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Presynaptic Cytomatrix Proteins

Yishi Jin and R. Grace Zhai

Abstract  The Cytomatrix Assembled at the active Zone (CAZ) of a presynaptic 
terminal displays electron-dense appearance and defines the center of the synaptic 
vesicle release. The protein constituents of CAZ are multiple-domain scaffolds that 
interact extensively with each other and also with an ensemble of synaptic vesicle 
proteins to ensure docking, fusion, and recycling. Reflecting the central roles of the 
active zone in synaptic transmission, CAZ proteins are highly conserved throughout 
evolution. As the nervous system increases complexity and diversity in types of 
neurons and synapses, CAZ proteins expand in the number of gene and protein 
isoforms and interacting partners. This chapter summarizes the discovery of the 
core CAZ proteins and current knowledge of their functions.

Keywords  Presynaptic active zone ·  Munc13 ·  UNC-13 ·  Rim ·  UNC-10 ·  
RIM-BP ·  ELKS ·  Bruchpilot ·  Fife ·  CLA-1 ·  Bassoon ·  Piccolo ·  Liprin-α ·  
SYD-2 ·  SYD-1 ·  CASK

1 � Introduction

The appearance of an electron-dense matrix associated with patches of the axonal 
plasma membrane and surrounded by small clusters of vesicles under electron 
microscopy has been taken as the morphological landmark of a presynaptic termi-
nal, often named active zone (Chapter “The Architecture of the Presynaptic Release 
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Site”). Molecular identification of presynaptic components began with the inge-
nious invention of biochemical preparation of synaptosomes, developed by Victor 
Whittaker and coworkers [1]. Combined with technology advances in mass spec-
trometry proteomics, thousands of distinct presynaptic proteins have been identi-
fied, culminating to a landmark study by Reinhart Jahn and coworkers, which 
reports 410 proteins associated with a single synaptic vesicle [2]. However, the con-
stituents of the Cytomatrix Assembled at the active Zone (CAZ) tend to be insoluble 
in biochemical purifications, and some proteins may be present in selective types of 
synapses or transiently associate with synapses. It took additional approaches, such 
as antibody-based protein expression screening, protein-interaction screening, and 
molecular genetics in model organisms, to unveil the identities of CAZ proteins.

It is generally agreed that CAZ proteins fall into three main functional catego-
ries. First are the classical cytoskeletal proteins corresponding to actin, tubulin, 
myosin, spectrin α chain and β chain, and β-catenin. They are the fundamental ele-
ments of the cytoskeletal framework of active zone cytomatrix. Second are the 
adaptor and scaffold proteins, such as SAP90/PSD95/DLG4, SAP97/DLG1, and 
CASK/LIN-2. These proteins are not restricted to presynaptic active zones, also 
participate in clustering postsynaptic receptors, and are involved in the organization 
of a variety of cell junctions. If the cytoskeleton proteins form a grid-like structure 
at the active zone, these proteins probably link the ion channels and the synaptic 
vesicle fusion machinery onto the grid to ensure proper active zone function. Third 
are the active-zone-specific CAZ proteins, represented by six evolutionarily con-
served families known as Munc13/UNC-13, RIM, RIM-BP (RIM-binding protein), 
ELKS, Bassoon and Piccolo, and Liprin-α [3]. This chapter will focus on the dis-
covery and function of these active-zone-specific CAZ components.

2 � Experimental Approaches Used in the Identification 
of CAZ Proteins

We begin by offering a brief overview of the key approaches used to identify CAZ 
proteins.

2.1 � Antibody-Based Protein Expression Screen

When researchers realized that the protein constituents of the electron-dense matrix 
in presynaptic terminals were low in abundance and problematic with solubility in 
biochemical purification, they sought to obtain antibodies against brain synaptic 
junctional proteins. The antibodies were used in immunocytochemistry on either 
brain tissues or cells to determine if the corresponding antigens were localized to 
presynaptic terminals [4, 5]. To search for the molecules that encode the antigens, 
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researchers relied on a powerful technique, developed in the late 1980s, that enabled 
the production of any proteins in bacteriophage lambda [6]. In essence, mRNAs 
isolated from brain tissues were made into cDNAs, which were cloned into special 
expression vectors for protein production in bacteriophage lambda. The synapse-
specific antibodies were used to recognize proteins produced from lambda. The 
amino acid sequences for candidate proteins were then deduced from the DNA 
sequences of the corresponding cDNA. This approach led to the identification of the 
CAZ proteins Bassoon and Piccolo in mammals [7, 8], and Bruchpilot in 
Drosophila [9].

2.2 � Protein-Interaction-Based Screen

Around late 1980s, another powerful technique was developed to detect protein–
protein interactions in yeast, named yeast-two-hybrid (Y2H) interaction assay [10]. 
The Y2H design was based on the finding that the transcriptional activity of the 
yeast protein Gal4 requires two modular protein domains, a DNA-binding (DB) 
domain and a transcription-activation domain (AD). When the DB and AD domains 
are in close proximity, transcription of genes encoding enzymes of galactose utiliza-
tion can be activated, thereby allowing yeast to grow in galactose selection media. 
In a Y2H assay, a bait protein X, which can be either the full length or a fragment of 
the protein of interest, is fused to the Gal4(DB) domain, and potential prey proteins 
(Y) are fused to the Gal4(AD) domain. Upon co-expression in yeast, if protein X 
binds to protein Y, it will lead to reconstitution of Gal4 transcriptional activity. Thus, 
the Y2H assay does not rely on either solubility or abundance of target proteins and 
can be carried out on a large scale when a library of prey is used. However, the 
resulting candidate binding partners need to be verified using other biochemical 
assays and validated for expression in brain tissues. This approach led to the identi-
fication of the CAZ proteins RIM [11], RIM-Binding Protein [12], and ELKS [13].

2.3 � Forward Genetic Screen for Mutants Affecting 
Synaptic Transmission

Around 1960s, the nematode Caenorhabditis elegans was chosen by the Nobel 
Laureate Sydney Brenner to study the development and function of the nervous 
system. He carried out the first forward genetic screen and isolated a large number 
of mutants that displayed a variety of abnormal patterns of movement, categorized 
as uncoordinated [14]. Subsequent molecular cloning of the genes related to the 
unc phenotypes and physiological studies began to uncover the synaptic basis of 
the uncoordinated movement [15]. By early 1990s, it became clear that genes act-
ing in synaptic transmission are evolutionarily conserved. This notion fueled the 
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efforts to search for homologs of C. elegans unc genes in mammals and other 
species based on DNA sequence similarity. For example, C. elegans unc-13 
(uncoordinated-13) mutants are paralyzed and resistant to drugs that perturb syn-
aptic transmission. Molecular cloning of unc-13 revealed that the predicted 
UNC-13 protein contains domains, known as C1 and C2, that can bind to Ca2+, 
phospholipids, and diacylglycerol [16]. Using unc-13 cDNA to screen a rat brain 
cDNA library then led to the discovery of its mammalian member named as 
Munc13 [17]. Protein expression studies further showed that Munc13 and UNC-13 
localize to presynaptic active zone.

The nervous system of C. elegans is fully reconstructed at the ultrastructural 
level, providing the precise knowledge on the synapse number, position, and 
pattern for each neuron [18]. C. elegans is also optically transparent. With the 
advent of using GFP and other fluorescent proteins as non-invasive reporters in 
living C. elegans [19], researchers can observe any cellular morphology and 
compartment. In particular, transgenic reporters expressing chimeric proteins, 
in which GFP is fused in-frame to synaptic vesicle proteins, such as 
Synaptobrevin-1 (SNB-1::GFP), enabled the visualization of synapses [20, 21]. 
Combined with genome-wide chemical mutagenesis, mutants that displayed 
abnormal synapse morphology, position, and number were subsequently iso-
lated [22]. Molecular cloning and expression studies of the corresponding genes 
showed that many proteins are localized to sub-compartments of presynaptic 
terminals. This approach led to the identification of the CAZ protein SYD-2/
Liprin-α [23].

3 � Summary of CAZ Proteins and Function

The active-zone-specific CAZ proteins are composed of multiple domains known for 
protein–protein, protein–lipid, and protein–ion bindings (Fig.  1a). They exhibit 
homomeric interactions and also bind extensively with other CAZ proteins, the syn-
aptic plasma membrane, components of the synaptic cytoskeleton, and the synaptic 
vesicle recycling machinery (Fig. 1b). Like the conserved nature of synapse ultra-
structure (Chapter “The Architecture of the Presynaptic Release Site”), CAZ pro-
teins are highly conserved from invertebrates to human. Each family of CAZ proteins 
is typically encoded by a single gene in invertebrates, but multiple genes in verte-
brates, reflecting the expansion of genomes in gene number and regulatory capacity. 
Regardless of species, each CAZ gene can produce several protein isoforms through 
the use of alternative promoters and alternative splicing, and these protein isoforms 
often show distinct dynamics and binding interactions depending on synapse type 
and neuronal activity state. Functional investigation of CAZ proteins using genetic 
malleable invertebrates has offered key insights into evolutionarily conserved mech-
anisms, while studies of CAZ proteins in mammalian nervous systems have both 
validated the commonality and also uncovered additional divergent themes. Here, we 
summarize general knowledge of each CAZ protein family (Fig. 1).
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Fig. 1  (a) Schematics of presynaptic CAZ proteins, using a representative full-length protein 
isoform for each family. Functional domains are marked following conventional designation (see 
main text and Ref. [3]). (b) Graphic illustration of CAZ protein-interacting network at the presyn-
aptic active zone. (Modified from the graphic abstract in Ref. [47], provided by Mingjie Zhang)

3.1 � Munc13/UNC-13

The Munc13/UNC-13 proteins are characterized by an ordered arrangement of 
three C2 domains (designated as C2A, C2B, C2C), a calmodulin-binding domain, a 
C1 domain that binds lipid, and an MUN domain that binds to the SNARE protein 
syntaxin and the SM protein Munc18/UNC-18 [24, 25] (Fig. 1a). Mammals have 
five Munc13 genes, with Munc13-1, -2, and -3 being abundantly expressed in CNS 
synapses. Alternative protein isoforms produced from each gene can vary in the 
amino acid linker sequences between the identified domains and in the number of 
C2 domains. C. elegans and Drosophila each has only one such gene, which also 
produces several protein isoforms. Munc13/UNC-13 proteins decorate the center of 
the presynaptic active zone.

The key function of this protein family is to prime synaptic vesicles for fast exo-
cytosis. The first evidence came from electrophysiological studies of the unc-13 
mutants, which revealed a complete abolishment of neurotransmitter release [26]. 
Subsequent studies of Drosophila unc-13 mutants and mouse Munc13-1 knockout 
supported their essential role in synaptic vesicle exocytosis [27, 28]. Knockout of 
other Munc13 genes also resulted in similar effects in a variety of synapses [3]. 
However, in the absence of any Munc13/UNC-13 member, the morphological 
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organization of synapses and the assembly of dense projection are grossly normal, 
except that the precise docking pattern of synaptic vesicles is altered in a way that 
is consistent with changes in exocytosis dynamics [29].

Biochemical studies of Munc13/UNC-13 proteins have uncovered a complex 
protein-interaction network involving each domain of Munc13/UNC-13 [3]. For 
example, the most N-terminal C2A domain binds the Zinc Finger of RIM [30]. In 
different synapses and organisms, C2A domain is shown to be important for syn-
apse vesicle docking and priming [31, 32], release probability [33], and kinetics 
[34], partly through regulating the spatial proximity of Munc13/UNC-13 to the cal-
cium channels [35]. The C2B domain binds Ca2+ and anionic phospholipid, and 
works together with the C1 domain, which binds diacylglycerol and phorbol esters, 
to inhibit Ca2+-dependent neurotransmitter release [36]. The C2C domain at the 
C-terminus is shown to function as a vesicle or endosome adaptor [37]. With the 
many protein isoforms that often display subtle differences in their binding affinities 
and binding partners, a major remaining puzzle is how Munc13/UNC-13 protein 
diversity endorses the physiological specificity of the synaptic vesicle release.

3.2 � RIM

The first member of RIM (for Rab3-interacting molecule) proteins, RIM1, was 
identified in a yeast-two-hybrid protein-interaction screen using an activated form 
of the small GTPase RAB3 [11]. Vertebrates have four Rim genes, with Rim1 and 
Rim2 broadly expressed in synapses, and C. elegans and Drosophila has one gene 
each, known as unc-10 and Rim, respectively. RIM proteins contain a Zinc Finger at 
N-terminus, a PDZ domain in the middle, two C2 domains at the C-terminus, and a 
proline-rich region in between the C2 domains (Fig.  1a). Each domain binds to 
specific proteins. The N-terminus of RIM binds to GTP-bound RAB3 associated 
with the synaptic vesicles, the Zinc Finger binds to the C2A domain of Munc13 
[30], the PDZ domain binds to the CAZ protein ELKS [13], the proline-rich region 
binds to the CAZ protein RIM-BP [12], and the C2 domains mediate interactions 
with SNAREs, calcium channels [38], and the CAZ protein Liprin-α [39]. Thus, 
Rim acts as scaffolds at the presynaptic cytomatrix to organize synaptic vesicles and 
other proteins in the presynaptic release machinery (Fig. 1b).

Studies of C. elegans unc-10 mutants provided first functional evidence for a role 
of RIM in synaptic vesicle release. In unc-10 mutants the morphology of the presyn-
aptic density and the docking pattern of synaptic vesicles are grossly normal, but 
there is greatly diminished neurotransmitter release [40]. Analyses of Drosophila 
Rim mutants revealed similar synaptic transmission deficits, and further showed 
reduced readily release pool of synaptic vesicles and reduced clustering of calcium 
channels at the active zone [41, 42]. In mice Rim 1 and Rim 2 each produces at least 
two protein isoforms through alternative splicing, with RIM1a being more abundant 
than RIM1b at presynaptic sites. Knockout of Rim1a caused a selective reduction in 
Munc13-1 expression at synapses, altered release probability, and short-term 
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synaptic plasticity, but normal synaptic morphology [39]. Conditional knockout of 
both Rim 1 and Rim 2 led to further reduced readily releasable pool of vesicles and 
calcium channels at the Calyx of Held synapse [43]. These functional effects of 
RIM are consistent with the extensive molecular interactions between RIM and 
other CAZ proteins (Fig. 1b).

3.3 � RIM-BP

As implied by its name, RIM-BP (RIM-binding protein) binds to RIM, originally 
isolated by yeast-two-hybrid screening [12]. RIM-BP proteins contain three SRC 
homology 3 (SH3) domains and three fibronectin III domains (Fig. 1a). The two 
C-terminal SH3 domains bind the proline-rich motifs of RIM and a number of 
voltage-gated calcium channels [44, 45], and the N-terminal SH3 domain binds the 
proline-rich motif of the CAZ protein Bassoon [46]. Mammals express three 
Rim-BP genes, while C. elegans and Drosophila each has one gene known as rimb-1 
and Rim-BP. In vitro biochemical studies show that the binding between RIM and 
RIM-BP displays liquid–liquid phase separation, forming dynamic and condensed 
assemblies. In the presence of voltage-gated calcium channels, the RIM and 
RIM-BP condensates can enrich the channels [47]. Such mode of protein interac-
tions may underlie the appearance of small clusters of vesicle release sites observed 
in neuronal synapses [48]. Genetic knockout studies with mice, Drosophila, and 
C. elegans have supported the functional significance of protein binding between 
Rim-BP and calcium channels, such that the mutant synapses have reduced number 
of calcium channels. Double mutants of Rim-BP and Rim show more severe synap-
tic deficits, revealing some overlapping roles of Rim and Rim-BP in synaptic vesi-
cle docking, the morphology of presynaptic dense projections, and the number of 
calcium channels at the active zone [49–51]. In mice, a complete loss of Rim-BP1 
leads to motor abnormalities reminiscent of dystonia, decreased Purkinje cell den-
dritic arborization, and a reduced number of cerebellar synapses. Interestingly, sev-
eral loss-of-function mutations in human TSPOAP1/Rim-BP are recently reported 
to cause autosomal recessive dystonia [52]. These findings form the basis for further 
broadening our understanding of RIM-BPs.

3.4 � ELKS

The name of ELKS proteins reflects the fact that these proteins are rich in E 
(Glutamate), L (Leucine), K (Lysine), and S (Serine) amino acid residues. ELKS1 
was initially identified as a fusion protein with the receptor tyrosine kinase RET in 
thyroid carcinomas [53]. Mammals have two Elks genes that produce several iso-
forms; and C. elegans expresses a single ortholog ELKS-1, whereas Drosophila 
expresses an ELKS-like molecule called Bruchpilot (Fig.  1a). ELKS proteins 
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contain mostly coiled-coil domains, and interact with a multitude of proteins, hence 
given different names in the literatures, including Rab6IP2 (Rab6-interacting pro-
tein 2) [54], CAST (CAZ-associated structural protein) [55], and ERC (ELKS/
Rab6IP2/CAST) [13]. At synapses, ELKS/ELKS-1/Bruchpilot can bind to multiple 
CAZ proteins, including Rim via the coiled-coil region in C-termini [13], Bassoon 
and Piccolo via the central coiled-coil region [55], and Liprin-α via the N-terminal 
coiled-coil region [56].

Functional studies of individual ELKS genes using genetic knockout animals in 
different species show no major synapse defects. C. elegans elks-1 null animals 
have normal synapse architecture and CAZ protein expression [57]. However, as 
described below, in a gain-of-function SYD-2/Liprin-α mutant, ELKS-1 is required 
for the function and morphological integrity of certain synapses [58]. Elks single 
knockout mice also show no major synapse defects [59]. However, when both Rim1 
and Rim2 and both Elks1 and Elks2 were deleted, neurons showed overall normal 
synaptic organization, but an absence of docked synaptic vesicles and a strong 
reduction in Munc13, Bassoon, Piccolo, and RIM-BP at the active zone, indicating 
disassembly of the presynaptic active zone [60]. These data show that ELKS pro-
teins alone are not essential for formation of presynaptic terminals, but can modu-
late presynaptic active zone under specific conditions.

Drosophila Bruchpilot is a large protein that contains an ELKS homology region 
at the N-terminus and lacks the RIM-interacting domain, instead acquires a unique 
large C-terminal extension that bears features of cytoskeletal proteins such as plec-
tin and myosin (Fig. 1a) [9]. Bruchpilot has received extensive attention as it was 
the first CAZ protein with its precise localization revealed by the STimulated 
Emission Depletion (STED) super-resolution microscopy. At the neuromuscular 
junction (NMJ), the N-terminus of Bruchpilot is close to the presynaptic plasma 
membrane, and its C-terminus extends into synaptic vesicle clusters. The ring-like 
T-bar structure is formed by two protein isoforms of Bruchpilot arranged in an alter-
nating pattern in a circular array. Such an array creates “slots” for calcium channels 
and synaptic vesicle docking sites allowing efficient neurotransmission [61]. Loss 
of Bruchpilot alone causes dramatic effects on the formation of the platform of the 
T-bar structure at the presynaptic active zone (see diagram in Chapter “The 
Architecture of the Presynaptic Release Site”, Fig. 1), and is required for the clus-
tering of calcium channels at the “pedestal” of T-bar at the center of active zone, 
ensuring the close proximity of calcium influx to the synaptic vesicle fusion machin-
ery [62, 63]. It is possible that the different effects of eliminating Bruchpilot and 
ELKS on synaptic morphology are due to their differences in molecular structures.

3.5 � Bassoon and Piccolo

These two very large proteins of greater than 450  kDa were identified using an 
antibody-based expression cloning method, and were among the first group of pro-
teins to define the CAZ of presynaptic terminals in the vertebrate nervous system [7, 
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8, 64]. Bassoon and Piccolo share related protein structures, namely, repeated 
homologous regions called Piccolo Bassoon homology domain (PBH domains), of 
unknown function, coiled-coil regions, and two Zinc Finger domains (Fig.  1a). 
Additionally, Piccolo has a single PDZ domain and two C2 domains at its C-terminal 
(Fig. 1a). Given their large sizes, it is not surprising that they have many binding 
partners, ranging from components of the synaptic actin cytoskeleton to synaptic 
vesicle-associated proteins, such as the prenylated Rab acceptor PRA1 [64], other 
CAZ proteins (e.g., Rim, Rim-BP, ELKS, and Munc13) [65], and voltage-gated 
calcium channels [46]. The CC2 domain Bassoon also directly binds to an ubiquitin 
E3 ligase molecule Atg5 [66].

Although Bassoon and Piccolo were initially thought to be unique to CNS syn-
apses, subsequent analyses show that they are also present at neuromuscular junc-
tions, ribbon synapses, and other peripheral synapses [67, 68]. Bassoon and Piccolo 
show differential distributions within presynaptic terminals and play distinct roles 
in different types of synapses. In glutamatergic synapses of mammalian CNS, 
Bassoon clusters detected by immune-EM are often present above the filaments 
emanating from the plasma membrane at the active zone [69]. Super-resolution 
imaging using STED microscopy reveals that the C-terminus of Bassoon is close to 
the presynaptic plasma membrane and N-terminus extended into the presynaptic 
cytoplasm [70] (Fig. 1b). The mammalian photoreceptor ribbon synapse has two 
sub-compartments: a dense projection from the plasma membrane, and an electron-
dense ribbon extending from the SV release site into the presynaptic cytoplasm 
[71]. Bassoon localizes at the junction between these two sub-compartments, while 
Piccolo associates with the ribbon, and Rim, Munc13, and ELKS exist at the pre-
synaptic density [72].

At least two mutant mouse strains of Bassoon (Bsn) have been reported. A Bsn 
in-frame deletion mutant, which expresses a protein of 180 kd that includes the 
N-terminal and C-terminal regions but lacks the central part of Bassoon, shows 
unanchored ribbons in the presynaptic terminal of retina photoreceptors [73]. In 
these Bsn mutant mice, the inner hair cell ribbon synapses in the cochlea also exhibit 
loss of fast neurotransmitter release [74], while CNS excitatory synapses exhibit 
impaired synaptic transmission but apparently normal synaptic morphology [75]. 
These data establish the importance of Bassoon in ribbon synaptic architecture and 
suggest Bassoon’s role may vary depending on synapse type. In a Bsn null mutant, 
cerebellar mossy fiber synapses show enhanced short-term synaptic depression but 
largely normal basal synaptic transmission and the number of synaptic vesicles 
[76]. In the endbulb synapses of auditory nerve fibers, the replenishment of synaptic 
vesicles at the release sites is significantly reduced [77]. Bassoon promotes vesicle 
replenishment in part through inhibiting presynaptic autophagy [66].

Piccolo also exhibits synapse-type specific effects. For example, a short isoform 
of Piccolo, Piccolino, is found to be predominantly expressed at sensory ribbon 
synapses in the eye and ear [78]. Piccolino is required for the formation of the plate-
shaped ribbons, as loss of Piccolino in rodents results in spherical ribbons and a 
disruption of the maturation of ribbons [79, 80]. At the rat calyx of the Held syn-
apse, Piccolo deficiency results in a defect in replenishment of readily releasable 
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synaptic vesicles during prolonged and intense firing activities, and smaller syn-
apses [81]. The Piccolo knockout rats (Pclotgt/gt) also exhibit abnormal brain mor-
phology and altered cerebellar neural circuitry [82]. Interestingly, loss-of-function 
mutations of human Piccolo (PCLO) have been associated with type 3 pontocere-
bellar hypoplasia (PCH3), also known as cerebellar atrophy with progressive micro-
cephaly [83]. Knockdown of both Bassoon and Piccolo in hippocampal and cortical 
neurons led to a reduction in synaptic vesicles, but did not alter synapse physiology, 
supporting their partially overlapping functions [84].

For a period of time, it was thought that proteins similar to Bassoon and Piccolo 
were not present in synapses of invertebrates. Through careful molecular phylogeny 
analysis, in combination with expression and genetic studies, the Drosophila Fife 
and C. elegans CLA-1/Clarinet are reported to share features similar to Piccolo and 
Rim [85]. Both Fife and CLA-1 are large proteins that contain Zinc Finger, C2, and 
PDZ domains, along with numerous unique repeats. Both genes produce multiple 
protein isoforms, which exhibit distinctive localization in the presynaptic cytoma-
trix, forming nanodomains and interacting with other CAZ proteins [86, 87]. 
Genetic studies of fife and cla-1 mutants show that different isoforms display 
synapse-type specificity to regulate presynaptic terminal structural and functional 
integrity [85–87]. CLA-1 has recently been linked to autophagy (bioRxiv 
2021.08.19.457026), supporting mechanistic conservation with Bassoon.

3.6 � Liprin-Alpha

Liprin (for Lar-interacting-protein-related protein) proteins were named because of 
their initial identification by Y2H assay as proteins interacting with the intracellular 
phosphatase domain of LAR and closely related receptor tyrosine phosphatases 
[88]. Liprin proteins include three subfamilies: alpha, beta, and gamma; however, 
only alpha proteins are extensively studied for their roles in synapses. The N-termini 
of Liprin-α proteins are characterized by multiple coiled-coil structures, with a 
stretch of ~100 amino acids, known as the LH1 (Liprin Homology) domain, which 
shares near 90% sequence identity from C. elegans to mammals; and the C-terminal 
half of Liprin-α contains three SAM domains (Fig. 1). The middle region of differ-
ent isoforms of Liprin-α generally has low-complexity domains. C. elegans and 
Drosophila each expresses one Liprin-α gene, known as syd-2 and DLiprin-α, 
respectively [23, 89]. Both are exclusively localized to presynaptic terminals. 
Vertebrates express four Liprin-α genes. Expression of Liprin-α1 and Liprin-α4 is 
seen in limited area in the brain and also outside of the nervous system. Liprin-α2 
and Liprin-α3 are specifically and broadly expressed in the brain. Liprin-α3 shows 
strong localization to the presynaptic active zone [70], and Liprin-α2 is present at 
both pre- and postsynaptic sites [90].

Genetic studies of mutants in C. elegans and Drosophila provided the first evi-
dence for roles of Liprin-α in structural integrity of the presynaptic active zone. 
C. elegans syd-2 was identified from a forward genetic screen using an SNB-1::GFP 
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reporter, because loss of function in syd-2 caused both reduced and diffused accu-
mulation of SNB-1::GFP at neuromuscular synapses [23]. Subsequent findings 
from Drosophila showed that loss of DLiprin-α also altered morphology of neuro-
muscular synapses [89]. Ultrastructural analysis of both syd-2 and DLiprin-α 
mutants revealed a primary effect on the length and shape of the presynaptic dense 
projection. Moreover, the CAZ proteins ELKS and RIM show diffuse and reduced 
accumulation at the presynaptic active zone [58, 91, 92]. In mouse hippocampal 
neuron synapses, knockout of Liprin-α3 alone causes subtle but significant alterna-
tion in presynaptic ultrastructure and CAZ protein compositions [70]. Knockout of 
both Liprin-α2 and α3 leads to stronger reductions in the protein machinery for 
docking and priming and in the pool of releasable vesicles at excitatory and inhibi-
tory synapses, and increases in Ca2+ channels and release probability at excitatory 
but not inhibitory synapses [93].

Studies of a gain-of-function (gf) mutation in the C. elegans SYD-2 have pro-
vided an important clue to the understanding of how Liprin-α organizes presynaptic 
cytomatrix. The syd-2(gf) mutation changes Arg184 to Cys in the highly conserved 
LH1 domain and causes enlarged presynaptic dense projections [58, 94]. In bio-
chemical studies, purified wild type LH1 domain forms dimers, whereas LH1 
domain with the Arg184Cys mutation forms multimers [95]. The LH1 domain is 
predicted to form a coiled-coil structure. Crystal structure studies of the LH1 domain 
of the vertebrate Liprin-α2 reveals that the helix containing Arg194 (corresponding 
to Arg184  in SYD-2) forms a homo-tetramer [96]. Arg194 faces away from the 
tetramerization surface and stabilizes intramolecular interaction between orderly 
arranged helical dimers. The Arg194Cys mutation disrupts the interaction among 
positively charged amino acid residues and enhances the dimer to oligomer transi-
tion of the LH1 domain. Moreover, in both biochemical assays and living cells, 
oligomerized Liprin-α2 promotes formation of ELKS condensates via liquid–liquid 
phase separation, and such ELKS condensates recruit RIM1a, RIM-BP [58]. As 
described in Chapter “The Architecture of the Presynaptic Release Site”, functional 
evidence from C. elegans and mice has supported the idea that the liquid–liquid 
phase separation property of CAZ proteins is important for presynaptic active zone 
assembly.

4 � Intracellular Regulators of CAZ Proteins 
in Synapse Formation

The extensive interactive nature among CAZ proteins underlies the complex regula-
tion of presynaptic assembly. Live imaging of CAZ proteins has probed into the 
dynamic processes of assembly of a presynaptic terminal. CAZ proteins translated 
in the soma must be sorted into the axon, and transported and delivered to the pre-
synaptic terminal [97–99]. The transport and delivery of CAZ components involve 
diverse vesicular carriers that interact with Golgi apparatus, endosomes, and 
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lysosomal pathways [100, 101]. For example, ELKS can interact with Rab6 to 
mediate transport between endosome and Golgi [54]. Bassoon and Piccolo are 
transported in large dense core vesicles that contain other CAZ proteins and 
SNAREs [98]. Liprin-α interacts with the axonal motor proteins kinesin-1 and 
KIF1A/Unc104 [92, 102] as well as many intracellular and cell surface molecules 
to contribute to the delivery of other CAZ proteins and the nucleation of nascent 
active zone [62, 91, 103]. Here, we highlight two intracellular pathways that coor-
dinate with CAZ proteins in synapse formation.

4.1 � SYD-1/dSYD-1/SYDE

Molecular genetic studies from C. elegans and Drosophila have supported a func-
tional hierarchy involving the conserved SYD-1/dSYD-1 proteins as an upstream 
regulator in the assembly of presynaptic active zone. C. elegans syd-1 was identified 
from the forward genetic screen that yielded syd-2, based on similarly altered 
SNB-1::GFP patterns [104]. The invertebrate SYD-1 and dSYD-1 full-length pro-
teins have an N-terminus PDZ domain, followed by a C2 domain and a Rho-GAP 
(GTPase Activating Protein) domain (Fig.  1a) [104, 105]. Mouse expresses two 
homologs, known as SYDE1 and SYDE2, containing only C2 and Rho-GAP 
domains [106], resembling a short isoform of C. elegans SYD-1. The C2 domain 
facilitates protein association with the membrane. However, the function of the 
GAP domain varies between species. Drosophila dSYD-1 has GAP activity on 
Rac1 [107] and mouse SYDE1/mSYD1A acts on CDC42 [106], whereas the GAP 
domain in C. elegans SYD-1 may not be active [104].

Evidence from both C. elegans and Drosophila supports a conclusion that syd-1/
dsyd-1 and syd-2/Dliprin-α act in a common molecular pathway to promote synapse 
formation [58, 105, 108, 109]. In C. elegans, double mutants of syd-1 and syd-2 
resemble each single mutant. In the absence of syd-1, the syd-2(gf) mutation can 
induce synapse formation [58]. Synapse imaging studies in both C. elegans and 
Drosophila show that SYD-1/dSYD-1 arrives early at nascent sites of the presynap-
tic terminals and facilitates the accumulation of SYD-2/DLiprin-α and other CAZ 
proteins, such as ELKS-1/Bruchpilot [35, 110–112]. SYD-1/dSYD-1 can interact 
with neurexin via the PDZ domain [110], and also bind to other synaptic proteins 
such as spinophilin [113], neurabin [111], and RSY-1/PNISR [114]. Such complex 
interactions orchestrate early assembly processes at the Drosophila NMJs [110, 
115]. Mice lacking Syde1/mSYD1A exhibit reduced docked vesicles and synaptic 
activities [106]. An intrinsically disordered region of SYDE1/mSYD1A interacts 
with multiple synapse proteins, including CAZ protein Liprin-α2, Munc18-1, and 
presynaptic receptor tyrosine phosphatases. Conceivably, such multi-protein inter-
actions play a key role in tethering synaptic vesicles.
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4.2 � Tripartite Complex of CASK, Mint, and Veli

This tightly associated PDZ domain-containing protein complex has been studied in 
many cellular contexts and is present at both pre- and postsynaptic sites [116]. A 
presynaptic role for CASK/Mint/Veli was initially hinted at by the interactions with 
neurexins [117]. CASK/Mint/Veli also bind directly or indirectly to other synaptic 
proteins such as voltage-gated calcium channels, Liprin-α, and Cdk5 [118, 119], as 
well as several synaptic adhesion molecules [116]. A single member of each protein 
family is present in invertebrates; in mammals, Mint and Veli each is encoded by 
three genes. Knockout mice of either Mint or Veli die at an early stage, precluding 
a full examination of their roles in synapse formation [120, 121]. Nonetheless, it is 
generally agreed that these three proteins play regulatory roles in synaptic vesicle 
release, and may indirectly contribute to the transport of synaptic proteins and inter-
action with synaptic surface proteins to facilitate the development and maintenance 
of synaptic architecture.

5 � Summary

Through consorted efforts using combinatorial approaches, research in the past two 
decades has revealed the shared core CAZ components. Despite their precise local-
ization to the presynaptic active zone, functional studies have placed different fami-
lies of CAZ proteins in a wide spectrum for their essentiality in synapse formation 
and function. Munc13/Unc-13 is essential for synaptic vesicle release, whereas 
ELKS has the least functional significance yet provides maladaptive regulation to 
many actions of presynaptic release. The interwoven protein-interaction network at 
CAZ remains a wonderland where conceptual creativity and technology innovation 
continue to push the boundary of our knowledge about the mystery of synapses.
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