs and are the last child of their parents. Therefore,
the last string generated by the algorithm is 2134 · · · n.
Lemma 7. The algorithm GEN exhaustively generates all semi-meanders of length n.

Proof. The proof is by induction on n. In the base case when n = 2, the generated
semi-meanders are 12 and 21 which are all the possible semi-meanders for n = 2.
Inductively, assume the algorithm generates all semi-meanders for n = k − 1. Con-
sider the case when n = k, by Lemma 2 clearly the algorithm generates either one
of the semi-meanders of the form {kp1p2 · · · pk−1, p1p2 · · · pk−1k} for all possible
p1p2 · · · pk−1 when considering the first child produced by each node at level k − 1.
Since each semi-meander has a symbol pt = k, generating all valid string rotations of
the first child exhaustively lists out all semi-meanders for n = k.

Together, Lemma 5, Lemma 6 and Lemma 7 prove the following theorem.

Theorem 1. The algorithm GEN produces a list of all semi-meanders of order n in a
cyclic rotation Gray code order.

We then prove the Gray code property for stamp foldings.

Lemma 8. Each consecutive stamp foldings in the listing generated by the algorithm
GEN differ by a stamp rotation rotateα(i, j, k) for some k < i ≤ j ≤ n.

Proof. Since the first n − 1 levels of the recursive computation tree for stamp foldings
of length n are exactly the same as the recursive computation tree for semi-meanders
of length n − 1, by Lemma 5 the strings correspond to consecutive nodes at level n − 1
differ by a stamp rotation. Therefore by the same argument as the inductive step of
Lemma 5, consecutive stamp foldings at level n also differ by a stamp rotation.

Lemma 9. The algorithm GEN exhaustively generates all stamp foldings of length n.

Proof. Since the first n − 1 levels of the recursive computation tree for stamp foldings
of length n are exactly the same as the recursive computation tree for semi-meanders
of length n−1, by Lemma 7 the algorithm exhaustively generates all nodes correspond
to semi-meanders of length n − 1. Thus by Lemma 2, the algorithm generates either
one of the stamp foldings of the form {kp1p2 · · · pk−1, p1p2 · · · pk−1k} for all possible
p1p2 · · · pk−1 when considering the first child produced by each node at level k − 1.
Since the set of stamp foldings is partitioned into equivalence classes under string rota-
tion, the algorithm generates all string rotations of the first child and thus exhaustively
lists out all stamp foldings.

Similarly, Lemma 8, Lemma 6 and Lemma 9 prove the following theorem.

Theorem 2. The algorithm GEN produces a list of all stamp foldings of order n in a
cyclic rotation Gray code order.
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Finally, we prove the time complexity of our algorithm.

Theorem 3. Semi-meanders and stamp foldings of length n can be generated in cyclic
rotation Gray order in O(n)-amortized time and constant amortized time per string
respectively, using O(n) space.

Proof. Clearly for each node at level t < n, each recursive call of the algorithm GEN

only requires O(n) amount of work and a linear amount of space to generate all rota-
tions of a semi-meander. By Corollary 1, since each call to GEN makes at least two
recursive calls and there is no dead ends in the computation tree, the algorithm gener-
ates each node at level n − 1 of the computation tree in O(n)-amortized time per node
using a linear amount of space. If we are generating semi-meanders, by the same argu-
ment each node at level n requires O(n) amount of work and thus each string can be
generated in O(n)-amortized time per string using a linear amount of space. Otherwise
if we are generating stamp foldings, by Lemma 1 each node at level n − 1 of the com-
putation tree has exactly n children, while as discussed above each node at level n − 1
can be generated in O(n)-amortized time per node. Therefore, the algorithm generates
stamp foldings in constant amortized time per string using a linear amount of space.
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3 Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE,
Paris, France

4 DIENS, Ecole normale supérieure de Paris, CNRS, Paris, France
raul.lopes@ens.psl.eu

Abstract. A temporal (directed) graph is a graph whose edges are avail-
able only at specific times during its lifetime, τ . Paths are sequences of
adjacent edges whose appearing times are either strictly increasing or
non-strictly increasing (i.e., non-decreasing) depending on the scenario.
Then, the classical concept of connected components and also of unilat-
eral connected components in static graphs naturally extends to temporal
graphs. In this paper, we answer the following fundamental questions in
temporal graphs. (i) What is the complexity of deciding the existence of
a component of size k, parameterized by τ , by k, and by k + τ? We show
that this question has a different answer depending on the considered
definition of component and whether the temporal graph is directed or
undirected. (ii) What is the minimum running time required to check
whether a subset of vertices are pairwise reachable? A quadratic algo-
rithm is known but, contrary to the static case, we show that a better
running time is unlikely unless SETH fails. (iii) Is it possible to verify
whether a subset of vertices is a component in polynomial time? We show
that depending on the definition of component this test is NP-complete.

1 Introduction

A (directed) temporal graph (G,λ) with lifetime τ consists of a (directed) graph
G together with a time-function λ : E(G) → 2[τ ] which tells when each edge
e ∈ E(G) is available along the discrete time interval [τ ]. Given i ∈ [τ ], the
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Fig. 1. On the left a temporal graph, where on each edge e we depict λ(e). Some of its
components according to the non-strict model are reported on the right.

snapshot Gi refers to the subgraph of G containing exactly the edges available in
time i. Temporal graphs, also appearing in the literature under different names,
have attracted a lot of attention in the past decade, as many works have extended
classical notions of Graph Theory to temporal graphs (we refer the reader to the
survey [11] and the seminal paper [10]).

A crucial characteristic of temporal graphs is that a u, v-walk/path in G is
valid only if it traverses a sequence of adjacent edges e1, . . . , ek at non-decreasing
times t1 ≤ . . . ≤ tk, respectively, with ti ∈ λ(ei) for every i ∈ [k]. Similarly,
one can consider strictly increasing sequences, i.e. with t1 < . . . < tk. The
former model is referred to as non-strict model, while the latter as strict. In
both settings, we call such sequence a temporal u, v-walk/path, and we say that
u reaches v. For instance, in Fig. 1, both blue and green paths are valid in the
non-strict model, but only the green one is valid in the strict model, as the blue
one traverses two edges with label 2. The red path is not valid in either model.

The non-strict model is more appropriate in situations where the time granu-
larity is relatively big. This is the case in a disease-spreading scenario [19], where
the spreading speed might be unclear or in “time-varying graphs”, as in [14],
where a single snapshot corresponds to all the edges available in a time interval,
e.g. the set of all the streets available in a day. As for the strict model, it can
represent the connections of the public transportation network of a city which
are available only at precise scheduled times. All in all, there is a rich literature
on both models and this is why we explore both settings.

Connected Sets and Components. Given a temporal graph G = (G,λ), we
say that X ⊆ V (G) is a temporal connected set if u reaches v and v reaches u,
for every u, v ∈ X. Extending the classical notion of connected components in
static graphs, in [2] the authors define a temporal connected component (tcc for
short) as a maximal connected set of G. Such constraint can be strengthened
to the existence of such paths using only vertices of X. Formally, X is a closed
temporal connected component (closed tcc for short) if, for every u, v ∈ X, we
have that u reaches v and v reaches u through temporal paths contained in X.
See Fig. 1 for an example of tcc and closed tcc.
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Unilateral Connected Components. In the same fashion, also the concept of
unilateral connected components can be extended to temporal graphs. In static
graph theory, they are a well-studied relaxation of connected components which
asks for a path from u to v or vice versa, for every pair u, v in the component [1,4].
More formally, in a directed graph G, we say that X ⊆ V (G) is a unilateral
connected set if u reaches v or v reaches u, for every u, v ∈ X. X is a unilateral
connected component if it is maximal. In this paper, we introduce the definition
of a (closed) unilateral temporal connected set/component, which can be seen as
the immediate translation of unilateral connected component to the temporal
context. Formally, X ⊆ V (G) is a temporal unilateral connected set if u reaches
v or v reaches u, for every u, v ∈ X, and it is a closed unilateral connected set
if this holds using paths contained in X. Finally, a (closed) temporal unilateral
connected component ((closed) tucc for short) is a maximal (closed) temporal
unilateral connected set. See again Fig. 1 for an example.

Problems. In this paper, we deal with four different definitions of temporal
connected components, depending on whether they are unilateral or not, and
whether they are closed or not. In what follows, we pose three questions, and
we comment on partial knowledge about each of them. Later on, we discuss
our results, which close almost all the gaps found in the literature. We start by
asking the following.

Question 1 (Parameterized complexity). What is the complexity of deciding the
existence of temporal components of size at least k parameterized by (i) τ , i.e.
the lifetime, (ii) k, and (iii) k + τ?

In order to answer Question 1 for the strict model, there is a very simple
parameterized reduction from k-clique, known to be W[1]-hard when parameter-
ized by k [7], to deciding the existence of connected components (both closed or
not and both unilateral or not) of size at least k in undirected temporal graphs.
This reduction has appeared in [5]. Given an undirected graph G, we can simply
consider the temporal graph G = (G,λ) where λ(uv) = {1} for all uv ∈ E(G)
(i.e., G is equal to G itself). As u temporally reaches v if and only if uv ∈ E(G),
one can see that all those problems are now equivalent to deciding the existence
of a k-clique in G. Observe that we get W[1]-hardness when parameterized by
k or k + τ , and para-NP-completeness when parameterized by τ , both in the
undirected and the directed case.1 However, this reduction does not work in the
case of the non-strict model, leaving Question 1 open. Indeed the reductions
in [2] and in [6] for (closed) tccs, which work indistinctly for both the strict
or the non-strict models, are not parameterized reductions. We also observe that
the aforementioned reductions work on the non-strict model only for τ ≥ 4.

Another question of interest is the following. Letting n be the number of
vertices in G and M be the number of temporal edges,2 it is known that, in

1 In the directed case, it suffices to replace each edge of the input graph with two
opposite directed edges between the same endpoints.

2 M =
∑

e∈E(G) |λ(e)|.
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Table 1. A summary of our results for the parameterized complexity of comput-
ing components of size at least k of a temporal graph G having lifetime τ in the
non-strict model. “W[1]-h” stands for W[1]-hardness and “p-NP” stands for para-NP-
completeness. For the strict model the entries are W[1]-h in the third and fourth
columns and p-NP in the second one already for τ = 1, both for the directed and
the undirected case.

Par. τ Par. k Par. k + τ

tcc

p-NP τ ≥ 2 (Theorem 1)

W[1]-h Dir. τ ≥ 2 (Theorem 3)
and Undir. (Theorem 2)

W[1]-h Dir. (Theorem 3)
FPT Undir. (Theorem 5)

tucc W[1]-h Dir. τ ≥ 2 (Theorem 3)
FPT Undir. (Theorem 5)

closed tcc W[1]-h Dir. τ ≥ 3 (Theorem 4) W[1]-h Dir. (Theorem 4)
FPT Undir. (Theorem 5)

closed tucc W[1]-h Dir. τ ≥ 3 (Theorem 4)
FPT Undir. (Theorem 5)

order to verify whether X ⊆ V (G) is a connected set in G, we can simply
apply O(n) single source “best” path computations (see e.g. [17]), resulting in
a time complexity of O(n · M). This is O(M2) if G has no isolated vertices, a
natural assumption when dealing with connectivity problems. As in static graphs
testing connectivity can be done in linear time [8], we ask whether the described
algorithm can be improved.

Question 2 (Lower bound on checking connectivity). Given a temporal graph G
and a subset X ⊆ V (G), what is the minimum running time required to check
whether X is a (unilateral) connected set?

Finally we focus on one last question.

Question 3 (Checking maximality). Given a temporal graph G and a subset
X ⊆ V (G), is it possible to verify, in polynomial time, whether X is a component,
i.e. a maximal (closed) (unilateral) connected set?

For Question 3, we first observe that the property of being a temporal (unilat-
eral) connected set is hereditary (forming an independence system [12]), meaning
that every subset of a (unilateral) connected set is still a (unilateral) connected
set. For instance, in Fig. 1, every subset of the connected set B = {a, b, c, d, e}
is a connected set. Also, checking whether X ′ ⊆ V (G) is a temporal (unilateral)
connected set can be done in time O(n · M), as discussed above. We can then
check whether X is a maximal such set in time O(n2 · M): it suffices to test, for
every v ∈ V (G)\X, whether by adding v to X we still get a temporal (unilat-
eral) connected set. On the other hand, closed connected (unilateral) sets are not
hereditary, because by removing vertices from the set we could destroy the paths
between other members of the set. This is the case for the closed connected set
A = {a, b, c, d} in Fig. 1, since by removing d there are no temporal paths from
c to a nor b using only vertices in the remainder of the set. This implies that
the same approach as before does not work, i.e., we cannot check whether X is
maximal by adding to X a single vertex at a time, then checking for connectivity.
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For instance, the closed connected set A′ = {a, b} in Fig. 1 cannot be grown into
the closed connected set A by adding one vertex at a time, since both A′ ∪ {c}
and A′ ∪ {d} are not closed connected sets. Hence, the answer to Question 3 for
closed sets does not seem easy, and until now was still open.

Our Results. Our results concerning Question 1 are reported in Table 1 for the
non-strict model, since for the strict model all the entries would be W[1]-hard
or para-NP-complete already for τ = 1, as we argued before. In the non-strict
model, we observe instead that the situation is much more granulated. If τ = 1,
then all the problems become the corresponding traditional ones in static graphs,
which are all polynomial (see Paragraph “Related works”). As for bigger values
of τ , the complexity depends on the definition of component being considered,
and whether the temporal graph is directed or not. Table 1 considers τ > 1,
reporting on negative results, “τ ≥ x” for some x meaning that the negative
result starts to hold for temporal graphs of lifetime at least x.

The second column of Table 1 addresses Question 1(i), i.e., parameterization
by τ . We prove that, for all the definitions of components being considered, the
related problem becomes immediately para-NP-complete as soon as τ increases
from 1 to 2; this is done in Theorem 1. This reduction improves upon the reduc-
tion of [2], which holds only for τ ≥ 4.

Question 1(ii) (parameterization by k) is addressed in the third column of
Table 1. Considering first directed temporal graphs, we prove that all the prob-
lems are W[1]-hard. In particular, deciding the existence of a tcc or tucc of
size at least k is W[1]-hard already for τ ≥ 2 (Theorem 3). As for the exis-
tence of closed components, W[1]-hardness also holds as long as τ ≥ 3 (Theo-
rem 4). Observe that, since τ is constant in both results, these also imply the
W[1]-hardness results presented in the last column, thus answering also Ques-
tion 1(iii) (parameterization by k + τ) for directed graphs. On the other hand,
if the temporal graph is undirected, then the situation is even more granulated.
Deciding the existence of a tcc of size at least k remains W[1]-hard, but only if τ
is unbounded. This is complemented by the answer to Question 1(iii), presented
in the last column of Table 1: tcc and (even) closed tcc are FPT on undirected
graphs when parameterized by k + τ (Theorem 5). We also give FPT algorithms
when parameterized by k for unilateral components, namely tucc and closed

tucc. Observe how this differs from tcc, whose corresponding problem is W[1]-
hard, meaning that unilateral and traditional components behave very differently
when parameterized by k.

In summary, Table 1 answers Question 1 for almost all the definitions of
components, both for directed and undirected temporal graphs, leaving open
only the problems of, given an undirected temporal graph, deciding the existence
of a closed tcc of size at least k when parameterized by k, and solving the
same problem for closed tcc and closed tucc in directed temporal graphs
where τ = 2.

Concerning Questions 2 and 3, our results are summarized in Table 2. All
these results hold both for the strict and the non-strict models. For Ques-
tion 2, we prove that the trivial O(M2) algorithm to test whether S is a (closed)
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Table 2. Our results for Question 2 and Question 3, holding for both the strict and the
non-strict models. Recall that a component is a (inclusion-wise) maximal connected
set. The O(·) result is easy and explained in the introduction. M (resp. n) denotes the
number of temporal edges (resp. nodes) in G.

Check whether X ⊆ V is a connected set Check whether X ⊆ V is a component

tcc

Θ(M2) (Theorem 6)

O(n2 · M)

tucc

closed tcc NP-c (Theorem 7)

closed tucc

(unilateral) connected set is best possible, unless the Strong Exponential Time
Hypothesis (SETH) fails [9]. For Question 3, in the case of tcc and tucc, we
have already seen that checking whether a set X ⊆ V is a component can be
done in O(n2 ·M). Interestingly, for closed tcc and closed tucc, we answer
negatively (unless P=NP) to Question 3.

Related Work . The known reductions for temporal connected components in
the literature [2,6] which considers the non-strict setting are not parameterized
and leave open the case when τ = 2 or 3. The reductions we give here are
parameterized (Theorems 3 and 4) and Theorem 1 closes also the cases τ = 2
and 3. Furthermore, in [6] they show a series of interesting transformations but
none of them allows us to apply known negative results for the strict model
to the non-strict one. There are many other papers about temporal connected
components in the literature, including [5], where they give an example where
there can be an exponential number of temporal connected components in the
strict model. In [14], the authors show that the problem of computing tccs
is a particular case of finding cliques in the so-called affine graph. This does
not imply that the problem is NP-complete as claimed, since in order to prove
hardness one needs to do a reduction on the opposite direction, i.e., a reduction
from a hard problem to tcc instead. Finally, we remark that there are many
results in the literature concerning unilateral components in static graphs [1],
also with applications to community detection [13]. Even though the number of
unilateral components in a graph is exponential [1], deciding whether there is
one of size at least k is polynomial.

2 Parameterized Complexity Results

Parameterization by τ . We start by proving the result in the first column of
Table 1, about para-NP-completeness wrt. to the lifetime τ , which applies to
all the definitions of temporal components. For (closed) tcc we present a
reduction from the NP-complete problem Maximum Edge Biclique (MEBP

for short) [16]. A biclique in a graph G is a complete bipartite subgraph of G. The
MEBP problem consists of, given a bipartite graph G and an integer k, deciding
whether G has a biclique with at least k edges. Using the same construction,
we prove hardness of (closed) tucc reducing from the NP-complete problem
2K2-free Edge Subgraph [18]. In this problem we are given a bipartite graph
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G and an integer k, and are trying to decide whether G has a 2K2-free subgraph
with at least k edges.

The main idea of the reductions is to generate a temporal graph G whose
underlying graph is the line graph L of a bipartite graph H with parts X,Y .
Recall that, for each u ∈ X ∪ Y , there is a clique in L formed by all the edges
incident to u; denote such clique by Cu. We make active in timestep 1 the edges
within Cu for every u ∈ X, and in timestep 2 the edges within Cu for every
u ∈ Y . Doing so, we ensure that any pair of vertices of G associated with a
biclique in H reach one another in G. We prove that there exists a biclique in
H with at least k edges if and only if there exists a closed tcc in G of size
at least k. The result extends to tccs, as every tcc is also a closed tcc. For
the unilateral case, we can relax the biclique to a 2K2-free graph since only one
reachability relation is needed. As a result, we get the following.

Theorem 1. For every fixed τ ≥ 2 and given a temporal graph G = (G,λ) of
lifetime τ and an integer k, it is NP-complete to decide if G has a (closed) tcc

or a (closed) tucc of size at least k, even if G is the line graph of a bipartite
graph.

W[1]-hardness by k. We now focus on proving the W[1]-hardness results in the
second column of Table 1 concerning parameterization by k, which also imply
some of the results of the third column. The following W[1]-hardness results
(Theorem 2, 4, and 3) are parameterized reductions from k-Clique. The general
objective is constructing a temporal graph G in a way that vertices in G are in
the same component if and only if the corresponding nodes in the original graph
are adjacent. Notice that we have to do this while: (i) ensuring that the size
of the desired component is f(k) for some computable function k (i.e., this
is a parameterized reduction); and (ii) avoiding that the closed neighborhood
of a vertex forms a component, so as to not a have a false “yes” answer to
k-Clique. To address these tasks, we rely on different techniques. The first
reduction concerns tcc in undirected graphs and requires τ to be unbounded,
as for τ bounded we show that the problem is FPT by k + τ (Theorem 5). The
technique used is a parameterized evolution of the so-called semaphore technique
used in [2,6], which in general replaces edges by labeled diamonds to control
paths of the original graph. However, while the original reduction gives labels
in order to ensure that paths longer than one are broken, the following one
allows the existence of paths longer than one. But if a temporal path from u
to v exists for uv /∈ E(G), then the construction ensures the non-existence of
temporal paths from v to u. Because of this property, the reduction does not
extend to tuccs, which we prove to be FPT when parameterized by k instead
(Theorem 5).

Theorem 2. Given a temporal graph G and an integer k, deciding if G has a
tcc of size at least k is W[1]-hard with parameter k.

Proof. We make a parameterized reduction from k-Clique. Let G be graph and
k ≥ 3 be an integer. We construct the temporal graph G = (G′, λ) as follows.
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Fig. 2. Construction used in the proof of Theorem 2. On the left, the two copies of V (G)
and the edges between them, active in timestep 0. On the right, the edge ei ∈ E(G)
and the associated gadget in G.

See Fig. 2 to follow the construction. First, add to G′ every vertex in V (G) and
make V = V (G). Second, add to G′ a copy u′ of every vertex u ∈ V and define
V ′ = {u′ | u ∈ V }. Third, for every pair u, u′ with u ∈ V and u′ ∈ V ′ add the
edge uu′ to G′ and make all such edges active at timestep 0. Fourth, consider
an arbitrary ordering e1, . . . , em of the edges of G and, for each edge ei = uv,
create four new vertices {huv, hvu, h′

uv, h′
vu | uv ∈ E(G)}, adding edges:

– uhuv and vhvu, active at time i;
– u′h′

uv and v′h′
vu, active at time 2m + i;

– hvuu and huvv, active at time m + i; and
– h′

vuu′ and h′
uvv′, active at time 3m + i.

Denote the set {huv, hvu | uv ∈ E(G)} by H, and the set {h′
uv, h′

vu | uv ∈ E(G)}
by H ′. We now prove that G has a clique of size at least k if and only if G
has a tcc of size at least 2k. Given a clique C in G, it is easy to check that
C ∪ {u ∈ V ′ | u ∈ C} is a tcc.

Now, let S ⊆ V (G′) be a tcc of G of size at least 2k. We want to show that
either C = {u ∈ V (G) | u ∈ S ∩ V } or C ′ = {u ∈ V (G) | u′ ∈ S ∩ V ′} is a
clique of G of size at least k. This part of the proof combines a series of useful
facts, which we cannot include here due to space constraints. In what follows we
present a sketch of it.

First, we argue that both C and C ′ are cliques in G. Then, by observing that
the only edges between V ∪ H and V ′ ∪ H ′ are those incident to V and V ′ at
timestep 0, we conclude that either S ⊆ V ∪ H or S ⊆ V ′ ∪ H ′. Since the cases
are similar, we assume the former. If |S ∩ V | ≥ k, then C contains a clique of
size at least k and the result follows. Otherwise, we define ES = {uv ∈ E(G) |
{huv, hvu} ∩ S 	= ∅}. That is, ES is the set of edges of G related to vertices in
S ∩ H. We then prove the following claim.

Claim. Let a, b ∈ S ∩ H be associated with distinct edges g, g′ of G sharing an
endpoint v. If u and w are the other endpoints of g and g′, respectively, then u
and w are also adjacent in G. Additionally, either |S ∩{hxy, hyx}| ≤ 1 for every
xy ∈ E(G), or |S ∩ H| ≤ 2.
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Fig. 3. Examples for some of our reductions. Given the graph in (a), Theorem 3 con-
structs the directed temporal graph in (b), Theorem 4 constructs the directed temporal
graph in (c), and, given additionally set X in (a), Theorem 7 contructs the temporal
graph G and set Y in (d).

To finish the proof, we first recall that we are in the case |S∩H| ≥ k+1. By our
assumption that k ≥ 3, note that the above claim gives us that |S∩{hxy, hyx}| ≤
1 for every xy ∈ E(G), which in turn implies that |ES | = |S ∩ H|. Additionally,
observe that, since |S ∩ H| ≥ 4, the same claim also gives us that there must
exist w ∈ V such that e is incident to w for every e ∈ ES . Indeed, the only
way that 3 distinct edges can be mutually adjacent without being all incident
to the same vertex is if they form a triangle. Supposing that 3 edges in ES form
a triangle T = (a, b, c), since |ES | ≥ 4, there exists an edge e ∈ ES\E(T ). But
now, since G is a simple graph, e is incident to at most one between a, b and c,
say a. We get a contradiction wrt. the aforementioned claim as in this case e is
not incident to edge bc ∈ ES . Finally, by letting C ′′ = {v1, . . . , vk} be any choice
of k distinct vertices such that {wv1, . . . , wvk} ⊆ ES , our claim gives us that vi

and vj are adjacent in G, for every i, j ∈ [k]; i.e., C ′′ is a k-clique in G. ��
The following result concerns tcc and tucc in directed temporal graphs.

It is important to remark that for tcc and τ unbounded, we already know
that the problem is W[1]-hard because of Theorem 2 which holds for undirected
graphs and extends to directed ones. However, the following reduction applies
specifically for directed ones already for τ = 2. The technique used here is
the previously mentioned semaphore technique, made parameterized by exploit-
ing the direction of the edges. Namely, we reduce from k-Clique by replacing
every edge uv of G by two vertices wuv and wvu and the directed temporal
paths (u, 1, wuv, 2, v) and (v, 1, wvw, 2, u). See Fig. 3(b) to see the temporal graph
obtained from the graph in Fig. 3(a). One can check that G has a clique of size
at least k if and only if G has a tcc of size at least k. For tucc, we only need
to add one of wuv or wvu.

Theorem 3. Given a directed temporal graph G and an integer k, deciding if G
has a tcc of size at least k is W[1]-hard with parameter k, even if G has lifetime
2. The same holds for tucc.

The next result concerns closed tccs and tuccs. In this case, we also reduce
from k-Clique, but we cannot apply the semaphore technique as before. Indeed,
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as we are dealing with closed components, nodes must be reachable using ver-
tices inside the components, while the semaphore technique would make them
reachable via additional nodes, which do not necessarily reach each other. For
this reason, in the following we introduce a new technique subdividing nodes,
instead of edges, in order to break paths of the original graph of length longer
than one, being careful to allow that these additional nodes reach each other.
The construction is shown in Fig. 3, which shows how to construct temporal
graph G in Fig. 3(c), given graph G in Fig. 3(a) in a way that graph G has a
clique of size k if and only if G has a closed tcc (tucc) of size at least 2k.

Theorem 4. Given a directed temporal graph G and an integer k, deciding if G
has a closed tcc of size at least k is W[1]-hard with parameter k, even if G
has lifetime 3. The same holds for closed tucc.

FPT Algorithms. We now show our FPT algorithms to find (closed) tccs and
(closed) tuccs in undirected temporal graphs, as for directed temporal graphs
we have proved W[1]-hardness. In particular, we prove the following result.

Theorem 5. Given a temporal graph G = (G,λ) on n vertices and with lifetime
τ , and a positive integer k, there are algorithms running in time

1. O(kk·τ · n) that decides whether there is a tcc of size at least k;
2. O(2kτ · n) that decides whether there is a closed tcc of size at least k;
3. O(kk2 · n) that decides whether there is a tucc of size at least k; and
4. O(2kk · n) that decides whether there is a closed tucc of size at least k.

Proof. The reachability digraph R associated to G is a directed graph with the
same vertex set as G, and such that uv is an edge in R if and only u reaches v in
G and u 	= v. This is related to the affine graph in [14]. Observe that finding a
tcc (resp. tucc) in G of size at least k is equivalent to finding a set S ⊆ V (G) in
R of size exactly k such that uv ∈ E(R) and (resp. or) vu ∈ E(R) for every pair
u, v ∈ V (R). As for finding a closed tcc (resp. closed tucc), we need to have
the same property, except that all subsets of size at least k must be tested (recall
that being a closed connected (unilateral) set is not hereditary). Therefore, if Δ
is the maximum degree of R, then testing connectivity takes time O(kΔ · n) (it
suffices to test all subsets of size k − 1 in N(u), for all u ∈ V (R)), while testing
closed connectivity takes time O(2Δ · n) (it suffices to test all subsets of size at
least k − 1 in N(u), for all u ∈ V (R)). The proofs then consist in bounding the
value Δ in each case. ��

It is important to observe that, for unilateral components, these bounds
depend only on k, while for tccs and closed tccs they depend on both k and
τ . This is consistent with the fact that we have proved that for tcc the problem
is W[1]-hard when parameterized just by k (Theorem 2).
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3 Checking Connectivity and Maximality

This section is focused on Questions 2 and 3. The former is open for all defini-
tions of components for both the strict and the non-strict models. We answer to
question providing the following conditional lower bound, which holds for both
models, where the notation Õ(·) ignores polylog factors. We apply the technique
used for instance in [3] to prove lower bounds for polynomial problems, which
intuitively consists of an exponential reduction from SAT to our problem.

Theorem 6. Consider a temporal graph G on M temporal edges. There is no
algorithm running in time Õ(M2−ε), for some ε, that decides whether G is tem-
porally (unilaterally) connected, unless SETH fails.

We now focus on Question 3. We prove the results in the second column
of Table 2, about the problem of deciding whether a subset of vertices Y of a
temporal graph is a component, i.e. a maximal connected set. The question is
open both for the strict and the non-strict model. We argued already in the
introduction that this is polynomial for tcc and tucc for both models. In
the following we prove NP-completeness for closed tcc and closed tucc on
undirected graphs. The results extend to directed graphs as well.

Theorem 7. Let G be a (directed) temporal graph, and Y ⊆ V (G). Deciding
whether Y is a closed tcc is NP-complete. The same holds for closed tucc.

Proof. We reduce from the problem of deciding whether a subset of vertices X
of a given a graph G is a maximal 2-club, where a 2-club is a set of vertices C
such that G[C] has diameter at most 2. This problem has been shown to be NP-
complete in [15]. Let us first focus on the strict model. In this case, given G we
can build a temporal graph G with only two snapshots, both equal to G. Observe
that X is a 2-club in G if and only if X is a closed tcc in G. Indeed, because
we can take only one edge in each snapshot and τ = 2, we get that temporal
paths will always have length at most 2. This also extends to closed tucc by
noting that all paths in G can be temporally traversed in both directions.

In the case of the non-strict model, the situation is more complicated as
in each snapshot we can take an arbitrary number of edges resulting in paths
arbitrarily long. We show the construction for closed tcc in what follows. Let
G be obtained from G by subdividing each edge uv of G twice, creating vertices
huv and hvu, with λ(uhuv) = λ(vhvu) = {1, 3, 5}, and λ(huvhvu) = {2, 4}. See
Fig. 3 (d) for an illustration.

Given (G,X), the instance of maximal 2-club, we prove that X is a maximal
2-club in G iff Y = X ∪ NH(X) is a closed tcc in G. For this, it suffices to
prove that, given X ′ ⊆ V (G) and defining Y ′ similarly as before w.r.t. X ′, we
have that G[X ′] has diameter at most 2 iff Y ′ is a closed temporal connected
set. The proof extends to closed tucc by proving that every closed tcc is
also a closed tucc and vice-versa. ��
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Abstract. We analyze two well-known integer programming formula-
tions for determining the treewidth of a graph that are based on perfect
elimination orderings. For the first time, we prove structural properties
that explain their limitations in providing convenient lower bounds and
how the latter are constituted. Moreover, we investigate a flow metric
approach that proved promising to achieve approximation guarantees
for the pathwidth of a graph, and we show why these techniques cannot
be carried over to improve the addressed formulations for the treewidth.
Via computational experiments, we provide an impression on the quality
and proportionality of the lower bounds on the treewidth obtained with
different relaxations of perfect ordering formulations.

Keywords: treewidth · linear programming · integer programming

1 Introduction

The treewidth of a graph and several related width parameters are of theoretical
as well as of practical interest. In particular, while deciding the treewidth of
an arbitrary graph is itself NP-complete [1,21], many NP-hard problems on
graphs can be solved efficiently on instances of bounded treewidth, see e.g. [4,9].

While structural relations between width parameters and algorithms exploit-
ing them are vital fields of research receiving increasing attention, recent progress
regarding the exact computation of the treewidth of general graphs G = (V,E)
has been mainly achieved by developments related to the PACE challenges in
2016 and 2017 [12,13]. Here, Tamaki’s approach based on dynamic programming
over maximal cliques of minimal triangulations of G (to obtain upper bounds)
and lower bound computations via minors of G obtained using contraction-based
algorithms [25] proved particularly successful. Indeed, dynamic programming
algorithms have a long tradition for the computation of treewidth, see e.g. [6,7].

Interestingly, another successful algorithm that emerged from PACE, devel-
oped by Bannach, Bernds, and Ehlers [2], and called Jdrasil, relies on a SAT-
approach based on perfect elimination orderings (PEO) which we define formally
in Sect. 2. PEO-based models for treewidth have been considered early as well.
For SAT formulations, they were used e.g. in [3], and also the first and perhaps
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most intuitive integer linear programming (ILP) formulations for treewidth from
2004 were based on PEOs, see Grigoriev et al. [20]. However, over the last decade
the latter have not been brought to success to compute the treewidth routinely
even for moderately sized graphs as recently pointed out by Grigoriev [19].

While this may be partly explained by the lack of an according algorithmic
framework applying preprocessing techniques as aggressively as e.g. in [2], it is
folklore that another major obstacle consists in the weak lower bounds provided
by the linear programming relaxations of PEO-based ILP formulations [19]. Yet,
little is known about the reasons for this weakness whose identification also serves
as a first orientation regarding the potential improvement of these formulations.

In order to bridge this gap, we provide first structural evidence and explana-
tions for the major limitations of PEO-based ILP formulations for computing the
treewidth. In particular, we prove that the central class of constraints respon-
sible to ensure the acyclicness of the ordering relation does not contribute to
the lower bounds obtained from a relaxation at first hand, and analyze the role
and impact of triangulation constraints standalone and when combined with the
former. Along the way, we provide insights on how certain treewidth bounds are
constituted respectively induced by the graph structure. Moreover, we investigate
the flow metric approach by Bornstein and Vempala [10] that proved promis-
ing to derive approximation guarantees for the pathwidth and other related
problems, and reveal why it cannot be combined with the existing PEO-based
formulations in order to compute better lower bounds for the treewidth. Finally,
we demonstrate by computational experiments how the lower bounds obtained
by forming different relaxations of these formulations relate to each other.

The outline of this paper is as follows. Section 2 introduces the basic con-
cepts of treewidth and the PEO-based ILP formulations to compute it, thereby
addressing related work. In Sect. 3, we present our structural analysis of the
PEO-based formulations, and in Sect. 4, we investigate the flow metrics app-
roach in the context of treewidth. The results of our experimental study are the
subject of Sect. 5. The paper closes with a conclusion and outlook in Sect. 6.

2 Treewidth and Perfect Elimination Orderings

2.1 Basic Definitions

A tree decomposition of an undirected graph G = (V,E) is a collection of sets
Xi ⊆ V , i ∈ I, along with a tree T = (I, F ) such that (a)

⋃
i∈I Xi = V , (b)

there is a set Xi, i ∈ I, with {v, w} ⊆ Xi for each {v, w} ∈ E, and (c) for each
j ∈ V , the tree-edges F connect all tree-vertices i ∈ I where j ∈ Xi [24]. The
width of a tree decomposition is defined as maxi∈I |Xi| − 1 and the treewidth
tw(G) of G is the minimum width among all its tree decompositions.

A well-known alternative definition of the treewidth is based on linear
orderings and triangulations [5]. A linear ordering of a graph G = (V,E) is
a bijection π : V → {1, . . . , n}. A perfect elimination ordering (or scheme)
is a linear ordering π such that for each vertex v ∈ V , the set of vertices
Rπ

v := {w ∈ V : π(w) > π(v) and {v, w} ∈ E} forms a clique. A PEO exists if
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and only if G is chordal [18]. On the other hand, each linear ordering π defines
a triangulation (chordalization) G′ of G by means of augmenting edges between
higher ranked but non-adjacent neighbors of the vertices in the order given by
π, see also [5]. Denote by R′π

v this (potential) extension of Rπ
v for v ∈ V , then

the treewidth of G can be derived as

tw(G) = min
πPEO

max
v∈V

|R′π
v |,

i.e., by finding a triangulation (chordalization) of G with minimum clique size [5].

2.2 PEO-based Integer Programming Formulations and Relaxations

From a coarse perspective, two principal approaches to formulate PEO-based
ILPs have been investigated. Both have in common that the edges of (a chordal-
ization of) an undirected graph G = (V,E) are interpreted in an oriented fash-
ion, i.e., we consider (arcs augmenting) the bidirected pendant D = (V,A) of G
where {i, j} ∈ E ⇔ {(i, j), (j, i)} ⊆ A. Moreover, we denote by A∗ := {(i, j) :
i, j ∈ V , i �= j} the arc set of a (conceptually) completed digraph D.

We refer to the first and more common model as TWLO as it relies on the
determination of a (total) linear ordering of the vertices of the graph under
consideration, i.e., it models the relative order of each vertex pair. It originates
from Bodlaender and Koster, see also [19,20], and can be written as follows:

min w

s.t.
∑

j∈V :{i,j}∈E

xij +
∑

j∈V :{i,j}�∈E

yij ≤ w for all i ∈ V (1)

xij + xji = 1 for all i, j ∈ V, i < j (2)
xij + xjk + xki ≤ 2 for all i, j, k ∈ V, i �= j �= k �= i (3)
yij + yik − yjk − ykj ≤ 1 for all {j, k} �∈ E, i ∈ V \ {j, k} (4)
yij − xij = 0 for all i, j ∈ V, {i, j} ∈ E (5)
yij − xij ≤ 0 for all i, j ∈ V, i �= j, {i, j} �∈ E (6)
xij ≥ 0 for all i, j ∈ V, i �= j

yij ≥ 0 for all i, j ∈ V, i �= j

w ∈ R

xij ∈ {0, 1} for all i, j ∈ V, i �= j

The interpretation associated with TWLO is that for all i, j ∈ V , i �= j,
one has π(i) < π(j) if and only if xij = 1, and that {i, j} is an edge of the
triangulation if and only if yij = 1 or yji = 1. Equations (2) enforce that each
vertex pair is ordered while the three-di-cycle inequalities (3) ensure consistency
of the ordering expressed in the x-variables, i.e., transitivity of the precedence
relation, see also [23]. Inequalities (4) impose the necessary augmentations of
(so-called “fill-in”) edges {j, k} �∈ E to obtain a chordalization where each R′π

i

is a clique. Moreover, Eq. (5) ensure that each original edge has a correctly
oriented counterpart in the triangulation, and inequalities (6) let the augmented
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edges be oriented consistently with the ordering as well. In combination with
constraints (4), they also establish the integrality of y if x is integral. Based
on that, the objective function and the constraints (1) finally ensure that the
variable w captures the treewidth as derived in the previous subsection.

While our results are shown to apply also for TWLO, we will mainly work with
a second PEO formulation used also in [16,27] that we refer to as TWAD. TWAD

enforces a partial ordering only for the endpoints of the edges that constitute
the actual triangulation, and can be written slightly more compactly as follows:

min w

s.t.
∑

j∈V

xij ≤ w for all i ∈ V (7)

xij + xji = 1 for all {i, j} ∈ E (8)
∑

(i,j)∈C

xij ≤ |C| − 1 for all di-cycles C ⊆ A∗ (9)

xij + xik − xjk − xkj ≤ 1 for all {j, k} �∈ E, i ∈ V \ {j, k} (10)
xij ≥ 0 for all i, j ∈ V, i �= j (11)
w ∈ R

xij ∈ {0, 1} for all i, j ∈ V, i �= j (12)

The formulation encodes both the partial ordering and the triangulation
into the x-variables. To this end, constraints (8) now only enforce that each
original edge {i, j} ∈ E is oriented while inequalities (10) impose the same
if {j, k} �∈ E is added to the triangulation (but otherwise xjk + xkj = 0 is
possible in TWAD). Since they have the same effect as (4) in TWLO, we call the
constraints (10) simpliciality inequalities like in [27]. The di-cycle inequalities (9)
ensure that the digraph F = (V, Ā) where Ā = {(i, j) ∈ A : xij = 1} is acyclic.
Finally, constraints (7) determine the treewidth of G based on the triangulation
T := {{i, j} ∈ V × V, i �= j : xij + xji = 1}.

Since both presented formulations model the treewidth of an undirected
graph G = (V,E) exactly, a lower bound on the treewidth of G is obtained
when removing any of their constraints (compare also Sect. 5). This is true in
particular for the integrality restrictions on the ordering variables whose removal
gives the linear programming (LP) relaxation of the respective ILP.

3 Analysis of Perfect Elimination Ordering ILPs

3.1 Preliminary Considerations

For TWLO and TWAD it is known that their LP relaxations are “weak” in the
sense that the lower bound obtained can be much smaller than the treewidth.
In fact, the corresponding gap may even be made infinitely large, e.g. for n-by-
n grids whose treewidth is n but where the lower bound obtained by the LP
relaxations of TWLO and TWAD is at most two [19]. This follows directly from
the fact that xij = 1

2 (yij = 1
2 ) for all i, j ∈ V , i �= j, is always feasible for the
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respective LP relaxations, which also implies for general graphs G = (V,E) that
the lower bound obtained is always less or equal to maxv∈V

deg(v)
2 where deg(v)

denotes the degree of v ∈ V . Indeed, this bound is attained for regular graphs.
Another known undesirable property of PEO formulations (applying beyond

ILPs) is their inherent symmetry, given e.g. by the fact that usually several
linear orderings will admit an optimal triangulation in terms of the treewidth.
Moreover, every chordalization imposes symmetry e.g. in terms of the classic
result that each chordal (but not complete) (sub)graph has two non-adjacent
simplicial vertices [14] that could be placed at the end of the ordering without
loss of generality [8]. The same applies to cliques [6].

In the next subsections, we shed light on the structural reasons for the weak-
ness of TWLO, TWAD and their relaxations in terms of the constraint structure.

3.2 Weakness of Di-Cycle Relaxations

We first consider the following basic relaxation of TWAD, referred to as TWB
AD,

that results from removing (9), (10), and (12), and rearranging terms slightly.

min w

s.t. w − ∑

j∈V

xij ≥ 0 for all i ∈ V (7)

xij + xji = 1 for all {i, j} ∈ E (8)
xij ≥ 0 for all i, j ∈ V, i �= j

w ∈ R

The following first observation is immediate and will be of utility.

Observation 1. There is always an optimum solution x∗ ∈ R
A∗

to TWB
AD

where x∗
ij = x∗

ji = 0 if {i, j} �∈ E.

We now direct our attention to a step-wise proof of the following major theo-
rem which implies that the lower bound obtained by TWB

AD cannot be improved
by the addition of the (possibly exponentially many) di-cycle inequalities (9).

Theorem 2. There is always an optimum solution x∗ ∈ R
A∗

to TWB
AD that

satisfies any of the (left out) di-cycle inequalities (9).

It appears that proving Theorem 2 is most appropriate via linear program-
ming duality which will also provide further structural results on the way.

To this end, consider first the linear program, in the following referred to as
TWC

AD, that results from TWB
AD by reinterpreting (7) based on Observation 1 as

w − ∑

j:{i,j}∈E

xij ≥ 0 for all i ∈ V

and by appending the di-cycle constraints (9) rewritten (partly based on Obser-
vation 1 as well) as

− ∑

(i,j)∈C

xij ≥ 1 − |C| for all di-cycles C ⊆ A.



On PEO-based ILPs for Treewidth 299

Let C1
ij := {C ⊆ A di-cycle : (i, j) ∈ C} and C2

ij := {C ⊆ A di-cycle : (j, i) ∈ C}
for {i, j} ∈ E and i < j. Then the dual (linear program) of TWC

AD is:

max
∑

{i,j}∈E

μij +
∑

C⊆A di-cycle
(1 − |C|) λC

s.t.
∑

i∈V

πi ≤ 1

μij − πi − ∑

C∈C1
ij

λC ≤ 0 for all {i, j} ∈ E, i < j (13)

μij − πj − ∑

C∈C2
ij

λC ≤ 0 for all {i, j} ∈ E, i < j (14)

πi ≥ 0 for all i ∈ V

λC ≥ 0 for all di-cycles C ⊆ A

μij ∈ R for all {i, j} ∈ E

Theorem 3. There is always an optimum solution to the dual of TWC
AD such

that λC = 0 for all di-cycles C ⊆ A.

Proof. First, in absence of the variables λC (i.e., when considering the dual of
TWB

AD), it is easy to see that μij ≤ min{πi, πj} for all {i, j} ∈ E, i.e., μ and thus
the dual objective is only bounded from above by this relation to π. Further, it is
observed from μij ’s occurrence in both (13) and (14) that any further increase of
μij by some amount δij > 0 requires that we have both δij ≤ ∑

C∈C1
ij

λC =: ν1

and δij ≤ ∑
C∈C2

ij
λC =: ν2. By equally distributing the constant contributions

associated with a variable λC over the arcs of the respective di-cycle C, we may

rewrite the objective as
∑

{i,j}∈E, i<j

(

μij +
∑

C∈C1
ij

λC

|C| +
∑

C∈C2
ij

λC

|C|

)

− ∑

C⊆A di-cycle
|C| λC .

It is now apparent that increasing μij by δij ≤ min{ν1, ν2} imposes a direct
“reward” of δij ≤ 1

2 (ν1+ν2) in the objective, there is another per-edge “reward”
of at most 1

3 (ν1+ν2) (as any cycle has length at least three), but also a “loss” of at
least ν1+ν2 as (i, j) and (j, i) contribute to the cardinalities of the respective di-
cycles. Thus, a solution where λC > 0 for any di-cycle C ⊆ A cannot be optimal.

Proof (of Theorem 2). Since, by Theorem 3, there is an optimum solution to the
dual of TWC

AD with λC = 0 for all di-cycles C ⊆ A, the dual objective values
in presence and absence of the di-cycle inequalities coincide, and so do, by the
strong duality theorem for linear programming, the objective values of TWB

AD

and TWC
AD. This in turn implies that there is a solution to TWB

AD that satisfies
all di-cycle inequalities in addition without increasing the objective value1.

1 In general, the di-cycle inequalities still pose a restriction of the feasible region of
TWB

AD, i.e., an optimum solution to the latter may violate some of them, but adding
them does not change the objective value. An impact of the di-cycle inequalities is
still possible in the presence of (e.g.) the simpliciality constraints, compare Sect. 5.
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Recall that TWLO the latter formulation is obtained from TWAD by imposing
(8) to all vertex pairs (i.e., (2)), by replacing the cycle inequalities (9) by the
three-di-cycle inequalities (3), and by introducing additional variables yij for
all i, j ∈ V , i �= j. Moreover, forming the two analogue relaxations TWB

LO

and TWC
LO, one immediately observes (as an analogue to Observation 1) that

yij = xij for all {i, j} ∈ E, and that there is always an optimum solution with
yij = yji = 0 for all {i, j} �∈ E. So we may restrict TWC

LO to the x-variables as
well, and then its according dual looks almost like the one of TWC

AD. The only
differences are that constraints (13) and (14) are present for all i, j ∈ V , i �= j
(but reduce to μij ≤ 0 if {i, j} �∈ E), and that for {i, j} ∈ E they summarize
over dual variables for three-di-cycle inequalities instead of di-cycle inequalities.
Thus, the same argumentation as for Theorem 2 applies to prove the following.

Theorem 4. There is an optimum solution (x∗, y∗) ∈ R
A∗ ×R

A∗
to TWB

LO with
yij = xij for all {i, j} ∈ E and yij = yji = 0 for all {i, j} �∈ E that satisfies any
of the (left out) three-di-cycle inequalities (3).

Finally, the insights about how the dual objective function is bounded imme-
diately give the following result for both formulations.

Corollary 1. Let G = (V,E) be an undirected graph. Then the lower bound on
the treewidth of G provided by TWB

AD, TW
C
AD, TW

B
LO and TWC

LO is equal to
max{|E(U)| 1U : U ⊆ V }.
Proof. As argued before, the objectives of the respective dual linear programs
resolve to the maximization of

∑
{i,j}∈E μij . Since μij ≤ min{πi, πj} for all

{i, j} ∈ E and
∑

i∈V πi = 1, such a maximum is attained for a densest (or,
equivalently, maximum average density) subgraph of G, i.e., for a set U ⊆ V
that maximizes |E(U)| 1U , see also [11,17].

The actual problem solved to find an optimum dual solution is thus a densest
subgraph problem. A similar observation was made by Grigoriev [19] in a slightly
different (dual) scenario for a pathwidth formulation.

3.3 The Role and Effect of Simpliciality Inequalities

We now consider the full LP relaxation of TWAD, respectively the effect of
adding the so far neglected simpliciality inequalities (10) again.

These inequalities are formulated for each {j, k} �∈ E and all i ∈ V \ {j, k}.
Assuming the integrality of x, the straightforward implication they impose is
that one of the arcs (j, k) and (k, j) must be augmented if both the arcs (i, j)
and (i, k) are present as well (binary conjunction). Consequently, the following
two observations related to the impact of these inequalities are understood.

Observation 5. The simpliciality inequalities (10) are (partial) linearizations
of the quadratic constraints xjk +xkj ≥ xij ·xik for all {j, k} �∈ E, i ∈ V \{j, k}.
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Observation 5 refers to a partial linearization because (10) only enforces
xjk + xkj to be one if the product is, while the objective ensures that it will
be zero if not enforced otherwise but of relevance for the objective value. On
the other hand, in fractional terms when solving the LP relaxation, the sum
xjk +xkj is only enforced by (10) to be at least xij +xik −1 if this is larger than
zero. So typically, for some {j, k} �∈ E where xij + xik ≤ 1 for all i ∈ V , and in
pathological cases where even xij = xji = 1

2 for all {i, j} ∈ E gives an optimum
solution to the relaxation, these inequalities do not have any effect at all.

Observation 6. For all {j, k} �∈ E, at least |V | − 3 of the |V | − 2 simpliciality
inequalities (10) are redundant for any solution to TWAD or its LP relaxation.

Observation 6 subsumes the fact that if the aforementioned effect on xjk+xkj

is imposed at all, then it is imposed the strongest by a single î ∈ V such that
xîj + xîk is maximum among all i ∈ V \ {j, k}.

Our computational experiments in Sect. 5 nevertheless show that the simpli-
ciality inequalities typically do have some impact on the obtained solutions and
lower bounds though it is a weak one. In particular, only in their presence some
of the variables xjk, {j, k} �∈ E, may be enforced to a non-zero value at all.

4 On Flow Metric Extensions for PEO-based ILPs

Connected with the hope for stronger LP relaxations, it is proposed in [26]
and [19] to combine PEO formulations with flow metric variables and constraints
as described by Bornstein and Vempala in [10].

As already observed in the two former articles, when applying the flow met-
ric formulation in the context of treewidth, it suffices to restrict to the variables
gij

k ≥ 0, i, j, k ∈ V supposed to represent the flow from i to j that goes through k.
In addition2, we rule out the variables gii

k , i, k ∈ V , and reformulate the con-
straints described in [10] only for pairwise different vertex pairs as follows:

gij
j + gji

i = 1 for all i, j ∈ V, i �= j (15)

gij
k + gji

k + gik
j + gki

j + gjk
i + gkj

i = 1 for all i, j, k ∈ V, i < j < k (16)

d(i, j) −
∑

k∈V

gij
k = 0 for all i, j ∈ V, i �= j (17)

d(i, j) + d(j, k) − d(i, k) ≥ 0 for all i, j, k ∈ V, i �= j �= k �= i (18)

2 Concerning the original formulation in [10], observe that if variables giii were defined,
then their value would be implied to be 1

2
by the original pendant of (15). Similarly,

the pendant of (16) would render the problem infeasible if imposed for i = j = k.
Moreover, variables giik , i,k ∈ V , k �= i, are not sensible with regard to their informal
definition, and cause another issue with (16). Namely, if (16) were stated for i = j �= k
(or any symmetric selection), then an equation of the form 2giik + 2giki + 2gkii = 1
would result, forcing any of these variables to be at most 1

2
which is clearly not

intended. We conclude that the constraints are only plausible in the way displayed
which is also suggested by the proof of Theorem 2.2 in [10] where the final sum
would not comply with the binomial coefficients if it was not meant for i < j < k.
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Equations (15) impose that for each pair of different vertices i, j ∈ V , the value
of the flow from i to j plus the flow from j to i is one, and Eq. (16) enforce
for each vertex triple that the flow from i to j that goes through k, the flow
from i to k that goes through j, and the flow from j to k that goes through i
sum up to one. While (17) are only auxiliary constraints to define the flow-based
distances between each pair of different vertices, constraints (18) finally impose
the triangle inequality on these. As Bornstein and Vempala point out in [10],
flow-based distances satisfying the above constraints also satisfy the so-called
spreading constraints

∑
i,j∈S d(i, j) ≥ (|S|

3

)
for all S ⊆ V , |S| ≥ 3.

Applying the flow metric extensions to the PEO-based formulations for tree-
width, the variables gij

j shall be identified with xij for i, j ∈ V , i �= j, as described
in [19,26] while the variables gij

i could as well be eliminated as described below.
The following observation exposes an essential difference compared to e.g.

the linear ordering formulations for the pathwidth where the variables gi,j
v for

v ∈ V \{i, j} all have a non-zero coefficient in the relaxation to be solved (cf. [10]).

Observation 7. Among the additional variables gij
k ≥ 0, i, j, k ∈ V , k �= i �= j,

the variables gij
j for i, j ∈ V , i �= j, are the only ones taking part in the definition

of the objective function of TWLO via the constraints (1).

In other words, only if there exists a scenario where the constraints (15)–(18)
must have an impact on at least one variable gij

j (xij), i, j ∈ V , i �= j, a strength-
ening of the lower bounds obtained with the LP relaxation of TWLO is possible.
Unfortunately, such a scenario does not exist as the following result states.

Proposition 1. When extending the LP relaxation of TWLO by the constraints
(15)–(18) linked to its variables by the identity gij

j = xij for i, j ∈ V , i �= j, the
lower bound obtained remains the same as with the LP relaxation of TWLO.

Proof. Under the identification of xij- and gij
j -variables, clearly constraints

(15) coincide with (2). Moreover, the variables occurring in constraints (16)
are entirely disjoint from those in (15). It follows that an impact on any gij

j ,
i, j ∈ V , i �= j, could only be established indirectly via the auxiliary sum (17)
and constraints (18). But in (17), gij

j is accumulated only with the variables
gij

k for k ∈ V \ {j}. This leaves freedom to set (e.g.) gij
i to zero, and gij

k = 1
6

for all k ∈ V \ {i, j} which will satisfy all equations (16) and establish that
d(i, j) = gij

j +(|V |− 2) 16 for all i, j ∈ V , i �= j. In particular, d(i, j) and gij
j (xij)

then coincide up to a constant which is equal for all vertex pairs. Finally, consid-
ering a three-di-cycle inequality with an index shift to a cycle j → i → k → j,
it can be rewritten by exploiting (2):

xji + xkj + xik ≤ 2 for all i, j, k ∈ V, i �= j �= k

⇔ − xji − xkj − xik ≥ −2 for all i, j, k ∈ V, i �= j �= k

⇔ xij + xjk − xik ≥ 0 for all i, j, k ∈ V, i �= j �= k

Thus, if x satisfies the three-di-cycle inequalities, there is always a corresponding
solution to the extended formulation that satisfies the triangle inequalities (18)
as well and that has the same objective (lower bound on the treewidth).
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Table 1. Lower bounds obtained with different PEO-based relaxations for some
selected graph instances, while LBLP

S ≤ LBLP
R ≤ LBIP

B , LBIP
B ≤ LBIP

C , and LBIP
B ≤

LBIP
S .

Instance |V| |E| tw LBLP
B,C LBLP

S LBLP
R LBIP

B LBIP
C LBIP

S

barley 48 126 7 3.00 3.20 3.20 3 5 5

huck 74 301 10 5.46 5.53 5.53 6 10 6

jean 80 254 9 5.39 5.57 5.57∗ 6 9 7

mainuk 48 198 7 4.46 4.67 4.67 5 7 6

mildew 35 80 4 2.37 2.44 2.44 3 3 3

myciel2 5 5 2 1.00 1.00 1.00 1 2 1

myciel3 11 20 5 1.81 2.08 2.08 2 3 3

myciel4 23 71 10 3.08 3.83 3.83 4 5 6

water 32 123 9 4.25 4.68 4.68∗ 5 6 6

bcspwr01 39 46 3 1.25 1.36 1.36 2 2 2

bcspwr02 49 59 3 1.35 1.54 1.54 2 2 2

bcsstk02 66 2145 65 32.50 32.50 32.50 33 65 33

can 24 24 68 5 2.83 2.93 2.93 3 4 4

can 62 62 78 3 1.40 1.59 1.59 2 2 3

curtis54 54 124 5 2.44 2.63 2.63 3 4 4

dwt 66 66 127 2 1.95 1.95 1.95 2 2 2

dwt 72 72 75 2 1.06 1.14 1.14 2 2 2

dwt 87 87 227 7 2.96 3.48 3.48∗ 3 4 5

steam3 80 424 7 5.30 5.30 5.30 6 7 6

will57 57 127 4 2.62 2.70 2.70 3 4 3

grid 5 25 40 5 1.60 1.86 1.86 2 2 3

grid 6 36 60 6 1.67 1.91 1.91 2 2 3

grid 7 49 84 7 1.71 1.95 1.95 2 2 4

p40 18 32 18 32 4 1.81 2.09 2.09 2 2 3

p50 19 25 19 25 3 1.44 1.55 1.55 2 2 2

p60 20 22 20 22 2 1.18 1.28 1.28 2 2 2

p70 21 25 21 25 3 1.36 1.60 1.60 2 2 2

p80 22 30 22 30 3 1.46 1.66 1.66 2 2 2

p90 23 35 23 35 4 1.62 1.97 1.97 2 2 3

p100 24 34 24 34 3 1.53 1.85 1.85 2 2 3

5 Computational Experiments

To provide an impression on the relation between the lower bounds obtained with
different relaxations of PEO-based ILP formulations, we compiled a testbed of
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30 well accessible graphs that have been used in previous experimental studies
for various width parameters (see e.g. [5,15,22] for the respective repositories).

We define and compute lower bounds based on relaxations of TWAD which all
involve the constraints (7), (8), and (11). While these completely define LBLP

B,C ,
(10) is considered in addition for LBLP

S , and both (9) and (10) are added for LBLP
R

(LP relaxation). Similarly, only the integrality restrictions (12) are employed in
addition for LBIP

B , (9) and (12) for LBIP
C , and finally (10) and (12) for LBIP

S .
The results are displayed in Table 1 along with the treewidth of the graphs

(column tw). Generally, they confirm that the lower bounds obtained with the
LP relaxations of TWAD and TWLO, here represented by LBLP

R , are not satisfac-
tory. Even the simplest (and typically quickly solved) ILP-relaxation provides a
lower bound LBIP

B that is frequently (but not always) a bit stronger (even though
usually inconvenient as well). It is also apparent that the simpliciality inequal-
ities may lead to a slight but often negligible improvement of the lower bound
(LBLP

S ) compared to LBLP
B,C . In a few cases (marked with an asterisk), LBLP

R

improves over LBLP
S in insignificant digits due to the additional di-cycle inequal-

ities. Finally, when looking at the ILP relaxations, it turns out that the impact
of the di-cycle inequalities (LBIP

C ) is frequently more significant than the one of
the simpliciality inequalities (LBIP

S ). However, these relaxations are expensive to
solve and often still too weak to successively close the gap to the treewidth.

6 Conclusion

We have provided first structural evidence and explanations for the weakness of
LP relaxations of PEO formulations for computing the treewidth. In particular,
we showed that there is always an optimum solution to a basic relaxation that
satisfies all di-cycle inequalities, i.e., the addition of the latter does not have an
impact on the obtained lower bounds, and this impact was shown to be also
insignificant when simpliciality inequalities are taken into account as well. The
objective value of the basic relaxation is determined by a densest subgraph. Solv-
ing it with integrality restrictions, the obtained lower bounds are frequently (but
not always) slightly better than with a complete LP relaxation. Adding di-cycle
inequalities or simpliciality inequalities in this context has a more significant but
still unsatisfactory effect especially since these relaxations are expensive to solve.
We also revealed that combining the LP relaxation of existing PEO formulations
and the LP formulation for flow metrics does not lead to improved lower bounds.
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Abstract. A cut (X,Y) is a perfect matching cut if and only if each
vertex in X has exactly one neighbor in Y and each vertex in Y has
exactly one neighbor in X. The computational problem of determining
if a graph admits a perfect matching cut is NP-complete, even when
restricted to the class of bipartite graphs of maximum degree 3 and arbi-
trarily large girth. Assuming ETH, the problem does not admit an algo-
rithm subexponential in n. On the other hand, the problem is known to
be polynomial-time solvable when restricted to interval graphs, permu-
tation graphs, and some other special classes of graphs. It is also known
to be FPT parameterized by treewidth or cliquewidth and in XP when
parameterized by mim-width (maximum induced matching-width) of a
given decomposition of the graph.

The ETH-hardness of the problem has motivated the study of exact
algorithms for PMC, and the best-known running time has complex-
ity (We use the O∗ notation which suppresses polynomial factors.)
O∗(1.2721n) [Le and Telle, WG 2021]. In this contribution, we design
a mildly improved branching algorithm using an arguably simpler app-
roach, whose running time is O∗(1.2599n). This addresses an open prob-
lem posed by Le and Telle. We also demonstrate an O∗(1.1938n) algo-
rithm for graphs of maximum degree 3 that have girth at least six.

Keywords: Perfect Matching Cut · Branch and Bound

1 Introduction

The Perfect Matching Cut problem was introduced by Heggernes and Telle
(1998) in the context of their study of generalized domination problems. Gener-
alized dominating sets are parameterized by two sets of nonnegative integers σ

and ρ as follows. A set S of vertices of a graph is said to be a (σ, ρ)-set if ∀v ∈
S, |N(v) ∩ S| ∈ σ and Vu /∈ S, | N(v) ∩ S |∈ ρ. The (k,σ, ρ)-partition problem asks
for the existence of a partition V1,V2, . . . ,Vh of vertices of a given graph G such
that Vi, i = 1, 2, . . . ,k is a (σ, ρ)-set of G. One of the special cases of this problem
that the authors demonstrated to be NP-complete was when k = 2, σ = N and
ρ = 1. Note that this asks if the graph can be partitioned into two parts, say X and
Y, so that every vertex in X has exactly one neighbor in Y and every vertex in Y has
exactly one neighbor in X. This is indeed the definition of a perfect matching cut.
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This formulation of the perfect matching cut makes it a specific instance of
what is called a (σ, ρ) 2-partitioning problem (Telle and Proskurowski, 1997),
where the problem is also phrased the following equivalent labelling task: label
the vertices with two labels such that each vertex has exactly one neighbor
labelled differently from itself. Recent developments by Édouard Bonnet et al.
(2023) show that the problem is NP-complete even on 3-connected cubic bipartite
planar graphs.

We note that the Perfect Matching Cut problem can be thought of as
a more demanding variation of the Matching Cut problem (Chvátal, 1984),
which asks if the graph can be partitioned into two parts, say X and Y as before,
so that every vertex in X has at most one neighbor in Y and every vertex in Y

has at most one neighbor in X. This way the edges in the cut induced by (X,Y)
form a matching, but not necessarily one that is perfect. Neither a matching cut
nor a perfect matching cut is guaranteed to exist. The computational question
is to determine if they do. One could also ask for a matching cut that cuts at
least k edges, with the perfect matching cut question being the special case when
k = n/2. For a representative sample of recent developments on the algorith-
mic aspects of the Matching Cut problem, we refer the reader to the works
of Komusiewicz et al. (2018); Golovach et al. (2021); Chen et al. (2021).

From results of Bui-Xuan et al. (2013) and Telle and Proskurowski (1997), it
turns out that the Perfect Matching Cut problem is FPT in the treewidth
or cliquewidth of the input graph and XP in the maximum induced matching-
width (mim-width) of a given decomposition of the graph. In a more recent
development, Le and Telle (2022) show that the problem can be solved in poly-
nomial time on two other graph classes as well: the first one includes claw-free
graphs and graphs without an induced path on five vertices, while the second one
properly contains all chordal graphs. Finally, Feghali et al. (2023) obtain a com-
plete complexity classification of Perfect Matching Cut for H-subgraph-free
graphs where H is any finite set of graphs.

In contrast with Matching Cut, which is known to be polynomial-time
solvable when restricted to graphs of maximum degree 3, Le and Telle (2022)
show that Perfect Matching Cut is NP-complete in the class of bipartite
graphs of maximum degree 3 and arbitrarily large girth. They also show that the
problem cannot be solved in O∗ (

2o(n)
)

time for n-vertex bipartite graphs and

cannot be solved in O∗
(
2o(

√
n)

)
time for bipartite graphs with maximum degree

3 and arbitrarily large girth, assuming the Exponential Time Hypothesis. Finally,
they demonstrate the first exact algorithm to solve Perfect Matching Cut
on n-vertex graphs, with a runtime of O∗(1.2721n) using a branch-and-bound
technique. In this work, we continue this line work and propose two algorithms
with faster running times for Perfect Matching Cut — one of them works
on general graphs while the other takes advantage of the structure of graphs
with maximum degree 3 and girth at least six.
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Specifically, we show that Perfect Matching Cut can be solved in
O∗(1.2599n) time on n-vertex graphs and in O∗(1.1938n) time on n-vertex
graphs with maximum degree 3 and girth at least six. Our overall approach
in both cases follows the framework introduced by Le and Telle (2022). Given a
graph G, we will maintain and develop a partial matching cut (A,B), where A

and B are disjoint subsets of V(G) with the property that every vertex in A has
at most one neighbor in B and every vertex in B has at most one neighbor in A.
We say that a perfect matching cut (X,Y) extends a partial matching cut (A,B)
if A ⊆ X and B ⊆ Y.

We make progress by committing more and more vertices in V(G)\(A∪B) to
either A or B in a manner that is either forced1 or by exhaustive exploration2. We
do this until we either have evidence that there is no perfect matching cut that
extends the current partial matching cut3 or until we fully develop (A,B) into a
partition of V(G). We report Yes if any of the fully developed partitions induce
a perfect matching cut, and No otherwise. The correctness of this approach
follows from the exhaustiveness of the choices we make for branching.

Both algorithms have the following overall structure. Assuming that the input
is a Yes-instance, guess an edge (uv) in the perfect matching cut. This gives us
an initial partial matching cut (A = {u},B = {v}) at a cost of O(m) overhead in
the running time. We preprocess instances using some polynomial-time reduction
rules to ensure that the partial matching cut satisfies a few key invariants. If
none of the reduction rules apply to an instance, it is said to be reduced. Given
a reduced instance that is not fully resolved (i.e: V\(A ∪ B) is non-empty), we
solve the instance according to a collection of specific branching rules.

As is standard for branch-and-bound algorithms (Fomin and Kratsch, 2010),
we have a measure that we track along the branching process, and the running
time is determined by how the measure drops in each branch. For both our
algorithms, our measure will be the number of vertices that are not in the partial
cut: so when we extend the partial matching cut by committing some vertices
from outside (A ∪ B) to one of A or B, our measure decreases by as much as the
number of vertices that were added to the partial matching cut.

While the improvement we achieve in the running time for general graphs
compared to the state of the art is incremental, we propose a conceptually simpler
branching routine. For the case of graphs with maximum degree 3 and girth at
least six, we strengthen the base case and maintain a stronger invariant (namely
that there are no isolated vertices in G[A ∪ B]) to achieve a more substantial
improvement in the running time.

1 For example, if a vertex v ∈ A has a neighbor in B, then all of its other neighbors
must belong to A in any perfect matching cut that extends (A,B).

2 For instance, we may have a vertex v /∈ A ∪ B, but with two neighbors a ∈ A and
b ∈ B: notice that any perfect matching cut that extends (A,B) either has the edge
(v,a) or the edge (v,b). Thus, we may “branch” on the partial cuts (A ∪ {v},B) and
(A,B ∪ {v}) to explore these two possibilities.

3 A typical scenario of this kind would be when there is a vertex v /∈ A ∪ B that has
more than one neighbor in both A and B.
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2 Preliminaries and Notation

We follow standard graph-theoretic terminology unless mentioned otherwise.
Throughout, G = (V,E) will denote a simple undirected graph, and we use
V(G) and E(G) to denote the vertex and edge sets of G, respectively.

A cut is a partition V(G) = X ∪ Y of the vertex set into disjoint, non-empty
sets X and Y. The set of all edges in G having an endvertex in X and the
other endvertex in Y, written E(X,Y), is called the edge cut of the cut (X,Y). A
matching cut is an edge cut that is a (possibly empty) matching, while a perfect
matching cut is an edge cut that is a perfect matching. Equivalently, we have
the following definitions:

– a cut (X,Y) is a matching cut if and only if each vertex in X has at most one
neighbor in Y and each vertex in Y has at most one neighbor in X; and

– is a perfect matching cut if and only if each vertex in X has exactly one
neighbor in Y and each vertex in Y has exactly one neighbor in X.

Further, we will typically use the notation in our discussions.

– (A,B) denotes a partial matching cut, where A,B ⊆ V(G), and while A and
B are disjoint, A∪B need not be V(G), and each vertex in A has at most one
neighbor in B and each vertex in B has at most one neighbor in A. Note that
G[A ∪ B] need not be a perfect matching cut.

– Given a partial matching cut (A,B), we use F(A,B) to denote V\(A∪B). When
the context is clear, we drop the subscript and just use F. Further, we use
∂(F) to denote the subset of vertices in F that have at least one neighbor in
A ∪ B, i.e.:

∂(F) := {v ∈ F | N(v) ∩ (A ∪ B) �= ∅}.
– For a partial matching cut (A,B), we define:

A◦ := {v ∈ A | N(v) ∩ B = ∅} and B◦ := {v ∈ B | N(v) ∩ A = ∅}

and
A� := A\A◦ and B� := B\B◦.

The vertices of A◦ and B◦ are called unsaturated in (A,B) while vertices of
A� and B� are said to be saturated in (A,B).

– We refer to the vertices in F as undetermined.
– We call the vertices in A ∪ B committed.

Given a partial matching cut (A,B), a perfect matching cut (X,Y) is said to
extend (A,B) if A ⊆ X and B ⊆ Y.

We define an instance of the PMC-Extension problem as follows: given
a graph G with a partial matching cut (A,B), determine if G admit a per-
fect matching cut that extends (A,B). Note that this generalizes the Perfect
Matching Cut problem, which is the special case when A = B = ∅.
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3 Polynomial-Time Reduction Rules

Let (G = (V,E),A,B) be an instance of the PMC-Extension problem where
(A,B) is a partial matching cut of G. Given P,Q ⊆ F(A,B) where P and Q are
disjoint, we use the notation:

GAB[P � A;Q � B] := (G,A ∪ P,B ∪ Q).

We slightly abuse this notation in a few ways: if (A,B) is clear from the
context we drop the subscript, if P = ∅, we use the shorter notation G[Q � B],
if P = v and Q = ∅, we will use G[v � A], and so on. We now describe some
polynomial-time reduction rules (we borrow and slightly adapt these from Le and
Telle (2022)). These will be used to preprocess instances of PMC-Extension.

Reduction Rule 0. [Maintain Valid Cuts] If there is a vertex u ∈ A (resp,
B) that has more than one neighbor in B (repsectively, A), then say No.

Reduction Rule 1. [Neigbors of Saturated Vertices are Determined]
If u ∈ A� (resp, B�), v ∈ F, and (uv) is an edge; then return G[v � A] (resp,

G[v � B]).
Reduction Rule 2. [Last Chance for an Unsaturated Vertex]
If u ∈ A◦ (resp, B◦) and N(u)∩F = v, then return G[v � B] (resp, G[v � A]).
Reduction Rule 3. [No Chance for an Unsaturated Vertex]
If u ∈ A◦ ∪ B◦ and N(u) ∩ F = ∅, then say No.
Reduction Rule 4. [Too Many Neighbors in A ∪ B]

– If u ∈ F with |N(u) ∩ A| � 2 and |N(u) ∩ B| � 2 then say No4.
– If u ∈ F and |N(u) ∩ A| � 2 (resp, |N(u) ∩ B| � 2) then return G[u � A]

(resp, G[u � B]).

Reduction Rule 5. [Degree One in F]
If u ∈ ∂(F), d(u) = 2, u has one neighbor in A (resp, B), u has one neighbor

v in F, and v has a neighbor in A ∪ B; then return G[v � B] (resp, G[v � A]).
Reduction Rule 6. [Degree One in F Extended]
If u ∈ ∂(F), d(u) = 2, u has one neighbor in A (resp, B), u has one neighbor

v in F, and d(v) = 1; then return G[u � A, v � B] (resp, G[v � A,u � B]).
Reduction Rule 7. [Degree Zero in F]
If u ∈ ∂(F) such that d(u) ∈ {1, 3} and dF(u) = 0, and if u has exactly one

neighbor in A (resp, B), return G[u � B] (resp, G[u � A]).

4 Note that this scenario does not arise if the input graph has maximum degree at
most three.
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4 Maximum Degree Three and Large Girth

Let (G = (V,E),A,B) be an instance of PMC-Extension, where G is a graph
with maximum degree three and girth at least six5. Throughout our discussion,
F is used to denote F(A,B).

We will describe a recursive branching algorithm denoted by A(·) for the
problem. We use P(·) to denote the algorithm that returns an instance after the
exhaustive application of reduction rules 1—7.

We say that an instance (G,A,B) is reduced if P
(
(G,A,B)

)
= (G,A,B), i.e.,

none of the reduction rules are applicable on the instance. An instance (G,A,B)
where A = B = ∅ or G[A ∪ B] has isolated vertices is called degenerate. Before
we begin, we specify some useful invariants.

Key Invariants

1. A ∪ B is non-empty.
2. G[A ∪ B] has no isolated vertices.
3. Every vertex in F has at most one neighbor in A and at most one neighbor

in B.
4. If (uv) is an edge and u ∈ ∂(F) and v ∈ A ∪ B, then v ∈ A◦ ∪ B◦

5. Every u ∈ A◦ ∪ B◦ has at least two neighbors in F.

We say that an instance clean if it satisfies all the invariants above. Notice
that the reduction rules preserve the invariants, which is to say that if the input
satisfies any subset of the invariants above, then so does the output. Further,
notice that a reduced instance is either clean or degenerate. Our branching pre-
serves invariants: if the input is a clean instance, then so is the output.

Note an instance G of Perfect Matching Cut can be solved by guessing
one edge in the final solution and applying the algorithm for PMC-Extension
on the guess. In particular, we return:

∨

e=(u,v)∈E(G)

A

(
P
((

G,A = {u},B = {v}
))

)

to determine if G has a perfect matching cut.
We now describe our branching algorithm. We maintain that the input to

the algorithm is clean and reduced with respect to Reduction Rules 1—7. Note
that this holds in the first calls above. The branching rules are executed in the
order in which they are described. The measure is |F|.

1. Suppose there is a degree-2 vertex u in ∂(F) with one neighbor (say a) in A

and the other neighbor (say v) in F. Since the instance is reduced, we know
that v has no neighbors in (A ∪ B), and at least one neighbor other than u

in F. We now consider two cases based on the degree of v.
5 This implies that G has no triangles or cycles of length four or five.
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(a) d(v) = 2.
By invariants (2) and (5), we have that a has exactly one neighbor other
than u in F. Further, because of the case we are in, v has exactly one
neighbor other than u in F. Let p be a’s second neighbor in F, and let
q be v’s second neighbor in F. Note that p �= q since G has no cycles of
length four. We now branch on whether u is matched to a or v:

A

(
P
(
G[u � A, {p,q, v} � B]

)
) ∨

A

(
P
(
G[{p,q} � A, {u, v} � B]

)
)

.

Note that p,q,u and v are distinct. Therefore, this is a (4, 4) branch.
(b) d(v) = 3. As in the previous case, by invariants (2) and (5), we have that

a has exactly one neighbor other than u in F. Further, because of the case
we are in, v has exactly two neighbors other than u in F. Let p be a’s
second neighbor in F, and let q and r be v’s second and third neighbors
in F. Note that p �= q and p �= r since G has no cycles of length five. We
again branch on whether u is matched to a or v:

A

(
P
(
G[u � A, {p,q, r, v} � B]

)
) ∨

A

(
P
(
G[{p} � A, {u, v} � B]

)
)

.

In the previous case, when u was matched to a, v was matched to q

by lack of choice. This is no longer the situation here, since v has two
neighbors in F. However, in the branch where u is matched to v, we now
have an additional vertex forced into A ∪ B.

Recall that p,q, r,u and v are distinct. Therefore, this is a (5, 3) branch.
The case when there is a degree 2 vertex u in ∂(F) with one neighbor (say b)
in B and the other neighbor (say v) in F is symmetric.

2. Suppose u in ∂(F) is degree three and has one neighbor a in A, one in B (say
b), and one in F (say v). Note that a and b have at least one neighbor other
than v in F, by invariant (5). Let a′ be a’s second neighbor in F and let b′ be
b’s second neighbor in F (c.f. Fig. 1). We branch on whether u is matched to
a or b:

A

(
P
(
G[{v,u} � A, {a′,b′} � B]

)
) ∨

A

(
P
(
G[{a′,b′} � A, {v,u} � B]

)
)

.

Note that we have a′ �= v, b′ �= v since G has no triangles and a′ �= b′ since
G has no cycles of length four.
Therefore, this is a (4, 4) branch.
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Fig. 1. A figure describing the setting of Branching Rule 2.

3. Suppose there is a degree-3 vertex v in ∂(F) such that v has one neighbor a

in A and two neighbors p,q in F. Note that a has exactly one neighbor other
than v in F, by invariants (2) and (5), say u. Note that u ∈ ∂(F) and:

– If d(u) = 1 then the instance is not reduced, a contradiction.
– If d(u) = 2 and dF(u) = 1 then we would have branched on u.
– If d(u) = 3 and dF(u) = 1 we would have branched6 on u.
– If d(u) = 3 and dF(u) = 3 then d(u) � 4, a contradiction.

Therefore, we have that d(u) = 3 and dF(u) = 2 or d(u) = 2 and dF(u) = 0.
We analyze these cases separately.
(a) d(u) = 3 and dF(u) = 2.

Let the neighbors of u in F be r and s (c.f. Fig. 2). We branch on whether
a is matched to u or v:

A

(
P
(
G[v � A, {u, r, s} � B]

)
) ∨

A

(
P
(
G[u � A, {v,p,q} � B]

)
)

.

6 Indeed, in this scenario u would then be a degree three vertex in ∂(F) with one
neighbor each in a A and B (notice that this is the only possibility because of our
assumption that the instance is reduced).
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Note that we have {r, s} ∩ {p,q} = ∅ since G has no cycles of length four.
Therefore, this is a (4, 4) branch.

Fig. 2. A figure describing the setting of Case (a) within Branching Rule 3.

(b) d(u) = 2 and dF(u) = 0.
By invariant (3), we know that u’s second neighbor (say b) belongs to
B. Note that by invariants (2) and (5), b must have exactly one more
neighbor in F other than u: let this neighbor be w. Here we branch on
whether u is matched to a or b:

A

(
P
(
G[{w, v} � A,u � B]

)
) ∨

A

(
P
(
G[u � A, {v,p,q,w} � B]

)
)

.

Note that w �= p and w �= q, since G has no cycles of length five.
Therefore, this is a (3, 5) branch.
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Fig. 3. A figure describing the setting of Case (b) within Branching Rule 3.

The case when there is a degree 3 vertex v in ∂(F) such that v has one
neighbor b in B and two neighbors p,q in F is symmetric and analogously
handled (Fig. 3).

This completes the description of the branching rules.
Observe that if none of the branching rules are applicable on a clean and

reduced instance, then note that we have the following:

1. Every vertex in ∂(F) has degree two in G: indeed, if we have a degree three
vertex in ∂(F), then we would have branched according to branching rules
2 or 3; and if we have a degree one vertex in ∂(F), then the instance is not
reduced. Combined with invariant (3), we have that every vertex in ∂(F) has
exactly one neighbor in A and exactly one neighbor in B.

2. Every vertex in A◦ ∪ B◦ has exactly two neighbors in F: this follows from
the assumption about the maximum degree of the graph being three, and
invariants (2) and (5). Therefore, we have that every vertex has degree two

in the graph G[∂(F)∪A◦ ∪B◦]\
(

E[G[A]]∪E[G[B]]

)
, which is to say that this

subgraph is a disjoint union of cycles. Further, note that F\∂(F) = ∅, since G

is connected.



Finding Perfect Matching Cuts Faster 317

Observe that this instance can be solved in polynomial time by checking
the parity of the cycles. This concludes our handling of the base case of the
algorithm.

It can be verified that all the branching and reduction rules preserve the
invariants, and this can be used to establish that the branching rules are exhaus-
tive and correct. These arguments are implicit in the description of the branching
rules.

Running Time Analysis. Recall that an algorithm branches on an instance of size
n into r subproblems of sizes at most n−t1,n−t2, . . . ,n−tr, then (t1, t2, . . . , tr)
is called the branching vector of this branching, and the unique positive root of
xn − xnt1 − xnt2 − · · · − xntr = 0, denoted by τ (t1, t2, . . . , tr), is called its
branching factor. The running time of a branching algorithm is O∗ (αn), where
α = maxi αi and αi is the branching factor of branching rule i, and the maximum
is taken over all branching rules (c.f. the book by Fomin and Kratsch (2010)).
Since τ(3, 5) = 1.1938 and τ(4, 4) = 1.1892, and therefore we have the following.

Theorem 1. The Perfect Matching Cut problem admits an algorithm with
running time O∗(1.1938n) on graphs of maximum degree 3 and girth at least six.

5 Concluding Remarks

We show improved algorithms for Perfect Matching Cut on general graphs
and graphs of maximum degree 3 and girth at least six. A natural question is if
we can achieve a comparable running time without the assumption of excluding
short cycles. We believe this can be done with a more careful case analysis.
Obtaining a sub-exponential running time for bipartite graphs with maximum
degree three and girth g, matching the ETH-based lower bound from Le and
Telle (2022) is also a natural open problem.

Due to lack of space, we defer our second result about aO∗(1.2599n)-algorithm
applicable to all n-vertex graphs to a full version of this paper.
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Abstract. A connected feedback vertex set of a graph is a connected
subgraph of the graph whose removal makes the graph cycle free. In this
paper, we give an approximation algorithm that computes a connected
feedback vertex set of size (1.9091OPT + 6) on 2−connected AT-free
graphs with running time O(n8m2). Also, we give another approxima-
tion algorithm that computes a connected feedback vertex set of size
(2.9091OPT + 6) on the same graph class with more efficient running
time O(min{m(log(n)), n2}).

Keywords: Graph Algorithm · Approximation Algorithm · AT-free
graph · Feedback Vertex Set · Combinatorial Optimization

1 Introduction

Feedback vertex set of an undirected graph is a subset of vertices whose removal
from the graph makes the remaining graph acyclic. Connected feedback vertex
set of an undirected graph is a feedback vertex set which is also connected. The
minimum connected feedback vertex set problem (MCFVS ) seeks a connected
feedback vertex set of minimum cardinality.

This problem is a connected variant of the classical minimum feedback vertex
set problem (MFVS ) in which we compute a set S ⊆ V (G) such that G[V \ S]
is a forest and |S| is minimized. We denote a minimum feedback vertex set of a
graph by min-FVS and minimum connected feedback vertex set by min-CFVS.

The feedback vertex set problem is known to be NP-complete [13]. A 2-
approximation algorithm for the problem is provided by Bafna et al. [2]. The
feedback vertex set problem is polynomial time solvable in several special graph
classes. The feedback vertex set problem is solved in polynomial time on AT-
free graphs by Kratsch at al. [15], permutation graphs by Liang [16], interval
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graphs by Lu et al. [17], cocomparability graphs and convex bipartite graphs
by Liang et al. [10], (sP1 + P3)−free graphs by Dabrowski et al. [9], in P5−free
graphs by Abrishami et al. [1].

However not much study has been carried out on connected feedback vertex
set problem on special graph classes. A PTAS is known for MCFV S on planar
graphs proposed by Grigoriev et al. [11]. MCFV S is solved in polynomial time
on (sP2)−free graphs by Chiarelli et al. [6], cographs and (sP1 +P3)−free graphs
by Dabrowski et al. [9]. To the best of our knowledge, no other polynomial time
algorithm is known for MCFV S.

Apart from algorithms, the ratio between the sizes of connected feedback
vertex set and feedback vertex set is also studied. The price of connectivity for
feedback vertex set on a graph class G is the maximum ratio ( |min−CFV S|

|min−FV S| ) over
all connected graph G, G ∈ G. The price of connectivity for feedback vertex set
is shown to be upper bounded by constant in H−free by Belmonte et al. [4].

In this paper we initiate the study MCFVS on 2−connected AT-free graphs
from approximation algorithm point of view. In a graph G = (V,E), a set of three
vertices {u, v, w} of V (G) is called an Asteroidal Triple if these three vertices
are mutually nonadjacent and for any two vertices of this set there exists a path
between these two vertices which avoids the neighborhood of the third vertex.
G is called Asteroidal Triple Free if it does not contain any Asteroidal Triple.

We present an approximation algorithm that computes a connected feedback
vertex set of size (1.9091OPT +6) on 2−connected AT-free graphs which runs in
time O(n8m2). Note that, here OPT denotes the size of the optimal solution. We
also present an approximation algorithm with approximation ratio (2.9091OPT+
6) for the same graph class which runs in time O(min{m(log(n)), n2}).

Asteroidal triple free graph class contains graph classes like permutation
graphs, interval graphs, trapezoid graphs, and cocomparability graphs [8]. AT-
free graphs have many desirable properties which make it amenable for designing
polynomial time algorithms for many NP-complete problems. MFVS is solved in
polynomial time in AT free graphs by Kratsch at al. [15]. NP-hard problems are
like independent set, dominating set, total dominating set and connected domi-
nating set respectively by Broersma et al. [5], Kratsch [14] and Balakrishnan et
al. [3]. However complexity of connected feedback vertex set problem is unknown
in AT-free graphs.

2 Preliminaries

For a graph G = (V,E), we denote the set of vertices by V (G) and the set of
edges by E(G). A graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′

⊆ V and
E′
⊆ E. We denote |V | by n and |E| by m. A subgraph H = (V ′, E′) of G is a

induced subgraph if V ′
⊆ V and for u, v ∈ V ′, (u, v) ∈ E′ if and only if (u, v) ∈ E.

The induced subgraph on any subset S ⊆ V is denoted by G[S].
The neighbourhood of a vertex v, denoted by N(v), is the set of all ver-

tices that are adjacent to v. Closed neighbourhood of v is denoted by N [v] =
{v} ∪ N(v). The neighbourhood of a set of vertices {v1, v2, . . . , vk} is denoted
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by N(v1, v2, . . . , vk) = ∪ki=1N(vi) and the closed neighbourhood is denoted by
N [v1, v2, . . . , vk] = ∪ki=1N [vi].

A path is a graph, Y = (V,E), such that V = {y1, y2, . . . , yk} and E =
{y1y2, y2y3, . . . , yk−1yk}. We denote a path by the sequence of its vertices, that
is Y = y1y2 . . . yk. Here y1 and yk are called endpoints of path Y . The num-
ber of vertices present in Y is denoted by |Y |. We denote yiY yj = yiyi+1 . . . yj
where 1 ≤ i ≤ j ≤ k. A path on k vertices is denoted by Yk and the length of
the path is denoted by the number of edges present on the path that is k − 1.
The distance between two vertices in a graph is the length of the shortest path
between them. A cycle is a graph, C=(V,E), such that V (C)={c1, c2, . . . , cl} and
E(C)= {c1c2, . . . , cl−1cl, clc1}. The shortest distance between u and v is denoted
by distC(u, v) where u, v ∈ V (C). The number of vertices present in the cycle C
is denoted by |C|.

A dominating set D of G is a subset of vertices of G such that for every v
outside D, N(v) ∩D ≠ φ. A dominating pair is a pair of vertices such that any
path between them is a dominating set. There is a linear time algorithm to find
a dominating pair [7] in AT-free graphs. We denote a shortest path between a
dominating pair by DSP .

For a minimization problem P an algorithm A is called (α · OPT + β)−
approximation for some α ≥ 1 and β > 0, if for all instance of P, algorithm A
produces an output which is at most (α · (optimal) + β). Here optimal denotes
the cost of the optimal solution of the specific instance of P.

3 Approximation Algorithm for MCFVS

This section describes the main results of this paper. The first part of this
section conveys the main approach and provides an approximation algorithm
with approximation ratio (2OPT + 6). The second part makes some important
observation towards a tighter approximation bound. The third part states an
approximation algorithm with approximation ratio (1.9091OPT + 6).

3.1 2-Approximation Algorithm

Let F ∗ be any minimum feedback vertex set of G, where G is a 2−connected
AT-free graph. Recall that, since G is an AT-Free graph, it always contains a
dominating pair [8]. Let p1, pk be a dominating pair of G. Let P = p1p2...pk be a
shortest path between p1 and pk.

Our algorithm begins by choosing F ∗
∪ P as a solution to MCFVS on

2−connected AT-free graphs. Then we modify both F ∗ and P and report their
union as the connected feedback vertex set. We first analyze the quality of F ∗

∪P
as a solution to MCFVS on 2−connected AT-free graphs. Next, we state the
algorithm for modification of both F ∗ and P to obtain F1 and P ′, respectively.
Finally, we report F1 ∪ P ′ as the solution of MCFVS and analyze the modified
solution to achieve the approximation ratio.

We restate a well-known fact about AT-Free graphs [8].
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Lemma 1. The longest induced cycle in AT-free graphs can contain at most 5
vertices.

Lemma 2. The set F ∗
∪ P is a connected feedback vertex set of G.

Proof. As (p1, pk) is a dominating pair, hence every path between p1 and pk is
a dominating set of G. Hence F ∗

∪ P is connected. ��
Lemma 3. Let X = uvw be a path of length two and F be any feedback vertex
set in G. Then F ∩N [u, v, w] ≠ φ.

Proof. As the graph is 2−connected there is a cycle containing any two edges of
the graph [12]. Consider the shortest cycle containing X. We denote this cycle
by C.

The cycle C can be induced or it may contain chords. If C is induced then
from Lemma 1, it contains at most 5 vertices, hence the vertices of the cycle is
a subset of N [X]. That guarantees that at least one vertex of N [X] is in F .

Now consider the case when C is not induced. If length of C is five or less
then N [X] ∩ F ≠ φ. The following proposition holds when |C| > 5.
Proposition 1. One of the endpoints of any chord of C must belong to X.

Proof. Assume none of the endpoints is in X. The cycle containing the chord
and X is a cycle which is shorter than C. Hence contradiction. ��

We strengthen Proposition 1 in the following proposition.

Proposition 2. One of the endpoints of any chord of C must be v.

Proof. Assume for contradiction v is not an endpoint of some chord of C. Since
we know from the above proposition one of the end points should belong to X,
w.l.o.g let it be u. Then the cycle containing the chord and the vertices X, is a
shorter cycle than C. Hence contradiction. ��

Let Cu,v be the shortest cycle in G[C], that contains the edge (u, v). Similarly
let Cv,w be the shortest cycle in G[C], that contains the edge (v, w). Note that,
by the above proposition, each of the cycles Cu,v and Cv,w are chordless and
exactly one of the edges of these cycles is a chord of C. In other words each of
them are induced cycles and exactly one of their edges is a chords of C. Hence
from Lemma 1, |Cu,v| ≤ 5 and |Cv,w| ≤ 5.

If one of these cycle is of length less than 5 then N [X] ∩ F ≠ φ holds. To see
this assume w.l.o.g Cu,v is of length less than 5. Note that N [u, v] ∩ F must be
non empty. Hence the proposition is satisfied if |Cu,v| < 5 or |Cv,w| < 5.

The only remaining case, using Lemma 1, is when |Cu,v| = 5 and |Cv,w| = 5.
We will show below that neither Cu,v nor Cv,w can be of length 5. Since v is the
common vertex in both of these cycles, we consider the following cases.
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Case 1. In the first case we consider the chord of C present in Cu,v is different
from the chord of C present in Cv,w. In this case Cu,v and Cv,w has only v as
a common vertex. This case is depicted in Fig. 1. The edge (c, v) and the edge
(v, d) are chords of C. This case is not possible as vertices {w, e, b} forms an
asteroidal triple, following we explain that.

Proposition 3. {w, e, b} are independent.

Proof. Each member of {w, e, b} is present in C and from the Proposition 2, v
is an end point of every chord in C. Edge between any two vertices of {w, e, b}
will imply a chord in C for which v is not an end point, which violates the
Proposition 2. Hence {w, e, b} are independent. ��

By similar argument of above Proposition 2, b and f are not adjacent, hence
we get a path from e to w namely {e, f, w} which does not contain any neighbour
of b. The w, b-path {w, v, u, a, b} does not contain any neighbour of e, since e is
not adjacent to any of {w, u, a, b} due to Proposition 2 and e is not adjacent to
v as we get a shorter cycle than Cv,w if e and v is adjacent. Finally there is a
e, b path Pc through V (C) \ X. As w is not present as a end point of any chord
in C, w is not adjacent to any vertices of Pc.

Case 2. The second case is when Cu,v and Cv,w share a common chord in C. In
this case Cu,v and Cv,w share exactly one edge. This case is depicted in Fig. 2.
The edge (d, v) is a chord of C. This case is also not possible as {e, w, a} is a
asteroidal triple.

Hence the proof of the lemma. ��

u

a

b

v

c

w

f

e

v

dc d

Fig. 1. Two chords of C are present in
Cu,v and Cv,w.

u

a

b

v w

f

e

v

db d ed

Fig. 2. One chord is common between
Cu,v and Cv,w.

We denote any arbitrary minimum connected feedback vertex set by F ∗
c .
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Lemma 4. Let F ∗
c be a minimum connected feedback vertex set. Then |P | ≤

|F ∗
c | + 6.

Proof. P is a shortest path between p1 and pk. From Lemma 3 we know
N [p1, p2, p3] ∩ F ∗

c ≠ φ, similarly N [pk−2, pk−1, pk] ∩ F ∗
c ≠ φ. Let u ∈ N(p3) ∩ F ∗

c

and v ∈ N(pk−2) ∩ F ∗
c . If |P | > |F ∗

c | + 6 then we get a u, v path P ∗ through F ∗
c

which has length at most |P |−7. The p1, pk path p1p2p3P
∗pk−2pk−1pk has length

strictly less than the length of P . Which contradicts minimum length property
of P . ��

From the above lemma we get a (2OPT +6)−approximation for 2−connected
AT-Free graphs in the following way. As discussed in this section F ∗

∪ P is a
solution produced by our approximation algorithm. The solution size is |F ∗|+|P |.
Using Lemma 4 solution size is upper bounded by 2|F ∗

c | + 6.

3.2 Towards Tighter Approximation

Although a minimum feedback vertex set along with a shortest path between a
dominating pair gives us a 2 approximation algorithm for MCFV S, but mod-
ifying the solution we can achieve a tighter approximation. As a first step we
modify the shortest path P according to Algorithm1 and denote the modified
path by P ′. We note that the modification of the path does not increase the
length of the path. Next we show that there is at least a constant fraction of
vertices of P ′ which can be counted as part of F ∗. This shows that number of
non-feedback vertices in P ′ is upper bounded by some constant fraction of |P ′|.
This observation leads to a better approximation (Figs. 3 and 6).

Fig. 3. f ∈F ∗, |N(f)∩P |>3. (p1, f, p4)
gives a shorter path.

Fig. 4. f ∈F ∗, |N(f)∩P |=3 and N(f)∩
P ≅ P3.

Fig. 5. f ∈F ∗, |N(f)∩P |=2 and N(f)∩
P has a common neighbour in P .

Fig. 6. f ∈F ∗, |N(f)∩P |=2 and N(f)∩
P ≅ P2.

Consider the following lemma.
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Lemma 5. Let v ∈ F ∗. If v ∉ P then,

a) |N(v) ∩ P | ≤ 3.
b) If |N(v) ∩ P | = 3 then N(v) ∩ P ≅ P3.
c) If |N(v) ∩ P | = 2 then either N(v) ∩ P ≅ P2 or members of N(v) ∩ P has a

common neighbour in P .

Proof. Please see the proof in Appendix. ��
In the light of above lemma we modify P . Suppose there exists v ∈ F ∗ such

that |N(v) ∩ P | = 2 and those two vertices share a common neighbour u in P
or v is adjacent to three consecutive vertices of P where u is the middle vertex,
then if u ∉F ∗ then we can replace u by the vertex v. The cases mentioned in this
paragraph are depicted in Fig. 5, Fig. 4 respectively.

Based on the above paragraph we have the following algorithm.

Algorithm 1. Shortest path modification
Require: Minimum feedback vertex set F ∗ and shortest path P .
Ensure: A modified path P ′

1: for all vertices v ∈ F ∗ do
2: if (|N(v) ∩ P | = 3) or (|N(v) ∩ P | = 2 and members of N(v) ∩ P has a common

neighbour in P ). then
3: Let pipi+1pi+2 be the sequence of path vertices such that pi, pi+2 ∈N(v) ∩ P .
4: if pi+1 ∉ F

∗ then
5: Remove the vertex pi+1.
6: Put v as the path vertex that is removed, that is pivpi+2.
7: end if
8: end if
9: end for

10: Let the new path be P ′.

The modified P ′ has the following property.

Lemma 6. Suppose v ∈ F ∗ \ P ′. Then,

a) If v is adjacent to three consecutive vertices pi, pi+1, pi+2 of P ′ then pi+1 ∈P
′
∩

F ∗.
b) If |N(v) ∩ P ′| = 2 then N(v) ∩ P ′

≅ P2.
c) If v is adjacent to two vertices pi and pi+2 for some i such that they share a

common neighbour pi+1 in P ′, then pi+1 ∈ P
′
∩ F ∗.

Proof. Please see the proof in Appendix. ��
As mentioned in above paragraph we obtain a modified path P ′ using Algo-

rithm1 whose length is equal to |P |. This ensures that P ′ is a DSP . Since it
is a DSP every vertex of F ∗ \ P ′ is adjacent to at least one vertex of P ′. We
classify the induced cycles of G in two types. Type-1 cycles are those induced
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cycles which contain at least one vertex from P ′. Type-2 cycles are those induced
cycles which does not contain any vertex from P ′. In the next two lemma we
show that neighbourhood of a type-2 cycle is localized over P ′.

Figure 7 illustrates type-1 cycle and in Fig. 9, {v1, v2, x, v3, v4} is a type-2
cycle.

p1 p2p2 p3p3 p4p4 p5p3

fu f

p1

u

Fig. 7. (p1, p2, p3, f, u) is a type-1 cycle.

Let p1, p2, . . . pk denote the vertices of the path P ′ and for any r, s such that
1 ≤ r < s ≤ k, pr occurs before ps in P ′.

Lemma 7. Let C be a type-2 cycle. Let u, v ∈V (C) such that (u, pi) ∈E(G) and
(v, pj) ∈E(G). Then |j − i| ≤ 4.

Proof. Please see the proof in Appendix. ��

p1 p2p2 p3p3 p4p4 p5p5 p6

v1 v2v2 xx v3v3 v4x

p3

v2

p1

v3

p6

Fig. 8. Illustrating proof of Lemma 7.

As a consequence of Lemma 7, we get Lemma 8 (Fig. 8).

Lemma 8. Let C be a type-2 cycle such that pi ∈ P
′ is adjacent to some vertex

of C. Then there exist a set S consisting of at most 5 consecutive vertices of P ′

such that S ∋ pi and N(C) ∩ P ′
⊆ S.
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Proof. Please see the proof in Appendix. ��
In the next lemma we establish a condition when we can possibly remove a

vertex from F ∗.
Let x ∈ F ∗ \ P ′ then, by Lemma 6 there are four possible cases. The first

case is by the third part of Lemma 6, where x is adjacent to two vertices pi and
pi+2 for some i such that they share a common vertex pi+1 and pi+1 ∈ P ′

∩ F ∗.
The second case is by the second part of Lemma 6, where x is adjacent to two
vertices pj and pj+1 for some j such that (pj , pj+1) is a edge of P ′. The third case
is by the first part of Lemma 6, where x is adjacent to three consecutive vertices
pi, pi+1, pi+2 of P ′ then pi+1 ∈ P ′

∩ F ∗. The fourth case is when x is adjacent to
exactly one vertex of P ′. We will consider only the fourth case for Lemma 9,
Lemma 10, Lemma 11, and Lemma 12 since the other cases will follow similarly.
We will also consider C to be a type-2 cycle containing x in the above-mentioned
lemma.

Lemma 9. If (N(C) ∩ P ′) ∩ F ∗
= φ, then (C \ {x}) ∩ F ∗

≠ φ.

Proof. Please see the proof in Appendix. ��

p1 p2p2 p3p3 p4p4 p5

v1 v2v2 xx v3v3 v4x

p3

v2

p3

v3

p4

v1

p2

v4

p3

Fig. 9. Illustrating proof of Lemma 9.

We divide the path P ′ into set of 11 consecutive vertices each. We call each
such set block. Let Bi denote the ith block where i=1, 2, . . . , � |P ′|

11 �. We note that
Bi ∩Bj = φ for all i ≠ j. The possible cases for a block Bi is either Bi ∩F ∗

≠ φ or
Bi∩F ∗

=φ. We call the blocks of first type as normal blocks and blocks of second
type as special blocks. Let x∈F ∗ \P ′ then, from Lemma 6, for every special block
B only two cases are possible. First case is when x is adjacent to two vertices pj
and pj+1 of B for some j such that (pj , pj+1) is an edge of B. The second case
is when x is adjacent to exactly one vertex of B. Here too we consider only the
second case since the first case will follow similarly.
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Consider Bi and Bi+1. We denote fifth, sixth and seventh vertices of Bi and
Bi+1 with pi5, p

i
6, p

i
7 and pi+15 , pi+16 , pi+17 respectively. From Lemma 3, N [pi5, p

i
6, p

i
7]∩

F ∗
≠ φ and N [pi+15 , pi+16 , pi+17 ] ∩ F ∗

≠ φ.
The following lemma conveys a notion of disjointness among the type-2 cycles

of two consecutive blocks. Note that, it is possible for some block to contain no
type-2 cycle.

Lemma 10. Let u∈ (N [pi5, p
i
6, p

i
7]\P ′)∩F ∗ and v ∈ (N [pi+15 , pi+16 , pi+17 ]\P ′)∩F ∗.

Type-2 cycles containing u does not contain v and type-2 cycles containing v
does not contain u.

Proof. Please see the proof in Appendix. ��
We note that the proof of Lemma 10 will also hold for blocks of size 7, but it

is necessary to keep the block size 11. The reason behind keeping the block size
11 will be clear in the proof of the next lemma.

Let Bi be a special block. Hence from Lemma 3 we get a x ∈ (N [pi5, p
i
6, p

i
7] \

P ′) ∩ F ∗.

Lemma 11. Let Bi be a special block and x ∈ (N [pi5, p
i
6, p

i
7] \ P ′) ∩ F ∗. Every

type-2 cycle C containing x has a vertex v ∈ C such that v ≠ x and v ∈ F ∗.

Proof. Please see the proof in Appendix. ��
The following lemma specifies that for every special block there exists a vertex

which can be removed from F ∗ such that remaining solution is a connected
feedback vertex set. Let the number of special blocks be denoted by β.

Lemma 12. If β ≥ 0, then there is a set R ⊆F ∗, |R| ≥ β such that (F ∗ \ R) ∪P ′

is a connected feedback vertex set.

Proof. Please see the proof in Appendix. ��

3.3 1.9091−Approximation Algorithm

Below we summarize the vertex removal technique from F ∗. The removal tech-
nique consists of constructing R and then removing R from F ∗. Suppose Bi is a
special block. Fix y where y ∈ (N [pi5, p

i
6, p

i
7] \ P ′) ∩ F ∗. Two cases might arise.

Case 1: There is no type-2 cycle that contains y. In this case y is present in
only type-1 cycles. From the definition of type-1 cycle we know it contains at
least one vertex of P ′. As P ′ is already in our solution, we can remove y from
F ∗ without destroying connected feedback vertex set property of our solution.
Hence we can include y in R.

Case 2: There are cycles containing y which has no vertex present in P ′. In
this case by Lemma 12, F ∗ \ {y} is a connected feedback vertex set. Hence we
can include y in R.

From the above discussion, every normal block has at least one vertex belong-
ing to F ∗ and for every special block Bi there is a vertex x∈(N [pi5, p

i
6, p

i
7]\P ′)∩F ∗
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which can be removed from F ∗. In the case of special blocks we remove such x
and label any vertex of Bi as a vertex of F ∗. We call the process of removing
x and labeling a vertex of Bi as a vertex of F ∗ normalization. We perform nor-
malization on each special block. After the process of normalization each block
has at least one of its vertex labeled as F ∗. Hence |P ′ \ F ∗| ≤ 10

11 |P ′|. From the
property of minimum feedback vertex set we get |F ∗| ≤ |F ∗

c | and from Lemma
4, we have |P ′| ≤ |F ∗

c | + 6. Now,

|F ∗| + 10
11

|P ′| ≤ |F ∗
c | + 10

11
(|F ∗

c | + 6) ≤ |F ∗
c | + 10

11
|F ∗

c | + 6 ≤ 1.9091|F ∗
c | + 6

Hence we get a connected feedback vertex set of size (1.9091OPT +6), where
OPT is the size of optimal solution.

The time complexity of the approximation algorithm for MCFVS depends
on the complexity of finding a min-FVS and finding a DSP. In AT-free graphs it
takes O(n8m2) time to compute the min-FVS [15] and a DSP can be found in
linear time [7]. The path modification and normalization both takes linear time.
Hence complexity of our algorithm is O(n8m2). Thus we have the following
theorem.

Theorem 1. There is a approximation algorithm for MCFVS in 2−connected
AT-free graphs which produces solution of size (1.9091OPT+6) in time O(n8m2).

We can achieve a better running time by compromising on the approxima-
tion factor. Instead of computing the min-FVS for an AT-free graph, we use
the 2-approximation algorithm for computing min-FVS [2] on general graphs to
get a better running time. Running time of the algorithm will be reduced to
O(min{m(log(n)), n2}) [2].

Before stating the following theorem, note that F ∗
c denotes the minimum

connected feedback vertex set and F ∗ denotes the minimum feedback vertex
set. Consider F to be any feedback vertex set, then Lemma 6 through Lemma
12 holds for F and P ′ as none of this lemma depends on the minimality of
the feedback vertex set. We have the following theorem based on the above
mentioned fact.

Theorem 2. Let F be a feedback vertex set of 2−connected AT-free graph G such
that |F | ≤ 2|F ∗|. Then using F , our algorithm produces a connected feedback
vertex set Fc such that |Fc| ≤ (2.9091|F ∗

c | + 6).
Proof. Please see the proof in Appendix. ��

4 Conclusion

We provided a constant factor approximation algorithm for connected feedback
vertex set problem on 2−connected AT-free graphs. The main open question that
remains is whether the problem is exactly solvable in polynomial time or is it
NP-hard on AT-free graphs.
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Abstract. A ladder lottery of a permutation π of {1, 2, . . . , n} is a net-
work with n vertical lines and zero or more horizontal lines each of which
connects two consecutive vertical lines and corresponds to an adjacent
transposition. The composition of all the adjacent transpositions coin-
cides with π. A cyclic ladder lottery of π is a ladder lottery of π that is
allowed to have horizontal lines between the first and last vertical lines.
A cyclic ladder lottery of π is optimal if it has the minimum number of
horizontal lines. In this paper, for optimal cyclic ladder lotteries, we con-
sider the reconfiguration and enumeration problems. First, we investigate
the two problems when a permutation π and its optimal displacement
vector x are given. Then, we show that any two optimal cyclic ladder
lotteries of π and x are always reachable under braid relations and one
can enumerate all the optimal cyclic ladder lotteries in polynomial delay.
Next, we consider the two problems for optimal displacement vectors
when a permutation π is given. Then, we present a characterization of
the length of a shortest reconfiguration sequence of two optimal displace-
ment vectors and show that there exists a constant-delay algorithm that
enumerates all the optimal displacement vectors of π.

Keywords: Reconfiguration · Enumeration · Cyclic ladder lottery

1 Introduction

A ladder lottery, known as “Amidakuji” in Japan, is a common way to decide an
assignment at random. Formally, we define ladder lotteries as follows. A network
is a sequence 〈�1, �2, . . . , �n〉 of n vertical lines (lines for short) and horizontal
lines (bars for short) each of which connects two consecutive vertical lines. We
say that �i is located on the left of �j if i < j holds. The i-th line from the left is
called the line i. We denote by [n] the set {1, 2, . . . , n}. Let π = (π1, π2, . . . , πn)
be a permutation of [n]. A ladder lottery of π is a network with n lines and zero
or more bars such that
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Fig. 1. (a) An optimal ladder lottery of the permutation (5, 1, 4, 6, 2, 3). (b) A cyclic
ladder lottery of the permutation (4, 7, 5, 3, 1, 2, 6, 8) and (c) its representation as a
pseudoline arrangement. (d) A cyclic ladder lottery obtained from (b) by applying a
braid relation to the triple (2, 3, 4).

(1) the top endpoints of lines correspond to the identity permutation,
(2) each bar exchanges two elements in [n], and
(3) the bottom endpoints of lines correspond to π.

See Fig. 1(a) for an example. In each bar in a ladder lottery, two elements are
swapped. We can regard a bar as an adjacent transposition of two elements
in the current permutation, and the permutation always results in the given
permutation π. A ladder lottery of a permutation π is optimal if it consists of
the minimum number of bars among ladder lotteries of π. Let L be an optimal
ladder lottery of π and let m be the number of bars in L. Then, we can observe
that m is equal to the number of “inversions” of π, which are pairs (πi, πj) in π
with πi > πj and i < j.

The ladder lotteries are related to some objects in theoretical computer sci-
ence. For instance, the optimal ladder lotteries of the reverse permutation of
[n] one-to-one correspond to arrangements1 of n pseudolines2 such that any two
pseudolines intersect (see [7]). Each bar in a ladder lottery corresponds to an
intersection of two pseudolines. Note that, in an optimal ladder lottery of the
reverse permutation, each pair of two elements in [n] is swapped exactly once
on a bar. For such pseudoline arrangements, there exist several results on the
bounds of the number of them. Let Bn be the number of the arrangements of n
pseudolines such that any two pseudolines intersect and let bn = log2 Bn. The
best upper and lower bounds are bn ≤ 0.6571n2 by Felsner and Valtr [4] and
bn ≥ 0.2053n2 by Dumitrecu and Mandal [3], respectively.

In this paper, we consider a variation of ladder lotteries, “cyclic” ladder lot-
teries. A cyclic ladder lottery is a ladder lottery that is allowed to have bars
between the first and last lines. Now, as is the case with ladder lotteries, we
introduce “optimality” to cyclic ladder lotteries. A cyclic ladder lottery of a per-
mutation π is optimal if it has the minimum number of bars. It is known that

1 An arrangement is simple if no three pseudolines have a common intersection point.
In this paper, we consider only simple arrangements of pseudolines.

2 A pseudoline in the Euclidean plane is a y-monotone curve extending from positive
infinity to negative infinity.
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the minimum number of bars in a cyclic ladder lottery of a permutation is equal
to the cyclic analogue of inversion number and is computed in O(n2) time [5].

For the optimal ladder lotteries of a permutation π, reconfiguration and enu-
meration problems have been solved [6,7]. The key observation is that reconfig-
uration graphs under braid relations are always connected, where a reconfigu-
ration graph is a graph such that each vertex corresponds to an optimal ladder
lottery of π and each edge corresponds to a braid relation between two opti-
mal ladder lotteries. Hence, for the reconfiguration problems, the answer to a
reachability problem is always yes. Moreover, Yamanaka et al. [6] characterized
the length of a shortest reconfiguration sequence and proposed an algorithm that
finds it. For the enumeration problem, Yamanaka et al. [7] designed an algorithm
that enumerates them by traversing a spanning tree defined on a reconfigura-
tion graph. Now, does the same observation of reconfiguration graphs hold for
optimal cyclic ladder lotteries? Can we solve reconfiguration and enumeration
problems for optimal cyclic ladder lotteries?

For optimal cyclic ladder lotteries, reconfiguration graphs under braid rela-
tions may be disconnected. For example, the two optimal cyclic ladder lotteries of
the permutation (4, 2, 6, 1, 5, 3) in Fig. 2 have no reconfiguration sequence under
braid relations. Actually, it can be observed that the set of optimal cyclic lad-
der lotteries of a permutation π is partitioned into the sets of optimal cyclic
ladder lotteries with the same “optimal displacement vectors” [5], which repre-
sent the movement direction of the each element in [n] in optimal cyclic ladder
lotteries. Note that applying a braid relation does not change a displacement
vector. Therefore, to enumerate all the optimal cyclic ladder lotteries of a per-
mutation π, we have to solve two enumeration problems: (1) enumerate all the
optimal cyclic ladder lotteries of π with the same optimal displacement vector
and (2) enumerate all the optimal displacement vectors of π. We first consider
reconfiguration and enumeration problems for cyclic optimal ladder lotteries of a
given permutation π and optimal displacement vector x. For the reconfiguration
problem, we show that any two optimal cyclic ladder lotteries of π and x are
always reachable under braid relations. Then, for the enumeration problem, we
design an algorithm that enumerates all the cyclic optimal ladder lotteries of π
and x in polynomial delay. Next, we consider the two problems for the optimal
displacement vectors of a permutation π under “max-min contractions”. For the
reconfiguration problem, we characterize the length of a shortest reconfiguration
sequence between two optimal displacement vectors of π and show that one can
compute a shortest reconfiguration sequence. For the enumeration problem, we
design a constant-delay algorithm that enumerates all the optimal displacement
vectors of π.

Due to space limitations, all the proofs are omitted.

2 Preliminary

Let π = (π1, π2, . . . , πn) be a permutation of [n]. In a cyclic ladder lottery of
π, each element i in [n] starts at the top endpoint of the line i, and goes down
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Fig. 2. (a) An optimal cyclic ladder lottery of the permutation (4, 2, 6, 1, 5, 3) and its
optimal displacement vector (−3, 0, −3, 3, 0, 3) and (b) an optimal cyclic ladder lottery
of the same permutation and its optimal displacement vector (−3, 0, 3, −3, 0, 3).

along the line, then whenever i comes to an endpoint of a bar, i goes to the other
endpoint and goes down again, then finally i reaches the bottom endpoint of the
line j, where i = πj . This path is called the route of the element i. Each bar
is regarded as a cyclically adjacent transposition and the composition of all the
transpositions in a cyclic ladder lottery always results in π. A cyclic ladder lottery
of π is optimal if the ladder lottery contains the minimum number of bars. For
example, the cyclic ladder lottery in Fig. 1(b) is optimal. We can observe from
the figure that there exists an optimal cyclic ladder lottery L without a slit, that
is, L does not come from any ladder lottery.

A cyclic ladder lottery of π is regarded as an arrangement of n pseudolines on
a cylinder. The route of an element in [n] corresponds to a pseudoline and a bar
corresponds to an intersection of two pseudolines. Figure 1(c) shows the arrange-
ment of pseudolines corresponding to the cyclic ladder lottery in Fig. 1(b). We
use terminologies on pseudoline arrangements on a cylinder instead of the ones
on cyclic ladder lotteries to clarify discussions. Let pl(L, i) denote the pseudoline
of i ∈ [n] in a cyclic ladder lottery L. Note that the top endpoint of pl(L, i) cor-
responds to the element i in the identity permutation and the bottom endpoint
of pl(L, i) corresponds to πi in π. In an optimal cyclic ladder lottery L, any two
pseudolines cross at most once. From now on, we assume that any two pseudo-
lines in L cross at most once. For two distinct elements i, j ∈ [n], cr(i, j) denotes
the intersection of pl(L, i) and pl(L, j) if it exists. For distinct i, j, k ∈ [n], a
triple {i, j, k} is tangled if pl(L, i), pl(L, j), and pl(L, k) cross each other. Let
{i, j, k} be a tangled triple in L. Let M be the ladder lottery induced from L by
the three pseudolines pl(L, i), pl(L, j), and pl(L, k), and let p, q, r be the three
intersections in M . Without loss of generality, in M , we suppose that (1) p is
adjacent to the two top endpoints of two pseudolines, (2) q is adjacent to the
top endpoint of a pseudoline and the bottom endpoint of a pseudoline, (3) r is
adjacent to the two bottom endpoints of two pseudolines. Then, {i, j, k} is a left
tangled triple if p, q, r appear in counterclockwise order on the contour of the
region enclosed by pl(M, i), pl(M, j), and pl(M,k). Similarly, {i, j, k} is a right
tangled triple if p, q, r appear in clockwise order on the contour of the region. See
Fig. 3 for examples. A tangled triple {i, j, k} is minimal if the region enclosed by
pl(L, i), pl(L, j), and pl(L, k) includes no subpseudoline in L. A braid relation is
an operation to transform a minimal left (resp. right) tangled triple into another
minimal right (resp. left) tangled triple. The cyclic ladder lottery in Fig. 1(d) is
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Fig. 3. Illustrations of (a) a left tangled triple and (b) a right tangled triple.

obtained from the ladder lottery in Fig. 1(b) by applying a braid relation to the
triple {2, 3, 4}.

The vector x = (x1, x2, . . . , xn) is a displacement vector of π if
∑

i∈[n] xi = 0
and i + xi ≡ πi mod n for any i ∈ [n]. Let L be a cyclic ladder lottery of π.
Then, a displacement vector can be defined from L and denote it by DV (L).
Intuitively, the element xi in DV (L) = (x1, x2, . . . , xn) represents the movement
direction of the element i in [n]. That is, if xi > 0, the element i goes right and
if xi < 0, the element i goes left. For instance, the displacement vector of the
ladder lottery in Fig. 1(b) is (−4, 4, 1,−3,−2, 1, 3, 0).

Let L(π) be the set of the cyclic ladder lotteries of π. Let Lopt(π) be the set
of the optimal cyclic ladder lotteries of π and let L1(π) be the set of the cyclic
ladder lotteries of π such that any two pseudolines cross at most once. Note that
Lopt(π) ⊆ L1(π) ⊆ L(π) holds. A displacement vector x is optimal if there exists
an optimal cyclic ladder lottery L ∈ Lopt(π) such that x = DV (L) holds. We
define the sets of cyclic ladder lotteries with the same displacement vector, as
follows: Lopt(π,x) = {L ∈ Lopt(π) | DV (L) = x} and L1(π,x) = {L ∈ L1(π) |
DV (L) = x}. Then, we have the following lemma which shows that the set
Lopt(π) is partitioned into sets of optimal cyclic ladder lotteries with the same
optimal displacement vectors.

Lemma 1. Let π be a permutation. Then,

Lopt(π) =
⊔

x∈D(π)

Lopt(π,x),

where D(π) is the set of the optimal displacement vectors of π.

Similarly, a displacement vector x is said to be almost optimal if there exists
a cyclic ladder lottery L of π such that L ∈ L1(π,x) and x = DV (L) hold.
Let L′ be the ladder lottery obtained from an optimal cyclic ladder lottery L
by removing pl(L, i) for i ∈ [n]. Note that L′ is a cyclic ladder lottery of the
permutation π′ obtained from π by removing i and L′ may be a non-optimal
cyclic ladder lottery of π′.

In the study of ladder lotteries, the inversion number plays a crucial role. In
[5, (3.6)], the cyclic analogue of the inversion number

inv(x) =
1
2

∑

i,j∈[n]

|cij(x)|
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is introduced, where x is a displacement vector. Here, a crossing number cij(x)
is defined as follows. Let i, j be two elements in [n] and let r = i − j and
s = (i + xi) − (j + xj). Then, we define cij(x) by

cij(x) =

{
|{k ∈ [r, s] | k ≡ 0 mod n}| r ≤ s

− |{k ∈ [s, r] | k ≡ 0 mod n}| s < r.

The number inv(x) coincides with the affine inversion number for S̃n (see [2,
Section 8.3] for instance). As mentioned in [5], inv(x) is equal to the number
of intersections between the n pseudolines on the cylinder. Note here that [5,
Lemma 3.6] corresponds to [2, Proposition 8.3.1].

3 Reconfiguration and Enumeration of Cyclic Ladder
Lotteries with Optimal Displacement Vectors

Let π = (π1, π2, . . . , πn) be a permutation of [n], and let x = (x1, x2, . . . , xn) be
an optimal displacement vector of π. In this section, we consider the problems of
reconfiguration and enumeration for the set of the optimal cyclic ladder lotteries
in Lopt(π,x).

3.1 Reconfiguration

In this subsection, we consider a reconfiguration between two optimal cyclic
ladder lotteries in Lopt(π,x). The formal description of the problem is given
below.

Problem: Reconfiguration of optimal cyclic ladder lotteries with optimal dis-
placement vector (ReconfCLL-DV)
Instance: A permutation π, an optimal displacement vector x of π, and two
optimal cyclic ladder lotteries L,L′ ∈ Lopt(π,x)
Question: Does there exist a reconfiguration sequence between L and L′ under
braid relations?

To solve ReconfCLL-DV, we consider the reconfiguration problem for the
cyclic ladder lotteries in L1(π,y), where y is an almost optimal displacement
vector of π. First, we show that any two cyclic ladder lotteries in L1(π,y) are
always reachable. As a byproduct, we obtain an answer to ReconfCLL-DV.

Let L be a cyclic ladder lottery in L1(π,y) and suppose that L contains
one or more intersections. Then, in L, there exists an element i ∈ [n] such that
pl(L, i) and pl(L, (i+ 1) mod n) cross, since assuming otherwise contradicts the
definition of cyclic ladder lotteries.

Lemma 2. Let π and y be a permutation in Sn and an almost optimal displace-
ment vector of π, respectively. Let L be a cyclic ladder lottery in L1(π,y). Let
i ∈ [n] be an element such that pl(L, i) and pl(L, (i+1) mod n) cross. Then, there
exists a reconfiguration sequence under braid relations between L and L′, where
L′ is a cyclic ladder lottery in L1(π,y) such that cr(i, (i+ 1) mod n) appears as
a topmost intersection in L′.
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Using Lemma 2, we can prove the following theorem, which claims that any
two cyclic ladder lotteries in L1(π,y) with the same displacement vector are
always reachable.

Theorem 1. Let π be a permutation in Sn. Let L,L′ be two cyclic ladder lotter-
ies in L1(π). Then, DV (L) = DV (L′) holds if and only if L and L′ are reachable
under braid relations.

The following corollary is immediately from Theorem 1.

Corollary 1. For any instance of ReconfCLL-DV, the answer is yes and one
can construct a reconfiguration sequence between two ladder lotteries in Lopt(π).

3.2 Enumeration

In this subsection, we consider the problem of enumerating all the optimal cyclic
ladder lotteries in Lopt(π,x). The formal description of the problem is as follows.

Problem: Enumeration of optimal cyclic ladder lottery with optimal displace-
ment vector (EnumCLL-DV)
Instance: A permutation π and an optimal displacement vector x of π.
Output: All the cyclic ladder lotteries in Lopt(π,x) without duplication.

As in the previous subsection, we consider the enumeration problem for
L1(π,y), where y is an almost optimal displacement vector of π and propose
an enumeration algorithm for L1(π,y), since the algorithm can be applied to
EnumCLL-DV. From Theorem 1, the reconfiguration graph of L1(π,y) under
braid relations is connected. This implies that the reverse search [1] can be
applied for enumerating them.

Let π ∈ Sn and let y be an almost optimal displacement vector of π. We
denote by LT (L) the set of the left tangled triples in a cyclic ladder lottery L.
A cyclic ladder lottery L in L1(π,y) is a root of L1(π,y) if LT (L) = ∅ holds. If
a cyclic ladder lottery in L1(π,y) has no tangled triple, then L1(π,y) contains
only one ladder lottery. This is trivial from Theorem 1. For convenience, in such
case, we define the ladder lottery as a root.

Lemma 3. Let π ∈ Sn and let y be an almost optimal displacement vector of
π. Suppose that a cyclic ladder lottery in L1(π,y) contains one or more tangled
triples. Then, any L ∈ {L ∈ L1(π,y) | LT (L) 
= ∅} has a minimal left tangled
triple.

Let L be a cyclic ladder lottery in L1(π,y). Let {i, j, k} and {i′, j′, k′} be two
distinct left tangled triples in L, and suppose that i < j < k and i′ < j′ < k′

hold. We say that {i, j, k} is smaller than {i′, j′, k′} if either i < i′ holds, i = i′

and j < j′ hold, or i = i′, j = j′, and k < k′ hold. The parent, denoted by
par(L), of L ∈ {L ∈ L1(π,y) | LT (L) 
= ∅} is the cyclic ladder lottery obtained
from L by applying a braid relation to the smallest minimal left tangled triple
in L. We say that L is a child of par(L). Note that Lemma 3 implies that the
parent is always defined for any L ∈ {L ∈ L1(π,y) | LT (L) 
= ∅}. Moreover, the
parent is unique from its definition.
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Lemma 4. Let π ∈ Sn and let y be an almost optimal displacement vector of
π. Let L be a cyclic ladder lottery in L1(π,y). By repeatedly finding the parent
from L, we have a root L0 of L1(π,y).

Lemma 4 implies that there exists a root of L1(π,y). Now, below, we show
the uniqueness of a root of L1(π,y).

Lemma 5. Let π ∈ Sn and let y be an almost optimal displacement vector of
π. For two cyclic ladder lotteries L,L′ ∈ L1(π,y), if LT (L) = LT (L′), L = L′

holds.

From Lemma 5, we have the following corollary.

Corollary 2. Let π ∈ Sn and let y be an almost optimal displacement vector
of π. Then, the root L0 of L1(π,y) is unique.

From Lemma 4, by repeatedly finding the parent from L, we finally obtain
the root of L1(π,y). The parent sequence of L ∈ L1(π,y) is the sequence
〈L1, L2, . . . , Lp〉 such that

(1) L1 is L itself,
(2) Li = par(Li−1) for i = 2, 3, . . . , p, and
(3) Lp is the root L0 of L1(π,y).

Note that the parent sequence of the root is 〈L0〉. The family tree of L1(π,y)
is the tree structure obtained by merging the parent sequences of all the cyclic
ladder lotteries in L1(π,y). In the family tree of L1(π,y), the root node is the
root L0 of L1(π,y), each node is a cyclic ladder lottery in L1(π,y), and each
edge is a parent-child relationship of two ladder lotteries in L1(π,y).

Now, we design an enumeration algorithm of all the cyclic ladder lotteries
in L1(π,y). The algorithm enumerates them by traversing the family tree of
L1(π,y) starting from the root L0. To traverse the family tree, we design the
following two algorithms: (1) an algorithm that constructs the root L0 of L1(π,y)
and (2) an algorithm that enumerates all the children of a given cyclic ladder
lottery in L1(π,y). Note that, if we have the above two algorithms, starting
from the root, we can traverse the family tree by recursively applying the child-
enumeration algorithm.

The outline of how to construct the root is as follows. First, we construct
a cyclic ladder lottery from π and y, which may not be the root in L1(π,y).
Next, from the constructed cyclic ladder lottery, by repeatedly finding parents,
we obtain the root.

Lemma 6. Let π and y be a permutation in Sn and an almost optimal dis-
placement vector of π, respectively. One can construct the root L0 of L(π,y) in
O(n + (inv(y))3) time.

Let L be a cyclic ladder lottery in L1(π,x) and let t = {i, j, k} be a minimal
right tangled triple in L. We denote by L(t) the cyclic ladder lottery obtained
from L by applying braid relation to t. We can observe that L(t) is a child of L if
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Algorithm 1: Enum-CLL-Children(L)
1 Output L
2 foreach minimal right tangled triple t in L do
3 if t is the smallest triple in L(t) then
4 Enum-CLL-Children(L(t))

and only if t is the smallest minimal left tangled triple in L(t). This observation
gives the child-enumeration algorithm shown in Algorithm 1.

First, we construct the root L0 of L1(π,x) and call Algorithm 1 with the
argument L0. The algorithm outputs the current cyclic ladder lottery L, which is
the argument of the current recursive call. Next, for every minimal right tangled
triple t in L, if L(t) is a child of L, the algorithm calls itself with the argument
L(t). Algorithm 1 traverses the family tree of L1(π,y) and hence enumerates all
the cyclic ladder lotteries in L1(π,y). Each recursive call lists all the minimal
right tangled triples. To do that, we take O(inv(y)) time. For each minimal right
tangled triple t, we check whether or not L(t) is a child of L, as follows. First,
we construct L(t) from L. Next, in L(t), we list all the minimal right tangled
triples. Finally, we check t is the smallest one in the listed triples. The answer
is true implies that L(t) is a child of L. This takes O(inv(y)) time. Therefore, a
recursive call of Algorithm 1 takes O((inv(y))2) time.

Theorem 2. Let π ∈ Sn and let y be an almost optimal displacement vector of
π. After constructing the root in O(n + (inv(y))3) time, one can enumerate all
the cyclic ladder lotteries in L1(π,y) in O((inv(y))2) delay.

The discussion to derive Theorem 2 can be applied to the set Lopt(π,x) for
an optimal displacement vector x of π. Hence, we have the following corollary.

Corollary 3. Let π ∈ Sn and let x be an optimal displacement vector of π.
After constructing the root in O(n+ (inv(x))3) time, one can enumerate all the
cyclic ladder lotteries in Lopt(π,x) in O((inv(x))2) delay.

4 Reconfiguration and Enumeration of Optimal Cyclic
Ladder Lotteries

In this section, we consider the problem of enumerating all the optimal cyclic
ladder lotteries in Lopt(π), where π ∈ Sn. That is, a displacement vector is not
given as an input and only a permutation is given. The formal description of the
problem is shown below.

Problem: Enumeration of optimal cyclic ladder lotteries (EnumCLL)
Instance: A permutation π ∈ Sn.
Output: All the optimal cyclic ladder lotteries in Lopt(π) without duplication.
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From Lemma 1, we have the following outline of an enumeration algorithm
to solve EnumCLL. First, we enumerate all the optimal displacement vectors of
a given permutation. Next, for each optimal displacement vector, we enumerate
all the optimal cyclic ladder lotteries using the algorithm in the previous section.

Therefore, in this section, we first consider the reconfiguration problem for
the optimal displacement vectors to investigate the connectivity of the reconfig-
uration graph of them. Utilizing the knowledge of the reconfiguration graph, we
design an enumeration algorithm that enumerates all the optimal displacement
vectors of a given permutation.

4.1 Reconfiguration

Let x = (x1, x2, . . . , xn) be an optimal displacement vector of a permutation π.
We denote the maximum and minimum elements in x by max(x) and min(x).
Let i and j be two indices such that xi = max(x), xj = min(x), and xi −xj = n.
If x includes two or more maximum (and minimum) values, the index i (and
j) is chosen arbitrarily. Then, a max-min contraction3 Tij of x is a function
Tij : Zn → Z

n such that Tij(x) = (z1, z2, . . . , zn), where

zk =

⎧
⎪⎨

⎪⎩

xk − n if k = i

xk + n if k = j

xk otherwise.

We consider the following reconfiguration problem under the max-min contrac-
tions.

Problem: Reconfiguration of optimal displacement vectors (ReconfDV)
Instance: A permutation π ∈ Sn and two optimal displacement vectors x and
x′ of π.
Question: Does there exist a reconfiguration sequence between x and x′ under
max-min contractions?

Jerrum [5] showed the following theorem.

Theorem 3 ([5]). Any instance of ReconfDV is a yes-instance.

In the remaining part of this subsection, we consider the shortest version of
ReconfDV. Let x = (x1, x2, . . . , xn) and x′ = (x′

1, x
′
2, . . . , x

′
n) be two optimal

displacement vectors of π. We denote the length of a shortest reconfiguration
sequence between x and x′ under max-min contractions by OPTDV (x,x′). For
two optimal displacement vectors x and x′, we define x � x′ by

x � x′ =
∑

i∈[n]

1 − δxi,x′
i
.

One can characterize the length of a shortest reconfiguration sequence using
the symmetric difference, as stated in the following theorem.
3 The contraction is originally proposed by Jerrum [5].
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Theorem 4. Let x and x′ be two optimal displacement vectors of a permutation
π ∈ Sn. Then OPTDV (x,x′) = x�x′

2 holds. Moreover, one can compute a
reconfiguration sequence of length OPTDV (x,x′) in O(n+OPTDV (x,x′)) time.

4.2 Enumeration

In this subsection, we consider the following enumeration problem.

Problem: Enumeration of optimal displacement vectors (EnumDV)
Instance: A permutation π ∈ Sn.
Output: All the optimal displacement vectors of π without duplication.

Theorem 3 implies that the reconfiguration graph of the optimal displacement
vectors of a permutation under max-min contractions is connected. Therefore,
we may use the reverse search technique to enumerate them.

Let π ∈ Sn. Recall that D(π) denotes the set of all the optimal displacement
vectors of π. Let x = (x1, x2, . . . , xn) and x′ = (x′

1, x
′
2, . . . , x

′
n) be two distinct

optimal displacement vectors in D(π). The vector x is larger than x′ if xi = x′
i

for i = 1, 2, . . . , j and xj+1 > x′
j+1.

The root of D(π), denoted by x0, is the largest displacement vector among
D(π). Intuitively, the root includes the maximum values in early indices. Note
that x0 is unique in D(π). Let x be an optimal displacement vector in D(π) \
{x0}. Let α(x) be the minimum index of x such that xα(x) = min(x). Let β(x)
be the minimum index of x such that α(x) < β(x) and xβ(x) = max(x) hold.
Then, we define the parent of x by par(x) = Tβ(x)α(x)(x). Note that par(x) is
larger than x and always exists for x 
= x0. We say that x is a child of par(x).
The parent sequence 〈x1,x2, . . . ,xk〉 of x is a sequence of optimal displacement
vectors in D(π) such that

(1) x1 = x,
(2) xi = par(xi−1) for each i = 2, 3, . . . ,m, and
(3) xk = x0.

Note that one can observe that, by repeatedly finding the parents from any
optimal displacement vector in D(π), the root x0 is always obtained. Hence, by
merging the parent sequence of every vector in x ∈ D(π)\{x0}, we have the tree
structure rooted at x0. We call the tree the family tree of D(π). Note that the
family tree is a spanning tree of the reconfiguration graph of D(π) under max-
min contractions. Therefore, to enumerate all the optimal displacement vectors
in D(π), we traverse the family tree of D(π). To traverse the family tree, we
design an algorithm to enumerate all the children of an optimal displacement
vector in D(π).

Let x = (x1, x2, . . . , xn) be an optimal displacement vector in D(π). The max-
min index sequence, denoted by m(x) = 〈m1,m2, . . . ,m�〉, of x is a sequence of
indices of x such that either xmi

= max(x) or xmi
= min(x) for i = 1, 2, . . . , �

and mi < mi+1 for each i = 1, 2, . . . , � − 1. It can be observed that if xm1 =
min(x), x has no child from the definition of the parent. Hence, we assume
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Algorithm 2: Enum-DV-Children(x)
1 Output x
2 Let m(x) = 〈m1, m2, . . . , m�〉 be the max-min index sequence of x
3 Let mp = α(x) and mq = β(x)
4 foreach j = p, p + 1, . . . , q − 1 do
5 Enum-DV-Children(Tmp−1mj (x))

that xm1 = max(x), below. Now, we enumerate all the children of x as follows.
Suppose that mp = α(x) and mq = β(x). (For the root x0, β(x) is not defined.
Hence, for convenience, we define β(x) = � + 1 for the root.)

Lemma 7. Let x be an optimal displacement vector of π ∈ Sn. Let m(x) =
〈m1,m2, . . . ,m�〉 be the max-min index sequence of x. Then, Tmimj

(x) is a
child of x if and only if i = p − 1 and j = p, p + 1, . . . , q − 1 hold.

From Lemma 7, we have the child-enumeration algorithm shown in Algo-
rithm 2. We first construct the root x0 and call the algorithm with the argument
x0. By recursively calling Algorithm 2, one can traverse the family tree.

Theorem 5. Let π ∈ Sn. After O(n)-time preprocessing, one can enumerate
all the optimal displacement vectors in D(π) in O(1) delay.
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Abstract. We study the Min-Weighted Sum Bin Packing problem, a
variant of the classical Bin Packing problem in which items have a weight,
and each item induces a cost equal to its weight multiplied by the index
of the bin in which it is packed. This is in fact equivalent to a batch
scheduling problem that arises in many fields of applications such as
appointment scheduling or warehouse logistics. We give improved lower
and upper bounds on the approximation ratio of two simple algorithms
for this problem. In particular, we show that the knapsack-batching algo-
rithm, which iteratively solves knapsack problems over the set of remain-
ing items to pack the maximal weight in the current bin, has an approx-
imation ratio of at most 17/10.

Keywords: Bin Packing · Batch Scheduling · Approximation
Algorithms

Full version: arXiv:2304.02498

1 Introduction

Bin Packing is a fundamental problem in computer science, in which a set of
items must be packed into the smallest possible number of identical bins, and
has applications in fields as varied as logistics, data storage or cloud computing.
A property of the bin packing objective is that all bins are treated as “equally
good”, which is not always true in applications with a temporal component.
Consider, e.g., the problem of allocating a set of n patients to days for a medical
appointment with a physician. Each patient is characterized by a service time
and a weight indicating the severity of his health condition. The total time
required to examine all patients assigned to a given day should not exceed a
fixed threshold. The days thus correspond to bins indexed by 1, 2, . . ., and bins
with a small index are to be favored, especially for patients with a high weight,
because they yield a smaller waiting time for the patients.

In the Min-Weighted Sum Bin Packing Problem (MWSBP), which
was formally introduced in [5], the input consists of a set of n items with size
si ∈ (0, 1] and weight wi > 01. The goal is to find a feasible allocation of
1 In [5] the weights are assumed to be wi ≥ 1, but we can reduce to this case by scaling;

Our lower bounds on approximation ratios are not affected by this operation.
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minimum cost of the set of items to bins, i.e., a partition of [n] := {1, . . . , n}
into B1, . . . , Bp such that

∑
i∈Bk

si ≤ 1 holds for all k ∈ [p], where the cost of
putting item i into Bk is given by k · wi. In other words, if we use the notation
x(S) :=

∑
i∈S xi for a vector x ∈ R

n and a subset S ⊆ [n], the cost of a feasible
allocation is

Φ(B1, . . . , Bp) :=
p∑

k=1

k · w(Bk) =
p∑

k=1

p∑

j=k

w(Bj). (1)

Another interpretation of this problem is that we have a set of jobs with unit
processing times, and want to schedule them on a batch processing machine
capable of simultaneously processing a batch of jobs of total size at most 1,
with the objective to minimize the weighted sum of completion times. In the
three-field notation introduced by Graham et al. [9], MWSBP is thus equivalent
to 1|p - batch, sj , pj = 1|∑ wjCj ; we refer to [7] for a recent review giving more
background on parallel batch scheduling. Broadly speaking, we see that MWSBP
captures the main challenge of many real-world problems in which items must be
packed over time, such as the appointment scheduling problem mentioned above,
or the problem of scheduling batches of orders in an order-picking warehouse.

For a given instance of MWSBP and an algorithm ALG, we denote by OPT
the cost of an optimal solution, and the cost of the solution returned by ALG
is denoted by ALG as well. Recall that the approximation ratio R(ALG) of an
algorithm ALG is the smallest constant ρ ≥ 1 such that, for all instances of the
problem, it holds ALG ≤ ρ · OPT.

Related Work. The complexity of MWSBP is well understood, as the problem
is NP-hard in the strong sense and a polynomial-time approximation scheme
(PTAS) exists [5]. This paper also gives a simple algorithm based on Next-Fit
which has an approximation ratio of 2. Prior to this work, several heuristics have
been proposed for a generalization of the problem with incompatible families of
items associated with different batch times [1], and it was shown that a variant
of First-Fit has an approximation ratio of 2 as well.

The unweighted version of the problem, Min-Sum Bin Packing (MSBP), in
which each item has weight wi = 1, also attracted some attention. A simpler
PTAS is described in [4] for this special case. The authors also analyze the
asymptotic approximation ratio of several algorithms based on First-Fit or
Next-Fit, i.e., the limit of the approximation ratio when one restricts attention
to instances with OPT → ∞. In particular, they give an algorithm whose asymp-
totic approximation ratio is at most 1.5604. In addition, it is known that the
variant of First-Fit considering items in nondecreasing order of their sizes is
a (1 +

√
2/2)-approximation algorithm for MSBP [10].

Another related problem is Min-Weighted Sum Set Cover (MWSSC),
in which a collection of subsets S1, . . . , Sm of a ground set [n] of items is given
in the input, together with weights w1, . . . , wn > 0. As in MWSBP, a solution
is a partition B1, B2, . . . , Bp of [n] and the cost of these batches is given by (1),
but the difference is that each batch Bk ⊆ [n] must be the subset of some Sj ,
j ∈ [m]. In other words, the difference with MWSBP is that the feasible batches
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Table 1. Summary of previous and new bounds on the approximation ratio of simple
algorithms for MWSBP. The results of this paper and indicated in boldface, together
with the reference of the proposition (Pr.) or theorem (Th.) where they are proved.

Algorithm lower bounds upper bounds upper bounds for special
cases of MWSBPprevious new previous new

WNFI 2 [1] 2 [1] 1.618 for wi = 1, OPT → ∞ [4]

WFFI 2 [1] 2 [1] 1.707 for wi = 1 [10]

WNFD-R 2 [5] 2 [5]

WFFI-R 1.354 [4] 1.557 (Pr. 6) 2 [1] 1.636 for wi = si (Th. 7)

KB 1.354 [4] 1.433 (Pr. 5) 4 [6] 1.7 (Th. 3)

are described explicitly by means of a collection of maximal batches rather than
implicitly using a knapsack constraint s(Bk) ≤ 1. Any instance of MWSBP
can thus be cast as an instance of MWSSC, although this requires an input of
exponential size (enumeration of all maximal subsets of items of total size at
most 1). The unweighted version of MWSSC was introduced in [6]. The authors
show that a natural greedy algorithm is a 4-approximation algorithm, and that
this performance guarantee is the best possible unless P = NP .

Contribution and Outline. Given the practical relevance of MWSBP for real-
world applications, we feel that it is important to understand the performance
of simple algorithms for this problem, even though a PTAS exists. Indeed, the
PTAS of [5] has an astronomical running time, which prevents its usage in appli-
cations. This paper gives improved lower and upper bounds on the approxima-
tion ratio of two simple algorithms for MWSBP; In particular, we obtain the first
simple algorithm with an approximation algorithm strictly below 2, see Table 1
for a summary of previous and new results.

The two analyzed algorithms, called Knapsack-Batching (KB) and Weighted
First-Fit Increasing Reordered (WFFI-R), are introduced in Sect. 2 along-
side with more background on algorithms for Bin Packing and MWSBP.
In Sect. 3 we show that R(KB) ∈ (1.433, 1.7] and in Sect. 4 we show that
R(WFFI-R) > 1.557. Further, all the best known lower bounds are achieved
for instances in which wi = si for all items, a situation reminiscent of schedul-
ing problems where we minimize the weighted sum of completion times, and
where the worst instances have jobs with equal smith ratios; see, e.g. [12]. It
is therefore natural to focus on this regime, and we prove that WFFI-R is a
(7+

√
37)/8-approximation algorithm on instances with wi = si for all i ∈ I.

2 Preliminaries

Many well known heuristics have been proposed for the Bin Packing problem.
For example, Next-Fit (NF) and First-Fit (FF) consider the list of items in an
arbitrary given order, and assign them sequentially to bins. The two algorithms
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differ in their approach to select the bin where the current item is placed. To
this end, NF keeps track of a unique opened bin; the current item is placed in
this bin if it fits into it, otherwise another bin is opened and the item is placed
into it. In contrast, FF first checks whether the current item fits in any of the
bins used so far. If it does, the item is put into the bin where it fits that has
been opened first, and otherwise a new bin is opened. It is well known that FF
packs all items in at most 	17/10 · OPT 
 bins, where OPT denotes the minimal
number of required bins, a result obtained by Dósa and Sgall [2] after a series of
papers that improved an additive term in the performance guarantee.

In MWSBP, items not only have a size but also a weight. It is thus natural to
consider the weighted variants WFFI, WFFD, WNFI, WNFI of FF and NF, respectively,
where W stands for weighted, and the letter I (resp. D) stands for increasing (resp.
decreasing) and indicates that the items are considered in nondecreasing (resp.
nonincreasing) order of the ratio si/wi. Using a simple exchange argument, we
can see that every algorithm can be enhanced by reordering the bins it outputs
by nonincreasing order of their weights. We denote the resulting algorithms by
adding the suffix -R to their acronym. While WNFD, WFFD and WFFD-R do not have
a bounded approximation ratio, even for items of unit weights [4], it is shown
in [1] that the approximation ratio of WNFI and WFFI is exactly 2, and the same
holds for WNFD-R [5]. This paper gives improved bounds for WFFI-R in Sect. 4.

Another natural algorithm for MWSBP is the Knapsack-Batching (KB) algo-
rithm, which was introduced in [1] and can be described as follows: At iteration
k = 1, 2, . . ., solve a knapsack problem to find the subset of remaining items
Bk ⊆ [n] \ (B1 ∪ . . . ∪ Bk−1) of maximum weight that fits into a bin (i.e.,
s(Bk) ≤ 1). In fact, [5] argues that KB is the direct translation of the greedy
algorithm for the Min-Sum Set Cover Problem mentioned in the introduc-
tion, so its approximation ratio is at most 4. In practice one can use a fully
polynomial-time approximation scheme (FPTAS) to obtain a near-optimal solu-
tion of the knapsack problem in polynomial-time at each iteration, which yields
a (4+ ε)-approximation algorithm for MWSBP. In the next section, we show an
improved upper bound of 1.7 for the KB algorithm (or 1.7 + ε if an FPTAS is
used for solving the knapsack problems in polynomial-time).

3 The Knapsack-Batching Algorithm

In this section, we study the Knapsack-Batching (KB) algorithm. Throughout
this section, we denote by B1, . . . , Bp the set of bins returned by KB, and by
O1, . . . , Oq the optimal bins, for an arbitrary instance of MWSBP. For notational
convenience, we also define Bp′ = ∅ for all p′ ≥ p+1 and Oq′ = ∅ for all q′ ≥ q+1.
Recall that KB solves a knapsack over the remaining subset of items at each
iteration, so that for all k, w(Bk) ≥ w(B) holds for all B ⊆ [n]\(B1∪ . . .∪Bk−1)
such that s(B) ≤ 1.

We first prove the following proposition, which shows that a performance
guarantee of α can be proved if we show that KB packs at least as much weight
in the first αk bins as OPT does in only k bins. The proof relies on expressing OPT
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Fig. 1. Illustration of the proof of Proposition 1. The area below the thick curve of
x �→ fO(x) is OPT, and the area under the thin curve of x �→ fA(x) is KB. Shrinking
this area horizontally by a factor α produces the shaded area under x �→ fA(α · x),
which must be smaller than OPT.

and KB as the area below a certain curve. Then, we show that shrinking the curve
corresponding to KB by a factor α yields an underestimator for the OPT-curve;
see Fig. 1. A similar idea was used in [6] to bound the approximation ratio of the
greedy algorithm for Min-Sum Set Cover, but their bound of 4 results from
shrinking the curve by a factor 2 along both the x-axis and the y-axis.

Proposition 1. Let α ≥ 1. If for all k ∈ [q] it holds

w(B1) + w(B2) + . . . + w(B�αk�) ≥ w(O1) + w(O2) + . . . + w(Ok),

then KB ≤ α · OPT.
Proof. For all x ≥ 0, let fO(x) :=

∑∞
j=�x�+1 w(Oj). Note that fO is piecewise

constant and satisfies fO(x) =
∑q

j=k w(Oj) for all x ∈ [k − 1, k), k ∈ [q] and
fO(x) = 0 for all x ≥ q. As a result, using the second expression in (1), we can
express OPT as the area below the curve of fO(x):

OPT =
q∑

k=1

q∑

j=k

w(Oj) =
∫ ∞

0

fO(x) dx.

Similarly, we have KB =
∫ ∞
0

fA(x) dx, where for all x ≥ 0 we define fA(x) :=∑∞
j=�x�+1 w(Bj). The assumption of the lemma can be rewritten as fA(α · k) ≤

fO(k), for all k ∈ [q], and we note that this inequality also holds for k = 0, as
fA(0) = fO(0) =

∑n
i=1 wi.

Now, we argue that this implies fA(α · x) ≤ fO(x), for all x ≥ 0. If x lies in
an interval of the form x ∈ [k, k + 1) for some k ∈ {0, . . . , q − 1}, then we have
fO(x) = fO(k) ≥ fA(α · k) ≥ fA(α · x), where the last inequality follows from
k ≤ x and the fact that fA is nonincreasing. Otherwise, we have x ≥ q, so it
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holds fO(x) = 0 = fO(q) ≥ fA(α · q) ≥ fA(α · x); see Fig. 1 for an illustration.
We can now conclude this proof:

KB =
∫ ∞

0

fA(x) dx = α ·
∫ ∞

0

fA(α · y) dy ≤ α ·
∫ ∞

0

fO(y) dy = α · OPT.

�

We next prove that KB satisfies the assumption of Proposition 1 for α =
17
10 . This result is of independent interest, as it implies that KB is also a 17/10-
approximation algorithm for the problem of finding the smallest number of bins
needed to pack a given weight.

Proposition 2. For all instances of MWSBP in which the bins O1, . . . , Oq are
optimal and KB outputs the bins B1, . . . , Bp, and for all k ∈ [q] it holds

w(B1) + w(B2) + . . . + w(B� 17
10k�) ≥ w(O1) + w(O2) + . . . + w(Ok).

Proof. Let k ∈ [q]. We define the sets B := B1 ∪ . . .∪B�1.7k�, O := O1 ∪ . . .∪Ok.
For all i ∈ B, denote by β(i) ∈ [1.7 k] the index of the KB–bin that contains i,
i.e., i ∈ Bβ(i). Now, we order the items in O in such a way that we first consider
the items of O ∩ B in nondecreasing order of β(i), and then all remaining items
in O \ B in an arbitrary order. Now, we construct a new packing H1, . . . , Hq′ of
the items in O, by applying First-Fit to the list of items in O, considered in
the aforementioned order. For all i ∈ O ∩B, let β′(i) denote the index such that
i ∈ Hβ′(i). Clearly, our order on O implies β′(i) ≤ β(i) for all i ∈ O ∩ B.

It follows from [2] that q′ ≤ 	1.7 · k
. So we define Hj := ∅ for j = q′ + 1,
q′ + 2, . . . , 	1.7 · k
, and it holds O = H1 ∪ . . . ∪ H�1.7k�. Now, we will show that
w(Hj) ≤ w(Bj) holds for all j = 1, . . . , 	1.7k
. To this end, using the greedy
property of KB, it suffices to show that all elements of Hj remain when the
knapsack problem of the jth iteration is solved, i.e., Hj ⊆ [n]\ (B1 ∪ . . .∪Bj−1).
So, let i ∈ Hj . If i /∈ B, then i /∈ (B1 ∪ . . . ∪ Bj−1) is trivial. Otherwise, it is
i ∈ O ∩ B, so we have j = β′(i) ≤ β(i), which implies that i does not belong to
any B� with � < j. We can now conclude the proof:

w(O) =
�1.7·k�∑

i=1

w(Hi) ≤
�1.7·k�∑

i=1

w(Bi) = w(B).

�

Proposition 1 and Proposition 2 yield the main result of this section:

Theorem 3. R(KB) ≤ 17
10 .

Remark. It is straightforward to adapt the above proof to show that if we use
an FPTAS for obtaining a (1 + ε

n)-approximation of the knapsack problems in
place of an optimal knapsack at each iteration of the KB algorithm, we obtain a
polynomial-time (1710 + ε)-approximation algorithm for MWSBP.
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Fig. 2. Sketch of the “good” packing (left) and the packing returned by KB (right) for
the instance defined before Lemma 4, for k = 3. The dotted blocks represent bunches
of tiny items. The mi’s are chosen so that the number of items in each class is the
same in both packings, i.e., m1 = n1 · (1/8 − 3ε), m2 = (n1+n2)/7, m3 = (n1+n2+n3)/3
and m4 = n1 + n2 + n3 + n4.

We next show a lower bound on the approximation ratio of KB. For some
integers s and k with s ≥ 2k, let ε = 1

2k·s . Given an integer vector n ∈ Z
k+1
≥0 ,

we construct the following instance: The items are partitioned in k + 1 classes,
i.e., [n] = C1 ∪ C2 ∪ . . . ∪ Ck+1. For all j ∈ [k], the class Cj consists of Nj =
n1 + . . . + nk+2−j items of class j, with si = wi = 1

2j + ε, ∀i ∈ Cj . In addition,
the class Ck+1 contains Nk+1 := n1 · (s − k) tiny items with si = wi = ε. We
further assume that m1 := n1 · (2−k − kε) = n1(s−k)

2k·s is an integer, and for all
j ∈ [k], Nj

2j−1 is an integer. Then, for j = 2, . . . , k+1 we let mj := Nk+2−j

2k+2−j−1
∈ Z.

On this instance, KB could start by packing m1 bins of total weight 1, con-
taining 2k · s tiny items each. After this, there only remains items from the
classes C1, . . . , Ck, and the solution of the knapsack problem is to put 2k − 1
items of the class Ck in a bin. Therefore, KB adds m2 = Nk/(2k −1) such bins of
weight (2k − 1) · (2−k + ε) = 1 − 2−k + (2k − 1) · ε into the solution. Continuing
this reasoning, we see that for each j = 2, . . . , k + 1, when there only remains
items from the classes C1, . . . , Ck+2−j , KB adds a group of mj bins that contain
(2k+2−j − 1) items of class Cj , with a weight of 1− 2−(k+2−j) + (2k+2−j − 1) · ε
each. This gives:

KB =
m1∑

i=1

i +
k+1∑

j=2

(
1 − 2−(k+2−j) + (2k+2−j − 1) · ε

)
·

m1+...+mj∑

i=m1+...+mj−1+1

i. (2)

On the other hand, we can construct the following packing for this instance:
The first n1 bins contain one item of each class C1, . . . , Ck, plus (s − k) tiny
items; their total weight is thus

∑k
j=1(2

−j + ε) + (s − k)ε = 1 − 2−k + s · ε = 1.
Then, for each j = 2, . . . , k + 1, we add a group of nj bins, each containing one
item of each class C1, C2, . . . , Ck+2−j . The bins in the jth group thus contain a
weight of

∑k+2−j
i=1 (2−i + ε) = 1− 2−(k+2−j) + (k + 2− j) · ε. Obviously, the cost



350 G. Sagnol

of this packing is an upper bound for the optimum:

OPT ≤
n1∑

i=1

i +
k+1∑

j=2

(
1 − 2−(k+2−j) + (k + 2 − j) · ε

)
·

n1+...+nj∑

i=n1+...+nj−1+1

i. (3)

A sketch of these two packings for k = 3 is shown in Fig. 2.

The expressions (2) and (3) are not well suited for finding the values of ni

producing the best lower bound on R(KB). The next lemma shows how we can
instead focus on maximizing a more amenable ratio of two quadratics.

Lemma 4. Let L be the (k + 1) × (k + 1) lower triangular matrix with all
elements equal to 1 in the lower triangle, u := [ 1

2k+1 , 1
2k+1 , 1

2k
, . . . , 1

22 ] ∈ R
k+1,

v := [ 1
2k

, 1
2k−1

, 1
2k−1−1

, . . . , 1
22−1 , 1

2−1 ] ∈ R
k+1, and let U := Diag(u) and V :=

Diag(v). Then, for all x ∈ R
k+1
>0 , it holds

R(KB) ≥ R(x) :=
xTLTV LTULV Lx

xLTULx
.

The proof of this lemma is ommited by lack of space and can be found in the
full version [11]; The basic idea is to use (2)–(3) for an instance where ni is
proportional to 	txi
 for some t > 0 and to let t → ∞.

Proposition 5. R(KB) > 1.4334.

Proof. This follows from applying Lemma 4 to the vector x = [0.97, 0.01, 0.01,
0.01, 0.03, 0.07, 0.15, 0.38] ∈ R

8
>0. This vector is in fact the optimal solution of the

problem of maximizing R(x) over R8, rounded after 2 decimal places for the sake
of readability. To find this vector, we reduced the problem of maximizing R(x)
to an eigenvalue problem, and recovered x by applying a reverse transformation
to the corresponding eigenvector. Note that optimizing for k = 50 instead of
k = 7 only improves the bound by 3 · 10−5. �

4 First-Fit-Increasing Reordered

In this section, we analyze the WFFI-R algorithm. First recall that WFFI (without
bins reordering) has an approximation ratio of 2. To see that this bound is tight,
consider the instance with 2 items such that w1 = s1 = ε and w2 = s2 = 1.
Obviously, the optimal packing puts the large item in the first bin and the small
item in the second bin, so that OPT = 1 + 2ε. On the other hand, since the two
items have the same ratio si/wi, WFFI could put the small item in the first bin,
which yields WFFI = ε + 2. Therefore, WFFI/OPT → 2 as ε → 0. In this instance
however, we see that reordering the bins by decreasing weight solves the issue.

It is easy to find an instance in which WFFI-R/OPT approaches 3/2, though:
Let w1 = s1 = ε and w2 = w3 = s2 = s3 = 1

2 . Now, the optimal packing puts
items 2 and 3 in the first bin, which gives OPT = 1 + 2ε, while WFFI-R could
return the bins B1 = {1, 2}, B2 = {3}, so that WFFI-R = 1

2 + ε + 2 · 1
2 = 3

2 + ε.
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We next show how to obtain a stronger bound on R(WFFI-R). To this end, we
recall that for all k ∈ N and ε > 0 sufficiently small, there exists an instance of
Bin Packing with the following properties [2,8]: There are n = 30k items, which
can be partitioned in three classes. The items i = 1, . . . , 10k are small and have
size si = 1/6 + δiε; then there are 10k medium items of size si = 1/3 + δiε (i =
10k +1 . . . , 20k), and 10k large items of size si = 1/2+ ε (i = 20k +1, . . . , 30k).
The constants δi ∈ R can be positive or negative and are chosen in a way that, if
FF considers the items in the order 1, . . . , n, it produces a packing B1, . . . B17k in
which the first 2k bins contain 5 small items, the next 5k bins contain 2 medium
items and the last 10k bins contain a single large item. On the other hand, there
exists a packing of all items into 10k +1 bins, in which 10k − 1 bins consist of a
small, a medium and a large item and have size 1−O(ε), and the two remaining
bins have size 1/2+O(ε) (a small with a medium item, and a large item alone).

We can transform this Bin Packing instance into a MWSBP instance, by
letting wi = si, for all i. This ensures that all items have the same ratio si/wi, so
we can assume that WFFI-R considers the items in any order we want. In addition,
we consider two integers u and v, and we increase the number of medium items
from 10k to 10k + 2u (so the medium items are i = 10k + 1, . . . , 20k + 2u) and
the number of large items from 10k to 10k + 2u + v (so the large items are
i = 20k+2u+1, . . . , 30k+4u+v). The δi’s are unchanged for i = 1, . . . 20k, and
we let δi = 1 for all additional medium items (i = 20k + 1, . . . , 20k + 2u). Then,
assuming that WFFI-R considers the items in the order 1, 2, . . . , the algorithm
packs 2k bins with 5 small items, 5k + u bins with 2 medium items and the last
10k + 2u + v bins with a single large item. On the other hand, we can use the
optimal packing of the original instance, and pack the additional items into 2u
bins of size 5/6 + 2ε containing a medium and a large item, and v bins with a
single large item. This amounts to a total of 10k − 1 bins of size 1 − O(ε), 2u
bins of size 5/6 + O(ε) and v + 2 bins of size 1/2 + O(ε). In the limit ε → 0, we
get

WFFI-R =
5
6

2k∑

i=1

i +
2
3

7k+u∑

i=2k+1

i +
1
2

17k+3u+v∑

i=7k+u+1

i

=
5
6
k(2k + 1) +

1
3
(5k + u)(9k + u + 1) +

1
4
(10k + 2u + v)(24k + 4u + v + 1)

and

OPT ≥
10k−1∑

i=1

i +
5
6

10k−1+2u∑

i=10k

i +
1
2

10k+2u+v+1∑

i=10k+2u

i

= 5k(10k − 1) +
5
6
u(20k + 2u − 1) +

1
4
(v + 2)(20k + 4u + v + 1).

Proposition 6. R(WFFI-R) > 1.5576.

Proof. The bound is obtained by substituting k = 10350, u = 11250, v = 24000
in the above expressions. As in the previous section, these values can be obtained
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Fig. 3. Sketch of a packing defining A(y,x) (left), and corresponding pseudo-packing
defining B(y,x) (right): The values of � and ρ ensure equality of the two shaded areas.

by reducing the problem of finding the best values of k, u, v to an eigenvalue
problem and by scaling-up and rounding the obtained eigenvector. �

All bad examples for WFFI-R (and even for all algorithms listed in Table 1)
have the property that all items have the same ratio si/wi. This makes sense
intuitively, as the algorithm does not benefit from sorting the items anymore,
i.e., items can be presented to the algorithm in an adversarial order. While the
only known upper bound on the approximation ratio of WFFI-R is 2 (as WFFI-R
can only do better than WFFI), we believe that R(WFFI-R) is in fact much closer
to our lower bound from Proposition 6. To support this claim, we next show an
upper bound of approx. 1.6354 for instances with si = wi.

Theorem 7. For all MWSBP instances with si = wi for all i ∈ [n], it holds

WFFI-R ≤ 7 +
√
37

8
· OPT.

Proof. Consider an instance of MWSBP with wi = si for all i ∈ [n] and denote
by W1 ≥ . . . ≥ Wp the weight (or equivalently, the size) of the bins B1, . . . , Bp

returned by WFFI-R. We first handle the case in which there is at most one bin
with weight ≤ 2

3 , in which case we obtain a bound of 3
2 :

Claim 1. If Wp−1 > 2
3 , then WFFI-R ≤ 3

2OPT.

This claim is proved in the appendix of the full version [11]. We can thus assume
w.l.o.g. that there are at least 2 bins with weight ≤ 2

3 . Let r ∈ [p − 1] denote
the index of the first bin such that Wr ≤ 2/3 and define s := p − r ∈ [p − 1].
We define the vectors y ∈ R

r and x ∈ R
s such that yi = Wi (∀i ∈ [r]) and

xi = Wr+i (∀i ∈ [s]). By construction, we have 1 ≥ y1 ≥ . . . ≥ yr−1 > 2/3 ≥
yr ≥ x1 ≥ . . . ≥ xs. We also define x0 := yr and xi := 0 for all i > s for the
sake of simplicity. Note that Wi + Wj > 1 must hold for all i �= j, as otherwise
the First-Fit algorithm would have put the items of bins i and j into a single
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bin. This implies xs−1 + xs > 1, hence xs−1 = max(xs−1, xs) > 1/2. With this
notation, we have:

WFFI-R = A(y,x) :=
r∑

i=1

i · yi +
s∑

i=1

(r + i) · xi.

Next, we prove a lower bound on OPT depending on x an y. Observe that among
the WFFI-R-bins Br, Br+1, . . . , Br+s with weight≤ 2/3, at most one of them can
contain two items or more (the first of these bins that was opened, as items
placed in later bins have a size –and hence a weight– strictly larger than 1/3).
Thus, s out of these s + 1 bins must contain a single item, and there is no pair
of such single items fitting together in a bin. Therefore, the s single items must
be placed in distinct bins of the optimal packing. This implies

w(Oi) ≥ w(Br+i) = xi, for all i ∈ [s]. (4)

Now, let � be the unique index such that
∑�−1

i=1(1−xi) <
∑r

i=1 yi ≤ ∑�
i=1(1−xi),

and define ρ :=
∑r

i=1 yi − ∑�−1
i=1(1 − xi) ∈ (0, 1 − x�]. We claim that

OPT ≥ B(y,x) :=
1
2
�(� − 1) + (x� + ρ)� +

s∑

i=�+1

i · xi,

where the last sum is 0 if � ≥ s, which corresponds to a “pseudo-packing” with
weight 1 in bins 1, . . . , �−1, weight xi in the bins �+1, . . . , s and the weight of bin
� is adjusted to x�+ρ so that the total weight equals

∑
i xi+

∑
i yi, see Fig. 3 for

an illustration. This clearly gives a lower bound on OPT, as transferring weight
from late bins to early bins only improves the solution, and the pseudo-packing
defining B(x,y) packs the whole weight earlier than any packing O1, . . . , Oq

satisfying (4). We extend the definition of the function B(·, ·) to any pair of
vectors (y′,x′) ∈ R

r
>0 × [0, 1]t with t ≤ s, by setting x′

i = 0 for all i > t.
The above inequalities implies that WFFI-R/OPT is bounded from above by

R(y,x) := A(y,x)/B(y,x). We next give a series of technical claims (proved in
the appendix of [11]) which allows us to compute the maximum of R(y,x) when
x and y are as above. The first claim shows that we obtain an upper bound for
some vectors y′ and x′ of the form y′ = [23 , . . . , 2

3 , α] ∈ R
r and x′ = [α, . . . , α] ∈

R
t for some α ∈ [12 , 2

3 ] and t ≤ s. Its proof relies on averaging some coordinates
of the vectors y and x, and using a sequential rounding procedure to obtain
equal coordinates in the vector x and to decrease y1, . . . , yr−1 to 2

3 .

Claim 2. There exists an α ∈ [12 , 2
3 ] and an integer t such that R(y,x) ≤

R(y′,x′) holds for the vectors y′ = [23 , . . . , 2
3 , α] ∈ R

r and x′ = [α, . . . , α] ∈ R
t.

Next, we give a handy upper bound for R(y′,x′) when y′ and x′ are in the form
obtained in the previous claim.

Claim 3. Let y′ := [23 , . . . , 2
3 , α] ∈ R

r and x′ := [α, . . . , α] ∈ R
t. If 2

3 (r−1)+α ≤
(1 − α)t, then it holds

R(y′,x′) ≤ H1(α, r, t) :=
3(1 − α)(3α(t + 1)(2r + t) + 2r(r − 1))

3α + 4r2 + (6α − 2)r + 9(1 − α)αt(t + 1) − 2
.
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Otherwise (if 2
3 (r − 1) + α > (1 − α)t), the following bound is valid:

R(y′,x′) ≤ H2(α, r, t) :=
6r(r − 1) + 9α(t + 1)(2r + t)

(2r + 3α(t + 1) − 2)(2r + 3α(t + 1) + 1)
.

We start by bounding the second expression. In that case, we obtain a bound
equal to 13

8 = 1.625.

Claim 4. For all α ∈ [ 12 , 2
3 ], r ≥ 1 and 0 ≤ t ≤ 2/3(r−1)+α

1−α , H2(α, r, t) ≤ 13
8 .

Then, we bound H1. It turns out that the derivative of H(α, r, t) with respect
to α is nonpositive over the domain of α, so we obtain an upper bound by setting
α = 1

2 .

Claim 5. For all α ∈ [ 12 , 2
3 ], r ≥ 1 and t ≥ 0, it holds

H1(α, r, t) ≤ H1(
1
2
, r, t) =

3(4r2 + r(6t + 2) + 3t(t + 1))
16r2 + 4r + 9t2 + 9t − 2

.

Finally, we obtain our upper bound by maximizing the above expression over the
domain r ≥ 1, t ≥ 0. Let u := r − 1 ≥ 0. This allows us to rewrite the previous
upper bound as

H1(
1
2
, r, t) = R1(u, t) :=

3(6 + 3t2 + 10u + 4u2 + 9t + 6ut)
18 + 9t + 9t2 + 36u + 16u2

.

for some nonnegative variables u and t. Rather than relying on complicated
differential calculus to maximize R1, we give a short proof based on a certifi-
cate that some matrix is copositive (see, e.g. [3]), that was found by solving a
semidefinite program. Observe that R1(u, t) = zT Az/zT Bz, with

z =

⎛

⎝
u
t
1

⎞

⎠ , A =

⎛

⎝
12 9 15
9 9 27/2
15 27/2 18

⎞

⎠ , and B =

⎛

⎝
16 0 18
0 9 9/2
18 9/2 18

⎞

⎠ .

Let τ := 7+
√
37

8 , X :=
⎛

⎝
0 0 3
0 0 9/8
3 9/8 0

⎞

⎠. The reader can verify that the matrix

Z = τB − A − X =

⎛

⎝
2(1 +

√
37) −9 9/4 · (√37 − 1)

−9 9/8 · (√37 − 1) 9/16 · (√37 − 19)
9/4 · (√37 − 1) 9/16 · (√37 − 19) 9/4 · (√37 − 1)

⎞

⎠

is positive semidefinite. As a result, zT (τB − A)z ≥ zT Xz = 6u + 9/4 · t holds
for all u, t ∈ R, and this quantity is nonnegative because u ≥ 0 and t ≥ 0.
This proves τ · zT Bz − zT Az ≥ 0, and thus R1(u, t) ≤ τ . We note that this
bound is tight, as R1(ui, ti) → τ for sequences of integers {(ti, ui)}i∈N such
that ti/ui converges to 2

9 (1 +
√
37). By Claims 2–5, we have thus shown that

R(y,x) ≤ max(138 , 7+
√
37

8 ) = 7+
√
37

8 , which concludes this proof. �
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Abstract. Assume that an N -bit sequence S of k numbers encoded as
Elias gamma codes is given as input. We present space-efficient algorithms
for sorting, dense ranking and competitive ranking on S in the word RAM
model with word size Ω(log N) bits. Our algorithms run in O(k + N

logN
)

time and use O(N) bits. The sorting algorithm returns the given numbers
in sorted order, stored within a bit-vector of N bits, whereas our ranking
algorithms construct data structures that allow us subsequently to return
the dense/competitive rank of each number x in S in constant time. For
numbers x ∈ N with x > N we require the position px of x as the input
for our dense-/competitive-rank data structure. As an application of our
algorithms above we give an algorithm for tree isomorphism, which runs
in O(n) time and uses O(n) bits on n-node trees. The previous best linear-
time algorithm for tree isomorphism uses Θ(n log n) bits.

Keywords: space efficient · sorting · rank · dense rank · tree
isomorphism

1 Introduction

Due to the rapid growth of the input data sizes in recent years, fast algorithms
that also handle space efficiently are increasingly gaining importance. To prevent
cache-faults and space deficiencies we focus on space-efficient algorithms, i.e.,
algorithms that run (almost) as fast as standard solutions for the problem under
consideration with decreased utilization of space.

Graphs are often used to encode structural information in many fields, e.g.,
in chemistry [23] or electronic design automation [4].

Model of Computation. Our model of computation is the word RAM, where
we assume to have the standard operations to read, write as well as arithmetic
operations (addition, subtraction, multiplication, modulo, bit shift, AND and
OR) take constant time on words of size w = Ω(log N) bits where N is the
input size in bits. (In our paper log is the binary logarithm log2.) The model
has three types of memory. A read-only input memory where the input is stored.
A read-write working memory that an algorithm uses to compute its result and
a write-only output memory that the algorithm uses to output its result. The
space bounds stated for our results are in the working memory.
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Sorting. Sorting is one of the most essential algorithms in computer sci-
ences [2,8,10,16,17,24] for over 60 years. Usually sorting problems are classified
into different categories. In comparison sorting two elements of an input sequence
must be compared against each other in order to decide which one precedes the
other. Pagter and Rauhe [32] gave a comparison-based algorithm that runs on
input sequences of k elements in O(k2/s) time by using O(s) bits for every given
s with log k ≤ s ≤ k/log k. Let [0, x] = {0, . . . , x} and [0, x) = {0, . . . , x − 1} for
any natural number x. Integer sorting considers a sequence of k integers, each in
the range [0,m), which has to be sorted. It is known that, for m = kO(1), inte-
ger sorting can be done in linear time: consider the numbers as k-ary numbers,
sort the digits of the numbers in rounds (radix sort) and count the occurrences
of a digit by exploiting indirect addressing (counting sort). Han showed that
real sorting (the given sequence consists of real numbers) can be converted in
O(k

√
log k) time into integers and then can be sorted in O(k

√
log log k) time [21].

These algorithms above all assume that the numbers of the input are rep-
resented with the same amount of bits. We consider a special case of integer
sorting that appears in the field of space-efficient algorithms where numbers are
often represented as so-called self-delimiting numbers to lower their total mem-
ory usage. A self-delimiting number can be represented in several ways. We use
the following straightforward representation, also known as Elias gamma code.
To encode an integer x > 0 write � = �log x� zero bits, followed by the binary
representation of x (without leading zeros). When needed, the encoding can be
extended to allow encoding of integers x ≥ 0 by prepending each encoded x > 0
with a single bit set to 1, and encoding 0 with a single bit set to 0. E.g., the
self-delimiting numbers of 0, 1, 2, 3, 4 are 0, 11, 1010, 1011, 100100, respectively.
Throughout this paper, we assume all self-delimiting numbers are given as Elias
gamma codes. Our results can be adapted to other types of self-delimiting num-
bers, for example, Elias delta and Elias omega codes. The property we require
is the following: let x1 < x2 be two integers encoded as self-delimiting numbers
e1, e2, respectively. Then it holds that e1 uses at most as many bits as e2, and if
they use the same number of bits, then e1 is lexicographically smaller than e2.

Assume that k self-delimiting numbers in the range [0,m) with m ≤ 2N are
stored in an N -bit sequence. If the memory is unbounded, then we can simply
transform the numbers into integers, sort them, and transform the sorted num-
bers back into self-delimiting numbers. However, this approach uses Ω(k log m)
bits. For k ≈ N ≈ m, this is too large to be considered space-efficient. We present
a sorting algorithm for self-delimiting numbers that runs in O(k + N

log N ) time
and uses O(N) bits.

Ranking. Let S be a sequence of numbers. The competitive rank of each x ∈ S
is the number of elements in S that are smaller than x. The dense rank of each
x ∈ S is the number of distinct elements in S that are smaller than x. I.e.,
competitive rank counts duplicate elements and dense rank does not.
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Raman et al. [33] presented a data structure for a given a set S ⊆ [0,m) of k
numbers that uses Θ(log

(
m
k

)
) = Ω(k log(m/k)) bits to answer dense rank (and

other operations) in constant time. In some sense, this space bound is “optimal”
due to the entropy bound, assuming we treat all numbers in the same way.
However, the representation of the self-delimiting numbers differs in their size.
E.g., we have a bit vector of N bits storing self-delimiting numbers such that
the vector consists of Θ(N) numbers where one number is 2Θ(N) and all other
numbers are 1. Then, the space bound above is Ω(N log(2Θ(N)/N)) = Ω(N2).

We present an algorithm to compute the dense/competitive rank on a
sequence S of length N consisting of k self-delimiting numbers in O(k + N

log N )
time using O(N) bits and subsequently answer dense/competitive rank queries
of a number x ∈ S in constant time. For numbers x of size > N we require the
position px of x in S as the input to the respective query.

Tree Isomorphism. In the last decade, several space-efficient graph algorithms
have been published. Depth-first search and breadth-first search are the first
problems that were considered [3,5,14,19]. Further papers with focus on space-
efficient algorithms discuss graph interfaces [6,20,28], connectivity problems [11,
19], separators and treewidth [25,27,29]. We continue this research and present a
space-efficient isomorphism algorithm for trees, based on an algorithm described
in the textbook of Aho, Hopcroft and Ullman [1], which uses Ω(n log n) bits.
We improve the space-bound to O(n) bits while maintaining the linear running
time. We present an O(n)-time and O(n)-bit tree isomorphism algorithm that
decides if two given unrooted unlabeled n-node trees are isomorphic.

Outline. We continue our paper with our results on sorting and dense/com-
petitive ranking in Sect. 2. Afterwards we introduce definitions and notations
in Sect. 3 as a preparation for our result on space-efficient tree isomorphism.
Finally, we present our space-efficient tree-isomorphism algorithm for unrooted
trees. Our proofs can be found in a full version [31].

2 Sorting and Ranking

In this section we consider sorting and ranking of k self-delimiting numbers,
stored within an N -bit sequence S. We make use of lookup tables, which are
precomputed tables storing the answer for every possible state of a finite universe,
typically of small size. We use such tables to quickly solve sub-problems that
occur in our algorithms. For the rest of this section we assume that a parameter
τ with log N ≤ τ ≤ w is given to our algorithms, which we use as a parameter to
construct lookup tables for binary sequences of length 
τ/2�. To give an intuitive
example of such lookup tables, the universe might consist of all integers of size
at most 2�τ/2� and answer queries if the given number is prime. Such a table
has 2�τ/2� entries, and each index into the table requires 
τ/2� bits. Note that
larger values of τ result in faster runtimes at the cost of increased space-usage.
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In our application for sorting, S is a sequence of N bits containing self-
delimiting numbers. By this, each number in S is of size m = O(2N ). Let q =
2N/τ and call x ∈ S big if q < x ≤ 2N , otherwise call x small. We have to handle
small and big numbers differently. To divide the problem we scan through S and
write each small number of S into a sequence S≤q and each big number into a
sequence S>q. On the word-RAM model, scanning through an N -bit sequence
S and reporting all k numbers takes O(k + N/τ) time, which is the time bound
of all our sorting algorithms. After sorting both sequences we write the sorted
numbers of S≤q and then of S>q into a sequence S′ of N bits.

We first consider the sequence S≤q. Our idea is to run first an adaptation of
stable counting sort to presort the numbers in several areas such that an area Ai

consists of all numbers that require exactly i bits as self-delimiting number. By
doing so we roughly sort the sequence S≤q as all numbers of area Ai are smaller
than any number of area Aj for all i < j. We then sort each area independently
by another stable counting-sort algorithm.

Lemma 1. Given an N -bit sequence S consisting of k self-delimiting numbers,
each in the range [0,m) (m ≤ 2N/τ ) and a parameter τ with log N ≤ τ ≤ w, there
is an O(k + N/τ)-time (O(N) + o(2τ ))-bit stable-sorting algorithm computing a
bit sequence of N bits that stores the given self-delimiting numbers in sorted
order.

Now, let us look at the sequence S>q. The bound on the size of each number
implies that S>q cannot consist of more than O(N/ log q) = O(τ) numbers and
the biggest number may occupy O(N) bits. The idea is to interpret each number
in S>q as a string using the alphabet Σ = {0, . . . , 2ετ}.

Similarly as in the previous lemma, we first sort the strings by their length
into areas such that each area consists of all self-delimiting numbers of one
length. Afterwards, we sort each area lexicographically using radix sort. Note
that directly lexicographically sorting binary sequences when interpreted as
strings does not result in a sorted sequence of self-delimiting numbers. For exam-
ple 0, 11, 1010, 1011 are sorted self-delimiting numbers, but directly interpreting
them as strings would sort them lexicographically as 0, 1010, 1011, 11.

Theorem 1. Given an N -bit sequence S of k self-delimiting numbers and a
parameter τ with log N ≤ τ ≤ w, there is an O(k + N/τ)-time O(N) + o(2τ )-bit
stable-sorting algorithm computing a bit sequence of N bits that stores the given
self-delimiting numbers in sorted order.

We now consider dense/competitive ranking of k self-delimiting numbers. A
standard approach to compute the dense/competitive rank is to first sort S and
then to use an array P of m entries, each of 
log k� bits, to store a prefix sum over
the occurrences of (different) numbers x ∈ S, i.e., in a first step for competitive
rank set P [x] = P [x] + 1 (for dense rank, set P [x] = 1) for each x ∈ S. In a
second step compute the prefix sums on P , i.e., for each i = 1, . . . , m − 2, set
P [i] = P [i − 1] + P [i]. The dense/competitive rank of a number x is then P [x].
However, the array P requires Θ(m log k) bits. To compute the dense rank with
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less space, we can use a bit-vector B of m bits and set B[x] = 1 for each x ∈ S.
Then, using a rank-select data structure on B, the dense rank of x is rankB(x).
This approach uses O(m) bits and takes Θ(m/w) time due to the initialization
of a rank-select data structure on B [7]. Note that this solution does not handle
duplicates, due to the use of a bit-vector as the underlying data structure.

Our novel approach provides a dense/competitive rank solution that does
not rely on the universe size m in both the runtime (for initialization) and bits
required, but only on N . Moreover, for our use-case in Sect. 4 we use dense
rank with universe size m = O(2N ) for which the approaches outlined previ-
ously require Ω(N log N) bits, while we aim for O(N) bits. Due to this specific
requirement we require a novel approach, which works similar to the realization
of dense rank in [7,13,26].

We first discuss dense rank. Similar to our solution for sorting, we han-
dle small and large numbers differently. Let S be an N -bit sequence of k self-
delimiting numbers. Denote with S≤N the subsequence of S that contains num-
bers that are at most size N , and with S>N all numbers of S that are larger
than N (and at most size 2N ). We first discuss the techniques used for enabling
dense rank for all small numbers S≤N of S for which we build our own data
structure. Denote with m′ the size of the universe of S≤N and k′ the num-
ber of self-delimiting numbers contained in S≤N . We construct the dense rank
structure not on a given bit-vector, but on a given sequence consisting of k′ self-
delimiting numbers that correspond to the ones in the bit-vector. For this, we
construct a bit vector B, which we partition into O(m′/τ) frames of 
τ/2� bits
and create an array P that contains the prefix sum of the frames up to the ith
frame (i = 0, . . . , 
m′/
τ/2��). Subsequently, we use a lookup table that allows
to determine the number of ones in the binary representation of each frame.

It remains to show a solution for big numbers S>N . Note that the dense rank
of any number cannot be bigger than N and thus use more than log N bits. On
the other hand, S>N contains ≤ N/ log N numbers. Thus, we can use an N -bit
vector Q consisting of ≤ N/ log N entries, each of log N bits, and if (intuitively
speaking) drawing the vector below S>N , we can write the dense rank of every
number x ∈ S>N with N < x ≤ 2N into Q below x. By requiring that the access
to the dense rank of x ∈ S>N has to be done by providing the position px of the
first bit of x in S as the input (instead of the number x itself), we can easily
return the dense rank of x in constant time. Note that we need the position px

since the binary representation of px can be always be written with log N ≤ w
bits, but not x. This allows constant time operations.

Theorem 2. Given an N -bit sequence S of k self-delimiting numbers, a param-
eter τ with log N ≤ r ≤ w we can compute a data structure realizing dense rank.
The data structure can be constructed in O(k+N/τ)+o(2τ ) = O(k+N/ log N)+
o(2τ ) time and uses O(N) + o(2τ ) bits. For numbers x of size > N the position
px of x in S is required as the input.

To compute the competitive rank we require the information of how many
times an element appears in the given sequence. We change our approach of the
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previous lemma as follows: recall that τ is a parameter with log N ≤ τ ≤ w. We
sort S to get a sorted sequence S′. Next, we partition S′ into regions such that the
ith region Ri = S′ ∩ [i
τ/2�, . . . , (i + 1)
τ/2�] for all i = 0, . . . , 2
m/
τ/2�� − 1.
In detail, we go through S′ and store for each non-empty region Ri a pointer F [i]
to a sequence Ai of occurrences of each number x ∈ S′ written as self-delimiting
numbers. Similar to the usage of B for dense rank, we solve competitive rank by
partitioning Ai into frames of 
τ/2� bits and computing an array Pi storing the
prefix-sums. Inside a single frame we use a lookup table to compute the prefix
sum. More exactly, Pi[j] stores the prefix-sum over all self-delimiting numbers
in S′ up to the jth frame in Ai. Figure 1 sketches an example. We so obtain the
next theorem where we again require the position px in S of all x > N as the
input to our competitive rank query.

2 2 2 2 2 2 5 5 5 6 8 8 8 256 300 300 300 1012 1012

R1 R8 R10

S

1 8 10
F

6 3 1 3A1

0 9P1

1 3A8

14P8

2A10

18P10

Fig. 1. A sketch of our storage schema to realize competitive rank. For each region Ri,
that contains numbers out of S′, a pointer F [i] points to a data structure storing the
amount of occurrences for each of the numbers. In addition, Pi stores the prefix-sum
over the frames up to Ai. For numbers x of size > N the position px of x in S is
required as the input.

Theorem 3. Given an N -bit sequence S of k self-delimiting numbers, a param-
eter τ with log N ≤ τ ≤ w we can compute a data structure realizing com-
petitive rank. The data structure can be constructed in O(k + N/τ) + o(2τ ) =
O(k + N/ log N) + o(2τ ) time and uses O(N) + o(2τ ) bits.

3 Preliminaries for Tree Isomorphism

In this paper we use basic graph and tree terminology as given in [12]. By
designating a node of a tree as the root, the tree becomes a rooted tree. If
the nodes of a tree have labels, the tree is labeled, otherwise, the tree is called
unlabeled. The parent of a node in a rooted tree is the neighbor of u on the
shortest path from u to the root. The root has no parent. The children of a
node u are the neighbors of u that are not its parent. A leaf is a node with no
children. Two nodes that share the same parent are siblings. A descendant of a
node is either a child of the node or a child of some descendant of the node. By
fixing the order of the children of each node a rooted tree becomes an ordinal
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tree. The right sibling (left sibling) of a node u is the sibling of u that comes
after (before) u in the aforementioned order, if it exists. We denote by deg(v)
the degree of a node v, i.e., the number of neighbors of v, and by desc(u) the
number of descendants of a node u in a tree. The height of u is defined as the
number of edges between u and the longest path to a descendant leaf. The depth
of u is defined as the number of edges on the path between u and the root.

Lemma 2. (rank-select [7]) Given access to a sequence B = (b1, . . . , bn) =
{0, 1}n (n ∈ IN) of n bits there is an o(n)-bit data structure that, after an
initialization of O(n/w) time, supports two constant-time operations:

– rankB(j) =
∑j

i=1 bi (j ∈ [1, n]) that returns the number of ones in (b1, . . . , bj)
in O(1) time, and

– selectB(k) = min{j ∈ [1, n] : rankB(j) = k} that returns the position of the
kth one in B.

With the techniques above they showed the following lemma.

Lemma 3. Given a rooted n-node tree T there is an algorithm that computes a
data structure representing an ordinal tree T ′ in O(n) time using O(n) bits such
that T and T ′ are isomorphic. The data structure allows tree navigation on T ′

in constant time.

We manage sets of nodes using (uncolored) choice dictionaries [18,30].

Definition 1. ((uncolored) choice dictionary) Initialized with some parameter
n there is a data structure that stores a subset U ′ out of a universe U = [0, n)
and supports the standard dictionary operations add, remove and contains.
Moreover, it provides an operation choice that returns an arbitrary element of
U ′. Initialization and all other operation run in O(1) time.

4 Tree Isomorphism

We start this section by giving an introduction to tree isomorphism [9].

Definition 2. (rooted tree isomorphism) By induction two rooted trees T and
T ′ are isomorphic if and only if

(a) T and T ′ consist of only one node, or
(b) the roots r and r′ of T and T ′, respectively, have the same number m of

children, and there is some ordering T1, . . . , Tm of the maximal subtrees below
the children of r and some ordering T ′

1, . . . , T
′
m of the maximal subtrees below

the children of r′ such that Ti and T ′
i are isomorphic for all 1 ≤ i ≤ m.

We start to describe a folklore algorithm for tree isomorphism that requires
Θ(n log n) bits on n-node trees. Let T1 and T2 be two rooted trees. The algo-
rithm processes the nodes of each tree in rounds. In each round, all nodes of
depth d = max, . . . , 0 are processed. Within a round, the goal is to compute a
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classification number for every node u of depth d, i.e., a number out of {0, . . . , n}
that represents the structure of the maximal subtree below u. The correctness
of the algorithm is shown in [1] and follows from the invariant that two subtrees
in the trees T1 and T2 get the same classification number exactly if they are
isomorphic.

Since we later want to modify the algorithm, we now describe it in greater
detail. In an initial process assign the classification number 0 to every leaf in
each tree. Then, starting with the maximal depth do the following: start by
computing (for each tree) the classification vector of each non-leaf v of depth d
consisting of the classification numbers of v’s children, sorted lexicographically.
After doing this in each tree, compute the classification number for the non-
leafs as follows: for each tree T1, T2 put the classification vectors of depth d
into a single sequence S1 and S2, respectively. Sort each of these sequences
lexicographically by interpreting each classification vector in the sequence as a
number. Then assign classification numbers 1, 2, 3, etc. to the vectors in the (now
sorted) sequences S1,S2 such that two vectors get the same number exactly if
they are equal (among both sequences). By induction the invariant holds for
all new classification numbers. Repeat the whole procedure iteratively for the
remaining depths until reaching the root. By the invariant above, both trees are
isomorphic exactly if the roots of both trees have the same classification number.

The algorithm above traverses the nodes in order of their depth, starting
from the largest and moving to the smallest, until it reaches the root. One
key modification we make to achieve our goal of making the aforementioned
algorithm space efficient, is that we traverse the nodes in order of their height
starting from height 0 (first round) until reaching the root with the largest height
(last round), i.e., in increasing height. As mentioned, the standard algorithm
requires the nodes of the tree to be output in shrinking depth. While there is a
succinct data structure due to He et al. [22] that provides us with all necessary
operations to implement such a shrinking depth tree traversal, the construction
step of this data structure requires O(n log n) bits due to (among other things)
the usage of an algorithm of Farzan and Munro [15, Theorem 1] that partitions
the input tree into smaller subtrees. The aforementioned algorithm uses a stack
of size O(n), with each element on the stack using Θ(log n) bits. In addition, the
decomposition itself is stored temporarily. As we aim for a space usage of O(n)
bits we use a different approach. Note that the tree data structure outlined in
Sect. 3 only allows to output the nodes in order of their increasing depth. While
this implies a simple algorithm for shrinking depth, by storing the result of
the traversal and then outputting it in reverse order, such a solution requires
Θ(n log n) bits. We therefore modify the standard isomorphism algorithm such
that traversal by increasing height suffices, which can be implemented using the
tree navigation provided by the data structure outlined in Sect. 3.

The difference to the standard approach is that we get classification vectors
consisting of classification numbers, which were computed in different rounds. To
avoid a non-injective mapping of the subtrees, our classification numbers consist
of tuples (hu, qu) for each node u where hu is the height of u and qu is a number
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representing the subtree induced by u and its descendants. Intuitively, qu is the
classification number from the folklore algorithm above.

The same invariant as for the standard algorithm easily shows the correctness
of our modified algorithm whose space consumption is determined by

(A) the space for traversing nodes in order of their height,
(B) the space for storing the classification vectors and the classification numbers,
(C) the space needed by an algorithm to assign new classification numbers .

We now describe O(n)-bit solutions for (A)–(C).

(A) Iterator Returning Vertices in Increasing Height. The idea of the
first iteration round is to determine all nodes of height h = 0 (i.e., all leaves) of
the given tree in linear time and to store them in an O(n)-bit choice dictionary C.
While iterating over the nodes of height h in C, our goal is to determine the
nodes of height h + 1 and store them in a choice dictionary C ′. The details are
described in the next paragraph. If the iteration of the nodes in C is finished,
swap the meaning of C and C ′ and repeat this process iteratively with h + 1 as
the new height h until, finally, the root is reached.

A node is selected for C ′ at the moment when we have processed all of its
children. To compute this information, our idea is to give every unprocessed
node u a token that is initially positioned at its leftmost child. Intuitively, the
goal is to pass that token over every child of u from left to right until reaching
the rightmost child of u, at which point we mark u as processed and store it in
C ′. More precisely, we iterate over the children in the deterministic order given
by the choice dictionary, which can be arbitrary. Initially, no node is marked
as processed. Informally speaking, we run a relay race where the children of a
node are the runners. Before runners can start their run, they must be marked
as processed. The initiative to pass the token is driven by the children of u.
Whenever a child v of u is processed, we check if either v is the leftmost child of
u or v’s left sibling has u’s token. If so, we move the token to the right sibling
v′ of v and then to the right sibling of v′, etc., as long as the sibling is already
marked. If all children of u are processed, u becomes marked and part of C ′.

Lemma 4. Given an unlabeled rooted n-node tree T there is an iteration over
all nodes of the tree in order of their height that runs in linear time and uses
O(n) bits. The iteration is realized by the following methods:

– init(T ): Initializes the iterator and sets height h = 0.
– hasNext: Returns true exactly if nodes of height h exist.
– next: Returns a choice dictionary containing nodes of height h and incre-

ments h by 1.

(B) Storing the Classification Numbers. We now describe an algorithm
to store our classification numbers in an O(n)-bit storage schema. Recall that
a classification vector of a node u consists of the classification numbers of its
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children. Our idea is to use self-delimiting numbers to store the classification
numbers and to choose the classification numbers such that their size is bounded
by min(c1 · log n, c2 · desc(u)) for some constants c1, c2. By the next lemma we
can store the classification numbers and vectors.

Lemma 5. Given an unlabeled rooted n-node tree T and an integer c > 0, there
is a data structure using O(n) bits that initializes in O(n) time and, for each
node u of T , provides operations read(u) and write(u) in constant time and
vector(u) in O(deg(u)) time.

– read(u) (u node of T ): If a number x is stored for u, then x is returned.
Otherwise, the result is undefined.

– write(u, x) (u node of T , 0 ≤ x ≤ min{22cdesc(u),poly(n)}): Store number x
for node u and delete all stored numbers of the descendants of u.

– vector(u) (u node of T ): Returns the bit-vector of length ≤ 2cdesc(u) con-
sisting of the concatenation of the self-delimiting numbers stored for the chil-
dren of u.

(C) Computing Classification Numbers. Let D be our data structure of
Lemma 5 where we store all classification vectors. Our next goal is to replace
the classification vector D.vector(u) of all processed subtrees with root u and
height h by a classification number (h, qu) with |qu| = O(min{desc(u), log n})
such that the componentwise-sorted classification vectors are equal exactly if
they get the same classification number.

Our idea is to sort D.vector(u) by using Theorem 1 to obtain a component-
wise sorted classification vector and turn this vector into a self-delimiting number
for further operation on it. We subsequently compute the dense rank to replace
the self-delimiting number in D.vector(u) by the tuple (height, dense rank).
To make it work we transform each vector into a self-delimiting number by
considering the bit-sequence of the vector as a number (i.e., assign the prefix 1�0
to each vector where � is the length of the vector in bits). We can store all these
vectors as self-delimiting numbers in a bit-vector Zh+1 of O(n) bits. Then we
can use Theorem 2 applied to Zh+1 to compute the dense ranks, which allows
us to determine the classification numbers for all subtrees of height h + 1.

Our Algorithm. We now combine the solutions for (A)–(C).

Lemma 6. Given two rooted n-node trees T1 and T2 there is an algorithm that
recognizes if T1 and T2 are isomorphic in linear-time using O(n) bits.

We generalize Lemma 6 to unrooted trees by first determining the center of
a tree space efficiently, which is a set of constant size that is maximal distance
to a leaf. Using each vertex in the center as a (possible) root, we then run our
rooted isomorphism algorithm.

Theorem 4. Given two (unrooted) trees T1 and T2 there is an algorithm that
outputs if T1 and T2 are isomorphic in linear-time using O(n) bits.
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Abstract. In this paper, we present the first linear delay algorithms
to enumerate all 2-edge-connected induced subgraphs and to enumerate
all 2-vertex-connected induced subgraphs for a given simple undirected
graph. We treat these subgraph enumeration problems in a more general
framework based on set systems. For an element set V , (V, C ⊆ 2V ) is
called a set system, where we call C ∈ C a component. A nonempty
subset Y ⊆ C is a removable set of C if C \ Y is a component and Y
is a minimal removable set (MRS) of C if it is a removable set and no
proper nonempty subset Z � Y is a removable set of C. We say that a
set system has subset-disjoint (SD) property if, for every two components
C, C′ ∈ C with C′ � C, every MRS Y of C satisfies either Y ⊆ C′ or
Y ∩ C′ = ∅. We assume that a set system with SD property is implicitly
given by an oracle that returns an MRS of a component which is given as
a query. We provide an algorithm that, given a component C, enumerates
all components that are subsets of C in linear time/space with respect
to |V | and oracle running time/space. We then show that, given a simple
undirected graph G, the pair of the vertex set V = V (G) and the family
of vertex subsets that induce 2-edge-connected (or 2-vertex-connected)
subgraphs of G has SD property, where an MRS in a 2-edge-connected
(or 2-vertex-connected) induced subgraph corresponds to either an ear
or a single vertex with degree greater than two.

Keywords: Enumeration of subgraphs · 2-edge-connectivity ·
2-vertex-connectivity · Binary partition · Linear delay

1 Introduction

Given a graph, subgraph enumeration asks to list all subgraphs that satisfy
required conditions. It could find interesting substructures in network analysis.
Enumeration of cliques is among such problems [2,3], where a clique is a sub-
graph such that every two vertices are adjacent to each other and thus may
represent a group of so-called SNS users that are pairwise friends. Pursuing fur-
ther applications, there have been studied enumeration of subgraphs that satisfy
weaker connectivity conditions, e.g., pseudo-cliques [12].
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In this paper, we consider enumeration of subgraphs that satisfy fundamen-
tal connectivity conditions; 2-edge-connectivity and 2-vertex-connectivity. For a
graph G, let V (G) and E(G) denote the set of vertices of G and the set of edges of
G, respectively. Let n := |V (G)| and m := |E(G)|. An enumeration algorithm in
general outputs many solutions, and its delay refers to computation time between
the start of the algorithm and the first output; between any consecutive two out-
puts; and between the last output and the halt of the algorithm. The algorithm
attains polynomial delay (resp., linear delay) if the delay is bounded by a polyno-
mial (resp., a linear function) with respect to the input size.

The main results of the paper are summarized in the following two theorems.

Theorem 1. For a simple undirected graph G, all 2-edge-connected induced sub-
graphs of G can be enumerated in O(n + m) delay and space.

Theorem 2. For a simple undirected graph G, all 2-vertex-connected induced
subgraphs of G can be enumerated in O(n + m) delay and space.

We achieve the first linear delay algorithms for enumerating 2-edge/vertex
connected induced subgraphs. Ito et al. [7] made the first study on enumeration
of 2-edge-connected induced subgraphs, presenting a polynomial delay algorithm
based on reverse search [1] such that the delay is O(n3m). For an element set
V , (V, C ⊆ 2V ) is called a confluent set system if, for every three components
X,Y,Z ∈ C, Z ⊆ X∩Y implies X∪Y ∈ C. Haraguchi and Nagamochi [5] studied
an enumeration problem in a confluent set system that includes enumeration
of k-edge-connected (resp., k-vertex-connected) induced subgraphs as special
cases, which yields O(min{k + 1, n}n5m) (resp., O(min{k + 1, n1/2}nk+4m))
delay algorithms. Wen et al. [13] proposed an algorithm for enumerating maximal
vertex subsets that induce k-vertex-connected subgraphs such that the total time
complexity is O(min{n1/2, k}m(n+ δ(G)2)n), where δ(G) denotes the minimum
degree over the graph G.

We deal with the two subgraph enumeration problems in a more general
framework. For a set V of elements, let C ⊆ 2V be a family of subsets of V .
A pair (V, C) is called a set system and a subset C ⊆ V is called a component
if C ∈ C. A nonempty subset Y ⊆ C of a component C is a removable set
of C if C \ Y ∈ C. Further, a removable set Y of C is minimal, or a minimal
removable set (MRS), if there is no Z � Y that is a removable set of C. We
denote by MrsC(C) the family of all MRSs of C. Let us introduce the notion of
SD property of set system as follows.

Definition 1. A set system (V, C) has subset-disjoint (SD) property if, for any
two components C,C ′ ∈ C such that C � C ′, either Y ⊆ C ′ or Y ∩ C ′ = ∅ holds
for every MRS Y of C.

We consider the problem of enumerating all components that are subsets of
a given component in a set system with SD property. We assume that the set
system is implicitly given by an oracle such that, for a component C ∈ C and
a subset X ⊆ C, the oracle returns an MRS Y of C that is disjoint with X
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if exists; and Nil otherwise. We denote the time and space complexity of the
oracle by θt and θs, respectively. We show the following theorem that is a key
for proving Theorems 1 and 2.

Theorem 3. Let (V, C) be a set system with SD property, C ∈ C be a component
and n := |C|. All components that are subsets of C can be enumerated in O(n+θt)
delay and O(n + θs) space.

The paper is organized as follows. After making preparations in Sect. 2, we
present an algorithm that enumerates all components that are subsets of a given
component in a set system with SD property, along with complexity analyses
in Sect. 3, as a proof for Theorem 3. Then in Sect. 4, we provide proofs for
Theorems 1 and 2. There are two core parts in the proofs. In the first part, given a
2-edge-connected (resp., 2-vertex-connected) graph G, we show that a set system
(V, C) has SD property if V = V (G) and C is the family of all vertex subsets
that induce 2-edge-connected (resp., 2-vertex-connected) subgraphs. This means
that 2-edge/vertex-connected induced subgraphs can be enumerated by using the
algorithm developed for Theorem 3. Then in the second part, we explain how
we design the oracle to achieve linear delay and space.

For some lemmas, we omit the proofs due to space limitation. The omitted
proofs are found in the preprint of this paper [8].

2 Preliminaries

Let Z and Z+ denote the set of integers and the set of nonnegative integers,
respectively. For two integers i, j ∈ Z (i ≤ j), let us denote [i, j] := {i, i +
1, . . . , j}.

For any sets P,Q of elements, when P ∩ Q = ∅, we may denote by P � Q the
disjoint union of P and Q in order to emphasize that they are disjoint.

Set Systems. Let (V, C) be a set system which does not necessarily have SD
property. For any two subsets U,L ⊆ V , we denote C(U,L) := {C ∈ C | L ⊆
C ⊆ U}. Recall that, for a component C ∈ C, we denote by MrsC(C) the
family of all MRSs of C. Further, for X ⊆ C, we denote MrsC(C,X) := {Y ∈
MrsC(C) | Y ∩ X = ∅}. For any two components C,C ′ ∈ C with C � C ′, let
Y1, Y2, . . . , Y� ⊆ C \ C ′ be subsets such that Yi ∩ Yj = ∅, 1 ≤ i < j ≤ �; and
Y1 � Y2 � · · · � Y� = C \ C ′ (i.e., {Y1, Y2, . . . , Y�} is a partition of C \ C ′). Then
(Y1, Y2, . . . , Y�) is an MRS-sequence (between C and C ′) if

– C ′ � Y1 � · · · � Yi ∈ C, i ∈ [1, �]; and
– Yi ∈ MrsC(C ′ � Y1 � · · · � Yi), i ∈ [1, �].

One easily sees that there exists an MRS-sequence for every C,C ′ ∈ C such that
C � C ′. The following lemma holds regardless of SD property.

Lemma 1. For any set system (V, C), let C ∈ C and X ⊆ C. It holds that
MrsC(C,X) = ∅ ⇐⇒ C(C,X) = {C}.



Enumeration of 2-Edge/Vertex-Connected Induced Subgraphs 371

As we described in Sect. 1, we assume that a set system (V, C) with SD
property is given implicitly by an oracle. We denote by ComputeMrsC the
oracle. Given a component C ∈ C and a subset X ⊆ C as a query to the oracle,
ComputeMrsC(C,X) returns one MRS in MrsC(C,X) if MrsC(C,X) �= ∅,
and Nil otherwise, where we denote by θt and θs the time and space complexity,
respectively.

The following lemma states a necessary condition of SD property which is
not sufficient.

Lemma 2. Suppose that a set system (V, C) with SD property is given. For every
component C ∈ C, the minimal removable sets in MrsC(C) are pairwise disjoint.

Graphs. Let G be a simple undirected graph. For a vertex v ∈ V (G), we denote
by degG(v) the degree of v in the graph G. We let δ(G) := minv∈V (G) degG(v).
Let S ⊆ V (G) be a subset of vertices. A subgraph induced by S is a subgraph
G′ of G such that V (G′) = S and E(G′) = {uv ∈ E(G) | u, v ∈ S} and denoted
by G[S]. For simplicity, we write the induced subgraph G[V (G) \ S] as G − S.
Similarly, for F ⊆ E(G), we write as G − F the subgraph whose vertex set is
V (G) and edge set is E(G) \ F .

A cut-set of G is a subset F ⊆ E(G) such that G − F is disconnected. In
particular, we call an edge that constitutes a cut-set of size 1 a bridge. We define
the edge-connectivity λ(G) of G to be the cardinality of the minimum cut-set of
G unless |V (G)| = 1. If |V (G)| = 1, then λ(G) is defined to be ∞. G is called
k-edge-connected if λ(G) ≥ k. A vertex cut of G is a subset S ⊆ V (G) such that
G − S is disconnected. In particular, we call a vertex cut whose size is two a cut
point pair and a vertex that constitutes a singleton vertex cut an articulation
point. For a subset S ⊆ V (G), let Art(S) denote the set of all articulation points
in G[S]. We define the vertex-connectivity κ(G) of G to be the cardinality of the
minimum vertex cut of G unless G is a complete graph. If G is complete, then
κ(G) is defined to be |V (G)| − 1. G is called k-vertex-connected if |V (G)| > k
and κ(G) ≥ k. Obviously, G is 2-edge-connected (resp., 2-vertex-connected) if
and only if there is no bridge (resp., no articulation point) in G.

Proposition 1 ([15]). Suppose that we are given a simple undirected graph G.
If |V (G)| ≥ 2, then it holds that κ(G) ≤ λ(G) ≤ δ(G).

3 Enumerating Components in Set System with SD
Property

In this section, we propose an algorithm that enumerates all components that
are subsets of a given component in a set system (V, C) with SD property and
conduct complexity analyses, as a proof for Theorem 3.

Let us introduce mathematical foundations for a set system with SD property
that are necessary for designing our enumeration algorithm.
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Algorithm 1 . An algorithm to enumerate all components in C(C, I), where
C ∈ C is a component in a set system (V, C) with SD property and I is a subset
of C
Input: A component C ∈ C and a subset I ⊆ C
Output: All components in C(C, I)
1: procedure List(C, I)
2: Output C;
3: X ← I;
4: while ComputeMrsC(C, X) �= Nil do
5: Y ← ComputeMrsC(C, X);
6: List(C \ Y, X);
7: X ← X ∪ Y
8: end while
9: end procedure

Lemma 3. For a set system (V, C) with SD property, let C ∈ C be a component
and I ⊆ C be a subset of C. For any Y ∈ MrsC(C, I), it holds that C(C, I) =
C(C \ Y, I) � C(C, I � Y ).

Lemma 4. For a set system (V, C) with SD property, let C ∈ C be a component,
I ⊆ C be a subset of C, and MrsC(C, I) := {Y1, Y2, . . . , Yk}. It holds that

C(C, I) = {C} � ( k⊔

i=1

C(C \ Yi, I � Y1 � · · · � Yi−1)
)
.

Algorithm. Let C ∈ C, I ⊆ C and MrsC(C, I) := {Y1, Y2, . . . , Yk}. Lemma 4
describes a partition of C(C, I) such that there exists a similar partition for
C(Ci, Ii), where Ci = C \Yi and Ii = I �Y1 � · · · �Yi−1, i ∈ [1, k]. Then we have
an algorithm that enumerates all components in C(C, I) by outputting C and
then outputting all components in C(Ci, Ii) for each i ∈ [1, k] recursively.

For C ∈ C and I ⊆ C, Algorithm 1 summarizes a procedure to enumerate all
components in C(C, I). Procedure List in Algorithm 1 outputs C in line 2 and
computes C(Ci, Ii), i ∈ [1, k] recursively in line 6. For our purpose, it suffices to
invoke List(C, ∅) to enumerate all components in C(C, ∅).

To analyze the complexities and prove Theorem 3, we introduce a detailed
version of the algorithm in Algorithm 2. We mainly use a stack to store data,
where we can add a given element (push), peek the element that is most recently
added (last), remove the last element (pop), and shrink to a given size by remov-
ing elements that are most recently added (shrinkTo) in constant time, respec-
tively, by using an array and managing an index to the last element.

In Algorithm 2, the set X of Algorithm 1 is realized by a stack. Note that
X in Algorithm 2 however contains a subset of elements in each container. In
addition, a stack Seq stores MRSs, an array Siz stores the number of the MRSs
of a given component, and an integer depth represents the depth of recursion
in Algorithm 1. We can see that the algorithm enumerates all components that
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are subsets of C in C by Lemma 4. To bound the time complexity by that for
processing a node in the search tree, we apply the alternative method to our
algorithm in line 4–6 and 12–14 and reduce the delay [11]. We next discuss the
space complexity. We see that Seq stores MRS-sequence between the current
component C ′ and C since Seq pops the MRS after traversing all children of C ′,
and so it consumes O(n) space. The stack X uses O(n) space by Lemma 2 and
the definition of ComputeMrsC , and moreover Siz uses only O(n) space since
the maximum depth is n.

Proof for Theorem 3. We can see that Algorithm 2 surely enumerates all
components in C(C, ∅) by Lemma 4. We first prove that Algorithm 2 works
in O(n+ θt) delay. If depth is odd, then the current component C ′ is outputted.
If depth is even and MrsC(C ′,X) = ∅, then C ′ is outputted. If depth is even
and MrsC(C ′,X) �= ∅, then C ′ \ Y will be outputted for Y in line 8 in the next
iteration. Then it suffices to show that operations from line 4 to 19 can be done
in O(n + θt) time. A component can be outputted in O(n) time. The difference
can be traced by subtracting and adding an MRS before and after the depth
changes, thus it takes O(n) time. In addition, ComputeMrsC works in θt time
by definition and another operations are adding and subtracting an MRS, where
computation time is O(n).

We next discuss the space complexity of Algorithm 2. The maximum size of
the depth is n since the size of the component C ′ is monotonically decreasing
while the depth increases and the termination condition that MrsC(C ′,X) is
initially empty is satisfied at most n depth. The rest to show is that the space
for Seq , X, and Siz are O(n). For a component C ′ ∈ C(C, ∅), we obtain that
the Seq is equivalent to the MRS-sequence between C ′ and C since Seq store a
new MRS before the depth increases and discards before the depth decreases.
X can be hold in O(n) space since for any subset I ⊆ C ′, I and MrsC(C ′, I)
are pairwise disjoint. It is obvious that Siz uses O(n) space since the maximum
depth is n. We then obtain that whole space is O(n + θs) space. �

4 Enumerating 2-Edge/Vertex-Connected Induced
Subgraphs

In this section, we provide proofs for Theorems 1 and 2. Suppose that we are
given a simple undirected graph G that is 2-edge-connected (resp., 2-vertex-
connected). In Sect. 4.1, we show that a set system (V, C) has SD property
if V = V (G) and C is the family of all vertex subsets that induce 2-edge-
connected subgraphs (resp., 2-vertex-connected subgraphs). This indicates that
all 2-edge/vertex-connected induced subgraphs can be enumerated by the algo-
rithm in the last section. Then in Sect. 4.2, we show how to design the oracle for
generating an MRS so that the required computational complexity is achieved.
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Algorithm 2. An algorithm to enumerate all components that are subsets of
C ∈ C in (V, C) with SD property
Input: A set system (V, C) with SD property and a component C ∈ C
Output: All components that are subsets of C in C
1: Seq , X ← empty stack; Siz ← an array of length n, filled by 0;
2: C′ ← C; depth ← 1;
3: while depth �= 0 do
4: if depth is odd then
5: Output C′

6: end if ;
7: if ComputeMrsC(C′, X) �= Nil then � emulate recursive call
8: Y ← ComputeMrsC(C′, X);
9: Seq .push(Y ); C′ ← C′ \ Y ; Siz [depth]← Siz [depth]+1;

10: depth ← depth + 1
11: else � trace back
12: if depth is even then
13: Output C′

14: end if ;
15: C′ ← C′ ∪ Seq .last();
16: X.shrinkTo(X.length() −Siz [depth]); Siz [depth]← 0;
17: X.push(Seq .last());
18: Seq .pop(); depth ← depth − 1
19: end if
20: end while

4.1 Constructing Set Systems with SD Property

We define Ce � {C ⊆ V (G) | G[C] is 2-edge-connected and |C| > 1} and Cv �
{C ⊆ V (G) | G[C] is 2-vertex-connected}. For S ⊆ V (G), we call S an e-
component (resp., a v-component) if S ∈ Ce (resp., S ∈ Cv). We deal with a
set system (V, C) such that V = V (G) and C ∈ {Ce, Cv}. We use the notations
and terminologies for set systems that were introduced in Sect. 2 to discuss the
problem of enumerating all e-components or v-components. Although a singleton
is a 2-edge-connected component by definition, we do not regard it as an e-
component since otherwise the system (V, Ce) would not have SD property.

The following lemma is immediate by Proposition 1.

Lemma 5. For a simple undirected graph G, it holds that Cv ⊆ Ce.

By Lemma 5, every v-component is an e-component. Let Maxe(S) (resp.,
Maxv(S)) denote the family of all maximal e-components (resp., v-components)
among the subsets of S. For an e-component C ∈ Ce (resp., a v-component
C ∈ Cv), we write the family MrsCe

(C) (resp., MrsCv
(C)) of all minimal remov-

able sets of C as Mrse(C) (resp., Mrsv(C)) for simplicity. We call an MRS in
Mrse(C) (resp., Mrsv(C)) an e-MRS of C (resp., a v-MRS of C). A minimal
e-component C ∈ Ce induces a cycle (i.e., G[C] is a cycle) since no singleton is
contained in Ce, and in this case, it holds that Mrse(C) = ∅.
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A block of a simple undirected graph G is a maximal connected subgraph
that has no articulation point. Every block of G is an isolated vertex; a cut-edge
(i.e., an edge whose removal increases the number of connected components); or
a maximal v-component; e.g., see Remark 4.1.18 in [14]. The following lemma is
immediate.

Lemma 6. For a given simple undirected graph G and an e-component C ∈ Ce,
it holds that C =

⋃
H∈Maxv(C) H.

For P ⊆ S ⊆ V (G), P is called a two-deg path in G[S] (or in S for short)
if degG[S](u) = 2 holds for every u ∈ P . In particular, P is a maximal two-deg
path in S if there is no two-deg path P ′ in S such that P � P ′. It is possible
that a maximal two-deg path consists of just one vertex. For an e-component
C ∈ Ce, we denote by Can=2(C) the family of all maximal two-deg paths in
C. We also denote Can>2(C) := {{v} | v ∈ C,degG[C](v) > 2} and define
Can(C) � Can=2(C) �Can>2(C). It is clear that every vertex in C belongs to
either a maximal two-deg path in Can=2(C) or a singleton in Can>2(C), where
there is no vertex v ∈ C such that degG[C](v) ≤ 1 since G[C] is 2-edge-connected.

The following Lemma 7 states that an e-MRS of an e-component C is either
a maximal two-deg path in C or a single vertex whose degree in G[C] is more
than two.

Lemma 7 (Observation 3 in [7]). For a simple undirected graph G, let C ∈
Ce. It holds that Mrse(C) = {Y ∈ Can(C) | C \ Y ∈ Ce}.

If G is 2-edge-connected, then the set system (V (G), Ce) has SD property, as
shown in the following Lemma 8.

Lemma 8. For a simple undirected 2-edge-connected graph G, the set system
(V (G), Ce) has SD property.

Proof. We see that V (G) ∈ Ce since G is 2-edge-connected. Let C,C ′ ∈ Ce be
e-components such that C � C ′ and Y ∈ Mrse(C) be an e-MRS of C. We show
that either Y ⊆ C ′ or Y ∩ C ′ = ∅ holds. The case of |Y | = 1 is obvious. Suppose
|Y | > 1. By Lemma 7, Y induces a maximal two-deg path in G[C] such that for
any u ∈ Y it holds degG[C](u) = 2. If Y �⊆ C ′ and Y ∩ C ′ �= ∅, then there would
be two adjacent vertices v, v′ ∈ Y such that v ∈ C \ C ′ and v′ ∈ C ′, where we
see that degG[C′](v′) ≤ 1 holds. The C ′ is an e-component and thus |C ′| ≥ 2.
By Proposition 1, we obtain 1 ≥ δ(G[C ′]) ≥ λ(G[C ′]), which contradicts that
C ′ ∈ Ce. �

We can derive analogous results for (V (G), Cv). In Lemma 9, we show that
a v-MRS of a v-component C is either a maximal two-deg path in C or a single
vertex whose degree in G[C] is more than two. Then in Lemma 10, we show that
(V (G), Cc) has SD property when G is 2-vertex-connected.

Lemma 9. For a simple undirected graph G, let C ∈ Cv. It holds that
Mrsv(C) = {Y ∈ Can(C) | C \ Y ∈ Cv}.
Lemma 10. For a simple undirected 2-vertex-connected graph G, the set system
(V (G), Cv) has SD property.
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4.2 Computing MRSs in Linear Time and Space

Let G be a simple undirected graph. We describe how we compute an e-MRS of
an e-component in linear time and space. Specifically, for a given e-component
C ∈ Ce and subset X ⊆ C, we design the oracle ComputeMrsCe

(C,X) so that
it outputs one e-MRS Y ∈ Mrse(C,X) if Mrse(C,X) �= ∅, and Nil otherwise,
in linear time and space. In what follows, we derive a stronger result that all
e-MRSs in Mrse(C,X) can be enumerated in linear delay and space.

The scenario of the proof is as follows.

(1) We show that, to enumerate e-MRSs in Mrse(C,X), it suffices to examine
Mrse(S,X) for each S ∈ Maxv(C) respectively. This indicates that we may
assume C to be a v-component. It is summarized as Corollary 1, followed
by Lemma 11.

(2) Using a certain auxiliary graph, we show that it is possible to output in linear
time and space all candidates in Can(C) that are e-MRSs of C (Lemma 13);
recall that all candidates of e-MRSs are contained in Can(C) by Lemma 7.

The case of computing a v-MRS of a v-component can be done almost analo-
gously.

Lemma 11. Given a simple undirected 2-edge-connected graph G that is neither
a cycle nor a single vertex, let V := V (G) and Y � V be any nonempty proper
subset of V . Then Y is an e-MRS of V if and only if there is S ∈ Maxv(V )
such that

(i) Y ∩ S′ = ∅ holds for every S′ ∈ Maxv(V ) such that S′ �= S; and
(ii) Y is either a path that consists of all vertices in S except one or an e-MRS

of S.

Proof. For the necessity, every v-component S ∈ Maxv(V ) is an e-component.
By the definition of SD property, either Y � S or Y ∩ S = ∅ should hold.
Suppose that there are two distinct v-components S, S′ ∈ Maxv(V ) such that
Y � S and Y � S′. This leads to |Y | = 1 since 1 ≥ |S ∩ S′| ≥ |Y | ≥ 1,
where the first inequality holds by the fact that two blocks share at most one
vertex (e.g., Proposition 4.1.19 in [14]). Then Y is a singleton that consists of
an articulation point of G, contradicting that V \ Y is connected. There is at
most one S ∈ Maxv(V ) that contains Y as a proper subset, and such S surely
exists since there is at least one v-component in Maxv(V ) that intersects Y by
Lemma 6, which shows (i).

To show (ii), suppose that G[S] is a cycle. Then it holds that |S ∩Art(V )| =
1; if |S ∩ Art(V )| ≥ 2, then no singleton or path in S is an e-MRS of V ,
contradicting that Y � S; if |S ∩Art(V )| = 0, then S is a connected component
in G. This contradicts that G is connected since G is not a cycle and hence
S � V . Then Y should be the path in S that consists of all vertices except the
only articulation point. Suppose that G[S] is not a cycle. Let u, v ∈ S be two
distinct vertices. We claim that every path between u and v should not visit a
vertex out of S; if there is such a path, then the union of v-components visited
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by the path would be a v-component containing S, contradicting the maximality
of S. In the graph G−Y , there are at least two edge-disjoint paths between any
two vertices u, v ∈ S −Y . These paths do not visit any vertex out of S, and thus
S − Y is an e-component. It is easy to see that Y ∈ Can(S).

For the sufficiency, suppose that G[S] is a cycle. There is no e-MRS of S by
definition. The set Y should be a path that consists of all vertices in S except
one, and by (i), the vertex that is not contained in Y should be an articulation
point (which implies |S ∩ Art(V )| = 1). Suppose that G[S] is not a cycle. An
e-MRS of S exists since S is a non-minimal e-component. Let Y be an e-MRS
of S that satisfies (i), that is, Y contains no articulation points in Art(V ). In
either case, it is easy to see that V \Y is an e-component and that Y ∈ Can(V )
holds, showing that Y is an e-MRS of V . �

Corollary 1. For a given simple undirected graph G, let C ∈ Ce be an e-
component. Then it holds that

Mrse(C) =
( ⊔

S∈Maxv(C): G[S] is not a cycle

{Y ∈ Mrse(S) | Y ∩ Art(C) = ∅})

� ( ⊔

S∈Maxv(C): G[S] is a cycle and |S∩Art(C)|=1

(S \ Art(C))
)
.

By the corollary, to obtain e-MRSs of an e-component C, it suffices to examine
all maximal v-components in Maxv(C) respectively.

We observe the first family in the right hand in Corollary 1. Let C be a
v-component such that G[C] is not a cycle. For each path P ∈ Can=2(C), there
are exactly two vertices u, v ∈ Can>2(C) such that u is adjacent to one endpoint
of P and v is adjacent to the other endpoint of P . We call such u, v boundaries
of P . We denote the pair of boundaries of P by B(P ), that is, B(P ) := {u, v}.
We define Λ>2(C) � {uv ∈ E(G) | u, v ∈ Can>2(C)}. Let Λ(C) := Can=2(C)�
Λ>2(C). We then define an auxiliary graph HC so that

V (HC) :=Can>2(C) � Can=2(C) � Λ>2(C)
=Can>2(C) � Λ(C) = Can(C) � Λ>2(C),

E(HC) := {uP ⊆ V (HC) | u ∈ Can>2(C), P ∈ Can=2(C), u ∈ B(P )}
� {ue ⊆ V (HC) | u ∈ Can>2(C), e ∈ Λ>2(C), u ∈ e}.

We call a vertex in Can>2(C) an ordinary vertex, whereas we call a vertex in
Λ(C) = Can=2(C) � Λ>2(C) an auxiliary vertex.

For P ∈ Can=2(C), we denote by E(P ) the set of all edges in the path
P ∪ B(P ). For e ∈ Λ>2(C), we denote E(e) := {e}. We see that E(G[C]) =⊔

h∈Λ(C) E(h) holds.

Lemma 12. Given a simple undirected graph G, let C ∈ Cv be a v-component
such that G[C] is not a cycle and Y ∈ Can(C). Then Y ∈ Mrse(C) holds if
and only if there is no auxiliary vertex h ∈ Λ(C) such that {Y, h} is a cut point
pair of HC .
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Proof. For the necessity, suppose that there is h ∈ Λ(C) such that {Y, h} is a cut
point pair of HC . Then h is an articulation point of HC −Y . Every edge e ∈ E(h)
is a bridge in G[C] − Y , indicating that G[C] − Y is not 2-edge-connected, and
hence Y /∈ Mrse(C).

For the sufficiency, suppose that Y /∈ Mrse(C). Then G[C]−Y is not 2-edge-
connected but should be connected. There exists a bridge, say e, in G[C] − Y .
Let h ∈ Λ(C) be the auxiliary vertex such that e ∈ E(h). We see that h is a cut
point of HC − Y , indicating that {Y, h} is a cut point pair of HC . �

Lemma 13. Suppose that a simple undirected 2-edge-connected graph G is
given. Let V := V (G). For any subset X ⊆ V , all e-MRSs in Mrse(V,X)
can be enumerated in O(n + m) time and space.

Proof. We can complete the required task as follows. (1) We obtain Art(V ) and
decompose V into maximal v-components. For each maximal v-component C,
(2) if G[C] is a cycle and |C ∩ Art(V )| = 1, then output C \ Art(V ) if it is
disjoint with X; and (3) if G[C] is not a cycle, then we construct an auxiliary
graph HC , compute all cut point pairs of HC , and output all Y ∈ Can(C) that
are disjoint with X ∪ Art(V ) and that are not contained in any cut point pair
together with an auxiliary vertex. The correctness of the algorithm follows by
Corollary 1 and Lemma 12.

For the time complexity, (1) can be done in O(n + m) time [9]. For each
C ∈ Maxv(V ), let nC := |C| and mC := |E(G[C])|. We can decide in O(nC +
mC) time whether C is in (2), (3) or neither of them. If we are in (2), then
the task can be done in O(nC) time. If we are in (3), then the task can be
done in O(nC + mC) time since HC can be constructed in linear time and
all cut point pairs of a 2-vertex-connected graph HC can be enumerated in
linear time [4,6]. An articulation point v appears in at most degG(v) maximal v-
components, and hence

∑
C∈Maxv(V ) O(nC) = O(n+m). The number of maximal

v-components is O(n), and the overall time complexity over C ∈ Maxv(V ) is
O(n) +

∑
C∈Maxv(V ) O(nC + mC) = O(n + m). The space complexity analysis is

analogous. �

Proofs for Theorems 1 and 2. For Theorem 1, we see that Ce =⊔
S∈Maxe(V ) Ce(S, ∅). We can enumerate all maximal e-components in Maxe(V )

in O(n+m) time and space, by removing all bridges in G [10]. All e-components
in Ce(S, ∅) for each S ∈ Maxe(V ) can be enumerated in O(n + θt) delay and
in O(n + θs) space by Theorem 3. We can implement ComputeMrsCe

so that
θt = O(n + m) and θs = O(n + m) by Lemma 13. Theorem 2 is analogous. �

Concluding Remarks. The future work includes extension of our framework to
k-edge/vertex-connectivity for k > 2; and studying relationship between SD
property and set systems known in the literature (e.g., independent system,
accessible system, strongly accessible system, confluent system).
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Abstract. The goal of a typical adaptive sequential decision making
problem is to design an interactive policy that selects a group of items
sequentially, based on some partial observations, to maximize the expected
utility. It has been shown that the utility functions of many real-world
applications, including pooled-based active learning and adaptive influ-
ence maximization, satisfy the property of adaptive submodularity. How-
ever, most studies on adaptive submodular maximization focus on fully
adaptive settings, which can take a long time to complete. In this paper,
we propose a partial-adaptive submodular maximization approach where
multiple selections can be made in a batch and observed together, reducing
the waiting time for observations. We develop effective and efficient solu-
tions for both cardinality and knapsack constraints and analyzes the batch
query complexity. We are the first to explore partial-adaptive policies for
non-monotone adaptive submodular maximization problems.

1 Introduction

Adaptive sequential decision making, where one adaptively makes a sequence
of selections based on the stochastic observations collected from the past selec-
tions, is at the heart of many machine learning and artificial intelligence tasks.
For example, in experimental design, a practitioner aims to perform a series of
tests in order maximize the amount of “information” that can be obtained to
yield valid and objective conclusions. It has been shown that in many real-world
applications, including pool-based active learning [5], sensor selection [2], and
adaptive viral marketing [9], the utility function is adaptive submodular. Adap-
tive submodularity [5] a notion that generalizes the notion of submodularity from
sets to policies. The goal of adaptive submodular maximization is to design an
interactive policy that adaptively selects a group of items, where each selection
is based on the feedback from the past selections, to maximize an adaptive sub-
modular function subject to some practical constraints. Although this problem
has been extensively studied in the literature, most of existing studies focus on
the fully adaptive setting where every selection must be made after observing
the feedback from all past selections. This fully adaptive approach can take full
advantage of feedback from the past to make informed decisions, however, as
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a tradeoff, it may take a longer time to complete the selection process as com-
pared with the non-adaptive solution where all selections are made in advance
before any observations take place. This is especially true when the process of
collecting the observations from past selections is time consuming. In this paper,
we study the problem of partial-adaptive submodular maximization where one
is allowed to make multiple selections simultaneously and observe their real-
izations together. Our setting generalizes both non-adaptive setting and fully
adaptive setting. As compared with the fully adaptive strategy, our approach
enjoys the benefits of adaptivity while using fewer number of batches. To the
best of our knowledge, no results are known for partial-adaptive policies for the
non-monotone adaptive submodular maximization problem. We next summarize
the main contributions made in this paper.

– We first study the partial-adaptive submodular maximization problem sub-
ject to a cardinality constraint. We develop a partial-adaptive greedy policy
that achieves a α/e approximation ratio against the optimal fully adaptive
policy where α is the degree of adaptivity of our policy. One can balance the
performance/adaptivity tradeoff through adjusting the value of α. In partic-
ular, if we set α = 0, our policy reduces to a non-adaptive policy, and if we
set α = 1, our policy reduces to a fully adaptive policy.

– For the partial-adaptive submodular maximization problem subject to a
knapsack constraint, we develop a sampling based partial-adaptive policy
that achieves an approximation ratio of 1

6+4/α with respect to the optimal
fully adaptive policy.

– We theoretically analyze the batch query complexity of our policy and show
that if the utility function is weak policywise submodular (in addition to
adaptive monotonicity and adaptive submodularity), then the above sam-
pling based partial-adaptive policy takes at most O(log n log B

cmin
) number of

batches to achieve a constant approximation ratio where B is the budget con-
straint and cmin is the cost of the cheapest item. It was worth noting that if we
consider a cardinality constraint k, then O(log n log B

cmin
) is upper bounded

by O(log n log k) which is polylogarithmic.

Additional Related Work. While most of existing studies on adaptive submodu-
lar maximization focus on fully adaptive setting [11], there are a few results that
are related to partial-adaptive submodular maximization. [3] propose a policy
that selects batches of fixed size r, and they show that their policy achieves a
bounded approximation ratio compare to the optimal policy which is restricted
to selecting batches of fixed size r. However, their approximation ratio becomes
arbitrarily bad with respect to the optimal fully adaptive policy. In the con-
text of adaptive viral marketing, [12] develop a partial-adaptive seeding policy
that achieves a bounded approximation ratio against the optimal fully adaptive
seeding policy. However, their results can not be extended to solve a general
adaptive submodular maximization problem. Very recently, [4] study the batch-
mode monotone adaptive submodular optimization problem and they develop an
efficient semi adaptive policy that achieves an almost tight 1 − 1/e − ε approxi-
mation ratio. To the best of our knowledge, all existing studies are focusing on
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maximizing a monotone adaptive submodular function. We are the first to study
the non-monotone partial-adaptive submodular maximization problem subject
to both cardinality and knapsack constraints. We also provide a rigorous analysis
of the batch query complexity of our policy.

2 Preliminaries and Problem Formulation

2.1 Items and States

The input of our problem is a ground set E of n items (e.g., tests in experi-
mental design). Each items e ∈ E has a random state Φ(e) ∈ O where O is
a set of all possible states. Let φ(e) ∈ O denote a realization of Φ(e). Thus, a
realization φ is a mapping function that maps items to states: φ : E → O. In
the example of experimental design, the item e may represent a test, such as the
temperature, and Φ(e) is the result of the test, such as, 38◦C. There is a known
prior probability distribution p(φ) = Pr(Φ = φ) over realizations φ. When real-
izations are independent, the distribution p completely factorizes. However, in
many real-world applications such as active learning, the realizations of items
may depend on each other. For any subset of items S ⊆ E, let ψ : S → O denote
a partial realization and dom(ψ) = S is called the domain of ψ. Consider a
partial realization ψ and a realization φ, we say φ is consistent with ψ, denoted
φ ∼ ψ, if they are equal everywhere in dom(ψ). Moreover, consider two partial
realizations ψ and ψ′, we say that ψ is a subrealization of ψ′, and denoted by
ψ ⊆ ψ′, if dom(ψ) ⊆ dom(ψ′) and they agree everywhere in dom(ψ). Let p(φ | ψ)
represent the conditional distribution over realizations conditional on a partial
realization ψ: p(φ | ψ) = Pr[Φ = φ | Φ ∼ ψ]. In addition, there is an additive
cost function c(S) =

∑
e∈S c(e) for any S ⊆ E.

2.2 Policies and Problem Formulation

A policy is a function π that maps a set of partial realizations to some distribu-
tion of E: π : 2E×O → P(E), specifying which item to select next. By following
a given policy, we can select items adaptively based on our observations made
so far. We next introduce two additional notions related to policies from [5].

Definition 1 (Policy Concatenation). Given two policies π and π′, let π@π′

denote a policy that runs π first, and then runs π′, ignoring the observation
obtained from running π.

Definition 2 (Level-t-Truncation of a Policy). Given a policy π, we define
its level-t-truncation πt as a policy that runs π until it selects t items.

There is a utility function f : 2E × OE → R≥0 which is defined over items
and states. Let E(π, φ) denote the subset of items selected by π under realization
φ. The expected utility favg(π) of a policy π can be written as

favg(π) = EΦ∼p(φ),Π [f(E(π, Φ), Φ)]
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where the expectation is taken over possible realizations and the internal ran-
domness of the policy.

In this paper, we first study the problem of partial-adaptive submodular
maximization subject to a cardinality constraint k.

max
π

{favg(π) | |E(π, φ)| ≤ k for all realizations φ}.

Then we generalize this study to consider a knapsack constraint B.

max
π

{favg(π) | c(E(π, φ)) ≤ B for all realizations φ}.

2.3 Adaptive Submodularity and Adaptive Monotonicity

We next introduce some additional notations that are used in our proofs.

Definition 3 (Conditional Expected Marginal Utility of an Item).
Given a utility function f : 2E × OE → R≥0, the conditional expected marginal
utility Δ(e | S, ψ) of an item e on top of a group of items S ⊆ E, conditioned
on a partial realization ψ, is defined as follows:

Δ(e | S, ψ) = EΦ[f(S ∪ {e}, Φ) − f(S,Φ) | Φ ∼ ψ] (1)

where the expectation is taken over Φ with respect to p(φ | ψ) = Pr(Φ = φ | Φ ∼
ψ).

Definition 4 (Conditional Expected Marginal Utility of a Policy).
Given a utility function f : 2E × OE → R≥0, the conditional expected marginal
utility Δ(π | S, ψ) of a policy π on top of a group of items S ⊆ E, conditioned
on a partial realization ψ, is defined as follows:

Δ(π | S, ψ) = EΦ,Π [f(S ∪ E(π, Φ), Φ) − f(S,Φ) | Φ ∼ ψ]

where the expectation is taken over Φ with respect to p(φ | ψ) = Pr(Φ = φ | Φ ∼
ψ) and the random output of π.

Now we are ready to introduce the notations of adaptive submodularity and
adaptive monotone [5]. Intuitively, adaptive submodularity is a generalization of
the classic notation of submodularity from sets to policies. This condition states
that the expected marginal benefit of an item never increases as we collect more
observations from past selections.

Definition 5 (Adaptive Submodularity and Adaptive Monotonicity).
A function f : 2E × OE → R≥0 is adaptive submodular if for any two partial
realizations ψ and ψ′ such that ψ ⊆ ψ′, the following holds for each item e ∈
E \ dom(ψ′):

Δ(e | dom(ψ), ψ) ≥ Δ(e | dom(ψ′), ψ′). (2)

Moreover, we say a utility function f : 2E ×OE → R≥0 is adaptive monotone if
for any partial realization ψ and any item e ∈ E\dom(ψ): Δ(e | dom(ψ), ψ) ≥ 0.
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3 Cardinality Constraint

We first study the problem of partial-adaptive submodular maximization sub-
ject to a cardinality constraint k. It has been shown that if the utility function
is adaptive submodular, then a fully adaptive greedy policy can achieve a 1/e
approximation ratio against the optimal fully adaptive policy [7]. However, one
weakness about a fully adaptive policy is that one must wait for the observa-
tions from all past selections before making a new selection. To this end, we
develop a Partial-Adaptive Greedy Policy πp that allows to make multiple selec-
tions simultaneously within a single batch. We show that πp achieves a α/e
approximation ratio with respect to the optimal fully adaptive policy where
α ∈ [0, 1] is called degree of adaptivity. One can adjust the value of α to balance
the performance/adaptivity tradeoff.

Algorithm 1. Partial-Adaptive Greedy Policy πp

1: t = 1; b[0] = 1; ψ0 = ∅; S0 = ∅; ∀i ∈ [n], S[i] = ∅.
2: while t ≤ k do
3: let M(St−1, ψb[t−1]−1) ← argmaxV ⊆E′;|V |=k

∑
e∈E′ Δ(e | St−1, ψb[t−1]−1);

4: if
∑

e∈M(St−1,ψb[t−1]−1)
Δ(e | St−1, ψb[t−1]−1) ≥ α·∑e∈M(dom(ψb[t−1]−1),ψb[t−1]−1)

Δ(e | dom(ψb[t−1]−1), ψb[t−1]−1) then
5: {stay in the current batch}
6: b[t] = b[t − 1];
7: sample et uniformly at random from M(St−1, ψb[t]−1);
8: St = St−1 ∪ {et}; S[b[t]] = S[b[t]] ∪ {et};
9: else

10: {start a new batch}
11: b[t] = b[t − 1] + 1;
12: observe {(e, Φ(e)) | e ∈ S[b[t−1]]}; ψb[t]−1 = ψb[t−1]−1 ∪ {(e, Φ(e)) | e ∈

S[b[t−1]]};
13: let M(St−1, ψb[t]−1) ← argmaxV ⊆E′;|V |=k

∑
e∈E′ Δ(e | St−1, ψb[t]−1);

14: sample et uniformly at random from M(St−1, ψb[t]−1); St = St−1 ∪ {et};
S[b[t]] = S[b[t]] ∪ {et};

15: t ← t + 1;

3.1 Algorithm Design

We next explain the design of πp (a detailed implementation of πp is listed in
Algorithm 1). We first add a set V of 2k − 1 dummy items to the ground set,
such that Δ(e | dom(ψ), ψ) = 0 for any e ∈ V and any partial realization ψ. Let
E′ = E ∪ V denote the expanded ground set. These dummy items are added to
avoid selecting any item with negative marginal utility. Note that we can safely
remove all these dummy items from the solution without affecting its utility. For
any partial realization ψ and any subset of items S ⊆ dom(ψ), define M(S, ψ)
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as a set of k items that have the largest marginal utility on top of S conditional
on ψ, i.e.,

M(S, ψ) ∈ argmax
V ⊆E′;|V |=k

∑

e∈E′
Δ(e | S, ψ). (3)

The policy πp executes k iterations, selecting exactly one item (which could
be a dummy item) in each iteration. It is worth noting that multiple iterations
of πp may be performed together in a single batch. For every t ∈ [k] of πp, let St

denote the first t items selected by πp, let b[t] denote the batch index of the t-th
item selected by πp, i.e., the t-th item is selected in batch b[t], and let S[q] denote
the set of selected items from batch q. Let ψq denote the partial realization of
the first q batches of items selected by πp, i.e., dom(ψq) = ∪i∈[1,q]S[i]. Set the
initial solution S0 = ∅ and the initial partial realization ψ0 = ∅.

– Starting with the first iteration t = 1.
– In each iteration t, we compare

∑
e∈M(St−1,ψb[t−1]−1)

Δ(e | St−1, ψb[t−1]−1)
with α · ∑

e∈M(dom(ψb[t−1]−1),ψb[t−1]−1)
Δ(e | dom(ψb[t−1]−1), ψb[t−1]−1), then

decide whether to start a new batch or not based on the result of the com-
parison as follows.

• If
∑

e∈M(St−1,ψb[t−1]−1)

Δ(e | St−1, ψb[t−1]−1)

≥ α ·
∑

e∈M(dom(ψb[t−1]−1),ψb[t−1]−1)

Δ(e | dom(ψb[t−1]−1), ψb[t−1]−1), (4)

then πp chooses to stay with the current batch, i.e., b[t] = b[t − 1]. It
samples an item et uniformly at random from M(St−1, ψb[t]−1), which is
identical to M(St−1, ψb[t−1]−1) due to b[t] = b[t − 1], and updates the
solution St using St−1 ∪ {et}. Move to the next iteration t = t + 1.

• Otherwise, πp starts a new batch, i.e., b[t] = b[t − 1] + 1, and observe the
partial realization Φ(e) of all items e from the previous batch S[b[t−1]].
Then it updates the observation ψb[t]−1 using ψb[t−1]−1 ∪ {(e, Φ(e)) | e ∈
S[b[t−1]]}. Note that St−1 = dom(ψb[t]−1) in this case. At last, it samples
an item et uniformly at random from M(St−1, ψb[t]−1) and updates the
solution St using St−1 ∪ {et}. Move to the next iteration t = t + 1.

– The above process iterates until πp selects k items (which may include some
dummy items).

Note that
∑

e∈M(dom(ψb[t−1]−1),ψb[t−1]−1)
Δ(e | dom(ψb[t−1]−1), ψb[t−1]−1) in

(4) is an upper bound of
∑

e∈M(St−1,ψb[t−1]−1)
Δ(e | St−1, ψb[t−1]−1). This is

because dom(ψb[t−1]−1) ⊆ St−1 and f : 2E × OE → R≥0 is adaptive submodu-
lar. Intuitively, satisfying (4) ensures that the expected gain of each iteration is
sufficiently large to achieve a constant approximation ratio. Unlike some other
criteria proposed in previous studies [4,9], evaluating (4) is relatively easy since
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it does not involve the calculation of the expectation of the maximum of n ran-
dom variables. Under our framework, one can adjust the degree of adaptivity
α ∈ [0, 1] to balance the performance/adaptivity tradeoff. In particular, choosing
a smaller α makes it easier to satisfy (4) and hence leads to fewer number of
batches but poorer performance.

3.2 Performance Analysis

We next analyze the performance of πp against the optimal fully adaptive strat-
egy. The following main theorem shows that πp with degree of adaptivity α
achieves an approximation ratio of α/e. All missing proofs are moved to our
technical report [10].

Theorem 1. If f : 2E × OE → R≥0 is adaptive submodular, then the Partial-
Adaptive Greedy Policy πp with degree of adaptivity α achieves a α/e approxi-
mation ratio in expectation.

The rest of this section is devoted to proving Theorem 1. We first present two
technical lemmas. Recall that for any iteration t ∈ [k], St−1 represents the first
t−1 selected items, ψb[t]−1 represents the partial realization of all items selected
from the first b[t] − 1 batches, and M(S, ψ) ∈ argmaxV ⊆E′;|V |=k

∑
e∈E′ Δ(e |

S, ψ).

Lemma 1. For each iteration t ∈ [k],
∑

e∈M(St−1,ψb[t]−1)
Δ(e | St−1, ψb[t]−1) ≥

α · ∑
e∈M(dom(ψb[t]−1),ψb[t]−1)

Δ(e | dom(ψb[t]−1), ψb[t]−1).

The next lemma shows that for any iteration t ∈ [k], the sum of expected
marginal benefits of all items from M(dom(ψb[t]−1), ψb[t]−1) is sufficiently high.
This will be used later to lower bound the expected gain of each iteration of our
policy.

Lemma 2. Let π∗ denote an optimal fully adaptive policy. In each iteration t ∈
[k],

∑
e∈M(dom(ψb[t]−1),ψb[t]−1)

Δ(e | dom(ψb[t]−1), ψb[t]−1) ≥ Δ(π∗ | St−1, ψb[t]−1).

Now we are ready to prove the main theorem. Let the random variable St−1

denote the first t − 1 items selected by πp and let the random variable Ψb[t]−1

denote the partial realization of the first b[t]− 1 batches of items selected by πp.
For any t ∈ [k], we next bound the expected marginal gain of the t-th iteration
of πp,
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favg(π
p
t ) − favg(π

p
t−1) = ESt−1,Ψb[t]−1 [Eet

[Δ(et | St−1, Ψb[t]−1)]]

=
1
k
ESt−1,Ψb[t]−1 [

∑

e∈M(St−1,Ψb[t]−1)

Δ(e | St−1, Ψb[t]−1)]

≥ 1
k
ESt−1,Ψb[t]−1 [α ·

∑

e∈M(dom(Ψb[t]−1),Ψb[t]−1)

Δ(e | dom(Ψb[t]−1), Ψb[t]−1)]

=
α

k
ESt−1,Ψb[t]−1 [

∑

e∈M(dom(Ψb[t]−1),Ψb[t]−1)

Δ(e | dom(Ψb[t]−1), Ψb[t]−1)]

≥ α

k
ESt−1,Ψb[t]−1 [Δ(π∗ | St−1, Ψb[t]−1)]

=
α

k
(favg(π∗@πp

t−1) − favg(π
p
t−1)) (5)

≥ α

k
((1 − 1

k
)t−1favg(π∗) − favg(π

p
t−1)). (6)

The second equality is due to the fact that at each round t ∈ [k], πp adds an item
uniformly at random from M(St−1, ψb[t]−1) to the solution. The first inequality is
due to Lemma 1. The second inequality is due to Lemma 2. The last inequality is
due to Lemma 1 in [7] where they show that favg(π∗@πp

t−1) ≥ (1− 1
k )t−1favg(π∗).

We next prove

favg(π
p
t ) ≥ αt

k
(1 − 1

k
)t−1favg(π∗) (7)

by induction on t. For t = 0, favg(π
p
0) ≥ 0 ≥ α·0

k (1 − 1
k )0−1favg(π∗). Assume (7)

is true for t′ < t, let us prove it for t.

favg(π
p
t ) ≥ favg(π

p
t−1) +

α

k
((1 − 1

k
)t−1favg(π∗) − favg(π

p
t−1))

= (1 − α/k)favg(π
p
t−1) +

α(1 − 1
k )t−1favg(π∗)

k

≥ (1 − α/k)(α(t − 1)/k)(1 − 1/k)t−2favg(π∗) +
α(1 − 1

k )t−1favg(π∗)
k

≥ (1 − 1/k)(α(t − 1)/k)(1 − 1/k)t−2favg(π∗) +
α(1 − 1

k )t−1favg(π∗)
k

=
αt

k
(1 − 1

k
)t−1favg(π∗).

The first inequality is due to (6), the second inequality is due to the induc-
tive assumption. When t = k, we have favg(π

p
t ) ≥ α(1 − 1/k)k−1 · favg(π∗) ≥

(α/e)favg(π∗). This finishes the proof of the main theorem.

Remark: When the utility function f : 2E × OE → R≥0 is adaptive submodular
and adaptive monotone, [5] show that favg(π∗@πp

t−1) ≥ favg(π∗) for all t ∈ [k].
Thus, for all t ∈ [k],
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favg(π
p
t ) − favg(π

p
t−1) ≥ α

k
(favg(π∗@πp

t−1) − favg(π
p
t−1))

≥ α

k
(favg(π∗) − favg(π

p
t−1)). (8)

The first inequality is due to (5). Through induction on t, we have favg(πp) ≥
(1 − e−α)favg(π∗).

Theorem 2. If f : 2E ×OE → R≥0 is adaptive submodular and adaptive mono-
tone, then the Partial-Adaptive Greedy Policy πp achieves a 1− e−α approxima-
tion ratio in expectation.

4 Knapsack Constraint

In this section, we study our problem subject to a knapsack constraint B. In [1,8],
they develop a fully adaptive policy that achieves a bounded approximation ratio
against the optimal fully adaptive policy. We extend their design by developing
a partial-adaptive policy which allows to select multiple items in a single batch.
Our policy with degree of adaptivity α achieves an approximation ratio of 1

6+4/α

with respect to the optimal fully adaptive policy.

4.1 Algorithm Design

We first construct two candidate policies: the first policy always picks the best sin-
gleton o with the largest expected utility, i.e., o ∈ argmaxe∈E EΦ∼p(φ)[f({e}, Φ)]
and the second candidate is a sampling based “density-greedy” policy πk. Our final
policy randomly picks one from the above two candidates such that {o} is picked
with probability 1/α

3+2/α and πk is picked with probability 3+1/α
3+2/α . In the rest of this

paper, let f(o) denote EΦ∼p(φ)[f({o}, Φ)] for short.
We next explain the idea of Partial-Adaptive Density-Greedy Policy πk (the

second candidate policy). πk first selects a random subset R which is obtained
by including each item e ∈ E independently with probability 1/2. Then we run
a “density-greedy” algorithm only on R. We first introduce some notations. For
each iteration t ∈ [n], let b[t] denote the batch index of t, i.e., we assume that the
t-th item is selected in batch b[t], for convenience, we define b[0] = 1. Let St−1

denote the first t − 1 items selected by πk, and ψb[t−1]−1 represent the partial
realization of the first b[t−1]−1 batches of selected items. Set the initial solution
S0 = ∅ and the initial partial realization ψ0 = ∅.

– Starting from iteration t = 1 and batch b[t] = 1.
– In each iteration t, let e′ be the item that has the largest benefit-cost ratio

on top of St−1 conditioned on ψb[t−1]−1 from R \ St−1, i.e.,

e′ ← argmax
e∈R\St−1

Δ(e | St−1, ψb[t−1]−1)
c(e)

. (9)
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Let e′′ be the item with the largest benefit-cost ratio on top of dom(ψb[t−1]−1)
conditional on ψb[t−1]−1 from R \ dom(ψb[t−1]−1), i.e.,

e′′ ← argmax
e∈R\dom(ψb[t−1]−1)

Δ(e | dom(ψb[t−1]−1), ψb[t−1]−1)
c(e)

. (10)

It will become clear later that e′′ stores the first selected item, if any, from
the b[t − 1]-th batch. Note that dom(ψb[t−1]−1) ⊆ St−1.

Compare Δ(e′|St−1,ψb[t−1]−1)

c(e′) with α · Δ(e′′|dom(ψb[t−1]−1),ψb[t−1]−1)

c(e′′) ,

• if Δ(e′|St−1,ψb[t−1]−1)

c(e′) ≥ α · Δ(e′′|dom(ψb[t−1]−1),ψb[t−1]−1)

c(e′′) and adding e′ to the
solution does not violate the budget constraint, then stay in the current
batch, i.e., b[t] = b[t − 1], add e′ to the solution, i.e., St = St−1 ∪ {e′}.
Move to the next iteration, i.e., t = t + 1;

• if Δ(e′|St−1,ψb[t−1]−1)

c(e′) ≥ α · Δ(e′′|dom(ψb[t−1]−1),ψb[t−1]−1)

c(e′′) and adding e′ to the
solution violates the budget constraint, then terminate;

• if Δ(e′|St−1,ψb[t−1]−1)

c(e′) < α · Δ(e′′|dom(ψb[t−1]−1),ψb[t−1]−1)

c(e′′) , then start a new
batch, i.e., b[t] = b[t − 1] + 1, observe the partial realization of all items
selected so far, i.e., ψb[t]−1 = ψb[t−1]−1 ∪ {(e, Φ(e)) | e ∈ S[b[t−1]]}. If

maxe∈R\dom(ψb[t]−1)
Δ(e|dom(ψb[t]−1),ψb[t]−1)

c(e) > 0 and adding

argmax
e∈R\dom(ψb[t]−1)

Δ(e | dom(ψb[t]−1), ψb[t]−1)
c(e)

to the solution does not violate the budget constraint, then add this item
to the solution, and move to the next iteration, i.e., t = t + 1; otherwise,
terminate.

A detailed description of πk is presented in our technical report [10].

4.2 Performance Analysis

For ease of analysis, we present an alternative implementation of πk. Unlike
the original implementation of πk where R is sampled at the beginning of the
algorithm, we defer this decision in our alternative implementation, that is, we
toss a coin of success 1/2 to decide whether or not to add an item to the solution
each time after an item is being considered. It is easy to verify that both versions
of the algorithm have identical output distributions. A detailed description of
this alternative implementation can be found in our technical report [10].

We first provide some useful observations that will be used in the proof of
the main theorem. Consider an arbitrary partial realization ψ, let W (ψ) = {e ∈
E | Δ(e | dom(ψ), ψ) > 0} denote the set of all items whose marginal utility
with respect to dom(ψ) conditional on ψ is positive. We number all items e ∈
W (ψ) by decreasing ratio Δ(e|dom(ψ),ψ)

c(e) , i.e., e(1) ∈ argmaxe∈W (ψ)
Δ(e|dom(ψ),ψ)

c(e) .

If
∑

e∈W (ψ) c(e) ≥ B, let l = min{i ∈ N | ∑i
j=1 c(e(i)) ≥ B}; otherwise, if



390 S. Tang and J. Yuan

∑
e∈W (ψ) c(e) < B, let l = |W (ψ)|. Define D(ψ) = {e(i) ∈ W (ψ) | i ∈ [l]} as the

set containing the first l items from W (ψ). Intuitively, D(ψ) represents a set of
best-looking items conditional on ψ.

Consider any e ∈ D(ψ), assuming e is the i-th item in D(ψ), let

x(e, ψ) = min{1,
B − ∑

s∈∪j∈[i−1]{e(j)} c(s)

c(e)
}

where ∪j∈[i−1]{e(j)} represents the first i − 1 items in D(ψ).
Define d(ψ) =

∑
e∈D(ψ) x(e, ψ)Δ(e | dom(ψ), ψ). Similar to Lemma 1 in [6],

d(ψ) ≥ Δ(π∗ | dom(ψ), ψ). (11)

We use λ = ({Sλ
t , ψλ

b[t]−1 | t ∈ [zλ]}, ψλ
b[zλ]) to represent a fixed run of πk

where Sλ
t denotes the first t items selected by πk under λ, ψλ

b[t]−1 denotes the
partial realization of first b[t] − 1 batches of selected items under λ, and ψλ

b[zλ]

denotes the partial realization of all selected items under λ, i.e., πk selects zλ

items under λ. Hence, dom(ψλ
b[zλ]) = Sλ

zλ . Define C(λ) as those items in D(ψλ
b[zλ])

that have been considered by πk but not added to the solution because of the coin
flips. Let U(λ) denote those items in D(ψλ

b[zλ]) that have not been considered by
πk. (11) implies that

d(ψλ
b[zλ]) =

∑

e∈D(ψλ

b[zλ]
)

x(e, ψλ
b[zλ])Δ(e | Sλ

zλ , ψλ
b[zλ]) (12)

=
∑

e∈U(λ)∪C(λ)

x(e, ψλ
b[zλ])Δ(e | Sλ

zλ , ψλ
b[zλ])

≥ Δ(π∗ | Sλ
zλ , ψλ

b[zλ]). (13)

Before presenting the main theorem, we provide two technical lemmas.

Lemma 3. Let the random variable Λ denote a random run of πk,

favg(πk) ≥ 1
2
E[

∑

e∈C(Λ)

Δ(e | SΛ
zΛ , ψΛ

b[zΛ])]. (14)

Lemma 4. Let the random variable Λ denote a random run of πk,

favg(πk) + f(o) ≥ α · E[
∑

e∈U(Λ)

x(e, ψΛ
b[zΛ])Δ(e | SΛ

zΛ , ψΛ
b[zΛ])]. (15)

Now we are ready to present the main theorem.

Theorem 3. If we randomly pick a policy from {o} and πk (with degree of adap-
tivity α) such that {o} is picked with probability 1/α

3+2/α and πk is picked with prob-

ability 3+1/α
3+2/α , then we can achieve the expected utility of at least 1

6+4/αfavg(π∗).
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4.3 Bounding the Batch Query Complexity

If the utility function f : 2E ×OE → R ≥ 0 is adaptive monotone, adaptive sub-
modular, and weak policywise submodular [10], we demonstrate that by selecting
a suitable value of α, it takes at most min{O(n), O(log n log B

cmin
)} batches for

our policy to achieve a constant approximation ratio. Here, cmin = mine∈E c(e)
is the cost of the cheapest item. Notably, if we consider a cardinality constraint
k, then the above complexity is upper bounded by O(log n log k) which is poly-
logarithmic. We move this part to our technical report [10].
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Abstract. We propose an optimization problem to model a situation
when a platform with a limited budget wants to pay a group of workers to
work on a set of jobs with possibly worker-job-dependent execution costs.
The platform needs to assign workers to jobs and at the same time decides
how much to pay each worker to maximize the total “contribution” from
the workers by using up the limited budget. The binary effort assignment
problem, in which an effort from a worker is indivisible and can only be
dedicated to a single job, is reminiscent of bipartite matching problems.
Yet, a matched worker and job pair neither incurs cost nor enforces a
compulsory effort in a standard matching setting while we consider such
cost to be covered by payment and certain level of effort to be made when
a job is executed by a worker. The fractional effort assignment problem,
in which generally a worker’s effort can be divisible and split among
multiple jobs, bears a resemblance to a labor economy or online labor
platform, and the platform needs to output an arrangement of efforts
and the corresponding payments.

There are six settings in total to consider by combining the conditions
on payments and efforts. Intuitively, we study how to come up with the
best assignment under each setting and how different these assignments
under different settings can be in terms of the total contribution from
workers when the information of each worker’s quality of service and cost
is available. NP-completeness results and approximation algorithms are
given for different settings. We then compare the solution quality of some
settings in the end.
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1 Introduction

Nowadays, new business models have changed the ways how technology com-
panies make profits from their operations. The platform business model is a
typical and new emerging one which creates value from the exchanges between
two groups, such as sellers and buyers, consumers and producers, job managers
and workers, etc. The crowdsourcing platform, which leverages the development
of Web 2.0 [15], provides a classic case in point. The platform outsources jobs or
tasks to interested workers and tries to incentivize them so as to crop valuable
profits from their deliverables (e.g., refer to [8] for more discussions). Challenges
come with such business models.

In this work, we first formulate the platform business model as an assignment
problem while incentivization via sufficient payment is simplified and treated as
a set of constraints that must be satisfied when the workers’ information is
known, i.e., they are “non-strategic”, and then as a mechanism design problem
with “strategic” workers whose information has to be reported to the mechanism.
Specifically, when the workers’ information is known, we propose an optimization
problem to model this situation for the platform with a limited budget paying
a group of workers to work on a set of jobs with possibly worker-job-dependent
execution costs. The platform needs to assign workers to jobs and at the same
time decides how much to pay each worker to maximize the total “contribution”
from the workers by using up a limited budget. Intuitively, the platform might
be struggling in how to better design a mechanism to incentivize the workers by
payment as little as possible yet to exert as much as their total efforts. From its
point of view, one may consider how to better assign jobs to suitable workers
who may provide different quality of contribution for various jobs. This turns
out to be a typical job matching problem [5] or a kind of assignment problem
which in general is NP-hard [14] although a (1 − 1/e) approximation ratio can
be achieved [6].

The binary effort assignment problem, in which an effort from a worker is
indivisible and can only be dedicated to a single job, is reminiscent of bipartite
matching problems. Yet, a matched worker and job pair neither incurs “worker
cost” nor enforces a “compulsory effort” commitment in a standard matching
setting while we consider such cost to be covered by payment and certain level of
effort to be made when a job is assigned to a worker so a payment to this execut-
ing worker becomes rather necessary as a relatively relaxed incentive (compared
with standard rationality in terms of individual utility maximization), by simply
covering the cost using the payment no matter how much the remaining utility
is left.

With the characteristics of our binary effort assignment highlighted above,
our fractional effort assignment becomes easier to follow as well. The fractional
effort assignment problem, in which generally a worker’s effort can be divisible
and split among multiple jobs, bears a resemblance to a labor economy or online
labor platform, and the platform needs to output an arrangement of efforts and
the corresponding payments to cover costs for participating workers (how to
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incentivize the workers) in a way that the total contribution from all the workers
is maximized for the economy or platform.

We consider three payment settings as follows. The first one is when all
workers are paid the same no matter which worker is assigned to which job,
the second one is when different jobs pay differently no matter which worker is
assigned to it, and the last one is when a job can pay differently if it is assigned
to different workers. Workers’ efforts can be discussed under two types: one type
is when a worker’s effort is indivisible, which means that a worker can only work
on one job, and the other type is when a worker’s effort is divisible among jobs,
which means that a worker can work on multiple jobs fractionally.

Combining the conditions on payments and efforts, there are six settings in
total to consider in this paper. Intuitively, we study how to come up with the best
arrangement under the various settings, how different these assignments under
different settings can be in terms of the total contribution from workers when the
information about workers’ work quality and cost is available. We summarize
these main results including NP-completeness and approximation algorithms
in different settings along with comparisons after introducing the models and
definitions in Sect. 1.1 for discussion.

1.1 Our Models, Preliminaries and Results

We formally consider a job assignment problem for a platform with budget V
whose goal is to assign N workers to M jobs to maximize the total contribution
from all the workers. Inspired by the concept of threshold badges [2], we gen-
eralize this idea as well as considering convexity to quantify the cost according
to the devoted effort as follows. For job j, worker i can provide a quality of
service qij ≥ 0 and incurs a cost of Cδ(cij , eij) = cije

δ
ij for cij ≥ 0 and δ ≥ 1,

where cij is the maximum cost worker i could bear for job j and eij ∈ [0, 1] is
the “effort” that worker i would spend on job j. Assume that each worker has a
limit on her/his effort so

∑
j eij ≤ 1. Also, the contribution provided by worker i

to job j is qijeij . The platform has to decide how much rij to pay worker i for a
unit of contribution on job j. Thus, there is a natural constraint for worker i’s
willingness to spend effort eij on job j: rijqijeij − Cδ(cij , eij) ≥ 0, meaning that
the payment from the platform has to cover the worker’s cost. The platform has
a budget constraint as well:

∑
i,j rijqijeij ≤ V , i.e., the total payments cannot

exceed budget V . In summary, this job assignment problem can be modeled
as an optimization problem whose objective function to maximize is the total
contribution of all the workers Q(G) =

∑
i,j qijeij , subject to the following con-

straints, where [N ] denotes {1, 2, . . . , N}:
(1)

∑
j eij ≤ 1 for all i ∈ [N ]; (2) rijqijeij − Cδ(cij , eij)≥0 for all i ∈ [N ] and all

j ∈ [M ]; (3)
∑

i,j rijqijeij ≤ V ; (4) 0 ≤ eij ≤ 1 for all i ∈ [N ] and all j ∈ [M ];
(5) rij ≥ 0 for all i ∈ [N ] and all j ∈ [M ].

We define a feasible assignment for a platform such that G = (R,E) with
R = {rij} and E = {eij} to be one that satisfies constraints (1)–(5). In a feasible
assignment G, the contribution from job j is defined as Qj(G) =

∑
i qijeij and

the payment to job j is defined as Mj(G) =
∑

i rijqijeij . The total contribution is
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Q(G) =
∑

j Qj(G) =
∑

i,j qijeij , and the total payment is M(G) =
∑

j Mj(G) =∑
i,j rijqijeij .
We consider the six settings formed by two types of efforts, i.e., fractional

and binary, along with three types of payments. If workers’ efforts satisfy con-
straint (4), we say that they are fractional ; if they further satisfy constraint (4’)
eij ∈ {0, 1} for each i ∈ [N ] and each j ∈ [M ], we say that they are binary.
If the platform only decides a payment rij = r for all workers i ∈ [N ] and
jobs j ∈ [M ], the payments are called all-independent. If the payments satisfy
rij = rj for all workers i ∈ [N ], they are called worker-independent ; other-
wise, we call them worker-dependent. Hence, the six settings of the job assign-
ment problem (see Table 1) are: binary efforts with all-independent assignments
(BAI), binary efforts with worker-independent assignments (BI), binary efforts
with worker-dependent assignments (BD), fractional efforts with all-independent
assignments (FAI), fractional efforts with worker-independent assignments (FI),
and fractional efforts with worker-dependent assignments (FD). We denote
by OPTBI , OPTBD, OPTFI , and OPTFD the optimal solutions to the BI, BD,
FI, and FD assignment problems, respectively.

We are ready to give a summary of our main results when the information
about workers’ quality of service qij and cost cij per unit of effort are available.
We would like to output workers’ efforts eij and payments rij that they get per
unit of contribution.

1. The BD assignment problem is NP-Complete, and a fully polynomial time
approximation scheme (FPTAS) is given; the BAI assignment problem is also
NP-Complete and has a FPTAS.

2. The BI assignment problem is also NP-Complete, and a polynomial time
(1 − 1/e)-approximation algorithm is given.

3. The FAI assignment problem can be polynomially solved. Using the interior
point method, the FD assignment problem can be also solved optimally in
polynomial time.

4. If δ = 1, the FI assignment problem is NP-Complete, and we give an approx-
imation algorithm with a ratio arbitrarily close to (1 − 1/e) in polynomial
time.

5. We compare the solution quality of OPTBI , OPTBD, OPTFI , and OPTFD:
– With fractional efforts, Q(OPTFD) ≥ Q(OPTFI) because worker-

dependent payments induce a better total contribution than worker-
independent payments, and we show a tight inequality 2Q(OPTFI) ≥
Q(OPTFD).

– With binary efforts, we provide a tight inequality 3Q(OPTBI) ≥
Q(OPTBD). However, the optimal binary solutions can be arbitrarily
away from the optimal fractional solutions in terms of the total contribu-
tion.

1.2 Related Work

It is clear that our job assignment problem is related to the problem of job
matching [5]. When there is a budget constraint, it naturally a kind of knapsack
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Table 1. Our results in the six settings of the job assignment problem for non-strategic
workers.

effort type all independent worker independent worker dependent

binary BAI (NP-C, FPTAS) BI (NP-C, P.-Time
Approx.)

BD (NP-C, FPTAS)

fractional FAI (P. Time) FI (NP-C, P.-Time
Approx.)

FD (P. Time)

problem dating back to [13], and more specifically, the multiple-choice knapsack
problem [9]. As we have mentioned earlier, the assignment problem studied in [6,
14] is also related to our optimization problem. Such problems ask for a collection
of items that satisfies the capacity constraint(s) and maximizes the collected
values. While in this work, the job assignment problem is more complex and
generalized. The workers do not necessarily exert all their effort and can make
contribution only when there is enough incentive for doing so.

When a manager cannot do all jobs by herself, it is natural for her to consider
outsourcing the jobs to the workers. Job assignment can then be considered as
a kind of outsourcing policy [8]. When the manager gives payment or compen-
sation to the workers, problems as such resembles the idea of incentivized explo-
ration of the classic multi-armed bandits (MAB) [7,11,12] or steering workers
to enhance their behaviors of exploitation in a way that they are more engaged
in pursuing badges [1,2]. In such a framework, a principal tries to maximize
the expected rewards by steering myopic players to explore arms other than the
current empirically best one using compensation. Generally, previous works on
the incentivized exploration of MAB did not consider budget constraints and
focused more on a no-regret setting.

2 Binary Effort Assignment

In this section, since eij ∈ {0, 1} for all i, j, the value of δ does not matter in the
binary assignment problems. We will first show that the BD assignment problem
and the multiple-choice knapsack problem (MCKP) are equivalent. The MCKP
problem is NP-Complete and has a fully polynomial time approximation scheme
(FPTAS) [3] so the BD assignment problem has the same properties as MCKP.
Also, we will show that the BAI assignment problem is NP-Complete. Since the
BAI assignment problem can be regarded as a special version of MCKP, the BAI
assignment problem thereby has a FPTAS. Nevertheless, we use the fact that
the knapsack problem is NP-Complete, and it can be reduced to a special case of
the BI assignment problem. Thus, the BI assignment problem is NP-Complete,
and we then give a polynomial-time (1 − 1/e)-approximation algorithm.

We have the following lemmas whose proofs are deferred to the full version.

Lemma 1. The BD assignment problem is equivalent to MCKP.

Lemma 2. The BAI assignment problem is NP-Complete and has a FPTAS.
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Lemma 3. The BI assignment problem is NP-complete.

Next, we give an approximation algorithm for the BI assignment problem.
Many works share similar high-level ideas for such an approximation guarantee
but with different technical details due to the context (e.g., see [10]). We denote
by A = {(i, j) | i ∈ [N ], j ∈ [M ]} the set of all worker-job pairs and denote by
P = ((ik, jk) | (ik, jk) ∈ A, k ∈ [�]) a sequence of � worker-job pairs. We then
construct a correspondence from a sequence of worker-job pairs to a “reasonable”
assignment. A reasonable assignment consists of two parts: payments and efforts
so we need to give corresponding payments and efforts. A natural way to do
is, according to the sequence of worker-job pairs, setting the payment for job j
to the maximum cost-to-quality ratio among the workers who are paired with
job j in the sequence so any selected worker in the sequence will be willing
to do it. Because every worker can appear more than once in the sequence,
a worker should be assigned according to the last worker-job pair associated
with it. In notations, payment rj(P ) = max{cikjk/qikjk | jk = j, k ∈ [�]} and
�(P, i) = arg max{k | (ik = i, jk) ∈ A}1 denotes the index of the last worker-job
pair in which worker i was assigned in sequence P . Then, we set effort eij = 1
if j = j�(P,i) and eij = 0 otherwise, which means that job j was not in the
last worker-job pair in which worker i was assigned in sequence P . We call the
correspondence that we just define as G(P ) = ({rj(P ), {eij(P )}}). Note that
function G is not an one-to-one function, because there could be two different
sequences P and P ′ such that assignments G(P ) and G(P ′) are the same.

Given a worker-job pair (i, j) /∈ P , we let P + (i, j) denote the sequence
formed by appending worker-job pair (i, j) to sequence P , and we define the
cost-performance (CP)2 ratio of adding worker-job pair (i, j) to sequence P by
CP ((i, j), P ) = (Q(G(P + (i, j))) − Q(G(P )))/(M(G(P + (i, j))) − M(G(P ))).
The greedy algorithm works as follows.

Algorithm 1. Greedy(P, U, V )
Input: a sequence P , a collection U of work-job pairs and the budget V .

1: repeat
2: Select (i0, j0) ← arg max(i,j)∈U{CP ((i, j), P ) : CP ((i, j), P ) > 0}
3: if M(G(P + (i0, j0))) ≤ V then
4: P ← P + (i0, j0)
5: end if
6: U ← U\{(i0, j0)}
7: until U = ∅
8: Return P .

The basic step above is to choose a pair (i, j) of the highest CP ratio and
check if the payment for P + (i, j) is within budget V .

1 Let us abuse the use of notation � as a function name as well.
2 This anecdotal abbreviation can also refer to capacity-price.
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Algorithm 2. AlgoBI(U, V )
Input: U : a collection of work-job pairs; V : the budget.

1: P1 ← arg max{Q(G(P )) : P is a sequence of U, |P | < 3, M(G(P )) ≤ V }, P2 ← ∅
2: for all P s.t. |P | = 3 and M(G(P )) ≤ V do
3: U ′ ← U and V ′ ← V − M(G(P ))
4: P ← Greedy(P, U ′, V ′)
5: if Q(G(P )) ≥ Q(G(P2)) then P2 ← P
6: end for
7: if Q(G(P1)) > Q(G(P2)) then
8: output G(P1)
9: else

10: output G(P2)
11: end if

A is a set that collects all worker-job pairs, V is the platform’s budget, and
AlgoBI(A,V) considers two goals: first, P1 looks for the assignment correspond-
ing to the sequence that contributes most among all sequences of size less than or
equal to 2; second, P2 considers the assignment contributing most and returned
by the greedy algorithm initially fed with a pair sequence of size 3. Finally,
AlgoBI(A,V) outputs the assignment contributing most in these two goals.

Analysis of the Approximation Ratio. We are analyzing how much con-
tribution by assignment P2 is guaranteed in the for-loop of AlgoBI(A,V). Let
Y be the initial sequence such that |Y | = 3 and M(G(Y )) ≤ V . OPT denotes
the best assignment to this BI assignment problem, and POPT is a correspond-
ing sequence so we have that G(POPT ) = OPT . Suppose that when running
the greedy algorithm, the �′th step was in POPT for the first time, but it was
not added into P due to exceeding budget V . Let � represent the length of
sequence P in the first �′ steps of the greedy algorithm. Note that � is not nec-
essarily equal to �′ because not every step is added as new pairs. We rename the
pairs in sequence P : let (ik, jk) denote the kth worker-job pair added in P , and
(i�, j�) be the worker-job pair considered by the greedy algorithm and in POPT

for the first time but not added to sequence P due to the budget constraint. We
let PY

0 = Y , PY
k = PY

k−1 + (ik, jk) for k ∈ [�], and then we give a contribution
guaranteeing lemma and a theorem whose proof is in the full version.

Lemma 4. Suppose the initial sequence is a subset of POPT , Y ⊂ POPT . Then,

Q(G(PY
� )) ≥ (1 − 1/e)Q(OPT ) + Q(G(Y ))/e.

Theorem 1. AlgoBI(A,V) is a (1 − 1/e)-approximation algorithm for the BI
assignment problem.

3 Fractional Effort Assignment

In this section, we consider FAI, FD and FI assignment problems, where workers’
effort 0 ≤ eij ≤ 1 are real numbers for all i ∈ [N ] and j ∈ [M ]. First, we consider
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FAI assignment problem with δ ≥ 1 and rij = r for all i, j, which is to maximize
the contribution

∑
i,j qijeij of all the workers such that

∑M
j=1 eij ≤ 1, for each i ∈ [N ]; rqijeij ≥ cije

δ
ij , for each i ∈ [N ], j ∈ [M ];∑

i∈[N ],j∈[M ] rqijeij ≤ V ; 0 ≤ eij ≤ 1, for each i ∈ [N ], j ∈ [M ]; r ≥ 0.

For a given r, this optimization problem is solvable because the functions above
are convex. The third constraint gives an upper bound on r and suggests that
the contribution

∑
i,j qijeij is inversely proportional to the value of r. Hence we

can solve FAI assignment problem with δ ≥ 1 in polynomial time.
Next, we consider FD assignment problem with δ ≥ 1. Suppose that man-

ager arranges worker i, who uses effort eij , to do job j. The most cost-saving
payment rij is then rij(eij) = cij

qij
eδ−1
ij . That is, rij can be regarded as a function

of eij instead of simply a variable. Now we reconsider FD assignment prob-
lem as below. Only {eij} are variables. The total contribution

∑
i,j qijeij is

maximized such that
∑M

j=1 eij ≤ 1, for each i ∈ [N ],
∑

i∈[N ],j∈[M ] cije
δ
ij ≤ V,

0 ≤ eij ≤ 1, for each i ∈ [N ], j ∈ [M ], rij ≥ 0, for each i ∈ [N ], j ∈ [M ].
Note that cije

δ
ij is convex since δ ≥ 1. We can apply the interior point

methods [4] to the FD assignment problem with δ ≥ 1 to find out the optimal
solution in polynomial time.

Now we will show that FI assignment problem with δ ≥ 1 is NP-Complete.
We reduce the knapsack problem, which is NP-Complete, to the FI assignment
with δ = 1. Then, we will propose a polynomial time (1 − 1/e) approximation
algorithm.

First, we argue that FI assignment problem with δ = 1 admits a special
optimal solution such that every worker’s effort is binary except one, say eij ∈
(0, 1), which is fractional and corresponds to a payment rj = max{rj′ | eij′ �=
0, i ∈ [N ], j ∈ [M ]}. We have the following lemmas whose proofs are deferred
to the full version.

Lemma 5. There exists an optimal payment of the FI assignment problem with
δ = 1 which satisfies: at most one effort 0 < eij < 1; the corresponding payment
arrangement rj = max{rj′ | eij′ �= 0, i ∈ [N ], j′ ∈ [M ]}.

Next, we will show that the FI assignment problem with δ = 1 is NP-
Complete. First, we consider this problem in the scenario that there are only
one job and two workers. Intuitively, it resembles the knapsack problem with
one inseparable item.

Let us consider an illustrating example as follows. Suppose that we are given
two workers and one job such that the quality and costs are q11 = a, q21 = q,
c11 = 0 and c21 = c, where q, a, c > 0 are three arbitrary real numbers. If the
manager sets payment by r1 = 0, then worker 1 can contribute a without any
effort. If the manager raises the payment by r1 = c/q, then both worker 1 and 2
are willing to do job 1. From the above two kinds of payment, we observe that
the best contribution we can get is a if the budget less than a(c/q) (note that
the manager does not need to pay for this case), The best contribution we can
get is a + q if the budget is more than a(c/q) + c. The best contribution we can
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get is v q
c if the budget is between a(c/q) and a(c/q) + c. If c is very small, then

we can simulate the knapsack problem for whether we want an item or not.

Lemma 6. FI assignment problem with δ = 1 is NP-Complete.

According to Lemma 5, the optimal solution consists of only one fractional
effort. Hence we can exhaustively try all the NM effort assignments by setting
all efforts to be binary except one which is set to be fractional, so that AlgoBI
can be applied.

Algorithm 3. Complete(G, (i0, j0)))
Input: G: an arrangement of BI assignment problem; (i0, j0): a worker-job pair.

1: Let G ← (R = {rj}, E = {eij}) be an arrangement with rj0 ← ci0j0/qi0j0 and
ei0j0 ← 0.

2: eij ← (V − M(G))/ci0j0 if (i, j) = (i0, j0).
3: Output G.

We sort all possible payments {cij/qij | i ∈ [N ], j ∈ [M ]} in the ascending
order. Assume that γ is the kth smallest payment. Let ωγ and τγ be the cor-
responding worker and job respectively. Let Aγ = {(i, j) | cij/qij ≤ γ, (i, j) �=
(ωγ , τγ)} be the set collecting the worker-job pairs with payment less than or
equal to γ.

Algorithm 4. AlgoFI(V, ε)
Input: V : the budget; ε: a positive real smaller than 1.

1: Sort the values {cij/qij} in the ascending order.
2: Let the kth smallest value in {cij/qij} be rk and the corresponding worker-job pair

be (ik, jk) for k = 1, 2, . . . , MN .
3: γ ← 1

1−1/e
.

4: for k ← 1 to MN do
5: U ← Ark .
6: G ← Complete(AlgoBI(Ark , V ), (ik, jk)).

7: P ←
⌊−(log ε−log qikjk

)

log γ

⌋

8: for l ← 1 to P do
9: G′ ← Complete(AlgoBI(Ark , V − cijεγ

l), (ik, jk)).
10: if Q(G′) ≥ Q(G) then G ← G′.
11: end for
12: end for
13: Output G.

We have the following theorem whose proof is deferred to the full version.

Theorem 2. We have Q(AlgoFI(V, ε)) ≥ (1 − 1/e)Q(OPTFI(V )) − ε.
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4 Comparisons

FI vs. FD. Let OPTFI , OPTFD be the optimal arrangements for the FI assign-
ment problem and the FD assignment problem, respectively. It is easy to see that
Q(OPTFI) ≤ Q(OPTFD) since the FI assignment problem can be regarded as
a special case of the FD assignment problem. In the following we will prove that
2Q(OPTFI) ≥ Q(OPTFD) and provide an instance to show that the bound is
tight.

We have the following lemma and theorem whose proofs are in the full version.

Lemma 7. Given N workers, one job and a manager with budget V . Let
OPTFI and OPTFD be the optimal arrangements for the FI assignment problem
and FD assignment problem, respectively. Then 2Q(OPTFI) ≥ Q(OPTFD) ≥
Q(OPTFI).

Theorem 3. Given N workers, M jobs and a manager with budget V . Let
OPTFI , OPTFD be the optimal arrangements for the FI assignment problem
and FD assignment problem, respectively. Then 2Q(OPTFI) ≥ Q(OPTFD) ≥
Q(OPTFI) ≥ Q(OPTFD).

Example 1. Let there be only two workers and one job such that the quality
is 1 while the costs are ε and 1 respectively. We assume that the budget of
the manager is 1 + ε. In the FD assignment problem, the highest contribution
is 2. In the FI assignment problem, we can only set r1 = 1 so that the highest
contribution is 1 + ε. The bound is tight when ε approaches 0.

BI vs. BD. Let OPTBI , OPTBD be the optimal arrangements for the BI assign-
ment problem and the BD assignment problem, respectively. We obtain that
Q(OPTBI) ≤ Q(OPTBD) since BI assignment problem is a special case of the
BD assignment problem. In the following we will prove that 3Q(OPTBI) ≥
Q(OPTBD) and provide an instance to show that the bound is tight.

We have the following lemma and theorem whose proofs are in the full version.

Lemma 8. Given N workers, one job and a manager with budget V . Let
OPTBI and OPTBD be the optimal arrangements for the BI assignment problem
and BD assignment problem, respectively. Then 3Q(OPTBI) ≥ Q(OPTBD) ≥
Q(OPTBI).

Theorem 4. Given N workers, M jobs and a manager with budget V . Let
OPTBI and OPTBD be the optimal arrangements for the BI assignment problem
and BD assignment problem, respectively. Then 3Q(OPTBI) ≥ Q(OPTBD) ≥
Q(OPTBI).

Example 2. Suppose that there are three workers and one job. The qualities of
the workers are 1 + 2ε, 1 + ε, and 1, respectively. The cost of the workers are
ε2, 1, 1, respectively. Let say that the budget of the platform is 2+ε2. The largest
contribution under the BD assignment is 3 + 3ε, where 0 < ε < 1/2. Under the
FI assignment, the largest contribution is by paying for the first worker which
leads to contribution of 1 + 2ε. The bound is tight when ε approaches to 0.
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FAI vs. FI and BAI vs. BI. In the previous subsections we have discussed
how large the difference can be between the optimal contributions of the FI
and the FD assignment problems. Now we proceed to discuss FAI and FI. We
can utilize the discussion in Lemma 7 to show that the contribution of the FI
assignment is at most twice that of the FAI assignment and show that the bound
is also tight.

Corollary 1. Given N workers, M jobs and a manager with budget V .
Let OPTFAI and OPTFI be optimal arrangements in this case. Then
2Q(OPTFAI) ≥ Q(OPTFI) ≥ Q(OPTFAI).

Example 4. Suppose that there are two workers and two jobs such that c1,1 =
c1,2 = 1, c2,1 = 1, c2,2 = ε and q1,1 = q2,2 = 1, q1,2 = q2,1 = 0, for 0 < ε < 1.
Now we consider an arrangement which is prejudicial to the manager. In this
arrangement, job 2 is assigned to worker 1 and job 1 is assigned to worker 2.
Assume that the manager has budget 1 + ε. Then we have that the maximum
contribution is 2 under FI assignment, while it is 1+ ε under FAI assignment by
setting r = 1. Thus the bound is tight when ε approaches 0.

Next, we compare BAI with BI. We can make use of the discussion in
Lemma 8 to show that the optimal solution of the BI assignment is at most
three times of that of the BAI assignment problem.

Corollary 2. Given N workers, M jobs and a manager with budget V .
Let OPTBAI and OPTBI be optimal arrangements in this case. Then
2Q(OPTBAI) ≥ Q(OPTBI) ≥ Q(OPTBAI).

Similar to previous illustrating example, we can also create three workers and
three jobs to validate that the bound is tight.

Binary Efforts vs. Fractional Efforts. Suppose that there is only one worker
and only one job. The worker has quality of q and cost of c for this job. The
platform has budget of c−1. Then the difference of the total contribution between
the FI and BI assignment problem can be arbitrarily large. This argument holds
similarly for the FD and BD assignment problem.

5 Conclusions and Future Work

Job assignment is an extensively studied problem. We propose a new optimiza-
tion model for a platform with limited budget, when facing many workers and
many jobs, to arrange them to form worker-job assignments along with their
corresponding payments to workers to incentivize them simply by covering their
costs for doing such jobs and as a while to maximize a global objective of the
total worker contribution. Our results rely on the platform’s knowledge of every
worker’s parameter values in order to decide assignments to maximize the total
worker contribution.
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However, in reality the platform may not know the true parameter values of
every worker. Thus, we can treat workers’ parameters as bids including quality
and cost as a promising direction of future work. Since we compare the differences
among settings and find that they are not different by much in terms of the total
contribution optimization so we can design truthful mechanisms for workers to
reveal their parameters.
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