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Abstract. Motivated by flow allocation in communication and trans-
portation networks we examine user equilibrium and system optimal
flows on networks of parallel links. User equilibrium is achieved when the
journey times on all the used routes are equal and less than any other
unused route. On the other hand the system optimal flow minimizes the
average journey times for all used routes. In this paper we study the con-
nection between user equilibrium and system optimums and investigate
networks that have identical user equilibrium and system optimal flows.
We identify a correspondence between the system optimum of a network
and the user equilibrium of the associated Pigovian network and use it
to show uniqueness of the system optimum. Using a characterization of
Wardrop optimal flows for differentiable convex networks, we show that
they are preserved via continuous, strictly increasing and convex func-
tions, uniform increase or decrease of the latency functions and network
addition and multiplication.

Keywords: Wardrop Equilibrium · System optimum · Resource
allocation · Congestion externalities

1 Introduction

The optimal flow allocation in a network is a central problem with both theoreti-
cal and practical aspects in fields as economics [12,15], transportation [1,16] and
communication [10,11]. In this respect, it was Wardrop in [16] who first iden-
tified the principles that capture two diverging notions of optimal flow inside
networks: the user equilibrium and the system optimum.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 203–214, 2023.
https://doi.org/10.1007/978-3-031-34204-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-34204-2_18


204 A. Kalampakas et al.

Wardrop’s first principle, which describes the user equilibrium, states that
the journey times on all routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route. A flow satisfying
the above condition is also called a Wardrop equilibrium since users cannot reduce
their journey time by selecting a different route [2]. The second principle states
that the flow in the network minimizes the average journey times for all used
routes. A flow satisfying Wardrop’s second principle is clearly optimum from a
network operator perspective.

Although for a given network in general, the flows that satisfy Wardrop’s
first and second principles don’t coincide, there are networks that have identical
user equilibrium and system optimal flows. A flow that satisfies both principles
simultaneously is called Wardrop optimal flow and the corresponding networks
Wardrop optimal networks.

In the present paper we investigate Wardrop optimal flows on networks of
parallel links and the properties of the associated Wardrop optimal networks.
The flow from the origin to the destination node is distributed among the alter-
native links of the network and creates congestion externalities which cause an
increase in the time needed for the journey captured by a strictly increasing
link-specific latency function. We show that the user equilibrium and system
optimum of a given network are connected through the associated Pigovian net-
work and using this important relation we prove existence and uniqueness for
convex networks and obtain sufficient and necessary conditions characterizing
the system optimum of the network.

The paper is organized as follows: in the next section, we describe the net-
work framework and present the notions of user equilibrium, system optimum
and Wardrop optimal flow of a network. In Sect. 3, we present some useful prop-
erties concerning the existence and uniqueness of user equilibrium optimum in
our networks. The system optimum is investigated in Sect. 4. We introduce the
corresponding Pigovian network, prove existence and uniqueness and obtain suf-
ficient and necessary conditions for the system optimum. In Sect. 5 we examine
networks that have Wardrop optimal flows. We provide a characterization of
Wardrop optimal flows for differentiable convex networks and using this result we
show that Wardrop optimal flows are preserved via continuous, strictly increas-
ing, convex functions. Moreover, we prove that they are preserved by uniform
increase or decrease of the latency functions. Furthermore, we illustrate a method
to construct networks that admit any given point as Wardrop optimal flow and
prove that Wardrop optimal flows are preserved by network addition and mul-
tiplication.

2 Preliminaries

We consider networks of m parallel links Im = {1, 2, . . . ,m} between the two
nodes of origin and destination and denote by xi ≥ 0 the flow passing through
the link i of the network, for all i ∈ Im. In this setup, a unit total flow has to be
distributed among all network links. All traffic of the network is routed in the
sense that it holds
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∑m

i=1
xi = 1.

We denote by S
m−1 = {x ∈ R

m
+ :

∑m
i=1 xi = 1} the standard simplex and

using this convention the points of the simplex represent flows of the network.
For a given flow x, we define the support of x by supp(x) := {i ∈ Im : xi �= 0}
and denote by Int(Sm−1) = {x ∈ S

m−1 : supp(x) = Im} the set of all internal
points of the simplex. The flow in each link causes congestion which increases
the delay while traversing the link. This is measured by flow dependent latency
functions

�i(x) : [0, 1] → [0,∞), i ∈ Im,

which are assumed continuous and strictly increasing.
With this formalism, a network of m parallel links between two nodes can be

identified with the latency functions vector Lm = (�1(x), . . . , �m(x)). A differ-
entiable network (resp. convex network) is a network Lm = (�1(x), . . . , �m(x))
with all the latency functions �i(x) differentiable (resp. convex).

A user equilibrium or Wardrop equilibrium of a network Lm =
(�1(x), . . . , �m(x)) is a flow x = (x1, . . . , xm) ∈ S

m−1 such that

�k(xk) = min
i∈Im

{�i(xi)}, for all k ∈ Im with xk > 0,

i.e., the delay is the same across all links with nonzero flow and smaller than
the zero flow delay of the rest of the links [1]. The average delay of a network
Lm = (�1(x), . . . , �m(x)) at a flow x = (x1, . . . , xm) ∈ S

m−1 is given by the sum
∑m

i=1
xi�i(xi).

A system optimum of a network Lm = (�1(x), . . . , �m(x)) is a flow

x = (x1, . . . , xm) ∈ S
m−1

that minimizes the average delay [1].
Given a network Lm = (�1(x), . . . , �m(x)), a flow x = (x1, . . . , xm) ∈ S

m−1 is
called a Wardrop optimal flow if it is user equilibrium and system optimum of
the network Lm. A network that has a Wardrop optimal flow is called a Wardrop
optimal network.

3 User Equilibrium and System Optimum

In this section we present the properties of the user equilibrium and the system
optimum of a parallel network that we will need in the rest of the paper. The fol-
lowing lemma states that the user equilibrium is preserved by strictly increasing
mappings.
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Lemma 1. Given a network Lm = (�1(x), . . . , �m(x)) and a continuous and
strictly increasing function f(x) : [0,∞] → [0,∞), if a flow x = (x1, . . . , xm) ∈
S
m−1 is a user equilibrium of Lm then it is also a user equilibrium of the network

f(Lm) = (f(�1(x)), . . . , f(�m(x))).

In general, the system optimum is not preserved even under continuous,
strictly increasing and convex functions as opposed to user equilibrium. An
important question that arises naturally at this point concerns whether Wardrop
optimal flows are preserved by such transformations. This will be addressed in
Theorem 7 of Sect. 4.

The following property regarding existence and uniqueness of a user equilib-
rium will be necessary for our construction later on.

Proposition 1. Every network Lm has a unique user equilibrium.

Proof (Sketch of Proof). For any network Lm = (�1(x), . . . , �m(x)), we prove
that there is a unique flow x = (x1, . . . , xm) ∈ S

m−1 such that

�k(xk) = min
i∈Im

{�i(xi)}, for all k ∈ Im with xk > 0

by showing that this can be obtained by taking the inverse of a stictly increasing
function on an appropriate interval.

Now we proceed by examining internal points of the simplex S
1 and we

identify a necessary but not sufficient condition for such a flow to be system
optimum. This can be proved by considering ε-perturbations from one link to
the other and show that a better total latency always exists unless if the following
condition is satisfied.

Proposition 2. Given two differentiable latency functions �1(x), �2(x), if the
flow (x1, x2) ∈ Int(S1) is a system optimum of L2 = (�1(x), �2(x)) then it holds

�1(x1) + x1�
′
1(x1) = �2(x2) + x2�

′
2(x2). (1)

The above result can be generalized for m parallel links as follows.

Proposition 3. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if the
flow x = (x1, . . . , xm) ∈ Int(Sm−1) is a system optimum of Lm then for all
i, j ∈ Im it holds

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj).

Proof. Using the result of Proposition 2, for any i, j ∈ Im, if

�i(xi) + xi�
′
i(xi) > �j(xj) + xj�

′
j(xj).

then we can obtain a lower total delay by ε-reducing the flow of xi and simultane-
ously ε-increasing it for xj and vice versa if the direction of the above inequality
is the opposite. Since we assumed that x is a system optimum this can not be
the case so we get the result.
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The general case of flow x ∈ S
m−1 can be proved by taking into account zero

flows.

Theorem 1. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if x =
(x1, . . . , xm) ∈ S

m−1 is a system optimum of Lm then it holds

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

Given any differentiable latency function �i(x), we introduce the Pigovian
function

gi(x) = �i(x) + x�′
i(x).

In this way, to every differentiable network Lm = (�1(x), . . . , �m(x)) we can
associate the corresponding Pigovian network PLm = (g1(x), . . . , gm(x)) and
Theorem 1 can be reformulated illustrating the relation between a network and
it’s corresponding Pigovian network.

Theorem 2. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if a flow
x = (x1, . . . , xm) ∈ S

m−1 is a system optimum of Lm then it is a user equilibrium
of the corresponding Pigovian network PLm = (g1(x), . . . , gm(x)).

Proof. Direct result of Theorem 1 and the definition of the user equilibrium.

By employing Proposition 1 we obtain the following result regarding the
uniqueness of a system optimum.

Proposition 4. There exists a unique system optimum for a differentiable and
convex network Lm = (�1(x), . . . , �m(x)).

Proof. Since the functions �i(x) are differentiable in [0, 1] we get that their total
delay ∑m

i=1
xi�i(xi)

has at least one minimum, thus, by definition, there will be at least one sys-
tem optimum of Lm. Moreover since �i(x) are differentiable and convex we
get that the functions gi(x) will be continuous and strictly increasing. Hence
from Proposition 1 there will be a unique user equilibrium of the network
PLm = (g1(x), . . . , gm(x)). From Theorem 2, we get that every system opti-
mum of Lm is a unique user equilibrium of PLm. Therefore there is a unique
system optimum of Lm and it is the unique user equilibrium of PLm.

Combining Theorem 1 and Proposition 4 we obtain the following character-
ization of system optimums.
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Theorem 3. The flow x = (x1, . . . , xm) ∈ S
m−1 is the system optimum of a

differentiable and convex network Lm = (�1(x), . . . , �m(x)) if and only if

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

The system optimum of a network can be characterized as the user equilibrium
of the corresponding Pigovian network in the following way.

Theorem 4. The flow x = (x1, . . . , xm) ∈ S
m−1 is the system optimum of a

differential and convex network Lm = (�1(x), . . . , �m(x)) if and only if it is the
user equilibrium of PLm = (g1(x), . . . , gm(x)), i.e. if and only if it holds

�k(xk) + xkl
′(xk) = min

i∈In
{�i(xi) + xi�

′
i(xi)}, for all xk > 0.

4 Wardrop Optimal Networks

In this section we examine Wardrop Optimal networks i.e., networks that have
identical user equilibrium and system optimum. First we identify necessary con-
ditions for a user equilibrium to be system optimum.

Proposition 5. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if a
user equilibrium x = (x1, . . . , xm) ∈ S

m−1 of Lm is also a system optimum of
Lm then it holds

xi�
′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0

Proof. If x = (x1, . . . , xm) ∈ S
m−1 is a system optimum of Lm then, from

Theorem 3 it holds

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0

The result is obtained by taking into account that x = (x1, . . . , xm) ∈ S
m−1 is a

user equilibrium i.e., that it holds

�i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0.
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In the following Proposition we prove that if the network is in addition convex
then the conditions of Proposition 5 are sufficient.

Proposition 6. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)), if for a user equilibrium x = (x1, . . . , xm) ∈ S

m−1 of Lm it holds

xi�
′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0,

then it is a system optimum of Lm.

Proof. By considering Theorem 3 we only need to show that for x = (x1, . . . ,
xm) ∈ S

m−1 it holds

�k(xk) + xkl
′(xk) = min

i∈In

{�i(xi) + xi�
′
i(xi)}, for all xk > 0.

or equivalently

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

The result is obtained by taking into account that x = (x1, . . . , xm) ∈ S
m−1 is a

user equilibrium i.e., it holds

�i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0

and
�i(0) ≥ �j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

Hence we obtain the following theorem describing the necessary and sufficient
conditions for a user equilibrium to be system optimum.

Theorem 5. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)), a user equilibrium x = (x1, . . . , xm) ∈ S

m−1 of Lm is a system opti-
mum of Lm if and only if it holds

xi�
′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0,

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

On the other hand if x is a system optimum, the requirements for x to be a
user equilibrium are more relaxed as it is illustrated in the following proposition.
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Proposition 7. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if for
a system optimum x = (x1, . . . , xm) ∈ S

m−1 of Lm it holds

�i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0

then it is a user equilibrium of Lm.

Proof. By the definition of user equilibrium we only have to show that

�i(0) ≥ �j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

Since x is system optimum, by Theorem 1, we get that it holds

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0,

which concludes the proof.

The Wardrop optimal flows of a network can now be characterized as follows:

Theorem 6. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) a flow (x1, . . . , xm) ∈ S

m−1, is Wardrop optimal flow if and only if all
the following conditions hold.

i) �i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0,
ii) xi�

′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0,

iii) �i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

For internal flows (x1, . . . , xm) ∈ Int(Sm−1) we obtain the following corollary of
the previous Theorem.

Corollary 1. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) a flow (x1, . . . , xm) ∈ Int(Sm−1), is Wardrop optimal flow if and only
if all the following conditions hold

i) �i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0,
ii) xi�

′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0.

We are now ready to settle the question we posed in Sect. 3 regarding the
behavior of Wardrop optimal flows under strictly increasing and convex network
transformations.

Theorem 7. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) and a continuous, strictly increasing and convex function f(x) : [0,∞] →
[0,∞], if the flow x = (x1, . . . , xm) ∈ S

m−1 is a Wardrop optimal flow of Lm

then it is also a Wardrop optimal flow of

f(Lm) = (f(�1(x)), . . . , f(�m(x))).

Proof (Sketch of Proof). From Lemma 1 and given that x is the user equilibrium
of Lm we get that x is the user equilibrium of the network f(Lm). From x being
system optimum of Lm we prove the second condition of Theorem 6 for the set
f(Lm). Finally we need the convexity of f(x) to prove the third condition of
Theorem 6.
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From Theorem 7 we obtain that a Wardrop optimal flow is preserved if the
network is transformed by adding a constant toll price to the latency of each
link or by increasing (resp. decreasing) the latency on every link by the same
percentage. This is illustrated in the following corollaries.

Corollary 2. If a flow x ∈ S
m−1 is a Wardrop optimal flow of a differentiable

and convex network Lm = (�1(x), . . . , �m(x)) then it is also a Wardrop optimal
flow of the network

Lm + b = (�1(x) + b, . . . , �m(x) + b)

for all b > 0.

Corollary 3. If a flow x ∈ S
m−1 is a Wardrop optimal flow of a differentiable

and convex network Lm = (�1(x), . . . , �m(x)) then it is also a Wardrop optimal
flow of the network

aLm = (a�1(x), . . . , a�m(x)),

for all a > 0.

Moreover, since we only employ the convexity condition to prove the third
part of Theorem 6, we obtain the following.

Corollary 4. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) and a continuous, strictly increasing function f(x) : [0,∞] → [0,∞],
if the flow x = (x1, . . . , xm) ∈ intSm−1 is a Wardrop optimal flow of Lm then it
is also a Wardrop optimal flow of f(Lm) = (f(�1(x)), . . . , f(�m(x))).

Wardrop optimal flows are also preserved if a network is transformed by tak-
ing powers of the latency functions and this can be alternatively proved without
using Theorem 7.

Proposition 8. If the flow x = (x1, . . . , xm) ∈ S
m−1 is Wardrop optimal flow

of the differentiable and convex network Lm = (�1(x), . . . , �m(x)) then it is also
Wardrop optimal flow of Lk

m = (�k1(x), . . . , �
k
m(x)), k ∈ N

∗.

Proof. Since x is Wardrop optimal flow of Lm, by the first condition of Theorem
6 we get

�ki (xi) = �kj (xj), for all i, j ∈ Im with xi, xj > 0 (2)

Taking into account the first and the second condition of Theorem 6 we have

xi(�ki (xi))′ = xi k �k−1
i (xi) �′

i(xi) = xj k �k−1
j (xj) �′

j(xj) = xj(�kj (xj))′. (3)

At this point we note that all latency functions are defined on the domain [0, 1],
hence the functions �ki (x) will be convex for all k ∈ N

∗ and we can used Theorem
6 to prove this proposition. From Eqs. 2 and 3 we get that the first two conditions
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of Theorem 6 are satisfied by x for the network Lk
m. It now remains to prove the

third condition, i.e., that for all i, j ∈ Im with xi = 0 and xj > 0 we have

�ki (0) ≥ �kj (xj) + xj

(
�kj (xj)

)′
= �kj (xj) + xj k �k−1

j (xj) �′
i(x)

Since x is Wardrop optimal flow of Lm, by taking the power of the third condition
of Theorem 6, for all for all i, j ∈ Im with xi = 0 and xj > 0 we have

�ki (0) ≥ (�j(xj) + xj�
′
j(xj))k = �kj (xj) +

(
k
1

)
�k−1
j (xj)xj�

′
j(xj) + C,

where C denotes the sum of the remaining terms of the binomial identity we
used above. The result follows by observing that C is positive.

Networks with identical flows admit the center of the simplex as the Wardrop
optimal flow as it is shown in the below proposition.

Proposition 9. A network Lm = (l(x), . . . , l(x)) with identical latency func-
tions across all links has a uniformly distributed Wardrop optimal flow.

Proof. It is easy to check that x = ( 1n , . . . , 1
n ). i.e., the center of the simplex

S
n−1, is the Wardrop optimal flow of Lm.

In a similar way we get that for any a priori given internal flow p =
(p1, · · · , pn) ∈ intSm−1, there exists always a network for which p is its Wardrop
optimal flow.

Proposition 10. Any internal flow p = (p1, · · · , pn) ∈ intSm−1 is the Wardrop
optimal flow of the network Lm = (x1

p1
, . . . , xm

pm
).

By combining the above result with Corollary 4, we can find more networks
admitting any given user equilibrium.

Proposition 11. An internal flow p = (p1, · · · , pn) ∈ intSm−1 is the Wardrop
optimal flow of the network Lm = (f(x1

p1
), . . . , f(xm

pm
)), where f(x) is any con-

tinuous, strictly increasing function.

The product of two differentiable and convex latency functions is also a dif-
ferentiable and convex function and thus we can use Theorem 6 to prove the
following result.

Proposition 12. If the flow x = (x1, . . . , xm) ∈ S
m−1 is Wardrop optimal flow

of the differentiable and convex networks Lm = (�1(x), . . . , �m(x)) and Lm =
(�1(x), . . . , �m(x)) then it is also Wardrop optimal flow of the network LmLm =
(�1(x)�1(x), . . . , �m(x)�m(x)).

Similarly with the above, we can use again Theorem 6 to prove the following,
since differentiable and convex functions are preserved by addition .
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Proposition 13. If the flow x = (x1, . . . , xm) ∈ S
m−1 is Wardrop optimal flow

of the differentiable and convex networks Lm = (�1(x), . . . , �m(x)) and Lm =
(�1(x), . . . , �m(x)) then it is also Wardrop optimal flow of the network Lm+Lm =
(�1(x) + �1(x), . . . , �m(x) + �m(x)).

By using Corollary 4 we can construct networks for given internal flows as
follows.

Proposition 14. For any polynomial P (x) = a0 + a1x + · · · + anxn, strictly
increasing and continuous in [0,1] and any internal flow p = (p1, · · · , pn) ∈
intSm−1 we can construct a network Lm = (�1(x), . . . , �m(x)) with �1(x) = P (x)
with Wardrop optimal flow p.

Proof. Assume P (x) = a0 + a1x + a2x
2 + · · · + anxn is a polynomial strictly

increasing and continuous in [0,1] and p = (p1, · · · , pn) any given flow. Then by
taking the image of the network Lm = ( x

p1
, . . . , x

pm
) via the function

f(x) = a0 + a1p1x + a2p
2
1x

2 + · · · + anpn1xn

we obtain a network that has P (x) as latency function on the first link. The
function f(x) is also continuous and strictly increasing in [0, 1] since from f(x) =
P (p1x) and 0 < p1 < 1 we get that f(x) is the composition of two strictly
increasing and continuous functions.

5 Conclusion and Future Work

We examined user equilibrium and system optimum in parallel networks with
congestion externalities and obtained sufficient and necessary conditions for the
system optimum. This leads to a characterization of Wardrop optimal flows
for differentiable convex networks from which we obtained important closure
properties preserving Wardrop optimal flows.

The importance of Wardrop optimal networks for transportation and com-
munication networks stems from the integration of the interests of both users
and system operators. Convergence to the Wardrop optimal flow inside such
networks will allow us to simulate dynamic flow distribution in networks in the
manner of [13,14]. Wardrop optimal flows can be investigated in the framework
of general directed graphs by identifying a fixed origin and destination node in
the graph and considering all possible paths from origin to destination as this
has been done using the path hyperoperation on directed graphs [7,9]. This will
allow us to model diffusion inside Wardrop networks as in [3] and moreover, as
another future direction, the capacity of graph recognizability to identify graph
properties (see [4–6,8]) can be employed towards the recognition of Wardrop
optimal networks.
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