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Preface

In the 21st century, Neural Network (NN) algorithms are still offering robust mod-
els, as they constitute the real core of Deep Learning. They have been employed by
Machine Learning Engineers for decades, trying to model real-world problems in var-
ious domains, such as Image and Speech Recognition, Natural Language Processing,
and many more. ChatGPT uses a Deep Learning architecture called the Transformer to
generate human-like text. It is a typical case of how NNs’ applications can have a deep
impact on our post-modern societies. There are numerous architectures of neural net-
works employing specific Learning algorithms trying to solve real-life problems. Recent
advances such as Generative Adversarial Neural Networks try to fuse “imagination” to
Artificial Intelligence (AI), and Convolutional Neural Networks significantly contribute
to the enhancement of pattern recognition, machine translation, anomaly-detection, and
machine vision. Generative Neural Networks are capable of generating image datasets,
realistic photographs of human faces, cartoon characters, Image to Image Translation,
Face Aging, Photos to Emojis, Photo Blending, and Super Resolution, and they can even
calculate the distance between different objects.

The Engineering Applications of Neural Networks conference is a historical one,
having a life of more than 2 decades in the literature. Following the cataclysmic techno-
logical revolution, it is gradually evolving and becoming broader, in order to embrace all
AI aspects and achievements. In the next 2 years it is going to become the EAAAI (Engi-
neering Applications and Advances in Artificial Intelligence/ex-EANN). In this sense,
the conference Steering Committee aims to bring together scientists from all AI domains
and to give them the chance to exchange ideas and to announce their achievements.

Since the first conference in 1995, EANN has provided a great discussion forum on
engineering applications of all Artificial Intelligence technologies, focusing on Artificial
Neural Networks. More specifically, EANN promotes the use of modeling techniques
from all subdomains of AI in diverse application areas, where significant benefits can
be derived. The conference also reports advances in theoretical AI aspects. Thus, both
innovative applications and methods are particularly appreciated.

EAAAI/EANN is a mature and well-established international scientific conference
held in Europe. Its history is long and very successful, following and spreading the
evolution of Intelligent Systems.

The first EANN event was organized in Otaniemi, Finland, in 1995. Since then, it has
had a continuous and dynamic presence as amajor global, butmainlyEuropean, scientific
event.More specifically, it has beenorganized inFinland,UK,Sweden,Gibraltar, Poland,
Italy, Spain, France, Bulgaria, Greece, and Spain. It has been technically supported
by the International Neural Networks Society (INNS) and more specifically by the
EANN/EAAAI Special Interest Group.

This is the Proceedings volume, and it belongs to Springer’s CCIS (Communications
in Computer and Information Science) Series. It contains the papers that were accepted
to be presented orally at the 24th EANN conference in León, Spain. The diverse nature
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of the papers presented demonstrates the vitality of Artificial Intelligence algorithms
and approaches. The conference is not only related to Neural Networks, but it certainly
provides a very wide forum for AI applications as well.

The event was held in a hybrid mode (both physically and remotely attended via
Webex) from the 14th to the 17th of June, 2023.

In total, 125 papers were initially submitted. All papers were peer reviewed by at
least two independent academic referees. Where needed, a third referee was consulted to
resolve any potential conflicts. A total of 39% of the submitted manuscripts (49 papers)
have been accepted to be published in the Springer proceedings.

Algorithms and Areas of Research:

The accepted papers of the 24th EANN conference are related to the following thematic
topics:

Learning
Reinforcement Learning
Federated Learning
Adversarial Learning Neural Networks
Machine Learning
Transfer Learning
Natural Language
Recommendation Systems
Classification
Filtering
Genetic Algorithms
Computational Methods
Ethology
Complex Dynamic Networks
Optimization – Genetic Algorithms
Graph Neural Networks
Convolutional Neural Networks
Spiking Neural Networks
Deep Learning
Learning in Engineering Applications

The following scientific workshop on a hot AI-related subject was organized under
the framework of the 24th EANN.

WORKSHOPS ORGANIZATION

• The 3rd Workshop on AI and Ethics (AIETH 2023)

Coordinator: Professor John Macintyre
The 3rd AIETH workshop was coordinated and organized by Professor John Mac-

intyre (University of Sunderland, UK). It included short presentations from the panel
members and an open Q&A session where the audience members were able to ask, and
answer, important questions about the current and future development of Generative
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AI models. It aimed to emphasize the need for responsible global AI. The respective
scientific community must be preparing to act preemptively and ensure that our societies
will avoid negative effects of AI and of the 4th Industrial Revolution in general.

The authors of submitted papers came from 19 different countries from all over the
globe (from 3 continents: Europe, Asia, Americas) namely: Austria, Brazil, Canada,
China, Germany, Greece, Honduras, Italy, Japan, Sweden, Kuwait, Lebanon, The
Netherlands, Pakistan, Poland, Portugal, Saudi Arabia, Spain, the UK, and the USA.

June 2023 Lazaros Iliadis
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Evolutionary Neural Architecture Search: Computational
Efficiency, Privacy Preservation and Robustness

Enhancement

Yaochu Jin

Bielefeld University, Germany and Distinguished Chair,
University of Surrey

Abstract: Evolutionary neural architecture search has received consid-
erable attention in deep learning. This talk begins with a presentation of
computationally efficient evolutionary neural architecture search algo-
rithms by means of sampled training and partial weight sharing. Then,
we introduce communication-efficient deep neural architecture search in
a federated learning environment. Finally, a surrogate-assisted evolution-
ary search algorithm for neural architectures that are robust to adversarial
attacks is described. The talk is concluded with a brief discussion of open
questions for future research.



Interpretable-by-Design Prototype-Based Deep Learning

Plamen Angelov

Lancaster University, UK

Abstract: Deep Learning justifiably attracted the attention and interest
of the scientific community and industry as well as of the wider society
and even policy makers. However, the predominant architectures (from
Convolutional Neural Networks to Transformers) are hyper-parametric
models with weights/parameters being detached from the physical mean-
ing of the object of modelling. They are, essentially, embedded functions
of functions which do provide the power of deep learning; however, they
are also the main reason of diminished transparency and difficulties in
explaining and interpreting the decisions made by deep neural network
classifiers. Some dub this “black box” approach. This makes problem-
atic the use of such algorithms in high stake complex problems such
as aviation, health, bailing from jail, etc. where the clear rationale for a
particular decision is very important and the errors are very costly. This
motivated researchers and regulators to focus efforts on the quest for “ex-
plainable” yet highly efficient models. Most of the solutions proposed in
this direction so far are, however, post-hoc and only partially addressing
the problem. At the same time, it is remarkable that humans learn in a
principally different manner (by examples, using similarities) and not by
fitting (hyper-) parametric models, and can easily perform the so-called
“zero-shot learning”. Current deep learning is focused primarily on accu-
racy and overlooks explainability, the semantic meaning of the internal
model representation, reasoning and decision making, and its link with
the specific problem domain. Once trained, such models are inflexible to
new knowledge. They cannot dynamically evolve their internal structure
to start recognising new classes. They are good only for what they were
originally trained for. The empirical results achieved by these types of
methods according to Terry Sejnowski “should not be possible according
to sample complexity in statistics and nonconvex optimization theory”
[1]. The challenge is to bring together the high levels of accuracy with the
semantically meaningful and theoretically sound and provable solutions.

All these challenges and identified gaps require a dramatic paradigm
shift and a radical new approach. In this talk, the speaker will present such
a new approach towards the next generation of explainable-by-design
deep learning [2–5]. It is based on prototypes and uses kernel-like func-
tions making it interpretable-by-design. It is dramatically easier to train
and adapt without the need for complete re-training, can start learning
from few training data samples, explore the data space, detect and learn
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from unseen data patterns [6]. Indeed, the ability to detect the unseen
and unexpected and start learning this new class/es in real time with no
or very little supervision is critically important and is something that
no currently existing classifier can offer. This method was applied to a
range of applications including but not limited to remote sensing [7–8],
autonomous driving [2, 6], health and others.
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Intelligent Mobile Sensing for Understanding Human
Behaviour

Oresti Baños Legrán

Tenured Professor of Computational Behaviour Modelling,
Department of Computer Engineering, Automation and Robotics,
Research Centre for Information and Communications Technology,

University of Granada, Spain

Abstract: Understanding people’s behaviour is essential to characterise
patient progress, make treatment decisions and elicit effective and rele-
vant coaching actions. Hence, a great deal of research has been devoted
in recent years to the automatic sensing and intelligent analysis of human
behaviour. Among all sensing options, smartphones stand out as they
enable the unobtrusive observation and detection of a wide variety of
behaviours as we go about our physical and virtual interactions with the
world. This talk aims at giving the audience a taste of the unparalleled
potential that mobile sensing in combination with artificial intelligence
offers for the study of human individual and collective behaviour.



Secure, Efficient and High-Performance Computing:
A Computer Architecture Perspective

Tamara Silbergleit Lehman

Assistant Professor at the University of Colorado Boulder

Abstract: Distributed systems and new architectures introduce new sets
of security risks. Microarchitectural attacks have presented many chal-
lenges in the computer architecture community and this talkwill present a
few of the methods that the Boulder Computer Architecture Lab (BCAL)
has been studying in order to address these vulnerabilities. The talk will
first introduce physical and microarchitectural attacks and why they are
hard to mitigate. Then, the talk will introduce an efficient implementation
of speculative integrity verification, Poisonivy, to construct an efficient
and high performance secure memory system. Finally, the talk will show
how we can leverage emerging memory technologies such as near mem-
ory processing to defend and identify microarchitectural side-channel
attacks. The talk will end by briefly introducing a new research direction
that is investigating the Rowhammer attack impact on neural network
accuracy running on GPUs and how we can leverage secure memory to
protect the accuracy of the models.



How AI/Machine Learning has the Power
of Revolutionizing (for Good?) Cybersecurity?

Javier Alonso Lopez

Principal Machine Learning Applied Scientist Microsoft
AI Platform – Microsoft OpenAI

Abstract: As we already know, Machine Learning is already used in
various cybersecurity tasks such as malware identification/classification,
intrusion detection, botnet identification, phishing, predicting cyberat-
tacks like denial of service, fraud detection, etc. However, during the
last years there has been a revolution of machine learning, specifically,
deep learning that creates not only an unbelievable opportunity to develop
more effective solutions but also represents a new threat and a new tool to
be used to attack and gain control over systems, organizations and even
countries.

In this talk, we will overview the major applications of Machine
Learning in the field of cybersecurity both to prevent attacks but also
how Machine learning can be used to pose a threat. We will review the
main advances of Deep Learning in the last 5 years and their application
into Cybersecurity. Finally, we will discuss the possible future trends we
can expect (I do not expect a high accuracy, but high recall :D) in the
intersection of Deep Learning and Cybersecurity.
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Abstract. Structures often suffer damages as a result of earthquakes,
potentially threatening human lives, disrupting the economy and requir-
ing large amounts of monetary reparations. Thus, it is essential for gov-
ernments to be able to rank a given population of structures according
to their expected degree of damage in an earthquake, in order for them
to properly allocate the available resources for prevention. In this paper,
the authors present a ranking approach, based on Machine Learning
(ML) algorithms for pairwise comparisons, coupled with ad hoc ranking
rules. The degree of damage of several structures from the Athens 1999
earthquake, along with collected attributes of the building, were used as
input. The performance of the ML classification algorithms was evalu-
ated using the respective metrics of Precision, Recall, F1-score, Accuracy
and Area Under Curve (AUC). The overall performance was evaluated
using Kendall’s tau distance and by viewing the problem as a classi-
fication into bins. The obtained results were promising, outperforming
currently employed engineering practices. They have shown the capabili-
ties and potential of these models in mitigating the effects of earthquakes
on society.

Keywords: Machine Learning · Ranking · Seismic Vulnerability

1 Introduction and Literature Review

Following the recent 7.8R and 7.5R seismic events in Turkey on 6th of February
2023 along the Southeastern Anatolian rift, we witnessed one of the largest global
seismic disasters with extremely severe consequences. Reports so far mention
more than 45, 000 human lives lost and over 130, 000 injured. More than 15, 000
structures have fully or partially collapsed during the earthquake, disrupting the
lives of the survivors, the economy and causing the need for monetary reparations
in the magnitude of tenths of billions of dollars. Such events accentuate the need
for a reliable seismic vulnerability assessment, especially in large urban areas
with great population density.

The term “seismic vulnerability” of a building refers to its potential to suffer a
certain degree of damage, when subjected to an earthquake of predefined inten-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 3–16, 2023.
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sity [19,37]. Extending this to a regional level can allow authorities to identify
the most vulnerable buildings in the population. In turn, this can allow them
to efficiently allocate their limited resources on those, thus preventing the loss
of human lives, mitigating the disruption of economic activities and reduce the
future need of reparations [2,35]. Thus, there is a clear need for a tool capa-
ble of ranking a given population of structures with respect to their seismic
vulnerability to aid them in their decisions.

There are many comprehensive reviews on the subject, collecting and sum-
marizing currently accepted engineering practices for this task [2,3,25]. As is
evident from the plethora of related literature, there is no universally accepted
solution to the problem, which often leads to different countries and organiza-
tions each employing their own methods. However, all the above methods are
based on calculating a vulnerability index for each building. Initially, each struc-
ture is assigned a base scoring, based on its structural type and age. Then, a
series of modifying factors are applied, which either increase or reduce this initial
scoring to produce the final index. The structures are then ranked in descending
order of vulnerability and the most vulnerable ones are usually subject to fur-
ther steps of evaluation. These steps are referred to as Rapid Visual Screening
(RVS) [25,27]. The modifying factors applied come from a variety of attributes
observed for each structure. These include the design codes used on the structure,
the type of soil, the presence o vertical or horizontal irregularities in the shape
of the structure, the number of storeys, the current condition of the structure
and others [1,6,22].

On the other hand, Machine Learning algorithms have been previously
employed for the task of seismic vulnerability assessment. Ghasemi et al. [11]
employed a Decision Tree algorithm using two features to classify reinforced
concrete (RC) frames in distinct damage states. Rosti et al. [30] used clustering
techniques, later assigning vulnerability classes to the clusters. Closer to current
engineering practices, Ruggieri et al. [31] employed the RVS procedure described
above by using a Convolutional Neural Network (CNN) on photographs to auto-
matically find the attributes of the buildings. Luo and German [23] used an ML
algorithm to predict drift capacity, the value of which they used as a seismic
vulnerability assessment index. These two methods approach the problem indi-
rectly, using ML algorithms to predict a vulnerability index which they can then
be used to rank the structures.

To the best of our knowledge, no methodology has employed ML algorithms
to address the ranking problem explicitly. This research attempts to provide
a methodology that directly ranks a given set of structures according to their
seismic vulnerability, without the need to compute a vulnerability index. The
methodology is based on reducing the ranking to a binary classification prob-
lem, from which the ranking is obtained by pairwise comparisons and ranking
rules [20]. As an input to our models, we have used data from 404 structures of
the Athens 1999 earthquake [14]. These pertained to the degree of damage the
structured suffered as well as their attributes, obtained via RVS.
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2 Dataset

As was already mentioned, we drew our dataset from a set of measurements in
structures obtained after the Athens 1999 earthquake [14]. This consisted of 404
structures with various degrees of damage drawn from different municipalities of
Athens. To isolate potential local effects from the study, the authors in [14] drew
samples from every damage category in nearby building blocks per municipality.
The degree of damage was classified into 4 categories, namely:

1. “Black”, with total or partial collapse of the structure,
2. “Red”, with significant damage to the load bearing structural system,
3. “Yellow”, with medium damages to the structural system and/or extended

damages to non bearing walls
4. “Green”, with very minor, if any at all, damages.

Table 1. Number of buildings in the dataset in each damage category.

Damage Category Number of Structures

Black 93
Red 201
Yellow 69
Green 41

The distribution of the dataset in these categories is shown in Table 1. For
each of these structures, 12 attributes were observed, namely:

1. Pilotis and/or short columns: This indicated whether the structure had a
storey with significantly lower structural rigidity than the rest.

2. Regularity of walls: This indicated whether the non bearing walls were of
sufficient thickness (the length of a brick) and with few openings.

3. Lack of modern seismic codes: This was applied to buildings that were not
designed with the most modern seismic codes of the time and thus, was
mainly attributed to pre-1985 and especially pre-1960 buildings.

4. Poor condition: This pertained to a variety of reasons, e.g. buildings with
aggregates segregation in the concrete, eroded concrete, or very high and/or
non uniform ground sinking.

5. Previous damages: This only applied in cases where any previous damages
on the structural system had not been adequately repaired.

6. Significant height: This applied in cases where the structure had more than
5 storeys.

7. Irregularity in-height: This applies to structures where there are discontinu-
ities in the vertical path of the loads. Such discontinuities can appear, for
example, where the surface area of a storey is significantly less than the rest.

8. Irregularity in-plan: This applies to buildings with an irregular floor plan,
e.g. buildings with highly acute angles in their outer walls, E, Z, H or simi-
larly shaped floor plans.
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9. Torsion: This applied to buildings with significant structural eccentricity.
10. Pounding with neighboring buildings: This applies to buildings with lack of

sufficient gaps from their neighbors, especially in the case where the storeys
of the two buildings are on different heights. This is because, during the
earthquake, the slabs of one building can ram the columns of the other.

11. Heavy non structural elements: Falling of such elements during the earth-
quake, aside from the threat human lives, leads to eccentricities and thus
torsion.

12. Underlying soil: This pertains to the classification of the underlying soil
according to the Greek Code for Seismic Resistant Structures - EAK 2000
[1]. In particular, EAK classifies soils into categories A, B, C, D and X.
Class A refers to rock or semi-rock formations extending in wide area and
large depth. Class B refers to strongly weathered rocks or soils, mechanically
equivalent to granular materials. Classes C and D refer to granular materials
and soft clay respectively, while class X refers to to loose fine-grained silt
[1]. In [14] and in the present study, soils in EAK category A are classified
as S1, category B is classified as S2 and categories C and D are classified as
S3. Soils in EAK category X were not encountered.

Each of the above attributes was given as a binary feature and the soil cat-
egory was one-hot-encoded. However, it is clear that this binary approach does
not always reflect the full picture for a given structure, as, for example, “poor
condition” or “previous damages” can be exhibited at different degrees, while in
the present dataset all structures either did or did not exhibit this attribute.

Finally, even though it wasn’t categorized as an attribute, in 399/404 struc-
tures of the dataset the researchers noted the exact number of storeys, not just
whether or not this was greater than 5. Given this, we opted to use this feature
instead in our study, removing the 5 structures that lacked this from the dataset.

3 Data Preprocessing - Pairwise Ranking Transformation

As a first step in the preprocessing, note that the classes are heavily imbal-
anced, with Red structures comprising 50% of the total. To alleviate this, we
undersampled this class randomly by a factor of 0.5.

In order to rank a given set of structures, our proposed algorithm is based
on learning a Machine Learning model that, given a single pair of structures,
predicts which of the two should rank higher, i.e. is predicted to have a higher
degree of damage severity. This reduces the problem of ranking to a binary
classification problem, which, through pairwise comparisons and an application
rule will yield the final ranking [20].

To this end, we first transform the given labels into ordinal ranks [12], i.e.
Green, Yellow, Red, Black→ {1, 2, 3, 4}. Given our dataset consisting of m = 290
structures (after undersampling Red), each having n = 12 features, a pair of
structures (si, sj) will correspond to the feature vectors xi, xj ∈ R

n respectively.
Then, our binary classifier will predict ŷ = sign(yj −yi), where sign denotes the
sign function. Therefore, ŷ will be +1 if sj should rank higher than si and −1 if
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si should rank higher than sj . To represent the pair (xi,xj) using a single feature
vector, any transformation R

n ×R
n → R

n can be used. This so called “pairwise
transformation” has been implemented before, e.g. [13,21]. In the present study,
we will simply take their difference, i.e. xnew

i,j = xj − xj . Similarly, for a given
pair (yi, yj) ∈ {1, 2, 3, 4}2 of the target variables belonging to different damage
categories, the transformed target will be ynew = sign(yj − yi). Note that the
number of such pairs is given by p = (m2−∑c

ci=1 m2
ci
)/2, where c is the number of

classes/ranks and mci is the number of instances in each class [21]. In our case,
this leads to p = 30, 339 pairs and Xnew ∈ R

30339 × R
12, ynew ∈ R

30339. In the
transformed dataset, 17, 017 instances are in class −1 while the other 13, 322 are
in class +1, i.e. a 55 : 45 ratio, which is not deemed a significantly imbalanced
dataset.

Furthermore, note that in the original dataset, even prior to the undersam-
pling, we had 399 samples and 12 features. Thus, the so-called “curse of dimen-
sionality” [15] hinders the ability of any model to learn from such small data,
unless many features were to be removed from the model. However, the pairwise
approach introduced in [21] and implemented here directly addresses this issue
since, as was mentioned, the transformed dataset has now 30, 339 instances.

4 Description of the Algorithm

4.1 General Overview

After training the introduced binary classifier, the ranking algorithm proceeded
as follows:

1. For each structure xi, i ∈ {1, 2, ...,m} in our test set, consider all the pairs
(xi,xj), j ∈ {1, 2, ...,m} − {i}.

2. Using the pairwise transform, compute xnew
i,j and use it to make a prediction

ypred ∈ {+1,−1}.
3. If ypred = +1, assign a “win” to sj . Otherwise, assign a “win” to si.
4. Keep track of the “wins” of every structure and as a secondary metric, keep

track of the probabilities of the prediction. So, for example, suppose for a given
pair of structures (si, sj) our classifier yields the class probabilities [0.3, 0.7]
and thus, ypred = +1. Then, not only will we assign a “win” to sj as in 3
above, but for structure sj we will add the “win” probability 0.7 to a running
sum of probabilities for each structure.

5. The ranking step is simply sorting the structures in the test set based on
the number of “wins”, using the sum of probabilities as a tie breaker, i.e. if
two structures have the same number of wins, then the one with the highest
sum of probabilities should rank higher. This results in a permutation of the
structures, denoted by {i1, i2, ...im}, where, for k ∈ {1, 2, ...,m}, ik denotes
the index of the structure in the original dataset that was ranked in position
m.

As a secondary ranking step, we can select the top k structures of the initial
ranking obtained as above and re-run part of the above process to obtain better
results. The process can be described as follows:
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6. For a given k < m, split the original ranking obtained above as rtop =
{i1, i2, ...ik}, rbottom = {ik+1, ik+2, ...im}. Retain rbottom.

7. For the structures in rtop, repeat 1-5 above, using a binary classifier trained
only with the subset of the original dataset, for which yi ∈ {3, 4}. This will
result in a new ranking, call it r′

top = {i′1, i
′
2, ...i

′
k}.

8. The final ranking is obtained as rfinal = {i′1, i
′
2, ...i

′
k, ik+1, ik+2, ...im}, i.e. by

appending r′
top and rbottom.

In order to reduce the variance induced by the train/test splitting and make
use of our full dataset, we employed a 5-fold cross validation scheme, executing
steps 1-8 from the above, on the transformed sets Xnew,ynew.

4.2 Employed Machine Learning Modelling Algorithms

As is evident from the above, the very core of our proposed algorithm lies in
learning a binary classifier f : Rn × R

n → {−1,+1} that, given a pair xi, xj ,
predicts whether sj should rank higher than si or vice versa. There are many
reviews on classification problems in general and binary classification in partic-
ular, for example [17,18,34]. Here we present an overview of the most commonly
used classifiers that were also employed in the present study.

1. Decision Tree Classifier: This is a tree-based method where, at each step,
the algorithm uses a predefined criterion, e.g. Gini Impurity [40], to split the
dataset into subsets, assigning a class to each end (leaf) node [16].

2. Random Forest Classifier: This is an ensemble method [29] where the
results from many individual Decision Trees, trained on bootstrapped samples
of the original dataset and with a random subset of features at each split, are
combined in the final prediction. This both improves the accuracy of using
any individual tree and reduces overfitting [8].

3. Extra Trees Classifier: It is a shorthand for Extremely Randomized Trees.
In many ways a similar classifier to Random Forest, as it is also an ensemble
of Decision Trees. It differs, however, in that it uses the whole set in training
and not a bootstrapped sample and that it introduces randomness in the
splitting criterion of each tree [10].

4. k-Nearset Neighbors classifier: This is a classifier that for each instance
identifies the k most similar-based on some similarity metric-instances in the
training set and makes a prediction based on voting [7].

5. Logistic Regression: Logistic regression is a binary classification algorithm.
Given two classes “+1” and “-1” and p denoting the probability that an
instance belongs to “+1”, the classifier predicts the so-called logit, i.e. log p

1−p
via a linear combination of the features. Then, if the predicted p is above a
threshold, the classifier predicts “+1”, otherwise “-1’ [33].

6. Ridge Classifier: In a binary classification setting, this model predicts a
target y that, if positive, assigns the instance to class “+1”, otherwise to “-
1”. It uses a penalty on the L2 norm of the trained parameters to reduce
overfitting [32].
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7. Gradient Boosting Classifier: This is a meta classifier [36]. It iteratively
builds the model, starting from a “weak” classifier and trains the next iteration
using the current predictions and an arbitrary differentiable loss function [26].

The implementation of the above algorithms was carried out in Python pro-
gramming language using the machine learning library scikit-learn [28]. The
best performing algorithm was Gradient Boosting, which is what we will be using
in the sequel. In the present study, the default scikit-learn hyperparameters
were employed for each classifier. An extensive fine-tuning of these can be done
in future research.

5 Results

In the sequel, “primary classifier” will refer to the classifier trained on structures
across the damage spectrum, i.e. with yi ∈ {1, 2, 3, 4}, and used for steps 1-5
described in 4.1. Likewise, “secondary classifier” will refer to the classifier trained
on structures with yi ∈ {3, 4} and used for steps 6-8.

In our numerical experiments, we obtained an average fold accuracy of the
primary classifier of 0.75743, with a standard deviation of 0.04347. The secondary
classifier had an average fold accuracy of 0.84994, with a standard deviation of
0.02509. To obtain a result calibrated on the whole dataset, we perform a cross
validation scheme, as described above. The classification metrics results obtained
this way are shown in Table 2, while the corresponding Receiver Operating Char-
acteristic (ROC) curves are shown in Fig. 1.

As explained in detail in Sect. 4.1, the result of our algorithm is a ranking of
the given set of structures. In order to assess the performance of this ranking,
we compare it with the actual ranking obtained by the known damage these
structures suffered during the earthquake, along with a baseline ranking, as
described below.

Given our dataset consisting of m = 290 structures and their respective
known responses yi ∈ {1, 2, 3, 4}, i = 1, 2, ...,m, recall that we had 90 structures
in the “Black” category, 101 structures in the “Red”, 60 in the “Yellow” and 39 in
the “Green”. Thus, if we were to rank them in order of descending damage, we
would expect the 90 “Black” structures to be in the top 90 positions, followed
by the 101 “Red” and so on, as shown in Fig. 2a. Our algorithm ranked them

Table 2. Classification metrics for the primary and secondary binary classifiers, cross
validated on the whole dataset.

–1 +1
Precision 0.76585 0.74488
Recall 0.81747 0.68075
F1-score 0.79082 0.71137
Accuracy 0.75744
AUC 0.83195
(a) Classification metrics of the primary classifier.

–1 +1
Precision 0.85980 0.83734
Recall 0.87107 0.82371
F1-score 0.86540 0.83047
Accuracy 0.84994
AUC 0.92789
(b) Classification metrics of the secondary classifier.
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(a) ROC curve for the best performing
primary classifier using all the available
labels.

(b) ROC curve for the best performing
secondary binary classifier using only
Red/Black labels.

Fig. 1. ROC curves for the best performing binary classifiers.

as shown in 2b where, in general we have itruek �= ipredk . Using this binning,
however, we can define a metric of accuracy for the ranking as follows. For each
damage index d ∈ {Black,Red, Y ellow,Green}, let bintrue

d denote the subset
of structures that belong to this category and similarly, let binpred

d denote the
subset of structures that were predicted to fall in that bin. Then we can define
a metric of bin accuracy (BAC) for each bin as

BACd =
|binpred

d ∩ bintrue
d |

|bintrue
d | . (1)

Using the definition of accuracy as defined in (1), we have performed two runs
of our proposed algorithm. In the first run, only steps 1-5 or the algorithm were
employed, i.e. the secondary sorting was not implemented. In the second run,
we added the steps 6-8 of the algorithm, iteratively for k = 10, 20, .., 180, 191,
which was the total number of “Black” and “Red” structures. For each run, we
measured the accuracy of each bin, as defined in (1).

For comparison of the results of our proposed ranking, we used as baseline
an ordering obtained by calculating a vulnerability index. This approach has
been used, for example in [14,31]. What the methods in these references have in
common is that the computed vulnerability index is of the form

VI = V b
I +

∑
ΔVm, (2)

where V b
I is a basic vulnerability index which depends on the structural type of

the building as well as the year the structure was designed and built. Similarly,
ΔVm are modification coefficients [14,31], which either increase or decrease V b

I to
yield VI . In the present study, we used the coefficients of [14] for the comparisons.
The results are shown in Table 3.

Finally, we can view each bin as a label in a classification problem. For
example, as shown in Fig. 2, structures 1 − 90 in the ranking correspond to
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the black structures. Similarly, structures 91 − 191 in the ranking correspond
to red. Thus, besides from the bin accuracy defined in (1), it is important to
know the correct bin of wrongly ranked instances. To demonstrate this, consider
the reduced example of a “Black” bin consisting of 10 structures (i.e. ideally we
would expect yi = 4 ∀i ∈ {1, 2, ..., 10}) and consider the following two rankings:

ranking1 = [4, 4, 4, 4, 4, 4, 4, 3, 3, 3], (3a)

ranking2 = [4, 4, 4, 4, 4, 4, 4, 1, 1, 1]. (3b)

Then, even though both rankings have BAC4 = 0.7, the ranking in (3a) is clearly
to be preferred. To visualize this, we can construct the corresponding confusion
matrices [24,38] for each run of our algorithm, as well as the baseline. This is
shown in Table 4.

itrue1 itrue2
. . . itrue90 itrue91

. . . itrue191 itrue192
. . . itrue251 itrue252

. . . itrue290

Black Red Y ellow Green

(a) Ideal ranking.

ipred1 ipred2
. . . ipred90 ipred91

. . . ipred191 ipred192
. . . ipred251 ipred252

. . . ipred290

Black Red Y ellow Green

(b) Predicted ranking.

Fig. 2. Expected ideal and predicted ranking of the given structures in decreasing
damage severity.

Table 3. Comparison of the results of the ranking of our algorithm with and without
the secondary step against the two baselines.

Bin accuracy (%)
Black Red Yellow Green

Primary ranking only 61.11 38.61 25 33.33
Ranking with secondary step (k = 190) 71.11 54.45 25 33.33
Ranking using the VI of [14] 54.44 38.61 36.66 25.64
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Table 4. Confusion matrices for the 3 different approaches presented.

Predicted bin
Green Yellow Red Black

T
ru

e
bi

n Green 13 14 12 0
Yellow 14 15 23 8
Red 9 26 39 27
Black 3 5 27 55
(a) Primary ranking only.

Predicted bin
Green Yellow Red Black

T
ru

e
bi

n Green 13 14 7 5
Yellow 14 15 21 10
Red 9 26 55 11
Black 3 5 18 64

(b) Secondary ranking, with k = 190.
Predicted bin
Green Yellow Red Black

T
ru

e
bi

n Green 10 14 12 3
Yellow 4 22 21 13
Red 21 16 39 25
Black 4 8 29 49

(c) Ranking using the VI of [14].

Fig. 3. Bin accuracy for the Black and Red bins and overall accuracy of the algorithm
with secondary ranking, for k = 10, 20, ..., 180, 191. (Color figure online)

The accuracy metric defined in (1) only shows how many structures lie in the
expected bin after ranking, but it provides no information on how the correct
instances of the bin are distributed inside the bin itself. To demonstrate this,
consider the reduced example of a “Black” bin consisting of 10 structures (i.e.
ideally we would expect yi = 4 ∀i ∈ {1, 2, ..., 10}) and consider the following two
rankings produced by the algorithm:

ranking1 = [4, 4, 4, 4, 4, 4, 4, 3, 2, 1], (4a)

ranking2 = [4, 4, 4, 1, 4, 2, 4, 3, 4, 4]. (4b)

Even though both rankings have bin accuracy 70%, it is clear that the ranking
in (4a) is to be preferred over the one in (4b), because the correct instances in
the bin rank higher than the wrong ones. To quantify this, we will use a slight
modification of the so-called Kendall tau distance [5,39]. To this end, a pair
(si, sj) is called discordant if i > y and yi < yj . Then, for a given set consisting
of n ranked elements, Kendall’s tau distance is defined as
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K =
2|D|

n(n − 1)
, (5)

where |D| is the total number of discordant pairs. Note that K is normalized in
the range [0, 1], since |D| ≥ 0 and |D| ≤ (

n
2

)
= n(n−1)

2 . We will slightly modify
(5) and define the pairwise accuracy (PAC) as:

PAC = 1 − 2|D|
n(n − 1)

, (6)

where the difference is that in (6) |D| = 0 ⇒ PAC = 1 while in (5) |D| =
0 ⇒ K = 0. Similarly to Fig. 3, we present in Fig. 4 below the results for k =
10, 20, ..., 191 for the pairwise accuracy defined in (6).

Finally, as a way to combine these two metrics into a single number, we
propose the use of the harmonic mean of the two metrics, similar to how the
well-known F1-score is defined as the harmonic mean of precision and recall in a
classification problem [4,9]. Thus given a predefined bin, which can be the whole
set of structures, we define

combined accuracy =
2

1
bin accuracy + 1

pairwise accuracy
. (7)

Similar to Fig. 3 and Fig. 4, we present in Fig. 5 the results of this combined
accuracy for k = 10, 20, ..., 180, 191 for the Black and Red bins, as well as over
the whole dataset.

Fig. 4. Pairwise accuracy for the Black and Red bins and overall pairwise accuracy of
the algorithm with secondary ranking, for k = 10, 20, ..., 180, 191. (Color figure online)
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Fig. 5. Combined accuracy for the Black and Red bins and overall combined accuracy of
the algorithm with secondary ranking, for k = 10, 20, ..., 180, 191. (Color figure online)

6 Conclusions and Future Work

This paper deals with the problem of ranking a given set of structures according
to their seismic vulnerability. It uses a Machine Learning to perform pairwise
comparisons with binary classification and ad hoc rules to obtain the final rank-
ing. Attributes obtained during Rapid Visual Screening of the structures were
used as input for the models. Precision, recall, F1-score, overall accuracy and
Area Under Curve were used as evaluation metrics for the binary classifiers.
Kendall’s tau was used to evaluate the performance of the overall ranking. We
also used confusion matrices, which we implemented by binning the obtained
ranking and labelling the bins as classes corresponding to damage categories.
The results were promising as they seemed to outperform current standard engi-
neering practices.

Despite the promising results of this paper, future extensions could be ori-
ented towards improving the binary classification models, for example via ensem-
ble methods and better fine tuning of the model’s hyperparameters. A second
avenue of improvement could be focused on more refined ranking rules, with
emphasis on resolving circular references, i.e. cases where our model might pre-
dict A > B, B > C and C > A, where A, B, C are structures. In an imper-
fect model, there is of course always the possibility for such cases to manifest,
but resolving them in a more holistic manner than pairwise comparisons would
increase the accuracy of the model. Finally, a third avenue for improvement lies in
improving the data quality itself. On the one hand, this can be done by exploring
other potential attributes that affect seismic vulnerability and not taken into con-
sideration here. On the other hand, there were attributes in the available dataset
that were reported as binary, even though a continuous grading could be used.
Such were, for example,“Poor Condition” and “Previous Damages”. Obtaining
a continuous grading for such features would improve the binary classification
performance and thus the overall ranking.
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Abstract. Computational Ethology provides automated and precise
measurement of animal behavior. Artificial Intelligence (AI) techniques
have also introduced the enhanced capabilities to interpret experimental
data in order to extract accurate ethograms allowing the comparison of
animal models with high discriminative power. In this short review we
introduce the most recent software tools that employ AI tools for this
endeavor, including the popular deep learning approaches.
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1 Introduction

Ethology is defined as the discipline that studies the animal behavior in terms of
its phenomenological, causal, ontogenetic and evolutionary aspects, in order to
provide answers to the causes and development that animal behavior undergoes,
as well as to understand how it is performed [5], bearing in mind that behavior
is understood as the set of muscular responses of a living being as a consequence
of an external stimulus [30] and internal motivation.

Early ethology studies were conducted visually, describing qualitatively what
researchers saw in each experiment. Later on, they began to evaluate certain
behaviors on the basis of some predefined criteria, thus beginning a quantitative
approach. However, this new methodology had many drawbacks:

– Time-consuming: The time needed to pre-process an experiment can require
up to three times its actual duration.

– Humdrum: Behavior observation and annotation is a very repetitive task that
must be performed for hours during several weeks. At a certain point, the
observer is tired and performs the task mechanically losing ability to notice
new patterns.

– Difficult to transfer knowledge: When it is not possible to express it in plain
words, different team members may make different annotations for the same
experiment. This makes the process strongly subject to the scientist’s judg-
ment, difficult to standardise, and to reproduce in other laboratories with
different equipment.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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– Limited to the visual acuity of the observer: If there are several animals, it is
difficult to pay attention to the behavior of all of them at the same time.

– Low-dimensional. Through human observation it is not possible to annotate
a large number of variables for each behavior.

To address all these issues, a new discipline called computational ethology
emerged. It allows the incorporation of advances in computer vision and arti-
ficial intelligence (AI) in the study of animal behavior, providing the following
advantages:

– Decrease the processing time of experiments, because it is now possible to
implement algorithms that automatically extract relevant information from
experimental records.

– Eliminate the limitations of the observer, allowing the processing of several
animals at the same time with increased accuracy.

– Increasing the dimensionality of behavior measurements. By being able to
extract more characteristics from the same behavior it is possible to increase
the information and therefore improve its analysis.

– Standardise the characteristics of behaviors, since it is possible to describe
behaviors quantitatively thanks to the increase in information, and the stan-
dardization of the capture instruments.

This paper covers some recent tools and advances that have been introduced by
the growing application of artificial intelligence techniques to ethological experi-
mental data analysis. Section 2 comments on current sensors employed in ethol-
ogy experiments. Section 3 goes into detail of current AI based data analysis
techniques and supporting software packages that can be used. Finally, Sect. 4
provides some conclusions of this short review.

2 Sensors

This section will describe the most commonly used physical devices in computa-
tional ethology, i.e. sensors, which are of very different types such as video,
infrared and depth cameras, microphones, RFID antennas, pressure sensors,
accelerometers, magnetometers and gyroscopes. Currently, RGB video cameras
are the most used sensors to record experiments in open field arenas [55,80],
operant conditioning chambers [17], and in animal natural environment [24].
The systems can be composed of a single RGB camera [14] or a multi-camera
system [7,28,71]. Low cost configurations with video cameras use a Raspberry
Pi to carry out the recording system and store the data for further processing
[49]. Recent systems featured depth cameras providing 3D measurements of the
kinematics of the animals [56]. This type of camera can be used both to track
animals and for behavioral detection and classification [29,65]. Infrared cameras
allow to monitor the behavior of animals during the day and during the dark-
ness of the night [13], and as a non-invasive system in group-housed animals
[54]. Specific examples of their application are the study of monkeys hunting fish



Computational Ethology 19

[73], and the study of Japanese eels to understand the environmental conditions
that must be met for them to climb a low-height vertical weir [45]. In addition,
infrared cameras have been used to obtain high-resolution images allowing pre-
cision tracking of certain parts of a rat’s body [62]. Infrared sensors are also used
to track an animal’s movements to see when it is approaching a certain object
[10].

Other sensors also widely used in computational ethology are inertial sen-
sors and accelerometers, which can be placed on the heads of animals to study
sensorimotor responses in pigeons [4], mice [75] and fox squirrels [27].

Though they have reduced precision, RFID antennas are also used to track
animals because they are robust against visual occlusions and allow a greater
space of free movements. They have been applied on rodents, to track each
animal while moving freely in the study of the “Individuality Paradigm” [43],
and on broilers, to identify, describe and quantify a wide range of behaviors in
combination of video recording [22].

Pressure sensors are emerging for behavioral studies because they are non-
invasive and allow animals to move without restriction. One example is pres-
sure sensors based on piezoelectric materials, which can be used to detect ani-
mal movements for further processing and analysis. This platform also offers a
high sensitivity for detecting pressure changes, which has even made it possible
to detect freezing episodes, breathing and heartbeats in mice [11,12]. Another
example is the use wearable pressure sensors to study pressure changes in the
jaw movements of cattle [15].

In addition to movements, audio signals captured by microphones allow the
study of the vocalizations that certain animals emit to communicate with each
other [58,76]. This can be used to measure the response to stress [19], or how
they communicate during mating [34], or while performing a task [68]. There
exist specific software applications for detecting and classifying ultrasonic vocal-
izations such as DeepSqueak [18] or BootSnap [1].

3 Methods

In computational ethology, techniques developed in the field of computer vision
and AI are used to process the data collected in the experiments. To study
the trajectory and locomotion of an animal, tracking algorithms segment the
animal with respect to the background obtaining the center of mass and orienta-
tion, among others properties, automatically. To study other behaviors such as
grooming, resting or rearing, it is necessary to label these behaviors firstly. This
task can be performed using a supervised approach, where the behaviors to be
studied are indicated in the algorithm that extracts the time segments in which
they occur, and an unsupervised approach, where the data is fed into an algo-
rithm to extract patterns, which is very interesting for highlighting behaviors
that were not previously foreseen by the scientist or that escape the human eye.
These algorithms study temporal dynamics in the time or frequency domain,
where the former studies how data vary as a function of time and the latter how
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cyclic movements vary as a function of their frequency [20]. In the following we
discuss current approaches and tools for the two fundamental tasks of tracking
and behavior classification.

3.1 Tracking

DeepLabCut [57] is a markerless motion tracking system based on transfer learn-
ing that can be easily tailored to the specific experimental setting. Recently, it
has been used for measuring monocular ability of mice to assess distances [6,61],
the behavioral risk assessment of mice [78], study of novelty induced behavioral
dynamics in threat prediction [3], the management of fish passage in rivers [53],
kinematics of time-varying lumbar flexion-extension [31], behavioral profiling of
rodent stroke recovery [79], X-ray video analysis of rodent locomotion [44], car-
diac physiology assessment in zebra fish [72], multianimal pose estimation and
tracking [47], pose estimation of speech articulators [81], gait analysis in stroke
survivors [50]. DeepLabCut can be also used as the basis for the development of
dedicated systems, such as the Anipose system for estimation of 3D pose [42].
In addition to estimating the 3D pose, it enables the camera calibration, the fil-
tering of the trajectories and allows the visualisation of the tracked data. Some
independent comparative evaluations found that markerless tracking systems are
still requiring improvements in order to achieve the same tracking accuracy as
current marker based systems [59], while others found good agreement between
markerless system and marker based gold standard motion tracking in specific
tasks [23,70,77].

Bonsai is a programming framework for neuroscience experimentation that
allows data acquisition, experiment control, data processing, and pose tracking
[51]. Also, Bonsai allows the integration of one or more sensors such as cameras
and local field potential (LFP) recording thanks to its Open Ephys acquisition
system [74]. This open-source software has given rise to several products in
the field of neuroscience, such as the GoFish platform, which uses Bonsai to
experiment with fish [2], rodents [16] and flies [33]. It has been used to study
the impact of feeding on the organism neural systems [66], how chronic stress
affects the body [67], the frailty associated with Alzheimer’s disease [46], and
mice torpor [35].

Another popular system is LEAP, which also provides a pose estimation and
tracking system based on deep neural networks. It follows 3 steps: i) registration
and alignment of centroid to improve the efficiency and accuracy, ii) labeling
and training of images to create the ground truth to train the neural network
and helps the system to find the body parts, iii) pose estimation itself [64].
However, LEAP has been superseded by SLEAP (Social LEAP) that is able to
track groups of animals in order to study social interactions between individuals.
SLEAP provides animal poses in a multi-animal system experimentation [63]
using a type of convolutional neural network called DenseNet, where all layers
are connected directly to each other [37]. DeepPoseKit [32] is another recent
toolkit for animal pose estimation based on Stacked DenseNe, which is a variant
of DenseNet.
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3.2 Behavioral Classification

There are many open-source applications to annotate animal behaviors auto-
matically based on AI methods, which can either be supervised or unsupervised.
In the former type, the user has to tag some frames to train the models, whereas
in the latter type there is no need for prior labeling, reducing user bias.

A classic software resource for behavior classification is JAABA [41], which
is an open-source application based on a semi-supervised machine learning algo-
rithm, where the user tags the behaviors of a small series of frames and then the
algorithm is able to classify the rest of the dataset. Moreover, this system is used
as support for human annotators in the manual process to obtain the ground
truth that will be used to train other behavior classifiers. Events that occur dur-
ing experiments with more than one animal can also be labeled [60]. Allowing free
interaction among animals is a desirable trait. The Mouse Action Recognition
System (MARS) [69] is an automated method for pose estimation and behavior
quantification in couples of mice that can interact freely. MotionMapper [8] is
another classical system for mapping animal actions from raw images. Once the
images are segmented and aligned, a Morlet wavelet is applied to obtain the
spectrogram for each postural mode. After a normalization, a watershed trans-
form is applied to isolate the peaks. As a result they obtain behavioral regions
where can be differentiate several movements such as fast leg movements, slow
movements, wing movements, posterior movements, locomotion gits and ante-
rior movements. This way, they can compare the behavior between males and
females.

Deep learning techniques area also extensively used for behavior recognition.
DeepEthogram[9] classifies behaviors applying deep supervised learning from
raw pixels. Its is composed of two convolutional neural networks extracting spa-
tial and dynamic flow features. This classifier is widely used, for instance to
extract walking or grooming events [25], or small-scale movements such as rat
liking after having eaten tasty food [38]. In addition, transfer learning is very
useful for building models from previously trained networks as it requires less
computational time and less data [40].

There are unsupervised methods such as B-SOiD [36], which identifies behav-
iors without user interaction. It first extracts pose relationships to identify pat-
terns and find the optimal number of cluster groups. Then a random forest model
is trained to predict categories of behaviors. This algorithm has been referenced
in several works, to classify repetitive behaviors using data from tracking beads,
where the system is fed with data on distances, angles and velocities [48].

Unsupervised deep learning approaches have also found application in behav-
ior categorization. The Selfee [39] method for self-supervised feature extraction
can also be used as input to the B-SOiD algorithm. Selfee uses a convolutional
neural network to extract features from raw video recordings to feed other clas-
sification algorithms. VAME [52] is another unsupervised deep learning frame-
work that identifies behavioral motifs from bottom-up images. This algorithm
uses DeepLabCut to estimate the pose of the animal and once the trajectory is
obtained, a recurrent neural network is fed to obtain the motifs. Finally, VAME
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results can be clustered with the k-means algorithm [67] in order to extract
the relevant behavioral motifs. PyRAT [21] is an open-source python library to
analise animal behavior by estimating traveled distance, speed and area occu-
pancy. The unsupervised algorithms used in this library are hierarchical agglom-
erative clustering and t-distributed stochastic neighbor embedding (t-SNE) for
classification and clustering.

Apart from this, there are different tools to detect behaviors based on heuris-
tic algorithms such as BehaviorDEPOT, a tool that uses statistics based on
animal dynamics and posture [26].

4 Conclusion and Future Perspective

This short review includes an overview of the sensors currently used in exper-
imentation, the best known of which are RGB video and depth cameras, pres-
sure sensors, RFID antennas, accelerometers and microphones for recording mice
vocalizations. In this short review we have aimed to make a compilation of the
most widely used and known methods and algorithms in computational ethology
for both tracking and classification of behaviors. Based on machine learning and
deep learning, these methods can follow two basic learning approaches: super-
vised or unsupervised. In the first one, the data is previously labeled and the
rest of the data is searched for known information. The second approach is the
unsupervised approach, in which the data is not labeled in order to look for
common patterns of behavior and even discover unforeseen ones. While super-
vised methods may achieve greater precision in tracking, unsupervised methods
have the advantage of not requiring labeled inputs in order to obtain relevant
behavior categories.

Although the levels of precise measurement of behaviors achieved with cur-
rent methods is very high, there are still limitations to overcome, such as the
extension of the methods to large experimental arenas, which resemble natural
spaces more closely.
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Abstract. Voice rehabilitation and diseases prediction is required today because
neural degeneration or neurological injury alters the motor component of the
speech system in the phonation area of the brain. A novel approach to voice
rehabilitation consists in predicting the phonetic control by the EMG. In a previ-
ous work we demonstrated that the voice-production apparatus (tongue muscle)
generates a specific EMG signal that identify the phoneme emitted. The inference
paradigm is EFuNN (Evolving Fuzzy Neural Network) trained by the sampled
EMG (ElectroMyo Gram) signal at phonation-. Time. A phoneme-to-speech non-
invasive epidermal patch is to be designed with energy harvestimg and MEMS
loudspeakers.

Keywords: EFuNN · Evolving Fuzzy Neural Network · voice dysarthria · Voice
rehabilitation ·Myoelectric signal · Patch

1 Introduction

In a previous investigation work [1] we demonstrate that voice prosthesis is feasible if
an Evolving Fuzzy Neural Network (EFuNN) is trained by the Electromyogram EMG
(Electro Myo Gram) generated by the voice signal, but the standard electronics is too
invasive.

For these reasons we design an epidermal patch (Fig. 1) to be non-invasive. Several
Investigations concerns epidermal patch, The most advanced is the one of Samsung
[2] South Korea were some investigators develop stretchable heart rate monitoring skin
patch. This was possible because Samsung detects the technology of flexible displays,
so a skin patch has valuable performances in integrating stretchable oled technology

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 28–32, 2023.
https://doi.org/10.1007/978-3-031-34204-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-34204-2_3


Toward an Epidermal Patch for Voice Prosthesis and Diseases Prediction 29

to display HR (Heart Rate) in real-time and no-invasiveness. But Samsung’s patch is
intended to displayn only HR, not vital signs like our patch.

Another investigation concerns epidermal patch for monitoring metabolism [3].
InThis investigation with non-invasive approach try to predicts degenerations due to
daily activities.

Fig. 1. The patch has two MEMS loudspeakers to reproduce aloud the synthesized voice and an
harvesting system to provide electrical energy to the electronic vircuits. (Analog Devices sensors).

Several trials and research and development efforts were engaged in the time, but
the mayor difficulty is to have the approvals by the FDA (Food nd drug Administration).

2 Energy Harvesting

Energy harvesting is a common practice in body devices because it is the only way to
provide electrical energy wirelessly and without recharge. The Japanese company Seiko
has developed an harvesting technology named Kinetik [4] that harvest electrical energy
from movement, charging a supercapacitor (SUPERCAP) to provide electric power to
a microstep motor that moves the watch’s parts.

Several harwesting modes have been implemented in the e-health field named body
harvesting, like body thermal harvesting or photovoltaic harvesting, but none of them
capable to solve adequately the electronics powering.

Prof. ThibadoUniversity ofArkansas (USA) has defined amethod and the electronics
to harvest electrical energy by graphene.

This method is independent from time and position, so it is the best option for patch’s
energy requirements.

At ambient temperature,micro sized-sheets of freestanding graphene are is in contant
motion even in the presence of an applied bias voltage. Thibado and his investigation
team quantify out-of-plane movement by collecting the displacement current [5].
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3 Flexible PCB

AnalogDevices INCorporate (ADI) have integrated on a SoP (System-on-Package) all
the needed electronics for vital signs measurements: the AFE (Analog-Front-End), the
LEDs (Ligth-Emitted-Diodes), the mixed signal electronics, theMCU (MicroController
Unit) (ARM-architecture-based) and BLE (Blue Tooth Low Energy) to wirelessly con-
nect to the APPs (Fig. 2) of a smartphone. If flexible PCB is available to integrate the
SoP electronics for vital signs detection, so a patch-like could be designed.

Fig. 2. The analog Devices’s watch has on a SoP all the resources to acquire vital signs from
human being and visualize in apps android/IOS OR ADI like wavetool. (courtesy of Analog
Devices).

4 Ng and Processing the Myoelectric Signal

The ADI’s (Analog Devices Inc) SoP integrated all the electronic to detect the myo-
electric signal by means of two stainless-steel surface electrodes available at bottom of
the watch and placed on the neck sublingual muscles during swallowing and speech. A
third electrode (reference) was also placed. The three-electrode set detects in differential
mode the electric potential that controls the muscle during utterance of each phoneme
of the word. The electrodes are connected to a smartphone. (Fig. 2). The recorded myo-
electric patterns have been displayed on the smartphone as EMG and microcontroller
running the EFuNN application converts it into the uttered phoneme (Fig. 3).

Fig. 3. Each EMG pattern is generated by a speech phoneme.
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5 Electro Myo GRAM and Phonemes

Each phoneme generates an Electro Myo Gram (EMG) pattern (Fig. 3), so a neural
network (NN)can be trained to infer about the intention to speech a specific word by the
subject tested.

The EMG is collected by the twometal electrodes on the bottom of the watch applied
to the neck of the subject that swallow the phonem. The pattern, captured and digitalized
is labeled and used to train the EFuNN (Fig. 3.).

The training dataset consisted of the raw sampled data from the myoelectric signal
and one label that classify the pattern as generated by a specific phoneme. Thousands
of patterns need to be collected and classified to proceed to supervised learning of
the predicting paradigm. After learning the paradigm will be able to predict from a
myoelectric pattern the phoneme that the subject is to utter.

6 He EFuNN Paradigm

EFuNN (Fig. 4) is a particular implementation of the ECOS [7] (Evolving COnnectionist
System). ECOS IS a biologically inspired framework. IEFuNN Synthesize the rules by
a BPNN (Back Propagation Neural Netwok), otherwise fuzzy systems need of an expert
(human). I t is a paradigm that evolves through incremental, on-line learning, both
supervised and unsupervised. EFuNN [7, 8] is fasterfaster than multilayer perceptrons
and fuzzy networks.

Fig. 4. The EFuNN (Evolving Fuzzy Neural Network) paradigm.

7 Daftaset, Training and Test

To trainThe E FuNN [9] from the myoelectric patterns a dataset has been built. The
dataset consists as follows:
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V1 V2 V3 V4 V5 V6V7 V8 V9 V10 V11 V… Vj … VN Ln.
Vj: j-th amplitude of the j-th sample of the n-th myoelectric pattern.
Ln: n-th label associated to the n-th sequence.
To test the EFuNN [9] we apply the same dataset used to train.Tthe wovels used are

the five from Italian languge /a/, /e/, //i/, /o/, /u/, and the word /aiuole/ that inludes all
the wovels.

8 Conclusion and Future Developments

To develop a real patchwe have to design a fexible PCB to host all the needed electronics,
included the energy harvesting andMEMS loudspeakers. Fraunhofer IPMS investigators
[13] develop all silicon MEMS speaker for mobile audio. This is a novel audio trsducer
technology that we intend to test and integrate on the patch because it is enegy efficient
and specifically optimized for transduction.

We intend also to investigate how to port efficiently the EFuNN paradigm on an
ARM M4-M3 architecture or like NXP CSP (Chip Scale Package) ARM Cortex M0
+ processor MCU. It is interesting because it is ultra-low power and optimized for
low-leakage applications.

A third step in future investigation concerns the harvestingmode. Thibado graphene-
based is interesting but covered by a patent and need to be investigated about his
feasibllity .
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Abstract. In this paper, the factors of positive user experiences when using AI
systems are investigated. For this purpose, a two-stage qualitative usability study
was conducted for theOMA-MLplatform as an example. OMA-ML is anAutoML
platform that automates complex tasks in machine learning (ML) and generates
ML pipelines. The usability of OMA-ML was measured against the ISO 9241-
110:2020 standard in an expert evaluation. The vulnerabilities with the greatest
impact on the application were prioritised and tested in a qualitative usability
test. The results of the usability test are presented along with recommendations
in a usability evaluation. This study aims to contribute to the understanding of
the usability of AI systems and their impact on the experience of the different
user groups. It found that special attention needs to be paid to those interaction
principles that serve to build user trust towards the AI system. For this purpose,
the interaction principles with the main design dimensions for interaction with AI
systems were derived.

Keywords: Artificial Intelligence Systems · Automated Machine Learning ·
User Experience · Usability

1 Introduction

Artificial intelligence (AI) systems, in particular ones using machine learning (ML), are
in everyday use (Russell and Norvig 2020)1. User Experience (UX) is important when
assessing the relationship between AI and users, as it is necessary to comprehend users’

This work was partially funded by the German federal ministry of education and research (BMBF)
in the programZukunft derWertschöpfung (funding code 02L19C157), supported by Projektträger
Karlsruhe (PTKA), and by hessian.AI Connectom for project “Innovative UX für User-Centered
AI Systeme”. The responsibility for the content of this publication lies with the authors.
1 In this paper, we use the term AI systems as a general term for AI-based IT systems, including
AI applications for end users (e.g., medical doctors) as well as AI platforms for AI specialists
(e.g., ML experts developing end-user AI applications).
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needs and behaviours (Chapman et al. 2016). Usability is an important element of UX
that emphasizes on a product’s ease of use and learnability. It can have a significant
influence on user satisfaction and task performance (Lazar et al. 2017). Unfortunately,
the discussion of UX issues in the scientific AI community is limited (see related work).
This paper aims to raise awareness for this issue by presenting a case study and providing
and discussing respective guidelines. Our underlying goal is to make AI systems better
accessible to people.

The case study focuses on OMA-ML (Ontology-based Meta AutoML) (Humm and
Zender 2021; Zender and Humm 2022), an AI platform for automated machine learning
(AutoML). OMA-ML with its claim “effective machine learning made easy” serves the
goal of making AI applications better accessible to end-users in two ways: directly and
indirectly. By allowing domain experts (e.g., in biomedicine) with limited programming
and ML expertise to generate ML models, this directly broadens the access of AI tech-
nology to science and industry. ML models that have been generated using OMA-ML
may be integrated in end-user AI applications, e.g., for medical doctors. Via ML model
explainability features (see e.g. (Lundberg and Lee 2017), OMA-ML indirectly supports
accessibility of end-user AI applications by providing the background information for
explanations of predictions to end users like medical doctors.

The remainder of this paper is structured as follows. Section 2 presents related work,
in particular criteria for UX in AI systems. Section 3 introduces the user interaction
concept of OMA-ML. We then describe the methodology and main findings of a UX
survey of OMA-ML in Sect. 4. In this survey, users were interviewed regarding their UX
requirements and the implementation of those requirements in OMA-MLwas evaluated.
The survey results were used for improving the UX of the OMA-ML platform. They
have also been used as a basis for a set of UX recommendations for AI systems which is
the main contribution of this paper (Sect. 5). Section 6 concludes the paper and indicates
future work.

2 Related Work

AI systems which use ML have gained increasing importance in recent years, with
applications ranging from image and speech recognition to natural language processing
and prediction systems (Alcácer and Cruz-Machado 2019; Bonaccorso 2017; Lu 2017).
However, the success of these systems depends not only on their underlying algorithms
and data, but also on how they are presented to human users and how they interact with
them(Moustakis andHerrmann1997).UX is a collectionof techniques for understanding
users’ needs and behaviours to create useful, usable systems and services (Chapman et al.
2016). To encourage improved UX for AI systems, the human-computer interface (HCI)
community is calling for multidisciplinary collaboration and a user-centred approach
(Abdul et al. 2018; Wang et al. 2019).

Unfortunately, the role of UX in AI systems has received little academic attention in
the past years (Chromik et al. 2020).Nonetheless, the number of pertinent papers has been
slowly rising and has continued to do so as AI is becoming more and more prominent
in a variety of settings. For example, Fucs et al. (2020) present findings from a case
study of the use of a storytelling method to design and validate the UX of AI assistants
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for the oil and gas industry by using animated sketch-based video. Li and Lu (2021)
investigate how non-AI-expert end users can be engaged in the design process of an AI-
enabled application by using a framework called Smart Service Blueprint Scape (SSBS).
Kurdziolek (2022) states that in the realm ofML, usability is also a crucial factor. If users
do not understand howML-based technologies work, they will be less likely to trust and
adopt them. The term usability refers to techniques used to make a product more user-
friendly during the design process (Nielsen 2012). In addition, usability also measures
satisfaction, which involves UX (ISO 2019a). The audiences forMLmodel explanations
come from varied backgrounds and have different levels of experience with statistics and
mathematical reasoning, making it challenging to communicate and explain MLmodels
effectively. Additionally, cognitive biases can affect how users interpret and understand
explanations. Ensuring transparent and understandable explanations is important for
increasing trust and adoption of ML-based technologies (Kurdziolek 2022).

Another important part of usability is user expectations. According to the expectancy
disconfirmation theory (Oliver 1977), user expectations can significantly impact their
perception of usability. When the quality of the usability experience falls below expecta-
tions, it can lead to dissatisfaction. On the other hand, if the quality exceeds expectations,
it can result in satisfaction. Venkatesh et al. (2003) also state that it has been proven
through empirical evidence that an employee’s expectations of usability can predict the
likelihood of adoption, particularly in the context of information system usability. The
key is knowing the users’ expectations towards controllability versus the technically
possible high-level automation of the system and the real need for control (Shneiderman
2020).

3 OMA-ML User Interaction Concept

OMA-ML is an AI platform with two target user groups: domain experts (experts in
an application domain like biomedicine who may not have programming expertise)
and AI experts (users with programming and AI/ML expertise). OMA-ML allows both
user groups to automatically generate ML pipelines containing ML models trained on
datasets. Domain experts may use the automatically deployed ML pipelines for making
predictions for new data on the platform, e.g. predicting diseases based on medical
conditions. AI expertsmay download the source code forMLpipelines to include them in
newly developed AI applications for end-users. A major benefit of OMA-ML compared
to existing AI platforms like Rapidminer is the diversity of automatically generated ML
pipelines. To the best of our knowledge, OMA-ML is the only AI platform that generates
ML pipelines for a large variety of ML libraries, avoiding vendor lock-in common in
commercial AI platforms.

We will use OMA-ML as a sample AI system for the UX study presented in the next
section. In this section, we briefly present the user interaction concept for OMA-ML.
See Fig. 1 with a screenshot of the model dashboard page.

Users may upload datasets in various formats to the platform, including tabular data,
images, texts, and time series. In the example shown inFig. 1, aCSVfile (tabular data) has
been uploaded containing medical conditions of diabetes patients. The uploaded dataset
can be used for trainingMLmodels. For this, variousAutoML solutions can generateML
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Fig. 1. OMA-ML model dashboard.

pipelines for various ML libraries in parallel (for details see Zender and Humm 2022).
Domain experts may use a wizard for starting ML training in a simple and intuitive way;
AI experts may configure the training session in a sophisticated and detailed way. After
training has completed (which may take a few minutes or several days, depending on
the complexity of the dataset and the time limit configured by the user), a leaderboard is
displayed. The leaderboard allows comparing all generated ML models regarding their
performance: prediction quality, prediction time and environmental impact. The user
may select an ML model depending on his or her preferences. When selecting a model,
the model dashboard shown in Fig. 1 is opened. In this example, a LightGBM (light
gradient boosting machine) model was generated by the AutoML solution FLAML, as
is indicated in the overview card of the dashboard (top). Other cards of the dashboard
show details about the configuration or the training process whichmay be relevant for AI
experts (bottom right). The explainable AI module is shown in the analysis card (bottom
left) which may be interesting for domain experts and AI experts alike. It indicates the
importance of various features of the dataset (here: Glucose, BMI, Pregnancies etc.)
on the prediction of diabetes disease in this ML model. Domain experts may check
the validity of the ML model with their medical domain knowledge. Both cards in the
centre of the dashboard allow using the ML model. Medical doctors may upload a file
with new patient data and use the OMA-ML platform for predicting the likelihood of
those patients suffering from diabetes (predict online card centre left). AI experts may
download the generated ML pipeline as a set of Python source code files (download ML
pipeline card centre right). They may be included in a new AI application for medical
doctors working with diabetes patients.
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4 UX Evaluation of OMA-ML

4.1 Methodology

In 2022 an expert review in the field of usability was conducted to detect usability weak
points and to increase the overall user experience ofOMA-ML.A use casemodel (Bittner
and Spence 2003) was created beforehand to set the scope for the research. The usability
weak points were identified using the interaction principles of (ISO 9241-110 2020). An
actual-versus-target analysiswas built to show a direct comparison in order to highlight
the usability weak points. In total, eight usability tests were carried out in order to reveal
potential areas of confusion and uncover opportunities for improving the overall UX.
Both target user groups of OMA-ML were included in the usability tests in equal parts.
The ages of participants ranged from 24 to 44 years. Participants were from Brazil (1),
Dubai (1), and Germany (6)2. Each usability test lasted between 1.5 and 2 h on average.
A usability evaluation was performed for all usability test findings.

Methods Used. For this study, qualitative research techniques were selected to enable
comprehending what users value most in their experiences (Merriam 1998). Qualitative
methods in usability research are used to identify possible usage barriers and their reasons
among users. The question is not whether a problem is statistically frequent, but rather to
identify the possible problems and to understand themental models behind them.Mental
models are experience-dependent, excerpt-based, conceptual notions of users of how to
deal with an application and what consequences and meanings result from it, established
prior to its use (Dutke 1994). Knowledge about mental models of the specific user group
of an application is especially important for the introduction of novel technologies for
users’ acceptance and positive usage experience.

To gain insight into how to improve the usability ofOMA-ML, the phenomenological
method was used. Phenomenology is a useful approach for examining the experiences
of a small group of people and uncovering the essential elements of those experiences.
This method can be used to identify patterns and relationships that contribute to a deeper
understanding of the phenomenon being studied (Creswell and Creswell 2017; Mous-
takas 1994). A Use-Case Model was created to define the scope of this research paper.
It was used to identify the processes that the target groups will later experience with
the system. Use-Cases characterize the functionality of a system and, by extension, its
external behaviour. A significant advantage of Use-Cases is that they break down the
variety of functions from the user’s perspective into logical units and define them in
more detail step by step (Bittner and Spence 2003; Richter and Flückiger 2010).

Well-known challenges with qualitative methods, in addition to small sample size
and sample selection (Oppong 2013), include the Hawthorne effect, which accounts for
the influence of unnatural interview situations (Sedgwick andGreenwood 2015). For this
reason, it is important to understand the analysis not in terms of a quantitative evaluation,
but as a basis for discussion of alternative mental models of users. Furthermore, the
interviews were conducted online, allowing subjects to engage with the test subject

2 The participants were required to sign a declaration of consent to have their data collected. The
signed consent forms can be obtained on request. All participants were given the right to revoke
the consent form and withdraw from the data collection.
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in a familiar environment. To minimize the known risk of observer bias (Nagappan
2001), pre-planning and repeated consensus-seeking through peer debriefing was used
to reduce the risk (Stiles 1993). Themain aspects of the usability test were discussedwith
the OMA-ML development team and two other UX specialists to formulate a plan that
minimized observer bias. The usability test itself was practiced and optimized several
times before the actual test began.

An expert review (usability inspection method) was conducted to identify poten-
tial usability problems within the scope of the research. This type of review involves
examining a system, like a website or an app, for any potential issues with usability.
While there may be some overlap between expert reviews and heuristic evaluations, it is
acceptable to consider an expert review as a more comprehensive version of a heuristic
evaluation (Harley 2018). Heuristic evaluation is a common way to check for usability
issues, and it is relatively simple, inexpensive, and effective at identifying both major
and minor problems. However, it may not catch domain-specific issues, which is why
it is important to use the appropriate heuristics (Nielsen 1994, 2005). One of the most
important and current sets of guidelines, rules, and best practices is the ISO Standard
9241, with part ISO 9241-110:2020 specifically outlining interaction principles. The
expert review in this study was conducted using these interaction principles.

The usability issues identified in an expert review may differ from those found in
a usability test, which is why using both methods together leads to the most effective
overall design (Harley 2018).

To present the usability issues, a radar chartwas used to create a comparison between
the intended function of the system and its current performance. This analysis, called an
actual-versus-target analysis, allows for the presentation of any discrepancies between
the actual and desired system state. The findings of the usability test were collected and
organised in a usability evaluation.

Usability Heuristic Used. The variables of the actual-versus-target analysis were
the interaction principles by (ISO 9241-110 2020) are as followed: suitability for
the user’s tasks, self-descriptiveness, conformity with user expectations, learnability,
controllability, user error robustness and user engagement.

The order in which the principles are presented here does not imply any priority
(ISO 9241-110 2020, p. 11). The German version of (ISO 9241-110 2020) provides
a checklist which was used for the expert review to determine whether the interaction
requirements have been met (ISO 9241-110 2020, pp. 34–45).

Measurements. The variables were measured by a scale of 1 to 5. The target state
numbers indicate the extent towhich theAI platform interface needs tomeet the specified
values within the use case model, while the numbers of the actual state represent the
current state of the usability inOMA-ML. To differentiate the numbers from one another,
each numberwas given a unique formulation for the desired target-state: (01) expectation
does not need to be met, (02) expectation needs to be met very rarely, (03) occasionally,
(04) very frequently, (05) fully.
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If the actual state of the interface did not meet the desired target state, this would
indicate that the interaction variable required further refinement, as it was considered a
weak point. The findings of the expert review can be seen in Sect. 4.2.

Usability Test. Pretesting questions were conducted to collect precise informa-
tion about the participants’ demographics, motives, beliefs, expectations, existing
approaches, and prior experience with AI platforms. In the next phase, participants
were guided to OMA-ML to engage with the interface, identify any pain points in their
experience and perform their work tasks, within the use cases. During the observa-
tions, follow-up questions were asked to reveal hidden motivations and expectations
behind user behaviour. The task was moderated, and participants were guided through
the instances. The moment the participants were prompted to share their screen, the
moderator invited the participants to think aloud while interacting with OMA-ML. The
participants were also frequently encouraged to share their thoughts. After the task com-
pletion, the participants moved to the post testing questions to gather feedback on the
overall user experience. The objective was to analyse the end-to-end user experience,
which gives insight into any necessary workflow modifications within the experience
of the AI platform. The participants were asked about their overall impression of the
experience. Content analysis was used to analyse the usability test data that had been
collected.

Usability Evaluation. The findings were then collected, structured and ranked in order
to prioritise the issues that needed to be addressed following the five severity levels
by Nielsen Norman Group (1994): (0) Not a usability problem at all; (1) Cosmetic
problem only: need not be fixed unless extra time is available on project; (2) Minor
usability problem: fixing this should be given low priority; (3) Major usability problem:
important to fix, so should be given high priority; (4) Usability catastrophe: imperative
to fix this before product can be released.

4.2 Main Results

Results of the Expert Review in the Field of Usability. The expert review in the field
of usability uncovered a total of four interaction principles with weak points. The weak
points identified were suitability for the User’s tasks, self-descriptiveness, conformity
with user expectations, and user engagement. The data was then used to create a radar
chart to highlight the usability weaknesses of OMA-ML (Fig. 2). The measurements
shown are explained in Sect. 4.1.

Results of the Usability Test Evaluation. The usability test evaluation counted 73
usability problems in total. Each usability problem was assigned one or more interaction
principles: conformity with user expectations (35), self-descriptiveness (30), controlla-
bility (16), suitability for theUser’s tasks (13), user engagement (11), use error robustness
(5), and learnability (1). Major usability flaws were collected, some of the most notable
ones were:

• Correlation matrix: Based on the uploaded data, a correlation matrix is displayed
in a dataset overview. Most participants had difficulty viewing and understanding
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Fig. 2. Actual state and target state of OMA-ML for each interaction principle.

the interface element “analysis” in which the correlation matrix was located. Most
issues were the viewing experience in the context of the size and white space, the
lack of information about the source, as well as the missing purpose and type of the
illustrated correlation matrix. This usability problem addressed the interaction weak
points: Self-descriptiveness, conformitywith user expectations, and user engagement.

• Predict Online: OMA-ML offers a powerful feature to make predictions online
based on the ML model trained. The participants felt confused in the final stages of
the usability test and did not grasp the context of “predict online” and therefore did not
understandwhat to do next. This feature is amajor advantage of OMA-ML, but by not
providing sufficient information about how to use it, OMA-MLmissed an opportunity
to showcase its capabilities. This usability problem addressed the interaction weak
points: Self-descriptiveness, suitability for the user’s tasks, conformity with user
expectations, and user engagement.

5 Recommendations for UX in AI Systems

As described, the interaction principles formulated in (ISO 9241-110 2020) provide a
basis for eliciting usage requirements that lead to a positive UX via satisfactory usability.
UX is defined in (ISO 9241-210 2019) as “perception and reaction of a person resulting
from the actual and/or expected use of a system, product or service”. In this sense,
it is important to pay attention to what users perceive AI-based systems as, or what
expectations and requirements they derive. Their perceptions are formed from their
experiences and their accompanyingmental states andmentalmodels. This can vary from
user group to user group, which is why intensive user experience research is essential.

The interaction principles have been developed to ensure smooth human-computer
interaction. The human involved was considered as the user of an application or system,
who should be enabled to operate, or control it, by observing the criteria of dialog design.
With the integration of AI into systems, the roles of humans and machines may change.
The user who controls a tool is transformed by the service of AI into a beneficiary who
benefits from the decisions of the system. This new role must be worked out for the
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particular AI system – also depending on process situations. According to Shneiderman
(2020), one is moving here in a decision space (HCAI framework) in which the degree
of control and automation must be situationally relevant and dynamically adapted. If the
new role of the user no longer requires constant control of the application by the user
but, on the contrary, its at least temporary abandonment, the requirements for the design
of user interfaces of such applications change. Instead of the experience of control, the
experience of trust must be brought more to the fore (Botsman 2017).

This requirement could be traced in the usability study of OMA-ML. Those interac-
tion principles that aim at the users’ autonomy and ensure their control over the system
took a back seat in the users’ requirements. These are: controllability, learnability, and
error robustness. In contrast, those principles were considered more significant and crit-
ical that strengthened the cooperation between human and AI system and, thus, the
trust in the decisions of the system. These are: suitability for the user’s tasks, self-
descriptiveness, and user engagement. Furthermore, the divergence between the look,
interaction offer and behaviour of the application and the expectations of the users
(expectation conformity) must be considered (Fig. 2).

Based on this study the following measures are recommended to ensure a good UX
for AI systems:

(a) User Engagement:

• The systemmotivates the user to use it. It demonstrates attractively and respectfully,
that it addresses the users’ needs.

• The system demonstrates its trustworthiness to the user. It assists with user deci-
sions, clarifies processes, explains risks and consequences, and how to eliminate them
if necessary. The information provided gives orientation at all times about location
in navigation, process stage and possible actions.

• The system involves the user. It allows the user to object where appropriate, or to set
their own preferences within the given framework. Furthermore, it offers the user the
opportunity to submit improving suggestions for changes and system enhancements.

(b) Self Descriptiveness:

The system provides understandable information. The (and only this) information is
given to the user exactly when it is needed, transparently and formulated in such a way
that the user can understand it.
The system clearly shows its system state.Necessary user input, progress in the process
and changes in the system state are clearly displayed.
The system is role-transparent.Depending on the situation, the roles between the user
and the system are addressed and information is provided about them.
The systemprovides informationaboutAIprocesses. It offersmeaningful information
about the logic involved and the scope and intended effects of such processing. It explains
how decisions have been made and provides the user with opportunities to give feedback
or ask questions.

(c) Suitability for the User’s Task:

The system informs about its task suitability. It provides the users with enough infor-
mation to enable them to determine for themselves whether the system is suitable for
the results they are seeking.
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The system enables effort optimization in the execution of tasks. It provides tools
exactly when they should be used. The process to be performed by the user can be
reasoned in terms of task and not technology.

(d) Conformity with User Expectations:

The system behaves appropriately from the user’s point of view. It provides steps for
completing the task that are consistent with the users’ understanding of the task. It does
not require steps that users do not consider appropriate based on their understanding.
The systembehaves and communicates consistently. It uses cultural, professional, and
linguistic conventions for representation, input, and control that are familiar to users. It
behaves consistently within the interactive system and across other interactive systems
with which the user is expected to interact.
The system is able to respond to changes in the context of use. It is able to respond to
the different needs of individual users, to changes regarding the physical environment,
as well as to changes of connected resources.

To ensure a positive UX when using AI systems, a participatory development pro-
cess is necessary. The following recommendations help addressing the criteria in the
development of AI systems:

• Early interdisciplinary collaboration: UX designers also need to understand the
technical concept, goals, opportunities, and risks of the application being developed
in order to properly set up tests, for example.

• Deep understanding of the user group: This includes knowledge of the users’
domain-related processes, the context of use, and also the mental models and
perceptions with which the AI system will be encountered.

• Early user involvement: Users should already be involved in the concept phase
to ensure trust in the AI system through a positive UX. Today, the development of
AI systems is still often technically motivated. The technical perspective (“What
works?”) should be abandoned in favour of the user perspective (“What helps?”).

• Multiple iterations: Several iterations with user participation should be included
in the development process. Tests should be conducted at early stages (expectation
determination, context analysis, concept test, flow test, wireframe test, prototype test)
and not only at the end of the development phase.

6 Conclusions and Future Work

The role of UX in the development and design of applications is critical. UX focuses on
creating a positive and meaningful experience for users when interacting with a product
or service. In addition to influencing user happiness and productivity, the design of AI
systems may also promote technological uptake and utilisation. Nevertheless, UX does
not yet play a major role in the field of AI. In this context, the interaction between
humans and AI systems represents a paradigm shift in human-computer interaction: the
transformation of the user from operator to beneficiary of an application.

In order to better understand how to improve the usability and, therefore, the user
experience of anML-basedAI system likeOMA-ML, this research took a qualitative and
user-centric approach. The usability study comprised two test groups (domain experts
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andAI experts). The evaluation was based on the seven interaction principles (ISO 9241-
110, 2020). Subsequently, the results from the tests were re-examined and evaluated on
the basis of the changing user role. The study suggests a focus on those interaction
principles that serve to build trust between humans and the system to ensure a good UX
for AI systems.

The interaction principles formulated in (ISO 9241-110, 2020) were developed to
standardise human-machine interaction. This study suggests that the focus is different for
human-AI system interaction. The study elaborated the interaction principles relevant
here. In the future studies, the recommendation of interaction principles specifically
focused on AI systems shall be analysed and reformulated if necessary.
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Abstract. It is well known that Bloom Filters have a performance essen-
tially independent of the data used to query the filters themselves, but
this is no more true when considering Learned Bloom Filters. In this
work we analyze how the performance of such learned data structures is
impacted by the classifier chosen to build the filter and by the complexity
of the dataset used in the training phase. Such analysis, which has not
been proposed so far in the literature, involves the key performance indi-
cators of space efficiency, false positive rate, and reject time. By screen-
ing various implementations of Learned Bloom Filters, our experimental
study highlights that only one of these implementations exhibits higher
robustness to classifier performance and to noisy data, and that only two
families of classifiers have desirable properties in relation to the previous
performance indicators.

Keywords: Learned Bloom filters · Data complexity · Learned data
structures

1 Introduction

Recent studies have highlighted how the impact of machine learning has the
potential to change the way we design and analyze data structures. Indeed, the
resulting research area of Learned Data Structures has had a well documented
impact on a broad and strategic domain such as that of Data Bases, and an
analogous impact can be expected for Network Management [25] and Computa-
tional Biology [13]. More in general, as well argued in [14], this novel way to use
machine learning has the potential to change how Data Systems are designed.
The common theme to this new approach is that of training a Classifier [10] or
a Regression Model [11] on the input data. Then such a learned model is used
as an “oracle” that a given “classical” data structure can use in order to answer
queries with improved performance (usually w.r.t. time). In this work, we focus
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on Bloom Filters (BFs) [1] which have also received attention in the realm of
Learned Data Structures. Such an attention is quite natural, due to the funda-
mental nature and pervasive use of BFs. Indeed, many variants and alternatives
for these filters have been already proposed, prior to the Learned versions [2].

Problem Statement, Performance of a Bloom Filter and a Learned Version.
Bloom Filters (BF) solve the Approximate Set Membership problem, defined
as follows: having fixed a universe U and a set of keys S ⊂ U , for any given
x ∈ U , find out whether or not x ∈ S. False negatives, that is negative answers
when x ∈ S, are not allowed. On the other hand, we can have false positives (i.e.,
elements in U\S wrongly decreed as keys), albeit their fraction (termed hence-
forth false positive rate, FPR for short) should be bounded by a given ε. The
key parameters of any data structure solving the approximate set membership
problem are: (i) the FPR ε; (ii) the total space needed by the data structure;
and (iii) the reject time, defined as the expected time for rejecting a non-key.

Kraska et al. [15] have proposed a Learned version of Bloom Filters (LBF) in
which a suitably trained binary classifier is introduced with the aim of reducing
space occupancy w.r.t. a classical BF, having fixed the FPR. Such classifier is
initially queried to predict the set membership, with a fallback to a standard BF
in order to avoid false negatives. Mitzenmacher [20] has provided a mathematical
analysis for those filters and novel LBF variants, together with a discussion of
their pros/cons. Additional models have been introduced recently [7,23].

The Central Role of Classifier Selection. Apart from an initial investigation
[8,12], the problem of suitably choosing the classifier to be used to build a specific
LBF has not been fully addressed so far. Moreover, the role that the complexity
of a dataset plays in guiding the practical choice of a Learned Data Structure
for that dataset has been considered to some extent for Learned Indexes only
[18].

Paper Contribution. Given the above State of the Art, our aim is to provide
a methodology and the associated software to guide the design, analysis and
deployment of Learned Boom Filters with respect to given constraints about
their space efficiency, false positive rate, and reject time. In order to achieve
these goals, our contributions are the following.

(1) We revisit BFs in their original and learned versions (Sect. 2), detailing
the hyperparameters to be tuned within the related training procedures.

(2) We propose a methodology, which can guide both developers and users
of LBFs in their design choices (Sect. 3), to study the interplay among: (a)
the parameters indicating how a filter, learned or classic, performs on an
input dataset; (b) the classifier used to build the LBF; (c) the classification
complexity of the dataset.

(3) Software platform and findings: we provide a software platform imple-
menting the above-mentioned methodology, along with important insights
about the overall applicability of LBF, as detailed next.
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(a) We address the problem of choosing the most appropriate classifier in
order to design a LBF having as only prior knowledge the total space
budget, the data complexity, the list of available classifiers, and their
inference time. A related problem has been considered in [20] with two
important differences: the filter is fixed, and the obtained results supply
only partial answers, leading to the suggestion of an experimental method-
ology, which has not been validated and it is not supported by software.
Our experiments (Sect. 4) shows that among the many classifiers used
in this research, only two classifiers are worth of attention. Remarkably,
none of the two has been considered before for LBFs (Sect. 5).

(b) As a further contribution, we assess how the performance of State-of-
the-Art BFs is affected by datasets of increasing complexity (Sect. 5). In
particular, we identify a variant of Learned Bloom Filters more robust to
variations of data complexity and classifier performance.

(c) We also provide user guidelines on how to use State-of-the-Art LBF solu-
tions (Sect. 6).

2 Bloom Filters and Learned Bloom Filters

A Bloom Filter [1] is a data structure solving the Approximate Set Membership
problem defined in the Introduction, based on a boolean array v of m entries
and on k hash functions h1, . . . , hk mapping U to {1, . . . , m}. These functions are
usually assumed to be k-wise independent [3,24], although much less demanding
schemes work well in practice [1]. A BF is built by initializing all the entries of
v to zero, subsequently considering all keys x ∈ S and setting vhj(x) ← 1 for
each j ∈ {1, . . . k}; a location can be set to 1 several times, but only the first
change has an effect. Once the filter has been built, any x ∈ U is tested against
membership in S by evaluating the entry vhj(x), for each hash function hj : x is
classified as a key if all tested entries are equal to 1, and rejected (a shorthand
for saying that it is classified as a non-key) otherwise. False positives might
arise because of hash collisions, and the corresponding rate ε is inversely bound
to the array size m. More precisely, Eq. (21) in [1] connects reject time, space
occupancy and FPR, so that one can choose the configuration of the filter: for
instance, given the available space, one can derive the reject time that minimizes
the FPR. Analogous trade-offs [2,20] can be used to tune the hyperparameters of
a BF (namely, m and k) in order to drive the inference process towards the most
space-conscious solution. In particular, fixed an FPR ε and a number n = |S| of
keys, a BF ensuring optimal reject time requires an array of

m = 1.44n log(1/ε) bits. (1)

A Learned Bloom Filter [15] is a data structure simulating a BF to reduce
its resource demand or its FPR by leveraging a classifier. The main components
of a LBF are a classifier C : U → [0, 1] and a BF F , defined as it follows.
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1. Using supervised machine learning techniques, C is induced from a labeled
dataset D made of items (x, yx), where yx equals 1 if x ∈ S and 0 otherwise.
In other words, C is trained to classify keys in S so that the higher is C(x),
the more likely x ∈ S. A binary prediction is ensured by thresholding using
τ ∈ [0, 1], i.e. classifying x ∈ U as a key if and only if C(x) > τ .

2. Of course, nothing prevents us from having a set of false negatives {x ∈
S |C(x) ≤ τ} �= ∅, thus a backup (classical) Bloom Filter F for this set is
built. Summing up, x ∈ U is predicted to be a key if C(x) > τ , or C(x) ≤ τ
and F does not reject x. In all other cases, x is rejected.

It is important to underline that the FPR of a classical BF is essentially
independent of the distribution of data used to query it. This is no more true for
a LBF [20], in which such rate should be estimated from a query set S ⊂ U\S. To
remark such difference, one commonly refers to the empirical FPR of a learned
filter, which is computed as ε = ετ + (1 − ετ )εF , where:

1. ετ = |{x ∈ S |C(x) > τ}|/|S| is the analogous empirical FPR of the classifier
C on S, and

2. εF is the false positive rate of the backup BF.

Hence, having fixed a target value for ε, the backup filter can be built setting
εF = (ε − ετ )/(1 − ετ ), under the obvious constraint ετ < ε. Within the learned
setting, the three key factors of the filter are connected (and influenced) by
the choice of τ . However, due to the dependency on the query set distribution,
reliably estimating the FPR of a LBFs is no longer immediate, as pointed out
in [20], that also suggests an experimental methodology to assess it. The latter
is part of the evaluation setting proposed in this paper.

Here below we outline the main features of the LBF variants which we have
considered. With the exception of the one in [23], for which the software is neither
public nor available from the authors, our selection is State of the Art.

Sandwiched LBFs [20]. The Sandwiched variant of LBFs (SLBF for brevity) is
based on the idea that space efficiency can be optimized by filtering out non-keys
before querying the classifier C, requiring as consequence a smaller backup filter
F . More in detail, a BF I for S is initially built and used as a first processing
step. All the elements of S that are not rejected by I are then used to build
a LBF as described earlier. The SLBF immediately rejects an element x ∈ U
if I rejects it, otherwise the answer for x of the subsequent LBF is returned.
The empirical FPR of the SLBF is ε = εI

(
ετ + (1 − ετ )εF

)
, where εI is the

FPR of I. Here, fixed the desired ε, the corresponding FPR to construct I is
εI = (ε/ετ )(1 − FN/n), where FN is the number of false negatives of C. Also in
this case, the classifier accuracy affects the FPR, space and reject time, with the
constraint ε(1 − FN/n) ≤ ετ ≤ 1 − FN/n.

Adaptive LBFs [7]. Adaptive LBFs (ADA-BF) represent an extension of LBF,
partioning the training instances x into g groups, according to their classification
score C(x). Then, the same number of hash functions the backup filter of an LBF
would use are partitioned across groups, and the membership for the instances
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belonging to a given group is tested only using the hash functions assigned to it.
Even for ADA-BF the expected FPR can only be estimated empirically, but in
this case the formula is rather complicated: the interested reader can refer to [7].
We retained here the best performing variant of ADA-BF.

Hyperparameters. The Learned Bloom Filters described above have some param-
eters to be tuned. Namely, the threshold τ for LBF and SLBF, and two param-
eters g and c̄ for ADA-BF, representing the number of groups in which the clas-
sifier score interval is divided into, and the proportion of non-keys scores falling
in two consecutive groups. The details on the tuning of these hyperparameters
are discussed in Sect. 4.2.

3 Experimental Methodology

In this section we present the methodology which we adopt in order to design
and analyse LBFs with regard to the inherent complexity of input data to be
classified, subsumed as follows. The starting point is a dataset, either real-world
or generated through a procedure suitable for synthesize data in function of some
classification complexity metrics. Overall, the pipeline adopted is the following:
collect/generate data; induce a classifier from data and estimate its empirical
FPR; construct a Learned Bloom Filter exploiting the learnt classifier, and in
turn estimate its empirical FPR. The following sections review the considered
classifier families and describe in depth the adopted data generation procedure.

3.1 A Representative Set of Binary Classifiers

Starting from an initial list of classifiers—without presuming to be exhaustive—
we performed a set of preliminary experiments, from which we received indi-
cations about the families of classifiers to be further analyzed, based on their
time performance/space requirements trade-off1. Namely, from the initial list, we
have removed the following classifiers: Logistic Regression [5], Naive Bayes [9]
and Recurrent Neural Networks [4], due to their poor trade-off performance, con-
firming the results of a preliminary study [12]. The remaining ones are briefly
described in the following paragraphs. Since our evaluation considers both bal-
anced and unbalanced classification problems, we also detail how their inference
is managed in an unbalanced context. The hyperparameters of the corresponding
learning algorithms are distinguished between regular and key hyperparameters,
the latter affecting the space occupancy of the classifier. The model selection
phase only involves non-key hyperparameters, while different configurations for
key hyperparameters are analysed in dedicated experiments aiming at studying
the interplay among FPR, space occupancy and reject time of Learned Bloom
Filters.

1 The experiments and data about this preliminary part are available upon request.
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3.2 Measures of Classification Complexity and a Related Data
Generation Procedure

In order to evaluate dataset complexity, several measures are available (see [16]
for a survey). We specifically focus on measures suitable for binary classification
tasks, and hereafter we use the notation “class i”, i = 1, 2, to refer to one of
the two classes. A preliminary analysis highlighted that some of the measures
in [16] were insensitive across a variety of synthetic data, as happened, e.g., with
the F1, T2, or T3 measures, or needed an excessive amount of RAM (such as
network- or neighborhood-based measures, like LSC and N1 ). As a consequence,
we selected the feature-based measure F1v and the class-imbalance measure C2,
Both measures are in ∈ [0, 1], and the higher the value, the higher the complexity.

Data Generation Procedure. In order to generate a binary classification dataset
of size N with a given level of complexity, n1 positive and n2 = 	ρn1
 negative
instances (with N = n1+n2), we proceed as follows. Let D = {x1, . . . xN} ⊂ R

q

be the set of samples, with each sample xi having q features xi1, . . . , xiq, and a
binary label yi ∈ {0, 1}. The N samples are drawn from a multivariate normal
distribution N (0,Σ), with Σ = γIq (where γ > 0 and Iq denotes the q × q
identity matrix). In our experiments we set γ = 5 so as to have enough data
spread, reminding that this value however does not affect the data complexity.
Without loss of generality, we consider the case q = 2. To determine the classes
of positive and negative samples, the parabola x2 − ax2

1 = 0 is considered, with
a > 0: a point xi = (xi1, xi2) is positive (yi = 1) if xi2 − ax2

i1 > 0, negative
otherwise (yi = 0). This choice allows us to control the linear separability of
positive and negative classes by varying the parameter a: the closer a to 0, the
more linear the separation boundary. As a consequence, a controls the problem
complexity for a linear classifier, and ρ, instead, controls the data imbalance.
Further, to vary the data complexity even for nonlinear classifiers, labels are
permuted with different levels of noise: we flip the label of a fraction r of positive
samples, selected uniformly and at random, with an equal number on randomly
selected negatives.

4 Experiments

4.1 Data

Domain-Specific Data. We use a URL dataset and a DNA dictionary. The first
has been already studied as a benchmark for Learned Bloom Filters [7], and the
authors of this research kindly provided us the dataset. It contains 485730 URLs
described by 17 lexical features: 80002 URLs are malicious (and they constitute
our key set), while the remaining ones are benign. The DNA dictionary regards
the storage and retrieval of k-mers (i.e., strings of length k appearing in a given
genome, whose spectrum is the dictionary of k-mers) [21], and was directly gen-
erated by us. More precisely, it refers to the human chromosome 14, containing
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n = 49906253 14-mers [21] constituting the set of our keys. As non-keys, we uni-
formly generate other n 14-mers from the 414 possible strings on the alphabet
{A, T,C,G}. We point out that no sensible information is contained in these
datasets. We study them because they represent two extreme cases of classifi-
cation complexity: the URL dataset is easy (F1v = 0.08172, C2 = 0.62040), the
DNA data is hard (F1v = 0.99972, C2 = 0).

Synthetic Data. Using the technique described in Sect. 3.2 we generate two cat-
egories of synthetic data, each attempting to reproduce the complexity of one of
the domain-specific data. The first category has nearly the same C2 complexity
of the URL dataset, i.e., it is unbalanced, with n1 = 105 and ρ = 5. The second
one has the same C2 complexity of the DNA dataset, i.e., it is balanced, with
n1 = 105 and ρ = 1. The choice of n1 allows to have a number of keys similar to
that in the URL data, and at the same time to reduce the number of experiments
planned. Indeed, both balanced and unbalanced categories contain nine datasets,
exhibiting increasing levels of F1v complexity (see Table 1). Specifically, all pos-
sible combinations of parameters a ∈ {0.01, 0.1, 1} and r ∈ {0, 0.1, 0.25} are
used. The corresponding complexity estimations are consistent, as F1v increases
with a and r and C2 reflects the complexities of the URL and DNA datasets
respectively in the unbalanced and balanced case.

Table 1. F1v complexity measure of the synthetic data. The C2 index is equal to 0.0
and 0.615, respectively, in the balanced and unbalanced case.

a 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

r 0 0 0 0.1 0.1 0.1 0.25 0.25 0.25

Balanced 0.127 0.181 0.306 0.268 0.327 0.459 0.571 0.619 0.718
Unbalanced 0.129 0.202 0.360 0.187 0.269 0.433 0.308 0.399 0.563

4.2 Model Selection

Classifiers. The classifier generalization ability is assessed independently of the
filter employing it, via a 3-fold cross validation (CV) procedure; performance is
measured in terms of the area under (i) the ROC curve (AUC), and of (ii) the
precision-recall curve (AUPRC), averaged across folds. However, for synthetic
data, we report only the AUPRC results, since AUC results showed very similar
trends and no enough room is available. The key hyperparameters for a given
classifier are set in order not to exhaust all available space budget, while non-
key hyperparameters are selected through a grid search using an inner 3-fold
CV on the current training set, retaining the best configuration. When possible,
for each classifier, we selected different hyperparameter configurations yielding
models of different complexity, from simpler to more complex ones. Finally, for
a fair comparison, the key hyperparameters for NNs are selected so as to yield
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Table 2. Space budget in Mbits adopted on the various datasets. ε is the false positive
rate, n is the number of keys in the dataset.

Data ε Budget (Mbits) n

Synth 0.05, 0.01 0.62, 0.96 105

URL 0.01, 0.005, 0.001, 0.0005, 0.0001 0.76, 0.88, 1.15, 1.26, 1.53 8 · 104
DNA 0.01, 0.005, 0.001, 0.0005, 0.0001 477.46, 549.32, 716.19, 788.06, 954.92 4.99 · 107

three models nearly having the same size of the SVM and of the two RFs models.
Summarizing: i) SVM has no key hyperparameters; ii) for RF, we used t = 10, 20
(URL, synthetic) and t = 10, 100 (DNA); iii) for NNs, we considered NN-25, NN-
150, 50 and NN-200, 75 (synthetic dataset); NN-7, NN-150, 35 and NN-175, 70
(URL dataset); NN-7, NN-125, 50, NN-500, 150 (DNA dataset).

Learned Bloom Filters. The Bloom Filter variants under study are evaluated
under the setting proposed in [7], that is: 1) train the classifiers on all keys and
30% of non-keys, and query the filter using remaining 70% of non-keys to com-
pute the empirical FPR; 2) fix an overall memory budget of m bits for each
filter, and compare them in terms of their empirical FPR ε. Each filter vari-
ant is trained leveraging in turn each of the considered classifiers. The budget
m is related to the desired (expected) ε of a classical Bloom Filter, according
to (1). Being the space budget directly influenced by the key set size n, we
adopt a setting tailored on each dataset. Concerning synthetic data, as we gen-
erate numerous datasets, for each of them we only test two different choices
for the space budget m: namely, those yielding ε ∈ {0.05, 0.01} for the clas-
sical Bloom Filter. On real datasets, we test five space budgets corresponding
to ε ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001}. Table 2 contains the resulting budget
configurations for all the considered datasets. To build the learned Bloom Fil-
ters variants, the hyperparameters have been selected via grid search on the
training data, optimizing with respect to the FPR, according to the following
setting: (a) 15 different values for threshold τ , and (b) the ranges [3, 15], and
[1, 5] for hyperparameters g and c̄, respectively (cfr. Sect. 2). Importantly, the
latter choice includes and extends the configurations suggested in the original
paper [6], namely, [8, 12] for g and [1.6, 2.5] for c̄.

5 Results and Discussion

As evident from Sect. 2, the classifier can be interpreted as an oracle for a learned
BF, where the better the oracle, the better the related filter, i.e., its FPR once
fixed the space budget. Accordingly, it is of interest to evaluate the performance
of classifiers. All classifiers described in Sect. 3.1 have been tested on the datasets
described in Sect. 4.1, with the configuration described in Sect. 4.2. Figure 1
depicts the performance of classifiers on synthetic and real data. However, it
is central here to emphasize that the interpretation of such results is somewhat
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different than what one would do in a standard machine learning setting. Indeed,
we have a space budget for the entire filter, and the classifier must discriminate
well keys and non-keys, while being substantially succinct with regard to the
space budget of the data structure. Such a scenario implicitly imposes a perfor-
mance/space trade-off: hypothetically, we might have a perfect classifier using
less space than the budget, and on the other extreme, a poor classifier exceed-
ing the space budget. Surprisingly, from the behaviour of classifiers it emerges
a crisp separation of the data in terms of complexity (cfr. Table 1), that corre-
sponds to datasets easy to classify (roughly F1v ≤ 0.35) and hard (F1v > 0.35)
to classify. Here we address the question of how to choose a classifier to build
the filter upon, based only on the knowledge of space budget and data classifica-
tion complexity/classifier performance. On synthetic and URL data (cfr. Fig. 1),
more complex classifiers perform just slightly better than the simpler ones, likely
due to the low data complexity in these cases. At the same time, they require
a sensibly higher fraction of the space budget (cfr. Table 2), and it is thereby
natural to retain in those cases only the smallest/simplest variants, namely: RF-
10 and NN-25 (synthetic) and NN-7 (URL), in addition to SVM. Conversely, in
DNA experiments, more complex classifiers substantially outperform the simpler
counterparts, coherently with the fact that this classification problem is much
harder. Since the available space budget is higher in this case, all classifiers have
been retained in the subsequent filter evaluation.

Learned Filters Performance w.r.t. Data Classification Complexity

Easy Datasets. Figure 2 reports the FPR results of learned Bloom Filters on
balanced and unbalanced synthetic data, respectively, whereas Fig. 3 depicts the
results on URL and DNA data. According to the definition provided above (F1v
around 0.35 or smaller), easy data can be associated to the three/four leftmost
configurations on the x-axis in Fig. 2 of synthetic and to URL data. In these
cases, we observe results coherent with the literature, where ADA-BF slightly
outperforms the other competitors [7], and when using RF-10 as classifier lower
FPRs are obtained with regard to the classical BF. Notwithstanding, it clearly
emerges that such a classifier is not the best choice, underlining all the doubts

Fig. 1. Performance averaged across folds of compared classifiers on synthetic (a-
balanced, b-unbalanced), URL (c) and DNA data (d). On synthetic data, bars are
grouped by dataset, in turn denoted by a couple (a, r).
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Fig. 2. False positive rates of learned filters attained on balanced (a, b) and unbal-
anced (c, d) synthetic datasets. On the horizontal axis, labels X_Y denote the dataset
obtained when using a = X and r = Y . The blue dotted line corresponds to the empir-
ical false positive rate of the classical BF in that setting. Two space budgets m are
tested, ensuring that ε = 0.05 ((a), (c)) and ε = 0.01 ((b), (d)) for the classical BF.
(Color figure online)

about a selection not motivated in the original studies. For instance, on URL
data there are at least two classifiers yielding a lower FPR in most cases and for
all filter variants (SVM and NN-7). In addition, SVMs are much faster. NN-7
(or NN-25 for synthetic data) remains the best choice even when the separation
boundary becomes less linear (a > 0.01), and filters induced by SVMs become
less effective or even worse than the baseline BF.

Hard Datasets. Our experiments show a novel scenario with the increase of data
complexity, i.e., when moving towards right on the horizontal axis in Fig. 2, or
when considering DNA data. We observe that the performance of the filters
drops more and more, in line with the performance decay of the corresponding
classifiers, and unexpectedly the drop is faster in ADA-BF (and LBF) w.r.t.
SLBF. This happens for instance on all synthetic data having r > 0 (noise
injection). We say unexpectedly since we have an inversion of the trend also
reported in the literature, where usually ADA-BF outperforms SLBF (which
in turn improves LBF). Indeed, SLBFs here exhibit behaviours more robust to
noise, which are likely due to a reduced dependency on the classifier for SLBF,
yielded by the usage of the initial Bloom Filter. Such a filter allows the classifier
to be queried only on a subset of the data. Noteworthy is the behavior of filters
when using RFs in this setting: their FPR strongly increases, and potential
explanations are the excessive score discretization (having 10 trees we have only
11 distinct scores for all queries), and the space occupancy is larger (limiting
the space that can be assigned to initial/backup filters). These results find a
particularly relevant confirmation on the very hard, real-world, large, and novel
DNA dataset. Here, surprisingly, the LBF cannot attain any improvement with
regard to the baseline BF, differently from SLBF and ADA-BF. A potential cause
can reside in the worse performance achieved by classifiers on this hard dataset,
compared to those obtained on synthetic and URL data, and in a too marked
dependency of LBF on the classifier performance, mitigated instead in the other
two filter variants by the usage of the initial BF (SLBF) and by the fine-grained
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Fig. 3. Empirical false positive rate of LBF (left), SLFB (central), and ADA-BF (right)
filters on URL data (first row) and DNA data (second row). On the horizontal axis the
different budgets configurations. Dotted blue line represents the baseline Bloom Filter.
(Color figure online)

classifier score partition (ADA-BF). SLBF outperforms both LBF and baseline
of one order of magnitude in FPR with the same space amount, and ADA-BF
when using weaker classifiers and when a higher budget is available. This is likely
due to overfitting of ADA-BF in partitioning the classifier codomain when the
classifier performance is not excellent (or similarly when the data complexity
is high), as with DNA data. Differently from hard synthetic data, where the
key set was smaller (as consequently was the space budget), here the classifiers
leading to the best FPR are the most complex, in particular NN-500,150 and
NN-125,50 (which are also the top performing ones—they could be even further
compressed [19]). In other words, on hard datasets simple classifiers are useless
or even deleterious (SVM never improve the baseline, and in some cases they
are even worse).

Reject Time. The results concerning reject time analysis are provided in full
in [17]. Here we bring to light that learned BF are sometimes faster than the
baseline, which in principle is not expected, since they have to query a classifier
in addition to a classical BF. Our interpretation is that it can happen for two
main reasons: 1) the classifier is very fast and effective, allowing in most cases
to skip querying the backup filter; 2) the key set is very large and it requires
a large baseline BF, whereas a good classifier sensibly drops the dimension of
backup filters, making their invocation much faster. See for instance the case of
DNA data, where most learned filters are faster than the baseline, with most
classifiers.
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6 Guidelines

We summarize here our findings about the configuration of learned Bloom Filters
exploiting the prior knowledge of data complexity and available space budget.

Dataset Complexity and Classifier Choice. We have roughly distinguished two
main categories of data based on their complexity and the related behaviour of
filters: easy dataset, having F1v ≤ 0.35, and hard dataset, having F1v > 0.35.
The dataset complexity emerged as a central discriminant for the filter setup.
Indeed, when dealing with easy datasets, the choice of the classifier becomes
quite easy, and, independently of the space budget, it is always more convenient
to select simple classifiers. Specifically, our experiments designate linear SVMs
as best choice for the easiest datasets (those having almost linear separation
boundary), and the smallest/simplest NNs for the more complex data in this
category. In addition, the classifier inference time plays an important role for this
data category: although a fastest classifier does not necessarily implies a lower
reject time of the corresponding filter (see [17]), when the average performance
of two classifiers is close, then the inference time can be a discriminant feature
for the classifier selection. But only in this case: see for instance the URL results,
where the RF-10 performed just slightly better than SVMs, but although having
an inference time one order of magnitude higher, the induced LBF has a lower
reject time (see [17] for the relative discussion.) Surprisingly, this analysis has
been overlooked in the literature. For instance, benchmark URL data falls in
this category, but all previous experimental studies regarding learned BF on
this data do not consider neither SVMs, nor NNs.

For hard datasets instead, the space budget is central for the classifier choice.
Indeed, within the budget given by (1), on synthetic datasets, having a relative
small key set and accordingly a lower budget, the choice is almost forced towards
small although inaccurate classifiers, being the larger ones too demanding for the
available budget. In particular, SVM is to be excluded due to the increased diffi-
culty w.r.t. that of URL data, and for the remaining classifiers, we note that they
behave very similarly (Fig. 1). Thus the most succinct ones, namely the smallest
NN, are to be preferred. As opposite, when the space budget increases, as it
happens for DNA data, our findings suggest to learn more accurate classifiers,
even if this requires the usage of a considerable budget fraction. Indeed, the gain
induced by higher classification abilities allows to save space when constructing
the backup filter, to have consequently a smaller reject time, as well as an overall
more efficient structure (cfr. Sect. 5). This is also motivated by the fact that to
accurately train complex classifiers the sample size must be large enough [22].

Learned Bloom Filters Choice. Our experiments reveal three main trends: 1)
on benchmark data, that is those used also in the literature so far (URL data),
ADA-BF is confirmed as more effective variant in terms of FPR, having fixed the
budget; 2) however, its reject time is always and largely the highest one (see [17]),
thus suggesting to exclude its usage in applications where fast responses are
necessary (e.g., real-time applications). This subject includes also the classifier
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choice, since the most effective filters are in most cases induced by NNs, but
they are also slower in terms of reject time of the counterparts induced by faster
classifiers, and accordingly a trade-off FPR/reject time must be carefully inves-
tigated; 3) SLBF is the filter most robust to data noise, and the only one able
to benefit more even from classifier with poor performance (cfr. synthetic noisy
and DNA results). As a consequence, SBLF is clearly the filter to choose in
presence of very complex data. In particular, the point 3) is a new and quite
unforeseen behaviour, emerged only thanks to the study of data complexity and
relative noise injection procedure designed in this study, and which to some
extent changes the ranking of most effective learned BF in practice, since most
real datasets are typically characterized by noise.

7 Conclusions and Future Developments

We have proposed an experimental methodology that can guide in the design
and validation of learned Bloom Filters. The key point is to base the choice of
the used classifier on the space budget of the entire data structure as well as the
classification complexity of the input dataset. We empirically detected two class
of problems, easy and hard, and confirmed (to some extent) the results on the
former one, which is the only scenario considered so far in the Literature, while
the unexplored hard scenario revealed novel trends, and almost inverted the
ranking of LBFs emerged in the easy case. A potential limitation of such results
is that they might be dependent on the considered data; nonetheless, this is
somehow inevitable due to the nature of Learned Data Structures. In addition,
Learned Bloom Filters can be quite sensitive to the input query distribution.
Yet, no study is available to quantify this aspect, and our methodology can be
easily extended in this sense.
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Abstract. Unbalanced datasets generate difficulties in designing good classifi-
cation models because those classes that are represented by the most numerous
training sets are harmfully preferred. For this reason, learning sets are often bal-
anced by adding some synthetic feature vectors or by reducing the most numerous
learning sets.

High-dimensional learning sets give possibility to design complex layer of
linear classifiers. Such layers can also be used for balancing purposes. In this
approach, averagingof a small number of feature vectors is partially complemented
by averaging vertices based on balanced feature subsets.

Keywords: High-dimensional Data · Unbalanced Learning Sets · Multiple
Feature Selection

1 Introduction

Learning sets consisting of labelled feature vectors representing individual classes
are unbalanced when the numbers of feature vectors representing various classes are
very different [1]. Unbalanced learning sets can hamper the accuracy of the designed
classification models [2].

Learning sets canbebalancedbe adding some synthetic feature vectors or by reducing
the most numerous learning sets [3]. The currently used methods of reducing the effects
of unbalanced data sets do not always bring satisfactory results in practice.

A new concept of using complex layers in reducing the effects of unbalanced learning
sets is described in this article. Complex layers of linear classifiers are designed on the
basis of datasets consisting of a small number of multidimensional feature vectors [4].

.

2 High-Dimensional Learning Sets

Consider m objects (cases, patients) Oj (j = 1, . . . ,m) represented in the high-
dimensional feature space F[n] as feature vectors xj

(
xj ∈ F[n]). The component xj,i of

the vector xj = [
xj,1, . . . , xj,n

]T can be numerical result of the measurement of the i-th

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 62–70, 2023.
https://doi.org/10.1007/978-3-031-34204-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_6&domain=pdf
http://orcid.org/0000-0003-4735-2460
https://doi.org/10.1007/978-3-031-34204-2_6


Balancing High-Dimensional Datasets with Complex Layers 63

feature Xi(i = 1, . . . , n) on the j-th objectOj
(
xj,i ∈ {0, 1} or xj,i ∈ R

)
The feature space

F[n] is formed on the set F(n) of a large number n of features Xi(i = 1, . . . , n):

F(n) = {X1, . . . ,Xn}. (1)

Let us assume that objects Oj(j = 1, . . . ,m) have been divided according to some a
priori knowledge into K classes ωk(k = 1, . . . ,K). As a consequence, feature vectors
xj can be labelled and associated with particular categories ωk. The k-th learning set Ck

contains mk examples of feature vectors xj(k) = [
xj,1, . . . , xj,n

]T assigned to the k-th
category ωk:

(∀k ∈ {1, . . . ,K}) Ck = {
xj(k) : j ∈ Jk

}
(2)

where Jk is the set of indices j of mk feature vectors xj(k) assigned to the k-th class
(category) ωk.

Learning setsCk (2) are high-dimensional if the numbersmk of feature vectors xj(k)
are much smaller than the dimension n of these vectors (mk << n). Datasets Ck (2) are
unbalanced if the numbers mk of vectors xj(k) are very different in these sets [3]. The
possibility of separating datasetsCk (2) with hyperplanesH(wk, θk) in the feature space
F[n] is investigated in pattern recognition methods [5]:defined as the sum o

H(wk, θk) =
{
x : wT

k x = θk

}
(3)

where wk = [
wk,1, . . . ,wk,n

]T ∈ Rn is the k-th weight vector, θk ∈ R1 is the threshold,
and wT

k x = �iWk,ixi is the inner product.
Definition 1: The datasetsCk (2) are linearly separable in the n-dimen- sional feature

space F[n] if each of the sets Ck can be fully separated from the sum of the remaining
sets Ci by some hyperplane H(wk, θk):

(∃k ∈ {1, . . . ,K}) (∃wk, θk)
(∀xj(k) ∈ Ck

)
wT
k xj ≥ θk + 1,

and
(∀xj

(
k ′) ∈ Ck′,, k

′ �= k
)

wT
k xj ≤ θk − 1 (4)

Inequalities (4) describe the linear separation of the learning sets Ck (2) with the
margin δ(wk) = 2/‖wk‖ determined as follows in the case of the Euclidean (L2) norm
[1]:

δ(wk)L2 = 2/
(
wT
kwk

)1/2 = 2/
(
�iw

2
k,i

)1/2
(5)

The margins δ(wk)L2 (5) are used in support vector machines (SVM), the basic
method of machine learning [6].The SVM classifier design algorithms are based on
quadratic programming The margins δ(wk)L1 based on the L1 norm were determined
similarly [4]:

δ(wk)L1 = 2/
(∑

i

∣∣Wk,i
∣∣
)

(6)
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Maximized margins δ(wk)L1 (6) are obtained by minimizing the perceptron criterion
function, which is a convex and piecewise linear function (CPL) [5]. In this case, the
design algorithms are related to linear programming and vertex calculations [7].

Increasing the margins δ(wk)L2 (5) or δ(wk)L1 (6) serves to increase the general-
ization power of the classification rules [2]. The generalization power of a given clas-
sification rule is characterized by the frequency of misclassified feature vectors xj′ not
belonging to the learning sets Ck (2). The generalization power is high when a large
number of new vectors xj′

(
xj′ /∈ ∪kCk

)
are correctly classified.

3 Linear Separability Resulting from Linear Independence

The augmented feature vectors yj(k) are defined as follows based on the k-th learning
dataset Ck (2) [1]:

(∀k ∈ {1, . . . ,K}) (∀j ∈ {1, . . . ,m})
yj(k) =

[
xTj , 1

]T
if xj ∈ Ck(2) and yj(k) = −

[
xTj , 1

]T
if xj ∈ ∪k′ �=kCk′ (7)

Consider the learning subsets G+
k(l) ⊂ Ck (2) and G−

k(l) ⊂ ∪k′ �=kCk′ of the vectors
yj(k) (7) which can be defined multiple times l (l = 1, . . . ,L):

G+
k(l) =

{
yj(k) : j ∈ J+

k(l)

}
and G−

k(l) =
{
yj(k) : j ∈ J−

k(l)

}
(8)

where J+
k(l) is a subset of the indices j of some feature vectors xj from the k(l)-th learning

subsets G+
k(l) and J−

k(l) is a subset of the indices j of some feature vectors xj from the
subset Gk(l)− .

The learning subsets G+
k(l) and G

−
k(l) (8) are linearly separable (4) by the parameters

vector vk = [wk,−θk]T if the following inequalities are met:
(
∀yj(k) ∈ G+

k(l) ∪ G−
k(l)

)
vTk yj(k) ≥ 1 (9)

where vk = [
wk,1, . . . ,wk,n,−θk

]T ∈ Rn+1 is the vector of parameters [1].
Linear separability (9) of the sets G+

k(l) and G−
k(l) (8) can be related to linear inde-

pendence of feature vectors xj (1) and can be checked by minimizing the perceptron
criterion function [5].

Lemma 1: The learning sets G+
k(l) and G−

k(l) (8) composed of mk(l) = m+
k(l) + m−

k(l)
linearly independent feature vectors yj(k) (yj(k) ∈ F[n + 1] (7)) are linearly separable
(15).

Feature vectors yj(k) (7) making up the learning sets G+
k(l) and G

−
k(l) (8) are linearly

independent if neither of these vectors can be expressed as a linear combination of l (l
∈ {1,…, m - 1}) other vectors. The number of linearly independent vectors yj(k) can be
no larger that the dimension n + 1 of the feature space F[n + 1]. The learning sets G+

k(l)

and G−
k(l) (8) are usually linearly separable (9) if the number n of features Xi is much

larger than the number mk(l) of vectors yj(k) because such vectors are typically linearly
independent. The linear independence of the vectors yj(k) (7) may disappear as a result
of ineractions between features Xi.
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4 Perceptron Criterion Function

Perceptron penalty functions ϕj(v) are related to inequalities (9) and are defined for each
element yj(k) of the learning sets G+

k(l) and G−
k(l) (8) as:

(
∀yj(k) ∈ G+

k(l) ∪ G−
k(l)

)

ϕj(v) = 1 − yj(k)Tv if yj(k)Tv < 1 and ϕj(v) = 0 if yj(k)Tv ≥ 1
(10)

The perceptron criterion function �k(l)(v) is defined as the sum of the penalty
functions ϕj(v) (16) defined on elements yj(k) of the learning sets G+

k(l) and G−
k(l) (8)

[5]:

�k(l)(v) =
∑

j
ϕj(v) (11)

The following theorem can be proved [1]:

Theorem 1: The minimum value �k(l)

(
vpk(l)

)
of the perceptron criterion function

�k(l)(v) (11) is equal to zero
(
�k(l)

(
vpk(l)

)
= 0

)
if and only if the learning sets G+

k(l)

and G−
k(l) (8) are linearly separable (9).

The proof of Lemma 1 and Theorem 1 can be based on the vertexical linear equations
defined in thework [5], and also is described later in this text. In this approach, the optimal
vertex vpk(l) is calculated as a solution of a well-defined system of mk linear equations,
where mk is the number of feature vectors yj(k(l)) of dimension n in the learning sets
G+
k(l) and G−

k(l) (14) (mk(l) << n).
The regularized criterion function �k(l)(v) is defined as the weighted sum of the

perceptron criterion function �k(l)(v) (11) and the absolute values |wi| of weighs wi,
where v = [w1, ...,wn,−θk]T []:

�k(l)(v) = �k(l)(v) +
∑

i∈{1,...,n}
|wi| (12)

The optimal vector v∗
k(l) constitutes the global minimum �k(l)

(
v∗
k(l)

)
of the CPL

criterion function �k(l)(v) (12) defined on elements yj(k) of the learning sets G
+
k(l) and

G−
k(l) (8). The minimum value �k(l)(v∗

k(l)) of the criterion function �k(v) (12) is used,
among others, in the relaxed linear separability (RLS) method of selection optimal
subsets of genes Xi [8]. It has been shown that the minimization of the regularized
criterion function �k(v) (12) leads to the maximization of the margin δ(vk)L1 (6).

5 Vertices in Parameter Space

The perceptron criterion function �k(v) (11) is convex and piecewise-linear (CPL). As
a result, the global minimum �k

(
vpk

)
of the function �k(v) (11) can be determined in

the optimal vertex vpk = [wp
k, −θ

p
k]T of a certain convex polyhedron in the parameter

space [7].



66 L. Bobrowski

To simplify the notation, consider the vertices wk in the parameter (weight) space
Rn(wk ∈ Rn) associated with the perceptron criterion function�k(w) (18) with a fixed
threshold θk equal to zero (θk = 0). In this case, the vertices wk are defined by dual
hyperplanes h1j and h0i [5]:

(∀yj(k) ∈ G+
k (14)

)
h1j =

{
w ∈ Rn : (

xj
)Tw = 1

}
and

(∀yj(k) ∈ G−
k (14)

)
h1j =

{
w ∈ Rn : (−xj

)Tw = 1
} (13)

The dual hyperplanes h0j are defined by unit vectors ei [10]:

(
∀i ∈ (1, . . . , n) h0i =

{
w ∈ Rn : eTi w = 0

}
= {

w ∈ Rn : wi = 0
}

(14)

Definition 2: The vertexwk of the rank rk (rk ≤ n) in theweight spaceRn(wk ∈ Rn)

is the intersection of hyperplanes h1j (13) defined by rk linearly indepenedent feature

vectors xj(j ∈ Jk) from the data set Ck (1) and hyperplanes h0i defined by n - rk unit
vectors ei(i ∈ Ik) (14) [7].

The vertex wk can be defined by the following set of n linear equations:

(∀j ∈ Jk) wT
k xj = 1 and (∀i ∈ Ik) wT

k ei = 0 (15)

or in matrix form:

Bkwk = 1rk (16)

where 1rk = [1, . . . , 1, 0, . . . , 0]T is the vector with the first rk components equal to
one and the remaining n - rk components are equal to zero.

The square matrix Bk (17) consists of rk feature vectors xj(j ∈ Jk) (15)) and n - k
unit vectors ei(i ∈ Ik) (15)) [7]:

Bk = [
xj(1),...,, xj(r(k))),, ei(r(k)+1), . . . , ei(n)

]T (17)

where the symbol ei(l) denotes such unit vector, which is the l-th row of the matrix Bk
(17).

If feature vectors xj(j ∈ Jk (15)) making up rk rows of the matrixBk (17) are linearly
independent, then the basis exchange algorithm allows to find the inversematrixB−1

k step
by step, starting from the unit matrix I = [e1, ..., en]T []. The non-singular matrix Bk
(17) is the basis of the feature space F[n] related to the vertex wk = [wk,1, . . . ,wk,n]T:

wk = B−1
k 1rk = r1 + . . . + rrk (18)

Since the last n - rk components of the vector 1rk (16) are equal to zero, the last n
- rk components wk.i of the vector wk = [wk,1, . . . ,wk,n]T (18) are also equal to zero
(∀i ∈ {rk + 1, ..., n} wk.i = 0) [7].
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6 Optimal Subsets of Features

Minimization of theCPL-type criterion functons�k(l)(w) (11) and�k(l)(w) (12) defined
on the learning sets G+

k(l) and G
−
k(l) (8) allows to determine the optimal subsets Fl(nl) of

nl features Xi (Fl(nl) ⊂ F(n) (1)).
Assume that both learning sets G+

k(l) and G−
k(l) (8) contain the same numbers

mk(l)

(
m+
k(l) = m−

k(l)

)
of vectors yj(k) (7). In this case, theminimization of the perceptron

criterion functon�k(l)(w) (11) determines the optimal vertexwp
k(l) = [wp

k,1, . . . ,w
p
k,nl]T

and the subset Rl(nl)p (Rl(nl)p ⊂ F(n) (1)) containing nl = 2mk(l) acitive features Xi
with weights wp

k,i different from zero (wp
k,i �= 0):

Rl(nl)
p = {

Xi(1), . . . ,Xi(nl)
}
. (19)

In accordance with the previous remarks, we can assume that the minimum value
�k(l)(w

p
k(l)) of the perceptron criterion function �k(l)(w) (11) is equal to zero in the

case of high-dimensional sets Ck (2):

�k(l)

(
wp
k(l)

)
= �

p
k(l) = 0 (20)

The constrainedminimization of criterion functons�k(l)(w) (12) under the condition
�k(l)(w) = 0 (20) can be repesented as follows:

�k(l)

(
w∗
k(l)

)
= min

{
�k(l)(w) : �k(w) = 0

}
(21)

Solving the above mininimization problem allows to obtain the optimal vertex
w∗
k(l) = [w∗

k,1, . . . ,w
∗
k,nl]T (21) and the optimal subset Rl(nl)∗ of nl = 2mk(l) fea-

tures Xi(Rl(nl)∗ ⊂ F(n) (1)). The number nl of features Xi in the subset Rl(nl)∗ is the
same as in the subset Rl(nl)p (19).

Lemma 2: The optimal vertex w∗
k(l) (21) is characterized by the largest margin

δ(w∗
k(l))L1 (7) among all vertices wk(l) (18) of the rank nl = 2mk(l),where mk(l) =

m+
k(l) = m−

k(l).

7 Balanced Complex Layers

The learning sets Ck (2) contain mk feature vectors xj assigned to particular categories
ωk (k = 1, . . . ,K). The complex layer can be designed separately for each category
ωk based on the high-dimensional learning sets Ck (2). In this case, the number mk of
feature vectors xj in each learning set Ck (2) is much smaller than the dimension n of the
vectors xj(mk << n). If the numbersmk of elements xj are very different in the learning
sets Ck (2) then these sets are unbalanced [3]. The unbalance of the learning sets Ck (2)
can significantly deteriorate the quality of classifiers designed on the basis of such sets
[2].

The unbalance of learning sets Ck (2) can be reduced by procesing with com-
plex layers. For this purpose, it is proposed here that each category ωk be rep-
resented by a complex layer with the same number of L of the optimal vertices
w∗
k(l) = [w∗

k,1, . . . ,w
∗
k,nl]T (21) (l = 1, ....,L).
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Moreover, each optimal vertex w∗
k(l) (21) of the complex layer can be designed in a

balanced way on the learning subsets G+
k(l) and G−

k(l) (8) containing the same numbers

mk(l)

(
m+
k(l) = m+

k(l)

)
of vectors yj(k) (7). The learning subsets G

+
k(l) and G

−
k(l) (8) with

the same number mr of elements yj(k) (7) cen be used to design all complex layers:

(∀k ∈ {1, . . . ,K}) (∀l ∈ {1, . . . ,L}) mk(l) = mr (22)

The reduced numbermr of vectors yj(k) (7) may be equal to the smallest numbermk
of feature vectors xj in the learning sets Ck (2).

mr = min{m1, . . . ,mK} (23)

Such a choice of the reduced number mr aims to balance the representation of all
categories ωk(k = 1, . . . ,K).

8 Classifiers Based on Complex Layers

The feature vectors xj forming the learning sets Ck (2) represent K categories
ωk(k = 1, . . . ,K) in the feature space F[n] (xj ∈ F[n]). For each category ωk, its
balanced complex layer can be designed based on the dataset Ck (2). The com-
plex layer associated with the k-th category ωk is based on L optimal vertices
w∗
k(l)(21) (l = 1, ....,L).

Each optimal vertex w∗
k(l) = [w∗

k(l),1, . . . ,w
∗
k(l),n]T (21) of the k-th complex layer

is based on its own subset Rk(l)(nl)∗ = {Xi(1), . . . ,Xi(nl)}∗ (19) of nl active features Xi

(21) associated with non-zero weigths w∗
k(l),i(w

∗
k(l),i �= 0). It was assumed that the

optimal subsets Rk(l)(nl)∗ associated with different vertices w∗
k(l) (21) are disjoint:

(
l′ �= l

) ⇒ Rk(l′ )(nl)
∗ ∩ Rk(l)(nl)

∗ = ∅ (24)

The optimal vertex w∗
k(l) = [w∗

k(l),1, . . . ,w
∗
k(l),n]T (21) of the k-th complex layer

defines the following linear classifier (formal neuron) [7]:

(∀x ∈ F[n])
1 if

(
w∗
k(l)

)T
x > 0

rk(I) = r
(
w∗
k(l); x

)
=

0 if
(
w∗
k(t)

)T
x ≤ 0

(25)

It can be seen that the complex layer associated with the k-th categoryωk transforms
feature vectors xj from the learning sets Ck (2) into vectors z(xj) = [z1, . . . , zn]T with
components zj,i equal to zero or to one:

(∀k ∈ {1, . . . ,K}) (∀xj ∈ Ck
)
zk

(
xj

) =
[
0T1 , . . . , 1Tk , . . . , 0TL

]T
(26)
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where 1k = [1, . . . , 1]T and 0i = [0, . . . , 0]T are vectors with L components.
The following decision rule was based on K complex layers (26):

(∀x ∈ F[n]) (∀k ∈ {1, . . . ,K})
if ‖zk′(x)‖ ≥ ‖zk(x)‖, then x ∈ Ck′(2) (27)

where ||zk(x) || is the norm of the vector zk(x) (26).
According to the classification rule (27), the object O represented by the feature

vectors x is assigned to the k′ - th category ωk′ .
Lemma 3: If the feature vectors xj forming the learning sets Ck (2) are based on a

sufficiently large number of linearly independent features X i (X i ∈ F(n) (1)), then the
classification rule (27) can correctly assigns all these vectors xj.

This lemma results from the designing of optimal vertices w∗
k(l) (21).

9 Concluding Remarks

Unbalanced learning setsCk (2) can cause serious problems in the design of classification
models. The paper proposes a new concept of balancing datasets by transforming them
with complex layers. Each learning set Ck (2) is transformed by its own complex layer.

The general assumption about the high-dimensionality of the learning sets Ck (2)
allows for the design of balanced, complex layers. Consequently, each category ωk can
be similarly represented in a balanced way by its own complex layer (k = 1, . . . ,K).

Each balanced complex layer is made up of the same number L of linear classifiers
(36) based on the optimal vertices w∗

k(l) (21), where l = 1....,L. Each optimal vertex
w∗
k(l) (21) is determined by mr feature vectors xj from the k-th learning set Ck (2) and

by the same number mr of vectors x
′
j from the remaining sets Ck′(xj′ ∈ ∪k′ �=kCk′ (2)).

The vertex w∗
k(l) (21) is associated with the optimal subset Rl(nl)∗ of nl = 2mr

features Xi. It was assumed that the optimal subsets Rl(nl)∗ of features Xi are disjoined
(24). This assumption can be satisfiedwhen the learning setsCk (2) are high-dimensional
(mk << n).

The aggregated classification rule (27) allocates correctly all feature vectors xj from
the learning sets Ck (2). The generalization power of the aggregated classification rule
(27) is expected to be high. The first results of experiments with classification based on
complex layers are encouraging [9].
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Abstract. Android devices can now offer a wide range of services. They sup-
port a variety of applications, including those for banking, business, health, and
entertainment. The popularity and functionality of Android devices, along with
the open-source nature of the Android operating system, have made them a prime
target for attackers. One of the most dangerous malwares is an Android botnet,
which an attacker known as a botmaster can remotely control to launch destructive
attacks. This paper investigates Android botnets by using static analysis to extract
features from reverse-engineered applications. Furthermore, this article delivers a
new dataset of Android apps, including botnet or benign, and an optimized multi-
layer perceptron neural network (MLP) for detecting botnets infected by malware
based on the permissions of the apps. Experimental results show that the proposed
methodology is both practical and effective while outperforming other standard
classifiers in various evaluation metrics.

Keywords: Android Malware detection · Botnets · Neural Networks · New
dataset

1 Introduction

Today, Android is one of the most well-known operating systems. It has millions of
applications that are distributed through accredited or unofficial distributors. As a result,
it is one of the most common targets for malicious cyber-attacks. The Play Store on
Android is not very restrictive, making it simple to install malicious apps. Botnet appli-
cations are classified as malware because they can be distributed through these stores
and downloaded by unlucky users onto their smartphones. Botnets are among the most
dangerous hacking techniques used on the internet today. Botnet developers frequently
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target smartphone users to install malicious tools and target a larger number of devices.
This is frequently done to gain access to sensitive data such as credit card numbers or to
cause damage to individual hosts or organisational resources through denial of service
(DDoS) attacks. [1, 2].

Botnet attacks have become a threat and risk to network and internet security in recent
years. They include several malicious activities in network traffic. A botnet is made up
of separate robot and network components. The botmaster programmes and builds the
bot for specific purposes using computers known as zombies. In the network, these
computers are clearly breaking the law. Botnets are extremely widespread and can affect
millions of computers. Botnets are networks made up of personal computers and smart
devices known as bots. One or more attackers, known as botmasters, oversee these bots,
and their goal is to carry out malicious activities. In other words, bots contain harmful
software that runs onhost computers and enables the botmaster to remotely command and
control the system [3]. Moreover, the popularity and adoption of Android smartphones
have attracted malware authors to spread the malware to smartphone users. Malware on
smartphones can take the form of Trojans, viruses, worms, or mobile botnets. Mobile
botnets, also known as Android botnets, are more dangerous because they pose serious
threats by stealing user credentials, sending spam, and launching distributed denial of
service (DDoS) attacks. A mobile botnet is defined as a collection of compromised
mobile smartphones that are controlled by a botmaster via a command and control
(C&C) channel and used to carry out malicious activities [4].

Although numerous studies have been conducted to detect Android botnet attacks,
classification accuracy can still be improved. Insufficient or smaller data in the experi-
ments results in lower accuracy.Machine learning is incapable of handling large amounts
of unstructured data because it typically requires structured data and uses traditional algo-
rithms. The small size of the dataset is also to blame for Android botnet detection’s poor
performance. Because the size of the sample data collection is limited, the confidence in
the estimate decreases and the uncertainty increases, resulting in lower precision. More
data is always a good idea when it comes to achieving the high efficacy of Android bot-
net detection. Furthermore, the use of untrained data affects an effect on the detection
of Android botnets. Trained data is the most important and primary data that machines
use to learn and predict. Increased training data provides more information and assist in
better user fit [5].

As a result, according to the explanation provided, there is an urgent need to develop
newmethods for defeating mobile botnets. Because of the popularity of Android mobile
devices, the goal of this paper is to propose an innovative method for detecting botnets
in Android-based devices. This paper aims to produce a new mobile botnet classifica-
tion/detection based on permissions. For this purpose, we have created and introduced
a new dataset based on permissions that are described in detail in Sect. 3. Moreover, the
botnet dataset is a classification dataset that only includes legitimate Android apps and
botnets. We have created an optimised multilayer perceptron neural network (MLP) that
is highly accurate at detecting botnets.

The contributions of the paper are as follows:

• We deliver a novel dataset with 453 permissions as features to discover Botnets
through the Android operating system.
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• We propose an optimized multilayer perceptron neural network (MLP) to detect
Android Botnets which can detect botnets with very high accuracy.

The rest of the paper is organized as follows: Sect. 2 is the research background,
Sect. 3 is the related work, Sect. 4 describes the dataset, Sect. 5 explains the proposed
method, Sect. 6 delivers the experimental evaluation andSect. 7 contains the conclusions.

2 Background

2.1 Overview of Android Botnet

Botnets are a type of malware that enables an attacker to gain control of a victim’s
computer. The botmaster, C&C server, and bot-infected machines are common botnet
components. The botnet is designed to infect mobile phones or computers and make
them under the control of botnet owners or the “Botmaster”. Botmasters are those who
operate the command and control of botnets to attack the target via a communication
channel, such as HTTP, Internet Relay Chat (IRC), or peer-to-peer (P2P). The botmaster
will use a botnet to attack the victim in a variety of ways, including denial of service
(DDoS) attacks, spamming, malware and advertisement distribution, espionage, hosting
malicious applications, and other activities. The overview of a Botnet is demonstrated
in Fig. 1.

Fig. 1. Overview of a Botnet structure

2.2 Types of Botnets

A botnet includes three types of programmes:

A. Server programmes: These programmes are located on the command-and-control
server and are used to control infected computers or bots.

B. Client programme: These are programmes installed on infected computers while they
wait for control instructions.
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C. Malicious programme: These are the software or programmes, also known as
malware, which is used over the Internet to infect or compromise vulnerable
computers.

Communication is the most important aspect of a botnet. The command-and-control
server continues to communicate with bots, instructing them to engage in malicious
behaviour. The bots, in turn, continue to wait for instructions, perform the tasks assigned
to them, and send the collected data to the command-and-control server [25].

2.3 Botnet lifecycle

In general, botnets have four main phases in their lifecycle:

A. Phase Of Spread and Infection: Botmasters will employ various methods and tech-
niques to infect new targets and transform them into new bots. After infecting the
target, it will run a script or shell code and install itself on the victim machine.

B. Phase Of Command &Control: The command and control (C&C) mechanism create
a communication interface between bot-bot, C&C servers-bots, andC&C servers-bot
master. Command and controlmechanisms are classified into three types: centralised,
decentralised, and unstructured.

C. PhaseOfAttack: The botnet is a collection ofmalicious activities that spread through-
out computer networks. DDoS attacks, spamming, spreading malware and advertise-
ments, espionage, and hosting malicious applications and activities are just a few
examples of attacks.

D. PhaseOfDestruction:After performingmalicious activities, botmastersmay destruct
a portion of the botnet [15].

2.4 Botnet Attacks

Botnet attacks are typically carried out by a group of hackers, and the owner has no idea
that he or she is on the victim list. Botnets are currently classified into five types based
on the Command and Control (C&C) channel. Because the programme is developed
by the methods and techniques employed, the botnets are divided into these categories.
They are as follows:

A. IRC Botnet (Internet Relay Chat): An IRC botnet is created by using a centralised
system to monitor the victim to perform malicious activities, and the targeted bots
are controlled by the main C&C channel.

B. P2P Botnet (Peer to Peer): It is accomplished using P2P protocols and a decentralised
system with a network of nodes that keeps it alive, containing the attacked bots as
well as all relevant data transmission.

C. HTTP Botnet: An HTTP Botnet is a centralised system-based structure that conducts
attacks via the HTTP protocol. The bots use a specific URL and IP address specified
by the main botmaster as the C&C server. These hacking attempts are carried out for
financial theft.

D. MobileBotnet: This attackmakes use ofmobile phone sharing,Bluetooth technology,
and text messaging. The botmaster can easily access the data using this method via
the C&C Channel.
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E. Botnet Cloud: This is a very difficult task, so the botmaster creates and manages the
bots using the cloud service, putting the bots at significant risk of being discovered.

3 Related works

This section describes various machine learning-based Android malware analysis tech-
niques that have been proposed in the literature. To identify android malware, three
approaches have been proposed: static, dynamic, and hybrid.

3.1 Static Techniques

Static techniques use few resources and are quick and secure. However, they are unable to
decipher malware that has been encrypted or obfuscated. Most static methods frequently
produce false positives and are unable to dealwith unidentifiedmalware. Therefore, static
analysis may need to be combined with other security models for effective malware
detection.

In this proposed research work, a security application is developed which scans all
applications installed and identifies probable harmful applications on the user’s smart-
phone. It organises all permissions on each application into predefined categories. The
risk factor of the respective application is calculated based on the permission category.
If the risk factor/score exceeds the predetermined threshold, the user is notified of the
application’s risk. This will inform users about applications that can exploit personal
information stored on their devices in real-time [6]. Another permission-based research
presents the Android botnet attack detection using deep learning algorithms, Convolu-
tional Neural Networks (CNN) and Artificial Neural Networks (ANN) using different
categories of permission features [5]. In another work, Android Botnets are investigated
using static analysis to extract potential features from the source code of the applica-
tions after they have been reverse-engineered. To identify such malicious applications,
efficient machine-learning models are then developed using the features. The study
also suggests a new set of features for using the target mobile to access resources [1].
Another similar work to the previous paper introduces an approach to detect botnet
Android mobile apps by using source code mining. Several examples of malicious and
non-malicious apps analyse the source code using reverse engineering and data mining
techniques. To build datasets, they employ two methods. In the first, they build several
datasets by text mining the source code, and in the second, they create one dataset by
extracting source code metrics using an open-source tool [2]. This study uses similar
features to the previous one. They propose a system for detecting Android botnets using
automated text mining of manifest files obtained from apps in this paper. The proposed
method extracts the features from manifest files using NLP techniques, and a deep
learning-based classification model is used to detect botnet applications [26]. This paper
introduces a new classification for mobile botnets based on smartphone permissions
and Application Programming Interface (API) calls. The Drebin dataset [24] is utilised
as the training dataset for this classification, which is created using static analysis in a
controlled lab setting [7]. In this study, they suggest a static method for detecting mobile
botnets. Using a machine learning algorithm and a combination of MD5, permissions,
broadcast receivers, and background services, this technique can identify applications
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that can be used to create mobile botnets. In this method, android application features
are extracted and used to create a machine-learning classifier for identifying mobile
botnet attacks [8]. In another one, they present a novel approach for identifying Android
botnet applications that rely on Android permissions and convolutional neural networks
(CNNs). They also proposed a novel way to represent each application as an image that
is constructed based on the co-occurrence of permissions given to that application, being
the first developed method that applies CNNs for this purpose. A binary classifier that is
trained using these images is the proposed CNN [9]. This paper suggests a new method
for identifying mobile botnets based on features taken from images and a manifest file.
The method uses a Histogram of Oriented Gradients and byte histograms obtained from
images representing the app executable and combines these with features obtained from
the manifest files. Then feature selection is used to choose the best features for classifi-
cation using machine learning algorithms [10]. In a research work with similar features,
they present Bot- IMG, a framework for machine learning-based image-based visualisa-
tion and Android botnet detection. Additionally, they used the ISCX botnet dataset [23]
to assess the Bot-IMG framework’s effectiveness. They specifically use Autoencoders
in with traditional machine learning classifiers to implement an image-based detection
method using a Histogram of Oriented Gradients (HOG) as feature descriptors within
the framework [11]. The new risk assessment method that focuses on GPS exploitation
for Android botnet detection is proposed to assess the level of risk connected to each
app in terms of privacy, financial, and smartphone system risk. Static analysis using
feature set permission and API calls served as the foundation for the evaluation. Using a
quantitative calculation model, it was possible to distinguish between benign and botnet
apps [12]. And finally, A comparison of deep learning techniques for Android botnet
detection using 6802 Android applications made up of 1929 botnet applications from the
ISCX botnet dataset is presented in this paper. Using 342 static features derived from the
applications, they assess the performance of several deep learning techniques, including
CNN, DNN, LSTM, GRU, CNN-LSTM, and CNN-GRU models [13].

3.2 Dynamic Techniques

The application is executed on an Android platform in dynamic approaches, and all
related system calls and network traffics are monitored. Malware is detected based on
its runtime behaviour and interactions with the system. Dynamic methods can deal
with malware that has been obfuscated or encrypted. They outperform static analysis
in detecting both known and unknown malware. However, they are slow, resource-
intensive, and vulnerable due to the limitation of code reachability. As a result, they may
be dangerous at times.

To discover specific trends and characteristics relating to botnet behaviour, this paper
analyses Android malware. A thorough literature review of well-known Android mal-
ware apps helps identify the trends and characteristics of botnets. The Android Botnet
Discovery Process and the Android Botnet Development Model are then used to further
examine the identified characteristics. The frequently recognised trends and charac-
teristics help in both the understanding of Android botnet operations and the potential
identification of an Android bot [14]. In this research work, to identify potential malware
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in Android applications, they created a system called ABIS (Android Botnet Identifica-
tion System). Their system learns the characteristics of each Android botnet family from
the dataset offered by the University of New Brunswick to identify the Android botnets
[15]. In another one, to accurately identify Android botnets, they suggest using an app-
roach called Smart Self-Adaptive Learning Based Particle SwarmOptimization Support
Vector Machine (SSLPSO-SVM). The SSLPSO algorithm, which is based on the PSO
algorithm, simultaneously employs five different search-space scanning techniques [16].
They present an anomaly-based and host-based method for identifying mobile botnets.
In the suggested method, statistical features extracted from system calls are used to
identify anomalous behaviours. They were able to test the effectiveness of their method
in a situation that was like reality using a self-generated dataset made up of 13 fami-
lies of mobile botnets and legitimate applications [17]. “Logdog,” suggests an improved
log-based botnet detection method for mobile devices. Their method relies on looking
through mobile device logs to find signs of botnet activity [18]. This paper introduces a
novel method for botnet detection in networks. The IRC, HTTP, DNS, and P2P attacks
that botnets use is compared using the proposed detection model. This model also rates
the precision of botnet detection. To identify botnets, they employ network nerves, cor-
relation, and NSA (negative selection algorithm), which is based on an artificial immune
system [18]. However, their model differs from one that was previously proposed, which
concentrated on 81 attributes gathered from features of network traffic. They usedWeka
machine learning to test ten families of Android botnets. They have 32762 instances
that fall under the attack and non-attack categories [19]. At last, the research focuses
on creating a cloud-based malware detection system for Android botnets. The proposed
system’s prototype, which offers an Android malware analysis in real-time, has been
deployed. Using a botnet detection learning dataset and a multi-layered algorithm used
to predict the botnet family of a specific application, the paper explains the architectural
implementation of the developed system [20].

3.3 Hybrid Techniques

For greater accuracy, hybrid techniques combine static and dynamic approaches. They
use static analysis to analyse an application first and then use dynamic analysis to over-
come both static and dynamic limitations [21]. In general, the hybrid technique usually
produces the best results. Nonetheless, due to their complexity, they require a lot of
resources and time. This paper aims to use machine learning methods to categorise
Android applications (apps) as benign or botnet. System calls, permission requests, and
API calls were analysed and classified using machine learning techniques and hybrid
analysis,which combines static and dynamic analyses [4].Also, another research focuses
on developing a functional prototype of a system that uses artificial intelligence to
analyse various Android application behavioural parameters. Signature-based detection
techniques were also incorporated into the prototype during implementation. [22].
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4 Dataset

We deliver a new dataset for Botnet detection in Android platforms. As a result, we
created an Android Botnet dataset with 2713 entries. The dataset contains 454 columns,
including 453 specific features and the label, which is the last column. The first row
of the dataset describes column titles, and the remaining rows contain features from
2712 Android Botnets and benign applications. To do this, we downloaded 1483 benign
applications from Google Play and different categories and 1229 Android Botnets. All
values are in binary format, which means they are either 0 or 1. Figure 2 presents a small
portion of the dataset. The entire dataset is available on Kaggle [28].

Fig. 2. A representation of a small portion of the proposed dataset

4.1 Feature Selection

Feature selection is critical in detecting mobile malware and botnets. Feature selection
can help machine learning algorithms produce more accurate results by removing noise
and irrelevant data from datasets. It can also reduce the runtime of machine learning
algorithms during training. In this research, permissions are our features. Permissions
are used to validate the system’s requirements. The developer must declare permissions
for use in their applications.Declared permissions are useful and effective in revealing the
potential risks of installing Apps. According to [5], the protection level of the permission
feature consists of three categories: Dangerous permission feature, Normal permission
feature and Signature permission feature as shown in Table 1.

Table 1. The protection level of a permission feature

Protection Level Description

Dangerous A higher-risk permission provides access to specific application-level
features to the requesting applications while posing little risk to other
applications, the system, or the user

Normal A lower-risk permission would grant the requesting app access to
sensitive user information or device control, both of which could be
harmful to the user

Signature The system will only grant this permission if the requesting application
is registered with the same certificate as the one that declared on the
permission
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4.2 Feature Extraction

VirusTotal [27] was used to decompress our botnet dataset and benign applications’.apk
files. By uploading the apk file to VirusTotal, it decompiles the files to source code
folders that provide detailed information about each dataset file, allowing the features to
be extracted. Basic properties, permissions, activities, receivers, intent filters by action,
intent filters by category, interesting strings, warnings, contents metadata, contained files
by type, and contained files by extension are among the useful information. In addition,
VirusTotal declares the files of the benign application to be virus-free and identifies
the malware percentage of the botnet dataset files. We classified the apk files using
over 70 trusted anti-malware detection engines. The android Botnet dataset includes
several families, including Anserverbot, Botmaster, DroidDream, Sandroid, Wroba and
Zitmo. We put all the information in a file to make the dataset usable. CSV file format,
which is simple to open and process. When an app requires permission, the value in
the corresponding dataset entry is 1, and when an app does not require permission, the
value is 0. Based on VirusTotal’s report, an Android app recognised as malware by
most antivirus companies is considered risky, and the value in the label column is set
to 1, indicating a Botnet. The list of Android mobile botnet families and the number of
samples are listed in Table 2.

Table 2. Botnet Families

Botnet Family Year of Discovery Number of Samples Type of C&C Motivation

Anserverbot 2011 244 HTPP Propagation of
possible
Malware

Bmaster 2012 6 HTPP Financial, SMS
Stealing

DroidDream 2011 362 HTPP Data Stealing

Gemini 2010 262 HTTP Data Stealing

Sandroid 2014 61 HTTP Financial, Mobile
Banking Attack

Wroba 2014 152 HTTP Financial, Mobile
Banking Attack

Zitmo 2012 142 SMS Financial, SMS
mobile Transaction,
Authentication
Number, (mTAN)
stealing



80 S. Seraj et al.

5 Proposed Method

We have used an MLP neural network to detect malware Botnets in our dataset. A
multilayer perceptron is a good estimator in our case due to the immense flexibility
of the math performed in the overall function. It is a purely mathematical system that
gradually approximates complex input-output relationships with large amounts of data.

The number of input nodes must match the number of permissions in the dataset
which is exactly 453. Besides, only one output node is needed even for so many input
nodes since the classification here is a yes/no decision maker. For extremely powerful
classification, one hidden layer is enough. The number of nodes within the hidden layer
can be variable and we have found 454 as the optimum number through trial and error
with extensive attempts. According to the neural network structure, data entries are
multiplied by weights and subjected to an activation function. As shown in Eq. 1. We
used a differentiable activation function called standard logistic sigmoid for both hidden
and output nodes in the MLP structure (K = 1, L = 1) because a gradient tells us how
to modify weights. This activation function promotes successful system training while
also contributing to the neural network’s learning process stability. Each computational
node’s input is calculated usingEq. 2,whereNdenotes the output of the preceding layer’s
nodes, w is the weight vector, and n denotes the number of nodes in the preceding layer.
In Eq. 3, the weights of a node are modified in proportion to the slope of the error
function, where the target is the expected output, the learning rate, and f′ is the logistic
activation function’s derivative. It would be unnecessary to use the logistic function’s
derivative expression for a given input value if we had already calculated the function’s
output, as shown in Eq. 4.

f (x) = L

1 + e−kx

L = 1,K = 1
→ f (x) = 1

1 + e−x
(1)

preNi = w.N = w1N1 + w2N2 + . . . + wnNn (2)

weightnew = weightold + ax(target − output)xf ′(input) (3)

f ′(x) = ex

(1 + ex)2
= f (x)(1 − f (x)) (4)

6 Experimental Evaluation

We have developed an optimised Multilayer Perceptron (MLP) using Python and the
Scikit-learn library, as described in Sect. 5. Moreover, 5-fold cross-validation has been
used throughout all experiments. Using the proposed Botnet dataset, we trained and
validated our MLP neural network classifier using the Python programming language.
The Numpy and Pandas libraries are required for array operations and reading data from
files. The simulation is divided into four stages: defining the network’s parameters, such
as node numbers and learning rate, reading the Botnet dataset, training the MLP neural
network with a portion of the dataset, and finally verifying the neural network with the
rest of the dataset.
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6.1 Evaluation Metrics

We used the Python programming language with the sci-kit-learn library for the experi-
mental analysis.We have usedAccuracy, Precision, Recall, and F1 as evaluationmetrics;
thesemetrics are described in Eqs. 5, 6, 7, and 8 respectively. True positive, true negative,
false positive, and false negative are all abbreviated as TP, TN, FP, and FN, respectively.

Accuracy = TP + TN

TP + TN + FP + FN
(5)

Precision = TP

TP + FP
(6)

Recall = TP

TP + FN
(7)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(8)

6.2 Results

This section describes the experiments and compares the proposed method to other
well-known classifiers as well as the most relevant previous research in this field. For
evaluating the proposed method, we used our hand-crafted dataset and selected 1229
Android botnet samples from 7 different families. All the benign samples were scanned
with the VirusTotal to make sure that the benign class does not include any malware
samples. The dataset consists of 2713 samples, and 5-fold cross-validation was used to
evaluate the proposed method using this dataset. All experiments were performed on
64-bit Microsoft Windows 11 pro–operating system and using hardware with intel(R)
Core (TM) i5-8365U @ 1.60GHz 1.90GHz CPU, 16.00GB RAM, and an Intel UHD
Graphics 620 GPU.

6.3 Comparisons with other Classifiers

The following algorithms were used in the comparisons, with the default settings from
the sci-kit learn library: Decision Tree, Random Forest, KNN, SVM, and Naive Bayes.
The results are shown in Table 3, which compares the proposed method to other well-
known classifiers based on Accuracy, Precision, Recall, F-1, and AUC using 5-fold
cross-validation. To highlight the significance of this research result, a comparison is
made with previous similar research. Table 4 indicates the comparison between [5, 9,
10], and [26], respectively. These comparative results show that the research method in
this paper surpasses previous similar efforts.
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Table 3. Comparisons with other classifiers

Algorithm Accuracy% Precision% Recall% F-1% AUC%

Decision Tree 96.50 98.36 94.14 96.20 96.37

Random Forest 98.15 97.63 98.41 98.02 98.17

K-NN 98.34 99.52 96.31 97.89 98.00

SVM 97.60 98.39 96.45 97.41 97.53

Naïve Bayes 79.18 68.53 99.59 81.19 81.00

BotDroid 98.88 99.99 98.46 98.88 98.80

6.4 Comparisons with the Most Recent Botnet Detection Studies

Table 4 shows the obtained results from the proposed method compared to other best
researchers that have used traditionalMachine Learning approaches (in terms of the used
dataset, number of samples, and performance). The table indicates that the proposed
method is completely successful in classifying benign and botnet applications.

Moreover, we distinguished botnet and benign applications just by utilizing given
permissions, while some of the mentioned works employed more features alongside
given permissions such as API calls or permissions protection level. Our promising
resultswith high accuracy indicate that ourmethod can effectively detectAndroid botnets
based on only given permissions as features.

Table 4. Comparison with other related botnet detection studies

Reference Type Method Accuracy% Precision% Recall% F-1%

[9], 2020 Permissions CNN 97.2 95.5 96 95.7

[10], 2022 Images and a manifest
file

HOG 97.5 98.0 98.0 98.0

[5], 2022 Permissions CNN-SVM 96.9 - - 96.9

[26], 2022 Manifest file texts CNN 95.44 95.4 95.4 95.4

ANN 96.35 96.4 96.4 96.3

BotDroid Permissions MLP 98.88 99.99 98.46 98.80

7 Conclusions

In this paper, we employed Android permissions and an optimised multilayer percep-
tron (MLP) to propose a novel method to detect Android botnets. To the best of our
knowledge, this is the first Android botnet detection method that applies a dataset with
453 permissions as a feature. Initially, we downloaded 2713 apk files from various cat-
egories from the Google play store and other third-party websites to create our intended
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dataset based on permissions. Then, reverse engineering was applied on 1483 benign
and 1229 botnet applications from our hand-crafted dataset to extract the AndroidMan-
ifest.xml files that provided access to the permissions given to each application. Finally,
we trained and tested a proposed MLP model using the employed dataset in a 5-fold
cross-validation experiment. Based on our experiments, the proposed method outper-
forms several conventional ML methods in this field by achieving 98.88% accuracy
and 99.99% precision. These promising results indicate that the proposed method can
effectively detect Android botnets by employing the given permissions.

In the future we plan to investigate how to use permissions to detect other types of
malwares such as Adware. Moreover, we aim to use Android API calls alongside the
permissions to detect sophisticated various Android malwares.
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Abstract. This study presents a comprehensive overview of the classi-
fication of time signals over a variety of objects. Signals were initially
processed using the Hilbert-Huang transform, followed by supervised
machine learning and deep learning to classify objects. Multilayer Per-
ceptron (MLP) and Support Vector Machines (SVM) were used for sound
discrimination. The result is a program that effectively detects and clas-
sifies time signals as “Object 1” or “Not Object 1” (i.e., Object #2 and
Object 3).

Keywords: Machine Learning · Deep Learning · Supervised
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1 Introduction

The paper contains five sections. In the Sect. 1 the main tasks of the work have
been discussed and then a general flow diagram has been provided in Fig. 1.
Section 2 contains theoretical research insights on topics such as Machine Learn-
ing (ML), Multilayer Perceptron (MLP), and Hilbert Huang Transform (HHT).
Section 3 describes in detail the implementation of the project and Sect. 4 dis-
cusses the results. The reference to related papers is provided in last section.

This work aims to classify sampled time signals after the HHT is applied to
the data, and then a machine learning model is designed using multilayer percep-
tron and SVM. To determine whether the signal belongs to the correct class or
the signal is misclassified, we analyze how the signals are classified into multiple
classes and perform the accuracy check of the classification. Later, it is deter-
mined which machine learning model gives the highest accuracy, between Mul-
tilayer Perceptron (MLP) and Support Vector Machine (SVM). After inputting
the data, the HHT is first applied using the Empirical Mode Decomposition
(EMD) technique to compute additional features such as the Instantaneous Fre-
quency (IF) and the energy at that IF or the Instantaneous Amplitude (IA) of
the sampled time signal. This results in obtaining the Hilbert spectrum using
IF and IA [1]. Then, the HHT spectrum data is used to train machine learn-
ing models, MLPs, and SVMs, which will be employed to perform classification
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tasks for Object 1, Object 2, and Object 3. The data under consideration are
humans, detected by a sensor, walking around at different heights and clothing.
More details about MLP, SVM, and HHT can be found in Sect. 2.

In this experiment, different data sources were used, consisting of 315, 200,
and 400 rows of time signals for Object 1, Object 2, and Object 3, respectively.
For model training and validation purposes, the data was split in an 80:20 ratio.
Details of the training, testing, and classifier evaluation procedures are described
in Sect. 3. Furthermore, from a predetermined starting column in the data source,
the software program was programmed to extract only relevant data, namely the
actual time signal length with 3400 scan points of each sample. Both the “scan
point” length and the “starting column” are dynamic variables that can be
changed if necessary.

2 Background

2.1 Hilbert Transform

The Hilbert transform is a method that extracts important features from a
given time series data and makes it more meaningful for analysis. The Hilbert
Transform, Y(t), can be obtained for any given time series, X(t), using the
following equation:

Y (t) =
1
π

P

∫
X(t′)
t − t′

dt′ (1)

Here, P denotes the Cauchy principal value. This transformation exists for
all Lp functions [12]. Using this definition, X(t) and Y(t) becomes a complex
conjugate pair which allows us to obtain an analytic signal, Z(t).

Z(t) = X(t) + iY (t) = a(t)eiθ(t) (2)

i is the imaginary unit, a(t) is the amplitude of the complex analytic signal
and θ(t) is the instantaneous phase of the complex analytic signal, which is the
angle formed by Z(t). Now, a(t) and θ(t) can be obtained:

a(t) =
√

X2(t) + Y 2(t) (3)

θ(t) = arctg

(
Y (t)
X(t)

)
(4)

3 Methodology

This section provides a comprehensive guide to the discrimination of time signals
belonging to different objects using the SVM and MLP models. The Hilbert
transform is used for data preprocessing before classification. Additionally, model
accuracy is evaluated using a confusion matrix to compare results.
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3.1 Data Reading

The experiment consists of three objects, and for each object a corresponding
dataset is available in the form of Excel files called Data Object1, Data Object2,
and Data Object3. Each file is further divided into “Train Data” and “Test
Data” sets.

The rows of each dataset represent the number of samples. The columns
represent the number of features or sample points for each time signal. Each
sample in the datasets contains 3400 samples depicted in Fig. 1. This is done by
defining three different classes. The length of the feature vector or the number
of sample points is also defined. They are labeled 0, 1, and 2, respectively, to
distinguish the objects.

Fig. 1. Time Signals of an Object

3.2 Applying Hilbert Transform

On the completion of reading the Excel files the data is processed using the
Hilbert Huang Transform (HHT) algorithm.

In the first step of the HHT algorithm, Intrinsic Mode Functions (IMFs) are
created for each sample input. In the next step, the IMFs are applied to Hilbert
Transform. As a result, Hilbert Spectrum is obtained. Using this Hilbert Spec-
trum, new features are obtained such as Instantaneous Frequency (IF), Instan-
taneous Amplitude (IA) etc., which will be later fed into the MLP model.

The code snippet, Fig. 2, indicates the python code used to calculate Hilbert
Huang Transform.
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Fig. 2. Algorithm for Hilbert Huang Transform

Here, the variable hht1 is created to store the Hilbert spectrum. Variable hht1
is a three-dimensional array that stores the information on energy-frequency-
time distribution. The for loop is created to iterate through each sample (row
of Excel file) of the provided data. IMFs are obtained using emd.sift.sift()
function when it is applied to an input sample. When IMFs are created,
emd.spectra. frequency transform() calculates the Hilbert Transform of the
data. emd.spectra. define hist bins() function creates the variable specifying
‘frequency divisions’ which will be required to prepare and plot the Hilbert
Spectrum. emd.spectra. hilberthuang() function plots the Hilbert Spectrum of
the data using ‘Instantaneous Frequency (IF)’, ‘Instantaneous Amplitude (IA)’,
and ‘frequency divisions (f div)’ parameters. The output from the above code
is given in Fig. 3. which is the final data frame.

Fig. 3. Final Data Frame
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3.3 Support Vector Machine (SVM) Implemention

The next step is to develop an SVM algorithm using different libraries like
NumPy, Pandas and scikit-learn after processing the data with HHT. In order
to evaluate the accuracy of the model, a confusion matrix is generated at the
end of the process. We use the “train-test-split” feature to split the data, with
80% of the data to train the ML model and the remaining 20% to test it.

Hyper-parameter Tuning. Hyperparameter tuning is a critical step in the
optimization of SVM algorithms to achieve higher accuracy and better learn-
ing rates. Hyperparameters are model arguments whose values are set before
the training process begins. We have tuned three hyperparameters i.e., kernel,
Cparameter, and degree of SVM using the “GridSearchCV” feature of sci-kit
learn.

Hyperparameter Tuning Results. Using the GridSearchCV different values
of hyperparameters are tested which can be seen in Fig. 4(a). The results of the
best values of the hyperparameters can be seen in Fig. 4(b).

(a) Hyperparameter Tuning

(b) Hyperparameter Tuning Result (c) Accuracy & F1 Score.

Fig. 4. SVM: Hyperparameters

Kernel is considered to be the most significant hyperparameter of the SVM.
Functionally, the focus of kernel is to take low-dimensional input space and
transform it into a higher-dimensional space. It must be either one of the types
- linear (used for linearly separable data), poly (maps non-linear data into a
higher-dimensional space using a polynomial function.), rbf (maps the data into
an infinite-dimensional space by using Gaussian functions), sigmoid (used for
non-linear data and maps the data into a higher-dimensional space using a hyper-
bolic tangent function), precomputed (uses a user-defined kernel matrix instead
of computing the kernel function on the data), or callable (defined by the user
that takes two inputs and returns the kernel value). If no kernel is provided as
an attribute, ‘rbf’ will be used as the default kernel.



90 I. A. Jadoon et al.

C (Regularization). C is the SVM penalty parameter that determines the
cost of misclassification. The algorithm allows more misclassifications but pro-
duces a limit with a wider range. Conversely, a large C value results in fewer
misclassifications but a smaller margin.

Degree. The degree hyperparameter determines the degree of polynomials in
the polynomial kernel function and is exclusive to the polynomial kernel, unlike
the other kernels.

Predicting New Signal Data. The trained SVM model is used to predict the
object from new signal data. This is completely new data for our model, which
has to predict which object the test data belongs to. The predicted data was
from object 2 and our model has correctly predicted that the data belongs to
object 2 (Fig. 5).

Fig. 5. Predicting new signal data

Confusion Matrix. The performance of the SVM classifier was evaluated using
the confusion matrix method. The confusion matrix indicates how accurately the
classifier can classify new data. The confusion matrix of the SVM classifier is
shown in Fig. 6.

Labels 1, 2, and 3 correspond to Object 1, Object 2, and Object 3, respec-
tively. The true positive values for object 1, object 2, and object 3 are 0, 40, and
85, respectively.

3.4 Implementing Multi-Layer Perceptron (MLP)

The second test of algorithm compilation for MLP is also made following the
same procedure that has already been discussed in the earlier subsection to
evaluate the model accuracy.

Firstly, the model is loaded with the train data as well as test data (now
already processed with HHT) which is taken from one of the available data
sources.

All data are merged and stacked vertically after loading and labeling. The
train data is subjected to this reshaping action. This is a good practice in machine
learning algorithms to feed data to the model.
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Fig. 6. Confusion Matrix

Fig. 7. Reshape Train Data

The following shows the matrix that has been generated after the operation
that has been done in Fig. 7.

X Train =

⎡
⎣trainData1(Object1)

trainData2(Object2)
trainData3(Object3)

⎤
⎦ ,Y Train =

⎡
⎣trainLabel1(0)

trainLabel2(1)
trainLabel3(0)

⎤
⎦

This function divides the labeled data into a binary diagonal matrix to
achieve output. Hence it will label “1” for each of the target classes. If the
data is for ‘object 1’ it will place “1” for it and “0” for ‘object 2’. Y Train shows
the general matrix after converting the class to categorial ones.

Y Train =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

The MLP model has a simple three-layer architecture consisting of an “Input
Layer”, a “Hidden Layer”, and an “Output Layer”. The input layer receives
the raw data, and it has 34000 nodes designed for this purpose (the number
of scan points x the frequency divisions = 3400× 10). The first hidden layer
contains 1000 nodes and the second hidden layer contains 50 nodes. The ReLU
function is used to activate the hidden layers. The output layer has three nodes.
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These represent the three defined objects. In addition, the output layer uses
the “softmax” activation function, ensuring that the output is a probability
distribution function [13]. Since the final output must be one of the three objects,
namely object 1, object 2, or object 3. Figure 8 illustrates the code snippet of
the model.

Fig. 8. Algorithm for MLP Model

Drop Out is another important parameter used in the model, set to 0.2. Its
primary purpose is to prevent the model from overfitting, which occurs when
the model describes the random error in the data instead of the relationships
among the variables. Overfitting typically occurs when the model is too complex
to explain [14]. Dropping out is therefore used to overcome this problem.

Once the model has been prepared, the next step is to train the model using
a loss function called “categorical entropy”. In order to identify a single final
output from a set of possible outcomes, this function is applied to the PDF
output. The MLP uses stochastic gradient descent optimization, and we use the
“Adam” optimizer in our algorithm, as mentioned earlier.

Fig. 9. MLP Model Paramters

Figure 9 shows the model’s 5 epochs and batch size of 40, taking 19 iterations
to complete 1 epoch. Increasing the number of time samples may increase the
iterations per epoch. Figure 10 demonstrates the validation of the trained model
using the test dataset.

Using Classifier to Discriminate New Data. A classification function is
added to Python code using the NumPy and TensorFlow Keras libraries for
object detection and prediction. The pre-trained MLP model is loaded into the
object classification algorithm as a first step. Figure 11 indicates loading the
trained model in Python code.
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Fig. 10. Model Saving & Evaluation

Fig. 11. Model load for Object Classification

To perform classification, we provide new data to our machine learning model.
We have a test file in which we have data of 50 rows with 3400 scan points and
the data can belong to any object e.g. object 1, 2, or 3.

Figure 12 shows that our program performs the classification after we have
specified the starting column and the total number of scan points in the Python
program, using three objects: “Object 1”, “Object 2”, and “Object 3”. The
model accurately predicted that the data in the test file belongs to “Object 2”.

Fig. 12. Prediction Algorithm

Results of MLP Model. Figure 13 illustrates a sample time signal along with
its Intrinsic Mode Functions and finally calculated Hilbert Spectrum. The same
operation has been done on each time sample before the application of machine
learning.
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Fig. 13. Time Signal and its calculated IMFs for HHT

Using the IMFs from all time samples, Hilbert Spectrum is calculated which
indicates the amplitude-frequency-time distribution for the given time sample.
Hilbert Spectrum of the signal is shown in Fig. 14. The MLP model has been
tested with different settings to achieve the optimum results.

Fig. 14. Hilbert Spectrum of a sample Time signal

Confusion Matrix for MLP Model. The Confusion matrix of the trained
model illustrated in Fig. 15 shows labels 0, 1, and 2 which indicate object 1,
object 2, and object 3, respectively. True Positive for Object 1 is 287, for Object
2 it is 199 and for Object 3 it is 316.

4 Final Results of SVM and MLP Model

We have observed a significant accuracy increase in MLP model (85%) as com-
pared to SVM model (68%), illustrated in Fig. 16. Additionally, The MLP model
surpasses the SVM model in the classification task, as demonstrated by their con-
fusion matrices compared in earlier chapters. Notably, the MLP model achieves
a substantially higher true positive rate than the SVM model. Hence, it can be
inferred that the Multilayer Perceptron (MLP) model is the best fit for our
dataset’s training and prediction.



Classification of Time Signals Using Machine Learning Techniques 95

Fig. 15. Generated Confusion Matrix of best ML Model for classification of 3 Objects

Fig. 16. Accuracy Output for best ML model
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Abstract. During the “water cycle” process, inorganic as well as organic sub-
stances are dissolved, which is completely normal. Organic substances can orig-
inate from decaying tree leaves that fall into rivers and lakes, from sewage from
living organisms that live in water (e.g. fish) and human waste. Inorganic sub-
stances can come from lead and copper in water pipes, from pesticides and gen-
erally from various human activities. All these elements contribute to increase of
water conductivity. The higher the conductivity in water, the more dangerous it
becomes for humans [4]. The purpose of this research is to evaluate and classify
water conductivity levels at the “Bramianon” dam of Crete, with the development
of powerful Machine Learning models capable of successfully assigning three
labels “Low”, “Medium”, “High”.

Keywords: Machine Learning · Classification · Water Conductivity

1 Introduction

1.1 Defining the Problem

The natural quality of water has undergone serious degradation in recent decades, due to
various sources of pollution (e.g., municipal sewage, industrial liquid waste, detergents,
agricultural liquid waste, livestock liquid waste and seawater intrusion. This has resulted
to resolved oxygen reduction, eutrophication of water, and to the pollution of groundwa-
ter and drinking water [5]. Drinking water must be clean from a physical, biological and
microbiological perspective, as its consumption must not endanger human health. More-
over, the water must be colorless, odorless, with a pleasant taste. It must not have high
level of hardness, organic substances, heavy metals or pathogenic parasites or microbes
[5]. When water conductivity becomes high enough, things start to get dangerous. That
is why it is important to know the level of conductivity in the water we are consuming.
The conductivity limit in the US for drinking water is 500 ppm (parts per million). The
following Table 1 presents the existing classification values, related to water hardness
as they appear in the literature [4].

The following Table 2 presents the typical water classes, related to Water Conduc-
tivity (WA_CO) in Greece, as they appear in the literature [4].
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Table 1. Water classification based on its hardness.

Hardness in ppm Class of Water

0–70 Very Soft

70–150 Soft

150–250 Soft to Hard

250–320 Hard Enough

320–420 Hard

Over 420 Very Hard

Table 2. Water classes based on WA_CO in Greece

WA_CO in ppm Description

0–20 Deionized water

Close to 180 Water of Attica area

180–200 Bottled Water

Up to 5,000 In network waters throughout
Greece

More than 5,000 In brackish drilling water

25,000–35,000 Sea water

Measuring the conductivity or hardness of water, a Total Dissolved Solids device
(TDS) is required. This instrument measures the concentration of salts, anions, cations,
metals and organic matter which are dissolved in water. The TDS does not consider only
the suspendedparticles that are not dissolved.Conductivitymeasurement is an alternative
way to find out how hard our water is, as salts make up a significant percentage of water
[4].

1.2 Aim of This Machine Learning Modeling Effort

Learning is one of the fundamental properties of intelligent human behavior. Despite
years of studies and research by cognitive psychologists and philosophers, the concept
of learning has not been fully understood. The goal of Artificial Intelligence is the
development of computer systems capable of learning through Machine Learning (ML)
patterns in order to continuously improve their performance without the need to be
reprogrammed [1]. The main objective of this research is the development of robust ML
models for the rational and effective classification of water conductivity levels of the
“Bramianon” Dam which is located in Crete, Greece. More specifically, this modeling
effort will employ three WA_CO classes, namely, “Low”, “Medium” and “High”. This
will enable not only the local authorities but also the public to be aware of the potability
of the available water resources in the specific area under study.
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1.3 Literature Review

This section performs a comprehensive literature review on the application of ML
towards water quality modeling. P. Sharma et al. 2020, have used five ML Regression
algorithms namely: Neural Networks, Gradient Boost, Support Vector Machines(SVM),
Decision Trees and Random Forest in an effort to model the actual Water Conductivity
values [11]. N. Radhakrishnan and A. S. Pillai 2020, introduced various water qual-
ity classification models (SVM, Decision Trees, and Naïve Bayes) [10]. H. Lu, X. Ma
2020, introduced two hybrid decision tree-based models (based on Gradient Boosting
and Random Forest) to obtain short-term water quality prediction results for the Gales
Creek site in Tualatin River (one of the most polluted rivers in the world) [13]. S. N.
Araya, and T. A. Ghezzehei 2019, attempted to maximize information extraction from
a large WA_CO database of 18,000 records, using ML modeling [12]. Elias Dritsas,
Maria Triga 2023, used the supervised learning approach in order to design as accurate
as possible predictive models from a labeled training data set to determine the suitability
of water, either for consumption or other uses, with the help of various machine learning
algorithms (such as Naive Bayes – Note Logistic Regression–LR, k Nearest Neighbors–
kNN, tree-based classifiers and ensemble techniques) [20]. Hamza et al.2023, proposed
an automated water quality prediction system that effectively deals with missing val-
ues in the dataset and achieves good accuracy for water quality prediction, while the
performance of the proposed system is compared with that of seven machine learning
algorithms [21].

To the best of our knowledge, this paper presents one of the first research attempts
globally, towards Machine Learning Water Conductivity classification, in a closed
aquatic system, such as the important “Bramianon” dam located in the island of Crete
Greece.

2 Area of Research – Data

It is well expected that the water conductivity values at the Bramianon dam are always
quite high, as it is an artificial dam and not a spring of natural running water, intended
for drinking consumption. The data was collected from the website of the Decentralized
Administration of Crete (DC_C), Greece [6]. The publicly available data is stored in a
respective website that serves as the central repository of the DC_C [16].

The “Bramianon” Dam has a capacity of 16,000,000 m3 and a surface area of
1,050,000 square meters (1,050 acres). The annual water evaporation amounts to
approximately 500,000 m3 of water.

The retaining wall is 560 m long, its height is 43 m, it has a depth of 32 m and there
is an average annual rainfall of 300 mm. The dam is the third largest wetland in Southern
Greece, after the “Amario” Rivers and the “Aposelemi” Dams. About 30,000 acres of
greenhouse crops are irrigated from this lake. The map below (Map 1) shows the area
of the “Ierapetra” basin as well as the dam lake of “Bramianon” [7].

The wider area of “Ierapetra” in Crete faced a three-year drought period from 2016
to 2018. Due to the sharp decrease in average rainfall in these three years, the level of the
16,000,000 m3 capacity dams, reached marginally low, with water reserves measured
below than 1,000,000m3 [7]. However, during the last three years, 2019, 2020 and 2021,
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Map 1. The basin of “Bramianon” dam and its location in the south-eastern part of Crete.

the satisfactory rainfall level and the snowfall in the western highlands of “Ierapetra”,
contributed towards filling the “Bramianon” reservoir again. Thus, in the next few years
it is capable to address the needs of the area’s farmers in irrigation water. Table 3 below,
categorizes the water reserves’ level according to its adequacy.

Table 3. Classification of the water reserves of Bramianon dam

Reserves in m3 Label

More than 13 million Adequacy

Between 10 and 13 million Mild Deficit

Between 6 and 10 million Deficit

Between 2 and 6 million Seriously Deficit

Below 2 million Extremely Deficit

The data set considered in this research, contains 1,752 daily measurements from
2015 to date (collected at the same time of the day). It comprises of the following
features: water conductivity, water volume, water temperature, precipitation and water
depth. It is worth mentioning that only in two cases the conductivity value was less than
500 ppm (the limit of water potability). Moreover, in 198 data records the conductivity
values fall in the interval [501, 1000] ppm and in 1,552 records they are higher than
1,001 ppm. Obviously in the last two cases, the water was considered as unsuitable for
human consumption due to the increased WA_CO values.

3 Machine Learning Modeling

Machine Learning (ML) is a subfield of artificial intelligence, which is broadly defined as
the capability of a machine to imitate intelligent human behavior. Artificial intelligence
systems are used to perform complex tasks in a way that is similar to how humans
solve problems [17]. In machine learning, algorithms are trained to find patterns and
correlations in large data sets and make the best decisions and predictions based on that
analysis. ML applications improve with use and become more accurate the more data
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they access [1]. There are three types of ML namely, Supervised Learning (SUP_L),
Unsupervised Learning, Semi Supervised Learning and Reinforcement Learning.

This research involves SUP_L which comprises of the following subprocesses:

– Data collection
– Data Preprocessing: Converting the actual numerical values of the depended fea-

ture (DF) to the respective notation of each class. In other words, adding labels
corresponding to the numerical values of the DF.

– Feature selection and feature engineering.
– Selection of each ML algorithm and training-evaluating each model.
– Determination of the optimal model.

3.1 Water Conductivity Modeling

3.1.1 Data Preprocessing

The first stage of this researchwas data pre-processing that was performed under theMS-
Excel environment. This stage was divided in two parts, namely: Data Normalization
and Development of classes.

A. Data Normalization: Since the range of values of raw data varies widely, in some
machine learning algorithms, objective functions will not work properly without nor-
malization. For example, many classifiers calculate the distance between two points by
the Euclidean distance. If one of the features has a broad range of values, the distance
will be governed by this particular feature. Therefore, the range of all features should be
normalized so that each feature contributes approximately proportionately to the final
distance. Another reason why feature scaling is applied is that gradient descent con-
verges much faster with feature scaling than without it [18, 19]. Thus, the first step of the
modeling effort was the normalization of data based on the following scaling function
1. By doing so, all features will be transformed into the range [0,1] meaning that the
minimum and maximum value of a feature/variable is going to be 0 and 1, respectively.

x′ = x − min(x)

max(x) − min(x)
(1)

Function 1. Scale Normalization function.

This was done so that the variables with the largest magnitude, do not dominate
over those with the smallest. Moreover, this process ensured that these values will be
compatible to the Definition Range of the employed Transfer functions. Microsoft Excel
was used to calculate the maximum, the minimum value, and the standard deviation of
the water conductivity. The standard deviation is used to correct the normal distribution
across the entire data set. In a normal distribution, almost all data fall into three standard
deviations of the average.

B. Development of classes: In the second part of data Preprocessing, the numerical
values of WA_COwere converted to class labels following a deterministic approach [3].
More specifically, Fuzzy Algebraic Functions (FAF) were used in the stage of labels’
assignment, related to the conductivity values. Through this process, the dataset gained
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an additional feature, which comprises of the respective labels (Linguistics), determined
by applying proper fuzzy algebraic membership functions on the existing conductivity
values. More specifically, the following mathematical operations were performed:

A Triangular FMF (Function 2) was employed to determine the boundaries of the
“Low WA_CO” Fuzzy Set (class) and to process the Fuzzy Membership Value (FMV)
of each record to this class (Fig. 1).

The respective MATLAB command is “low = fismf(“trimf”, [500 800
1200],"Name”, “low”);”. As it is clearly shown from the above MATLAB command,
the vector of the boundary hyperparameters’ values was equal to [500, 800, 1200].

µA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c
0 if x ≥ c

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2)

Function 2. Triangular Fuzzy Algebraic Membership function.

Fig. 1. Triangular Fuzzy Algebraic Membership function

Moreover, a Trapezoidal FMF (Fig. 2, function 3) was used to determine the bound-
aries of the “Medium WA_CO” Fuzzy Set (class) and to determine the FMV of each
record to the “Medium” class. The respective MATLAB command is: “medium =
fismf(“trapmf”, [1000 1200 1600 1800], “Name”, “medium”);”

As it is clearly shown by the above command the values of the hyperparameters’
boundaries were 1,000, 1,200, 1,600, 1,800. They were determined by considering the
lowest and highest value of the available data and by following a symmetrical distribution
of the respective data intervals.

Trapezoidal(x;a,b,c,d)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x< a
x−a
b−a a ≤ x ≤ b
1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d
0 d ≤ x

(3)
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Function 3. Trapezoidal Fuzzy Algebraic Membership function.

Fig. 2. Trapezoidal Fuzzy Algebraic Membership function

The class labeled as “High” was the one with the extreme conductivity values. The
following MATLAB command was used in order to model the fuzzy set “High” via a
Triangular FAF “high = fismf (“trimf”, [1,200 2,000 2,500], "Name", "high");”

The 2nd stage was the development of Machine Learning algorithms used for train-
ing, validation and testing under the MATLAB platform for the optimization of the
classification process.

3.2 Development of ML Models

The data from the “Bramianon" Dam come from the Decentralized Administration of
Crete. After pre-processing, theywere imported intoMATLAB and an attemptwasmade
to classify the conductivity according to the limits of danger for the human organism,
with the help of various Machine Learning algorithms. The following classifiers were
used:Decision Trees, Naïve Bayes, Support Vector Machines, k-Nearest Neighbors, and
Ensembles of Classifiers.

• Decision Trees: Decision Trees (DETR) is the most well-known supervised Induc-
tive Learning algorithm and has been successfully applied in many domains where
classification is required. The DETR algorithm leads to the creation of a tree form
whose leaves are the corresponding classes. This tree-like form can also be read as a
set of rules called classification rules [1].

• NaïveBayesClassifiers: TheSimpleBayes classifier is based on theBayes theorem
and further assumes that the features are independent of each other. Thus, a simpler
but quite effective classifier is obtained. Let X be an instance described by the
attributes: {X1, X2, X3, …., Xn} and we search for the class it belongs to. The
categories of the class are denoted by {k1, k2, ……, km}. Thus, based on Bayes’
theorem, it suffices to calculate for each category K the probability that an instance
X belongs to this category [14].
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• Support Vector Machines: The purpose of Support Vector Machines (SVMs) is to
find one or more hyper-levels in the multidimensional feature space that separate
two classes of samples with the largest possible margin (margin) between them,
minimizing the generalization error of the classifier. Depending on whether the
data are linearly separable from each other, linear or non-linear kernels are used
to transform the problem into the corresponding linear one [15].

• K-Nearest Neighbor Classifiers: The K-Nearest Neighbors (KNN) algorithm is
one of the most popular classification algorithms as its operation is very simple
but in specific cases it produces very good results. The basic logic of the KNN
algorithm is that it tries to classify a pattern, for which it does not know its class,
based on the given data set. That is, it calculates the distance from the K closest
templates to it and gives the unknown template the class that dominates the K
surrounding neighbors [1].

• Ensembles Classifiers: Ensemble classifiers train a set of classifiers from the above
categories for the same data set and finally combine the results of each one. The
most common methods of constructing set classifiers are as follows [15]:

i. Bagging: The training set is resampled to create a set of smaller datasets, and then
a classifier is trained with each of these sets. When an unknown sample needs to be
classified, it is first categorized by all the classifiers and the final decision is made by
voting among them.

ii. Boosting: Here, a set of classifiers is trained again, with the difference that each
sample carries a weight (according to its “importance” in the set it belongs to. This
weight is renewed iteratively. Each sample misclassified by the classifier increases its
weight for the next classifier, otherwise it decreases it. Each classifier is asked to give
more weight to samples that have so far eluded correct categorization. The final decision
is made by voting, possibly weighted by some evaluation metric.

3.3 Models’ Assessment Indices

Precision quantifies the number of positive class predictions that actually belong to the
positive class. Recall (also known as Sensitivity) quantifies the number of positive class
predictions made from all positive examples in the dataset. F-Measure provides a single
score that balances both the concerns of precision and recall in one number.WhileRecall
identifies the rate at which observations from the positive class are correctly predicted,
Precision indicates the rate at which positive predictions are correct. Recall is a measure
of how well a machine learning model can detect positive instances [2]. It is used to
evaluate model performance because it allows us to see how many positive instances the
model was able to correctly identify. This research effort is using three classes, namely:
Low_Conductivity, Medium_Conductivity and High_Conductivity. Thus, it is a case of
Multiclass classification. Following the Macro Averaging approach, (one versus the
rest) in Multiclass classification we must estimate one Precision and one Recall index
for each class separately. In this research we have three classes and a 3X3 Confusion
Matrix A, so we have to calculate three values of Precision and three of Recall (one
for each class). The Precision for class i is obtained by dividing the respective element
of the main diagonal Aii by the sum of all the elements of line i. In this research for
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the first class A, Precision is equal to A11/(A11+A12 + A13), for class B it is equal to
B22/(B21+B21 + B23), and for class C it is equal to C33 /(C31 + C32+ C33). Respectively
Recall for class i is estimated by dividing the respective element of the main diagonal
Aii by the sum of all elements of column i. In this research for the first class A, Recall
is equal to A11/(A11+A21 + A31), for class B it is equal to B22/(B12 + B22 + B32), and
for class C it is equal to C33/(A13 + B23 + C33) (Fig. 3).

Fig. 3. Example of Metrics’ estimation for all three classes in Multiclass classification

For a multi-class classification problem, we don’t calculate an overall F-1 score
Instead, we calculate the F-1 score per class in a one-vs-rest manner. In this approach,
we rate each class’s success separately, as if there are distinct classifiers for each class.
F-1 score is the harmonic mean between the Precision and the Recall for each class. F1
Scorei for class i is: F1 Scorei = 2*(Recalli * Precisioni)/(Recalli + Precisioni).

4 Performance Results

The following chapter 4 presents the performance evaluation of the classification effort
as it is summarised in Tables 4, 5, 6, 7 and 8 below.

Table 4. Classification results for Decision Trees via the one versus all approach

Decision Trees Classifier

Precision Recall Specificity Accuracy F1-Score

Class 1 1.000 0.670 1.000 0,999 0.800

Class 2 0.980 1.000 0.998 0,978 0.990

Class 3 1.000 0.998 1.000 0,998 1.000
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Table 5. Classification results for Naïve Bayes via the one versus all approach

Naïve Bayes Classifiers

Precision Recall Specificity Accuracy F1-Score

Class 1 1.000 1.000 1.000 1.000 1.000

Class 2 1.000 0.880 1.000 0.984 0.940

Class 3 0.980 1.000 0.984 0.984 0.990

Table 6. Classification results for Support Vector Machines via the one versus all approach

Support Vector Machines Classifiers

Precision Recall Specificity Accuracy F1-Score

Class 1 1.000 1.000 1.000 1.000 1.000

Class 2 0.980 0.970 0.997 0.993 0.970

Class 3 1.000 1.000 0.996 0.993 1.000

Table 7. Classification results for K-Nearest Neighbor via the one versus all approach

K-Nearest Neighbor Classifiers

Precision Recall Specificity Accuracy F1-Score

Class 1 1.000 1.000 1.000 1.000 1.000

Class 2 0.960 0.990 0.996 0.994 0.980

Class 3 1.000 1.000 0.998 0.994 1.000

Table 8. Classification results for Ensembles Classifiers via the one versus all approach

Ensembles Classifiers

Precision Recall Specificity Accuracy F1-Score

Class 1 1.000 1.000 1.000 1.000 1.000

Class 2 0.984 1.000 0.998 0.998 0.992

Class 3 1.000 0.998 1.000 0.998 1.000

The best classification algorithm for our problem turned out to be the Bagged trees of
Ensembles Classifiers algorithm [9] with an accuracy of 99.8%. It is worth mentioning
that the other algorithms had equally good results but with a longer execution time,
which is why you choose the fastest algorithm (2.7279 s.) of Bagged trees of Ensembles
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Classifiers. In Fig. 4 we see the Confusion Matrix and the actual behavior for each class
for the Bagged trees of Ensembles Classifier.

Fig. 4. Modeling with Bagged trees of Ensembles Classifiers. Confusion Matrix with the classi-
fication of the data records in the 3 classes (a. with the number of records b. with percentages of
records).

In the above figure we observe that in all three classes the algorithm could and
correctly identified all cases correctly with the exception of only 3 cases in class 2, which
it considered to belong to class 3when in fact they belong to class 2. The remarkable thing
is that, even though in class 1 we have only 2 measurements (Minority), the algorithm
was able to detect both measurements correctly.

For all classes the ROC curves [8] have an AUC equal to 1 (Fig. 5).

Fig. 5. ROC Curve for classes 1 and 2

5 Discussion-Conclusion

In the present research, an attempt was made to classify the water conductivity in the
Bramian Damwith the help of various machine learning algorithms. The performance of
each algorithmwas examined and retrieved from the confusion matrix the partial indices
used in Multi class classification and the ROC curve. The extracted results showed us
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a slightly better performance in the Bagged trees method of the Ensembles Classifiers
classification algorithms compared to the corresponding classification algorithms, with
an accuracy (Accuracy) reaching as high as 99.8%.According to the processed data of our
measurements, we find that the levels of conductivity in the water of the “Bramianon”
dam are quite high with an average reaching 1,268 ppm. We find that the water is
definitely not for human consumption, we can say that these waters are suitable for
irrigation use in the fields and greenhouses of the study area, where they are intended,
since they do not exceed the limits of 25,000 to 35,000 ppmwhich is the seawater, which
could create problems in the primary production of the area.

Finally, we find that the conductivity in the “Bramianon” Dam waters according to
our data does not change at all when the amount of water volume in the dam changes.
So, no matter how much water in cubic meters (m3) the reservoir stores, we will not
have significant changes in the conductivity values. Thus, we conclude that the WA_CO
changes are not due to natural causes, but due to various sources of pollution caused by
human activities as have already we mentioned.
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Abstract. Machine learning, deep learning and neural networks are extensively
developed inmany fields. As the function of cortical neural model, a sparse coding
has been studied which is based on the bases functions of input stimulus. In this
paper, it is shown that the bio-inspired networks are useful for the explanation
of network functions. First, the asymmetric network with nonlinear functions is
created based on the bio-inspired retinal network. They have orthogonal proper-
ties useful for features classification and processing. Second, it is shown that the
asymmetric network is superior to the conventional symmetric network in the clas-
sification performance. Further, the asymmetric network is extended to the layered
networks, which are also generated on the bio-inspired model of brain cortex. In
the extended asymmetric layered networks, the higher dimensional orthogonal
bases are created. To improve the classification performance, the bases replace-
ments are performed in the layered networks. It is shown the bases replacements
in the layered networks improve classification performance in both asymmetric
and symmetric networks.

Keywords: asymmetric and symmetric networks · generation of orthogonal
bases · classification performance of networks · replacement of bases · extended
layered networks

1 Introduction

Recently, there has been a great deal of excitement and interesting in deep neural net-
works, because they have achieved breakthrough results in areas as machine learning,
computer vision, neural computations and artificial intelligence [1–3]. Their networks are
expected to be transparent, understandable and explainable in their successive processing
in the multilayered structures [3]. In their developments, orthogonality is a fundamental
topic in learning and neural networks. Pseudo orthogonal bases perform generalization
capability in neural network learning [4]. The task specific information is represented
along orthogonal axes, which minimizes interference and shows robustness to noise
[5]. In this paper, it is shown that the bio-inspired network generates useful bases for
the explanation of features classification. First, the asymmetric network with nonlinear
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functions is created based on the bio-inspired retinal network. They have orthogonal
properties useful for the classification of features [12, 13], which are based on char-
acteristic bases. Second the extended layered asymmetric networks are derived, which
are also based on the model of the brain cortex network. Then, the higher dimensional
orthogonal bases are generated in the layered networks. To improve the classification
performance in the extended layered networks, the replacement of bases are proposed
in their networks. Their replacements show the improvement of the classification per-
formance in the extended layered networks. Thus, the orthogonal bases are expected to
perform features synthesis and integration in the deep layered networks.

2 Bio-inspired Neural Networks

2.1 Background of Asymmetric Neural Networks Based on the Bio-inspired
Network

In the biological neural networks, the structure of the network, is closely related to the
functions of the network. Naka et al. [10] presented a simplified, but essential networks
of catfish inner retina as shown in Fig. 1. Visual perception is carried out firstly in the
retinal neural network as the special processing between neurons.

Fig. 1. Asymmetric network with linear and squaring nonlinear pathways

Visual perception is carried out firstly in the retinal neural network as the special
processing between neurons. The following asymmetric neural network is extracted
from the catfish retinal network [10]. The asymmetric structure network with a quadratic
nonlinearity is shown in Fig. 1, which composes of the pathway from the bipolar cell B
to the amacrine cell N and that from the bipolar cell B, via the amacrine cell C to the
N [10, 11]. Figure 1 shows a network which plays an important role in the movement
perception as the fundamental network. It is shown that N cell response is realized by a
linear filter, which is composed of a differentiation filter followed by a low-pass filter.
Thus, the asymmetric network in Fig. 1 is composed of a linear pathway and a nonlinear
pathway with the cell C, which works as a squaring function.
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2.2 Model of Asymmetric Networks

Models of the asymmetric and symmetric networks are shown in Fig. 2(a) and (b),
respectively, in which impulse response functions of cells are shown in h1(t) and h′

1(t).
The ( )2 shows a squared operation in the pathway. The symmetric model called energy
model is proposed in the bio-inspired network [8].

(a) Asymmetric network unit

2( )2( )

4x3x2x1x
1h sin 1h cos 1h cos 1h sin

(b) Symmetric network unit

Fig. 2. Asymmetric unit and symmetric unit in the 1st layer of the network

As the impulse functions h1(t), h′
1(t) in Fig. 1, Gabor filters are well known in the

visual system [8] as shown in Eq. (1).

Gs(t
′) = 1√

2πσ
e
− t′2

2σ2ξ2 sin(t′) and Gc(t
′) = 1√

2πσ
e
− t′2

2σ2ξ2 cos(t′) (1)

Basic unit of the asymmetric network in Fig. 1 is shown in Fig. 2.

2.3 Orthogonality and Independence of Bases in the Asymmetric Network Unit

We can compute the orthogonality of the network unit in Fig. 2. We assume here the
input {x}(x = xi, i = 1 ∼ 4) is same for the unit. Then, relation of the orthogonality
of the bases of the asymmetric network unit are shown in the arc in Fig. 3. Only the
orthogonality is not satisfied between cos2x and sin2x, which is indicated in × with the
arc. Independence is also an important characteristic for classification and integration of
features [13]. We compare the asymmetric networks and the symmetric ones from the
independence. Then, the following theorems are derived.

Theorem 1. The bases set {sin x, cos2x, cos x, sin2x} in the asymmetric network unit in
Fig. 3, is independent.

, , ,2 2sin x cos x cos x sin x

Fig. 3. Relations of orthogonality in the asymmetrical unit
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This is proved using the following Eq. (3), where all the constant coefficients

α1sin
2 x + α2cos

2x + α3cos
2 x + α4sin

2x = 0 (3)

αi = 0, i = 1 ∼ 4 hold by setting x = 0, x = (π/6), x = (π/3) and x = (π/2) in
Eq. (3). Then, the solution αi = 0, i = 1 ∼ 4, x �= x′, x �= x′′, x′ �= x′′ satisfy Eq. (3).
Thus, the bases are independent in the asymmetric unit, while bases set in the symmetric
network unit, is dependent in the following equation.

α1sin
2 x + α2cos

2x + α3cos
2 x′ + α4sin

2x′′ = 0 (4)

By setting the same value of x in Eq. (4), αi = 0, i = 1 ∼ 4 does not obtained. This
shows the dependence of the bases set in the symmetric network. Under the variable
conditions, the independence is realized in the symmetric network unit as follows.

Corollary 2. Under the variable conditions, x �= x′, x �= x′′ and x′ �= x′′, Eq. (5)

α1sin
2 x + α2cos

2x + α3cos
2 x′ + α4sin

2x′′ = 0 (5)

is satisfied, when only at αi = 0, i = 1 ∼ 4.
This is proved by setting x = 0, x′ = (π/2), x′′ = π ; x = (π/2), x′ = π, x′′ = 0;

x = π, x′ = 0, x′′ = (π/2) and x = (3π/2), x′ = (π/2), x′′ = 0.
Thus, the independence is changed to the variable conditions.

3 Classification Evaluation in the Asymmetric Network

Independence plays an important role for the classification scheme. The independence
of the network outputs is measured by their determinant of the matrix [7]. We com-
pare the classification performance between asymmetric networks in Fig. 2(a) and
the symmetric networks in Fig. 2(b). We assume the first 4-dimensional input as the
X1 = (x11 x12 x13 x14), which is a component of the total input X = [X1 X2 X3 X4].
The X is described in 4-dimensional input matrix as Eq. 6. Further, we assume
a simple 4-dimensional restricted input example with components value {xij} =
{0, 1} as the third term in Eq. (6). The output of the network in Fig. 3 becomes
{sin(x1), cos2(x2), cos(x3), sin2(x4)} for the input {x1, x2, x3, x4}, in which h1 to be
1 for the simplicity. We assume a = sin(xi) and b = cos(xj).

(6)

The determinant of the outputs of asymmetric networks for Eq. (6) is shown in
Eq. (7).

‖Asym.‖ for Eq. (6) =

∥
∥
∥
∥
∥
∥
∥
∥

a 1
0 b2

1 a2

b 0
a 1
0 b2

b a2

1 0

∥
∥
∥
∥
∥
∥
∥
∥

(7)
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The determinant of the outputs of networks including Eq. (7) is represented as

‖Asym.‖ =
(

a3
)

{(±b)[Z1] + (±1)[Z2]} (8)

where [Z1] shows the summed determinants of matrices by the cofactor, variable ±b
expansion across the 3rd column in Eq. (7) and [Z2] shows those by the cofactor ±1
expansion. Similarly, the determinant of symmetric networks in Eq. (6) is in Eq. 9.

‖Sym.‖ for Eq. (6) =

∥
∥
∥
∥
∥
∥
∥
∥

a2 1
0 b2

1 a2

b2 0
a2 1
0 b2

b2 a2

1 0

∥
∥
∥
∥
∥
∥
∥
∥

(9)

The determinant of the output of symmetrical networks including Eq. (9) is
represented as

‖Sym.‖ =
(

a4
){(

±b2
)

[Z1] + (±1)[Z2]
}

(10)

Note here the determinant {[Z1] + (±1)[Z2]} is same in both Eqs. (9) and (10).

3.1 Conditions of independence of ‖Asym.‖ and ‖Sym.‖
Independence of data plays an important role for the classification of their data. The
independence in the asymmetric networks and the symmetric ones are evaluated based
on the ‖Asym.‖ and ‖Sym.‖ In Eqs. (8) and (10). The ‖Asym.‖ and ‖Sym.‖ are simply
classified as shown in Fig. 4.

= 0 = 0

0 0

Fig. 4. Classification of ‖Asym.‖ and ‖Sym.‖

Conditions of independence of ‖Asym.‖ and ‖Sym.‖ in Fig. 4 are characterized in
the following theorems in terms of the determinants [Z1] and [Z2].

Theorem 3. Under the condition [Z1] �= 0, the determinant of asymmetric networks,
‖Asym.‖ �= 0 holds.

This is proved as follows. The first term, (±b)[Z1] in the determinant of asymmetric
networks in Eq. (8), have the odd order exponentiation of the variable b, while the second
term (±1)[Z2] have the even order exponentiation of the variable b. Thus, these terms
do not generate the summation to be zero.

Corollary 4. Under the condition [Z1] �= 0, if the determinant of symmetric networks,
‖Sym.‖ = 0, then that of asymmetric networks, ‖Asym.‖ �= 0.



Generation of Bases for Classification 115

This is proved as follows. If ‖Sym.‖ = 0, then from Eq. (10) the equality equation
(±b2

)

[Z1] = −[Z2] holds. This equation is substituted in Eq. (8). Thus, Eq. (11) holds.

{(

±b2
)

− (±b)}
}

[Z1] (11)

SinceEq. (11) �= 0 holds under the condition [Z1] �= 0, the determinant of asymmetric
networks, Asym. �= 0.

Lemma 5. The determinants [Z1] and [Z2] in the asymmetric and symmetric network
are described in a quadratic polynomial of variable b in the following.

[Z1] = mb2 + l and [Z2] = kb2 + n (12)

where m, l, k and n are numerical coefficients.
This is proved from the definition of the matrix. Since [Z1] and [Z2] are computed by

the cofactor of expansion across the 3rd column in the 4-demensional matrix, variable
b2 exists only in the 2nd column of the matrix.

Theorem6. Anecessary and sufficient condition for ‖Asym.‖ = 0 ism = 0, (l+k) = 0
and n = 0. Similarly, this condition holds for ‖Sym.‖ = 0.

Theorem 7. When ‖Sym.‖ = 0 holds, the parameters l = −k �= 0 holds. Then, if
l = −k �= 0 holds, ‖Asym.‖ �= 0 is satisfied.

Theorem 8. When ‖Sym.‖ �= 0 holds, ‖Asym.‖ �= 0 is also satisfied.

This is by the contradiction of the statement; if ‖Asym.‖ = 0 holds, then ‖Sym.‖ = 0
holds. From Theorems 6, 7 and 8, the performances are compared in the next theorem.
We define here the performance of the classification to be the number of the determinant,
which is not zero.

Theorem 9. The performance of the classification of |Asym.| include that of |Sym.|.
This shows |Asym.| is superior to |Sym.| in the classification ability.

3.2 Patterns Design for Independence in Asymmetric and Symmetric Networks

To compare the classification ability experimentally between the asymmetric and sym-
metric networks, the 4-dimensional input matrices {X } in Eq. (6) are generated with
components {0,1}. We define the symmetrical input patterns in the following.

Definition 10. Symmetric patterns X is defined to have the following rows (1) or (2) in
the 4-dimensional matrix.

(1) Xi = (xi1 xi2 xi3 xi4) and Xj = (xj1 xj2 xj3 xj4), in which xj1 = xi4, xj2 = xi3,

xj3 = xi2 and xj4 = xi1 are satisfied (13)

(2) Xk = (xk1 xk2 xk3 xk4) = (xk4 xk3 xk2 xk1) (14)
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0

5

10

15

20

1 2Asym.1st layer                      Sym.1st layer 

Det. Det.=0

Fig. 5. Experimental results of independent and dependent ratio for symmetric patterns

Asymmetric patterns X is defined not to have the rows (1) or (2) in Eqs. (13) and
(14), respectively (Fig. 5).

(Example: the matrix with {0.1} in Eq. (6) is a symmetric pattern) The 1st and
2nd rows show from (2) in Definition 10, while the 3rd and 4th rows show from (1)
in Definition 10. Total 24 symmetric patterns are generated, in which classification
independence performance is evaluated between asymmetric and symmetric networks
using the determinants of the respective networks, in Eqs. (8) and (10), respectively.
Generation of Orthogonality in Layered Asymmetric Networks.

3.3 Generation of Combined Bases for Orthogonality

The orthogonality is generated based on the orthogonality bases. To generate orthogonal
bases, the combined generation is considered in the layered asymmetric networks. Real-
ization of the asymmetric layered networks Fig. 6 shows a model of the V1 followed by
the MT area in the cortex [9] after the retinal network, which is proposed as the unit of
the asymmetric neural networks are shown in Fig. 2(a).

Rectification in the visual system [9] plays an important role for the generation of
the orthogonality. Then, the half-wave rectification [9] is approximated in the following
equation (Fig. 6).

f (x) = 1

1 + e−η(x−θ)
(15)

By Taylor expansion of Eq. (15) at x = θ, the Eq. (3) is derived as follows,

(16)
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Fig. 6. Model of neural network of brain cortex V1 followed by MT [9]

The nonlinear terms, x2, x3, x4, .... are generated in Eq. (16). The inputs in the 2nd
layer is from responses of the 1st layer in Fig. 3, which are wavelets of the product of
Gaussian and trigonometric functions of Eq. (1) as follows,

Ae
− t2

2σ2ξ2 sin(t), A2(e
− t2

2σ2ξ2 )2sin2(t),A3(e
− t2

2σ2ξ2 )3sin3(t)... (17)

Ae
− t2

2σ2ξ2 cos(t),A2(e
− t2

2σ2ξ2 )2cos2(t),A3(e
− t2

2σ2ξ2 )3cos3(t)... (18)

By applying the power reducing formula in the trigonometric functions, the
orthogonality is computed. When n and m are odd,

∫ π

−π

sin((n − 2k)t) · cos((m − 2k ′)t)dt

= 1

2

∫ π

−π

{sin((n − m) − 2(k − k ′))t+ sin((n − m) + 2(k − k ′))t}dt = 0
(19)

Thus, the pair {(sinnt),(cosmt)} becomes to be orthogonal. Similarly, the pair
{(sinnt), (cosmt)} becomes orthogonal in case of n to be odd and m to be even, and
in case of n to be even and m to be odd. Only the pair {(sinnt), (cosmt)} is not orthogo-
nal in case of n to be even and m to be even. Thus, much orthogonal wavelets with the
product of Gaussian and trigonometric function are generated in the 2nd and 3rd layers.

3.4 Generation of the Higher Dimensional Bases in the Layered Networks

The output of cell G in Fig. 7 is assumed to be (G), which is described in Eq. (20).
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1B 2B

C

sinh

Nb

cosh

x                   x        x                 x

G

Fig. 7. 1st layer unit of the asymmetric layered networks

(20)

The output of the cell H is assumed to be (H ), which is described in Eq. (21)

(H ) = (G) + (G)2

= k + sin x + cos x + k1sin
2x + k1cos

2x + k2sin x · cos x + k3cos
2x · cos x · ·· (21)

c

H

( )G( )G

⋅ ⋅ ⋅

Fig. 8. 2nd layer of the asymmetric networks followed by 1st one

Further, the output of the 3rd layer becomes

(H ) + (H )2 = (G) + (G)2 + ki(G)3 + (G)4 (22)
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3.5 Replacement of the Orthogonal Bases in the 2nd Layered Network

The 1st layer network in Fig. 7 has the bases set {sin x1, cos2x2, cos x3, sin2x4}, which
is also shown in {sin x1, (1 + cos2x2)/2, cos x3, (1 − cos 2x4)/2}. Then, we call the
components of the bases set to be {sin x, cos 2x, cos x, cos 2x}. As shown in Eq. (2),
the base sin2x1 and cos2x2 are not orthogonal, since they consist of the same cos 2x
component. To improve the orthogonality bases set, the base sin2x is replaced with
sin2x4 · cos2x2(= (1 − cos 4x)/8). Then, the orthogonal components of new bases set
become {sin x, cos 2x, cos x, sin 4x}. Since the new basis sin2x · cos2x is made in the 2nd

layer of the network in Fig. 8, these replaces of the bases are new operation realized
in the network. Using these operation of replaces of bases, the independence of the
classification is expected. These replace operations are performed step by step in the
following experiments, which are processed in the 2nd layer in Fig. 8. In the 1st step, the
replace operation is performed for in the asymmetric 2nd layer network in Fig. 8. In the
2nd step, the basis is replaced with in the asymmetric 2nd layer network. As the 3rd step,
two bases, cos2x2 and sin2x4 are replaced with {cos2x2 · sin2x4} and {sin2x4 · sin x1},
respectively. Similar 3rd operation is performed in the symmetric 2nd layer network.
Thus, all the determinants of patterns are non-zero, which implies that the independence
of all cases is realized in the 1st and 2nd layers networks (Fig. 9).

0
2
4
6
8

10
12
14
16
18
20

Det.=0 1stDet.≠0 2ndDet.≠0 3rdDet.≠0

Replacement of bases in the 2nd layer

Asym.nets Sym.nets

2nd Step Det.≠0      3rd Step Det.≠0
in 2rd layer                in 2nd layer        

1st Step Det.
in 2nd layer

Det.=0 in 1st layer

Fig. 9. Generation of independence by bases replacements in the 2nd layer

4 Conclusion

Studies of machine learning, artificial intelligence and neural networks have been devel-
oped greatly. In this paper, it is shown that the asymmetrical network with nonlinear
functions in the bio-inspired networks have characteristics of orthogonal basis, which
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play an important role for the classification. It is shown that the asymmetric network
is superior to the conventional symmetric network in the classification performance. To
improve the classification performance, the extended layered networks are developed
based on the brain cortex model. The replacement of their higher dimensional bases
is proposed, which improves greatly the classification performance of the asymmetric
and symmetric networks. These higher dimensional orthogonal bases are expected to
create the synthetic features and to generate the integrated features in the higher layered
networks.
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Abstract. This research focuses on load-forecasting using Cartesian
Genetic Programming evolved Artificial Neural Networks (CGPANN)
and load-balancing using Genetic Algorithm in an electrical system. An
unbalanced load in a distribution feeder has adverse effects on the system.
All the transformer units connected to the feeder have different operating
loads, and the system’s overall behaviour depends on them. Even if the
transformers are not overloaded, any feeder phase can become overloaded
due to excessive load contributed by individual transformers on that
phase which results in a system-wide blackout. A custom-built monitor-
ing device is installed on each transformer to monitor real-time electrical
load data. A switching mechanism introduced at the transformer level
can interchange the load between phases. This combination helps elimi-
nate excessive load conditions and minimize unbalanced load conditions.
Considering the involved parameters, i.e. transformers, phases, switch-
ing possibilities, and operating load, this constitutes a search problem
within an available solution set. An optimum solution could be searched
for and identified by interchanging the loads. This study aims to develop
a feasible algorithm for such a search problem. The developed Genetic
Algorithm can arrive at an optimum solution in minimum iterations.
The load-forecasting model is used to predict load and identify system
anomalies while the load-balancing model can re-adjust the system by
shifting loads on individual transformers so as to balance the feeder’s
overall load with no excessive load condition.

Keywords: Cartesian Genetic Programming · Artificial Neural
Networks · CGPANN · Genetic Algorithm · Load-forecasting ·
Load-balancing

1 Introduction

The term ‘load shedding’ refers to intentionally cutting the electricity supply for
a specified interval of an area or multiple areas connected to a power distribu-
tion system to avoid a total blackout of the entire power system. Theoretically,
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this is the last resort measure taken by any electric utility company to overcome
the possibility of a complete failure of the national grid system. Load shedding
occurs when the electricity demand exceeds the supply. Another reason can be
inadequate resources or infrastructure. The overall process of scheduling load-
shedding, or load-shedding management, is generally called rolling blackout or
feeder rotation. It is a common phenomenon in developing countries where elec-
tricity infrastructure management is inadequate, and the generation capacity is
always less than that of electricity demand. However, in developed countries, such
roll-outs rarely occur and are appropriately scheduled. Technically, these black-
outs can even occur without warning as the frequency falls below the safe thresh-
old of the system. The most common method for load-shedding management is
the “round robin” approach, where an entire feeder is disconnected from the sys-
tem, resulting in either under-shedding or over-shedding. It is nearly impossible
to shed the exact amount of load using the round-robin approach, which con-
stitutes an untapped area for exploration where the load-shedding management
techniques can be dramatically improved using modern techniques.

1.1 Smart Grid Architecture and Smart Meter

The smart grid architecture was introduced in the early 2000s. The primary
focus is to equip the conventional grid system with novel technologies and intro-
duce bidirectional communication support. The smart grid concept taps into
every electrical power system stage, including generation, transmission, and dis-
tribution which requires complete remodelling of the conventional grid system.
The bidirectional communication infrastructure is made possible through wired
and wireless communication technologies. At the user end, technologies such as
smart metering solutions are introduced, which can effectively outperform tra-
ditional energy meters with their advanced features and capabilities. Since the
smart grid architecture digitizes the conventional grid system, it also imposes
security challenges on the grid system. Thus, it becomes essential to standardize
the smart grid concept at every level and devise regulations for implementation.
This study primarily focuses on the smart metering component within a smart
grid architecture for the experimental setup.

The term smart meter refers to an energy meter or electric load-measuring
device; however, the definition can extend to other domains, such as water or
natural gas metering. In contrast to the traditional automated meter reading
(AMR) concept, smart meters use sensors to monitor electrical load in real-
time or near real-time with a pre-defined frequency, i.e. every minute, every
half an hour, every hour. This consumption data is communicated to a central
server (owned by the electric utility company) which is processed for billing
and monitoring with advanced features such as notifications related to power
outages, load imbalance, voltage and current monitoring, system load monitoring
and data-driven smart switching mechanisms. This study focuses on a custom-
built smart metering solution, known as the TransfoCure, which is a successful
product based on years of research and development.
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2 Previous Work

Different methods have been proposed in the literature for effective load-shedding
management. The conventional methods previously devised [1] include the
Breaker Interlock Scheme in which a source breaker would be interlocked via
hardwired or remote signals to a set of load breakers pre-selected to trip. Under
Frequency Load Shedding (UFLS) and Under Voltage Load Shedding (UVLS)
are attracting more attention [2], as large disturbances occur more frequently
now than in the past. In another study, a centralized, adaptive load-shedding
algorithm has been developed [2], which considers reactive power. A novel grad-
ing scheme for loads is proposed in [12] to minimize the impact of load shedding
by considering revenue loss and social factors. An intelligent Load shedding
Scheme is introduced in [13] to provide an optimal solution for load relief based
on time priority assigned to various loads. Another solution for load forecast-
ing, load shedding and load control has been proposed in [14] based on Auto-
regressive Integrated Moving Average (ARIMA) prediction model in which a
hundred consumers were considered for analysis. This study focuses on the fact
that outages are not primarily caused only by insufficient power generation but
also due to utilization and consumption patterns of the end consumers. The sys-
tem tends to introduce a Demand Response (DS) mechanism and assumes that
all customers are equipped with Advance Metering Infrastructure (AMI) and
smart meters with Energy Consumption Scheduling (ECS). The results show up
to a 30% reduction in peak load. Using the Design Science Methodology, the cur-
rent design of smart meters can be improved to introduce micro-load shedding
smart metering technology [15]. This study shows that micro-load management
can improve the overall impact on peak load by turning off specific loads dur-
ing peak load intervals. To manage load at the consumer level, another term
Demand Side Management (DSM) was introduced in the 1973 energy crisis. The
main aim of the DSM is to encourage a reduction in energy consumption dur-
ing peak hours or by shifting the excessive load to off-peak timing. A research
study uses the Load Curve Technique to shift the load to an off-peak interval
[16] based on statistics collected from twenty different consumers and MATLAB-
based simulations. It concludes that DSM is useful in short-term load-shedding
management.

3 Methodology

A solution is presented for the optimal management of load across the three
phases of the power distribution network. To ensure the feasibility of the solu-
tion, it has been practically implemented and deployed over a production power
distribution network in the locality. First, the load is monitored and redistributed
to make it balanced immediately after the system’s initial deployment. Then the
seasonal effects on load distribution are monitored, and the optimal load dis-
tribution for the year is calculated. Future load distribution is predicted after
gathering data for several months. Since the system collects statistics about the
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health of transformers and power lines, it was also used for faults detection, up-
time monitoring and system health reporting. Cartesian genetic programming
and neural network models are used for load-forecasting. Similarly, these models
can forecast the peak load in any given interval [17]. Genetic Algorithm is used
for load-balancing by utilizing the deployed switching mechanism at transformer
level based on the anomalies detected in the forecasted load data by CGPANN.

3.1 Experimental Setup

Hardware Design and Measurements. The module used for recording and
collecting field data, TransfoCure, is a single board circuit for monitoring elec-
trical load thus serving as a stand-alone metering solution. To qualify primarily
as an energy meter, the module should be able to measure the electrical load
of an end-user accurately for energy unit calculation. All other features are sec-
ondary in nature and required by the module for essential services, i.e. interface
with peripherals, communication with a central server, and data exchange. The
voltage and current of individual phase of a transformer unit serves as the input
to the module and is interfaced to a dedicated Analog to Digital Converter
(ADC) channel for measurement. The module has multiple analog channels and
thus capable of measuring multiple inputs simultaneously. The ADC channel is
configured to record 1000 samples per power cycle 50Hz. The positive cycle is
recorded which represents 50% of the cycle. The Root Mean Square (RMS) value
of the voltage and current is calculated along with the power factor. This cycle
is repeated 100 times and then averaged to obtain more accurate values of RMS
that are crucial to energy units calculation.

Data Exchange and Central Server. The consumed units are constantly
recorded, calculated, and stored on the module during operation which is then
communicated to a central server for further processing. Any module deployed
in the field continuously shares its data with the central server where it is accu-
mulated. The central server is based on a web-based application which acts as
a central hub for all field-deployed modules and follows a distributed model for
stand-alone deployment. The storage capacity on the server is scalable and thus
virtually unlimited for storing data recorded by the modules.

3.2 Computational Intelligence

Load Forecasting. An Artificial Neural Network (ANN) is a simulation pro-
gram that comprises individual processing units (or nodes) called neurons. The
interconnected network formation of neurons constitutes an ANN used to cal-
culate unknown functions with many inputs. Cartesian Genetic Programming
(CGP) is a popular form of genetic programming that uses a two-dimensional
grid of nodes. CGP is used to evolve ANN, resulting in the CGPANN model,
which is used for forecasting purposes in many scientific regimes. Based on the
advantages of the CGPANN, it is used for accurate load prediction and to devise
an effective model for load shedding management.
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Load Balancing. A feeder system consists of multiple transformers whose indi-
vidual load contributes to the overall load. There are three individual phases in
a feeder system for load distribution. Hence, all three phases of each transformer
unit contribute independently to the respective phase of the feeder. For the load
to be balanced, the load on individual phases of the feeder need to be distributed
equally. An unbalanced system can cause problems like excessive neutral current,
excessive power loss, voltage or current shift. The load on any phase should not
exceed the individual maximum phase load capacity for the given feeder. For
any unbalanced and excessive load condition, many possible solutions exist in
the form of different switching arrangements of the phases. An optimum solu-
tion will have no excessive load, a fairly balanced load, and minimum switching.
Genetic Algorithm (GA), a search heuristic based on the natural evolution pro-
cess, is used to search for and find such solutions.

3.3 Data Collection, Presentation and Intervals

The TransfoCure modules were installed on each transformer connected to a
single feeder for monitoring real-time data i.e., phase voltage (volt), phase cur-
rent (ampere), and power factor which is communicated to the central server
at a pre-defined one-minute interval. Complete data was recorded for a period
of three months. The collected raw data of electrical load is first converted into
kilo-volt-ampere or KVA, which is the standard unit for apparent power so that
it can be easily processed to determine current operating load on each phase
at any given instance. The data is further segmented into fifteen, thirty, and
sixty minute intervals to examine and test the algorithms in different scenarios
and determine their performance. The peak load value within these intervals is
selected which represents the maximum operating load during that specific inter-
val. The Table 1 represents collected data converted into KVA and segregated
into 15-minutes interval for further processing.

Table 1. Sample Data: 15-minutes interval

Interval Start Interval End KV A1MAX KV A2MAX KV A3MAX

01/10/2019 0:30 01/10/2019 0:45 2.1977 3.9358 4.5758
01/10/2019 0:45 01/10/2019 1:00 2.2367 4.1586 4.6243
01/10/2019 1:00 01/10/2019 1:15 2.2443 4.1761 4.6274
01/10/2019 1:15 01/10/2019 1:30 2.2317 4.1557 4.5948
01/10/2019 1:30 01/10/2019 1:45 2.2419 5.9634 4.6158

The ideal load on each phase is represented by Li which can be theoretically
determined by the ratio of total operating load of the feeder to the number
of phases. A control parameter, Load-balancing Range (LBR) is introduced to
determine how close the load value is to Li and is preferred to be as close
as possible to Li. Another control parameter, Load-switching Range (LSR) is
also introduced to determine the amount of switching or interchanging phases
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and is preferred to be minimum as switching is a physical process that involves
mechanical work and causes system transients.

3.4 Data Normalization and Processing

To feed the data into the load forecasting algorithms, the data is normalized
using the below Eq. 1, where X represents the KVA value to be normalized. The
minimum value refers to the minimum KVA in the dataset, while the maximum
value refers to the total capacity of the transformer.

Xnormalized =
(X −Xminimum)

(Xmaximum −Xminimum)
(1)

Table 2 represents normalized data for the same 15-minutes interval (Table 1)
to be provided as input to the load-forecasting model for load prediction.

Table 2. Sample Data (Normalized): 15-minutes interval

Interval Start Interval End KV A1MAX KV A2MAX KV A3MAX

01/10/2019 0:30 01/10/2019 0:45 0.0258 0.0441 0.0515
01/10/2019 0:45 01/10/2019 1:00 0.0262 0.0466 0.0520
01/10/2019 1:00 01/10/2019 1:15 0.0263 0.0468 0.0521
01/10/2019 1:15 01/10/2019 1:30 0.0262 0.0465 0.0517
01/10/2019 1:30 01/10/2019 1:45 0.0263 0.0668 0.0519

4 Results

4.1 Load-Forecasting Algorithm

The normalized and zero-adjusted data is fed into the CGPANN for load-
forecasting. The data is divided into two segments i.e., training and testing.
The training data set is used to train the algorithm and then load is predicted
for the next intervals. This predicted load is compared with the testing data
for accuracy. After running the experiments, an average percentage error of
3.9% for 15-minutes, 4.55% for 30-minutes, and 11.6% for 60-minutes interval
was observed which results in an overall average percentage error of 6.68% for
the load-forecasting model. Table 3 represents the percentage error between the
actual load and the forecasted load of individual transformers for 15, 30, and
60min intervals.

4.2 Load-Balancing Algorithm

The algorithm analyses data to identify excessive and unbalanced load conditions
and then uses Genetic Algorithm, as defined in Table 4, to find the optimum
solution for eliminating excessive load and balancing the load.
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Table 3. Percentage Error: Actual Load vs. Forecasted Load

Interval Phase TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10

15 min KVA1 1.48 2.93 5.54 3.37 5.14 10.16 1.83 2.26 6.56 1.91
KVA2 1.49 3.93 2.14 6.94 11.19 6.53 1.56 4.96 2.50 1.33
KVA3 1.07 4.89 9.15 1.68 6.07 3.38 0.33 4.50 0.99 1.08

30 min KVA1 1.60 5.78 14.82 3.12 6.57 10.79 15.33 5.42 11.11 8.89
KVA2 0.11 3.82 3.44 2.77 1.06 2.07 3.95 1.80 2.41 3.97
KVA3 1.05 6.02 6.71 1.88 1.14 6.31 0.76 0.33 1.31 2.31

60 min KVA1 14.85 4.83 8.47 2.42 45.43 45.95 11.04 6.93 7.05 25.42
KVA2 1.08 3.67 26.52 0.92 19.04 1.74 18.78 4.71 0.42 1.11
KVA3 0.42 10.29 13.08 3.56 8.05 30.36 1.69 10.55 11.17 8.34

Table 4. Pseudo-code: Genetic Algorithm

Start Program
Generate the first population (random)
Calculate Fitness
Loop
Selection
Crossover
Mutation
Calculate Fitness
Check if fitness achieved
End program

The genetic algorithm arrives at an optimum solution (if available) based on
the provided control parameters through natural selection. This search continues
unless and until the algorithm arrives at the required solution or the maximum
number of iterations is exceeded. The number of iterations is another control
parameter to stop the algorithm from running indefinitely. The total number of
iterations processed by a genetic algorithm to arrive at a solution is considered
its performance indicator. An algorithm that can arrive at the solution in mini-
mum iterations is suitable for implementation to minimize processing time and
resource usage.

4.3 Performance of the Genetic Algorithm

For the available dataset, a total of 290 anomalies were detected. To assess the
performance of the genetic algorithm, these detected anomalies were fed as inputs
to find the optimum solution. The Table 5 is the result of simulating multiple
experiments with varying LSR while keeping LBR constant at a suitable value.
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Unsolved cases refer to situations where the algorithm cannot find an optimum
solution. One possibility of such an occurrence is that the control parameters
are too strict. Another possibility is that the system was so overloaded that it
wasn’t possible to eliminate exceeding load conditions, or the individual load
distribution was such that load balancing was impossible. The mean iterations
reflect the algorithm’s performance, which tends to improve as we allow more
switching (which is not desirable). The mean iterations are exclusive of unsolved
cases.

Table 5. Performance of Genetic Algorithm

S. No. LSR(%) LBR(%) Unsolved Mean Iterations

1 10 10 81 6609
2 20 10 22 1525
3 30 10 8 384
4 40 10 5 177
5 50 10 4 114
6 60 10 4 279
7 70 10 4 293
8 80 10 4 74
9 90 10 4 84

10 100 10 4 84

In terms of LBR and LSR, there are different possible scenarios to assess the
performance of the Genetic Algorithm.

Minimum LBR and Maximum LSR . The load was balanced within ±2%
of Li with a standard deviation of 2.81 at the expense of high LSR which is
undesirable.

Maximum LBR and Minimum LSR . The load was balanced within ±8% of
Li with a standard deviation of 7.77 along-with minimum LSR which eliminated
excessive load condition but is not well balanced.

Variable LBR and Minimum LSR . The load was balanced within ±5% of
Li with a standard deviation of 7.77 along-with LSR similar to the previous
scenario which eliminated excessive load condition but is still not well balanced.

Minimum LBR and Variable LSR . The load was balanced within ±2% of
Li with a standard deviation of 2.21 along-with reduced LSR as compared to
previous scenarios.

Variable LBR and Variable LSR . The load was balanced within ±4% of
Li with a standard deviation of 4.61 along-with reduced LSR having the least
number of switching as compared to other scenarios. This has great practical
value as there is minimum switching involved and the load is also well balanced
across all phases.
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5 Discussion

The above discussion sheds light on how different controlling parameters can
impact the search process of the genetic algorithm. Since the algorithm follows
the natural evolution process, tweaking and tuning these parameters will result
in a completely different solution set. The selection of parameters and their
corresponding values is crucial to finding the optimum solution.

Every problem has a different set of parameters; thus, it is impossible to
devise a single criterion that could be applied universally. Based on the scenario,
the controlling parameters could vary in nature and values. In this study, param-
eters such as LBR and LSR are introduced to determine the fitness of a solution.
By tweaking these parameters carefully, a well-balanced system can be achieved
through minimum switching.

Setting the parameters too close to ideal conditions will force the algorithm
to keep looking for a solution that may not exist, and the search will continue
for a long time. Such configurations are resource extensive and will exhaust the
computation engine. On the other hand, setting the parameters too far away
from ideal conditions will force the algorithm to conclude the search with a
solution that might not be optimum. The search will end quickly, but the results
will not be desirable.

However, as demonstrated through different scenarios in the previous section,
there is a delicate balance between achieving a perfectly balanced load and min-
imum switching. It is not always possible to achieve the two simultaneously.

6 Conclusion and Way Forward

This research embodies an array of novel approaches, such as neural networks
for load-forecasting, a genetic algorithm for load-balancing, and a mechanism
for load-switching at the feeder level. Each approach poses a unique challenge
for achieving the goal, i.e. a balanced system. The forecasting model was trained
on a dataset recorded for a few months in real-world conditions. The results
were thoroughly analysed to ensure their reliability and accuracy. Similarly, the
load-balancing algorithm was tested intensively to minimize iterations and over-
load on the processing engine. The switching mechanisms are also being tested
in a laboratory environment for safe switching during load transitions between
the phases. This study introduces a novel approach for load-balancing in an
electrical system. The use of TransfoCure modules enables us to monitor the
load constantly and in real-time. This accumulated load data was utilized to
develop a forecasting model that could accurately forecast the load. Based on
this forecasted load, the load-balancing model was developed that can help elimi-
nate unbalanced and excessive load conditions in the system. Further research in
tweaking the load-forecasting model, load-balancing model and switching mech-
anism can improve the involved processes and reduce the overhead of the pro-
cessing engine. Such improvements will enhance the response time as well as
ensure the system’s reliability.
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Abstract. This article focuses on the supervised classification of
datasets with a large number of variables and a small number of
instances. This is the case, for example, for microarray data sets com-
monly used in bioinformatics. Complex classifiers that require estimat-
ing statistics over many variables are not suitable for this type of data.
Probabilistic classifiers with low-order probability tables, e.g., Naive
Bayes (NB) and Averaged One-Dependence Estimators (AODE), are
good alternatives for dealing with this data type. AODE usually improves
NB in accuracy but suffers from high spatial complexity since k models,
each with n + 1 variables, are included in the AODE ensemble. In this
paper, we propose MiniAnDE, an algorithm that includes only a small
number of heterogeneous base classifiers in the ensemble, i.e., each model
only includes a different subset of the k predictive variables. Experimen-
tal evaluation shows that using MiniAnDE classifiers on microarray data
is feasible and outperforms NB and other ensembles such as bagging and
random forest.

Keywords: Bayesian network classifiers · Averaged n-Dependence
Estimators · Microarray data · High dimensionality

1 Introduction

Supervised classification, i.e., predicting the category c ∈ dom(C) = {c1, . . . , cr}
for an object x defined over a set of attributes X = {X1, . . . , Xk}, is one of the
most profusely tackled tasks in machine learning. The objective is to learn a
classifier C : X1 × · · · × Xk → C, from a data set D = {(x(i), c(i))}mi=1, such that
C generalises well to new data.

This paper focuses on a niche of supervised classification problems: data
defined over many features/attributes and with scarce instances. Such data sets,
where k � m, are common in microarray data problems [1], where the expression
level of thousands of genes is analyzed simultaneously. Still, due to sampling
costs, only a few dozen or a few hundred cases are available. This scarcity of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 131–143, 2023.
https://doi.org/10.1007/978-3-031-34204-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_12&domain=pdf
http://orcid.org/0000-0002-8395-3848
http://orcid.org/0000-0003-1188-1117
http://orcid.org/0000-0002-9164-5191
https://doi.org/10.1007/978-3-031-34204-2_12


132 P. Torrijos et al.

cases means that models that need to estimate complex statistics, e.g., higher-
order statistics, or measures subject to a particular context (e.g., a deep branch
in a decision tree) cannot be reliably learned. A common solution to combat this
dimensionality curse is performing a prior feature selection process [5]. However,
this paper focuses on a different solution: using models that, while complex
overall, only require estimating statistics on a very small number of variables.

The Naive Bayes (NB) classifier [19] is the simplest Bayesian network model
used for classification. It is based on the hypothesis (assumption) that all the
predictive attributes are independent of each other given the value of the class
variable (Fig. 1). This independence hypothesis gives rise to the following fac-
torization:

P (c, x1, . . . , xk) = P (c)
k∏

i=1

P (xi|c), (1)

which enables: (1) NB does not require structural learning; (2) parametric learn-
ing is very efficient (a single pass through the BD); and (3) it is only necessary
to estimate bi-variate statistics, so a small number of cases is enough.

Among the different improvements made to NB trying to circumvent the
independence hypothesis, one of the most outstanding for its exceptional perfor-
mance is Averaged One-Dependence Estimators (AODE) [20]. AODE can be seen
as an ensemble formed by n Super Parent One-Dependence Estimator (SPODE)
classifiers, i.e., a NB extended with one attribute also being the parent of the
other features (Fig. 2). Thus, in a SPODE, each variable depends on another
variable apart from the class. Combined with the fact that AODE includes all
the n possible SPODEs, allows AODE to consider a large number of possi-
ble dependencies between attributes. Despite the strong relaxation of the NB
independence assumption that AODE implies, parametric learning is still very
efficient and only requires estimating three-variate statistics, so the number of
cases needed remains moderate. More dependencies are considered in Averaged
n-Dependence Estimators (AnDE) [21], where n features play the role of super-
parents in each member (SPnDE) of the ensemble. AnDE (n ≥ 2) can manage
more complex dependency relations than AODE (A1DE). However, more cases
are necessary to obtain reliable estimations for (n + 1) − ary statistics.

The motivation for this work comes from the fact that when dealing with
microarray data, the main problem related to AnDE, even with n = 1 (AODE),
is the size of the ensemble, which can easily run out of memory. For example, let
us consider a problem with k = 10000 attributes, each taking 5 different values,
as well as the class. In this case, A1DE has to store 10000 SPODEs, each with
10000 probability tables of size 53, assuming 32 bits per float value, which means
50 GB. Of course, things are worse if we increase n, giving rise to the problem
of dealing with big models [3].

This work proposes Mini Averaged n-Dependence Estimators (MiniAnDE),
an algorithm that tries to build small AnDE models in which only a subset of
SPnDEs are included in the ensemble, also limiting to a subset of X the features
included in each SPnDE. We introduce a structural learning stage in which
relevant feature-class and feature-feature relations are identified, constructing
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the SPnDEs based on the identified relevant relations. Experiments over nineteen
microarray datasets confirm the competitiveness of our approach.

This paper is organized as follows. Section 2 revises our baseline algo-
rithm, Averaged n-Dependence Estimators (AnDE) [21]. Section 3 introduces the
MiniAnDE classifier proposed in this paper. Section 4 presents the experimental
evaluation. Finally, Sect. 5 concludes the paper and outlines potential avenues
for future research.

C

X3X2 XkX1
. . .

Fig. 1. Graphical structure of NB

C

X3X2 Xk

X1

. . .

Fig. 2. Graphical structure of SPODE

2 Averaged n-Dependence Estimators (AnDE)

Averaged n-Dependence Estimators (AnDE) [21] extend the AODE (A1DE)
algorithm by allowing n super-parent variables in each model (SPnDE). As n
grows, the classifier estimates probability distributions of higher dimension, thus
reducing its bias but probably increasing its variance, which, however, will be
reduced when the ensemble aggregates all the predictions of the base models.

The class label c∗ of an instance x is obtained by:

c∗ = arg max
ci∈dom(C)

P (ci,x) =
∑

S∈(Xn)
P (ci,xS)

∏

Xj∈X−S

P (xj |ci,xS), (2)

where
(
X
n

)
represents the subsets of X having exactly n variables; xS is the

projection of x over S; the expression inside the summation is the factorization
of the joint probability carried out by the SPnDE; and the summation stands
for the aggregation carried out in the AnDE ensemble.

In particular, for A1DE, the previous expression reduces to:

c∗ = arg max
ci∈dom(C)

P (ci,x) =
k∑

l=1

P (ci,xl)
∏

j �=l

P (xj |ci,xl). (3)

The main problem in AnDE is its spatial complexity and the increase in
the number of samples needed to make reliable estimates of increasingly larger
statistics. Thus, A1DE requires n models, each with k − 1 distributions of order
3; A2DE requires O(n2) models each with k − 2 distributions of order 4; A3DE
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requires O(n3) models, each with k − 3 distributions of order 5; etc. This means
that in practice, AnDE can only be used with n = 1 for moderate/large domains
and with n = 2 for small domains.

In literature, we can find different approaches to make AnDE usable when n
and/or k grows. In [15], the A1DE ensemble is replaced by a single model whose
super-parent is a latent variable estimated using the EM algorithm. SAnDE
[10] and SASAnDE [9] follow a model selection-based approach, which relies on
the assumption that the conditional mutual information of the super parent set
of attributes given the class is a good approximation of the resulting SPnDE
performance. However, the study conducted in [4] over 43 datasets challenges
this assumption and the usefulness of using mutual information-based model
selection in the AnDE ensemble.

3 MiniAnDE

The main objective of the Mini Averaged n-Dependence Estimators (MiniAnDE)
classifier is to reduce the enormous spatial complexity of AnDE which, in prac-
tice, impedes their use in databases with thousands of variables (k) in the case of
A1DE and hundreds in the case of A2DE. The aim is to reduce both the number
of SPnDEs generated (s) and the number of variables included in each SPnDE
(ri) so that s � k and ri � k. Thus, we create much smaller and faster models
that can handle high-dimensional datasets.

As in [10], we need to select the variable(s) that will act as super-parent(s)
and thus give rise to the SPnDEs included in the AnDE model. In addition, we
also have to select the child features to be included in each SPnDE. Unlike previ-
ous work, instead of calculating information-based measures, we propose to use
a different machine learning model, a decision tree, from which the relationships
between features can be borrowed for our MiniAnDE model.

The use of decision trees (DTs) to select the relevant variables for a classi-
fication problem is quite old [8]. From a probabilistic point of view, the subset
of variables appearing in the tree could be seen to constitute the Markov blan-
ket of the class variable, i.e., the set of variables that makes the rest irrelevant
for classification purposes. Later, ensemble-based methods, particularly random
forests, have also been used to obtain the importance of predictive variables in
the classification process, using so-called out-of-bag estimation [7]. This tech-
nique has become very popular and can be found in almost any ML software,
e.g., Scikit-Learn or WEKA.

In this paper, we propose to use an ensemble of DTs to identify the SPnDEs
to be included in our MiniAnDE model. In addition to the ability of the DTs
to select the relevant variables for the class, we will also exploit the location
in which these variables are placed in the tree. Thus, it is well known that one
of the advantages of DTs is their context-based analysis of the data, where by
context we mean a (partial) branch of the three. Therefore, we traverse the tree
to identify all paths of length n and create an SPnDE for each of them by setting
the variables in the path as super-parents. Then, all variables in the tree that are
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adjacent to the super-parent variables are included as children in that SPnDE.
To obtain a more robust MiniAnDE model we consider a set of diverse DTs, that
is, an ensemble.

Algorithm 1. MiniAnDE
Require: Dataset D defined over X ∪ {C}; n; t
1: SP ← ∅
2: T ← ∅
3: for i ← 1 to t do
4: T ← learn a DT from a sample of D
5: T ← T ∪ {T}
6: SP t ← {sets of n consecutive variables in T}
7: SP ← SP ∪ SP t

8: end for
9: ∀sp ∈ SP , children(sp) ←

⋃
T∈T ∧sp∈T

{⋃
X∈sp adjacent(X, T )

}

10: M ← ∅
11: for each sp ∈ SP do do
12: Create an SPnDE m with sp as super-parent and children(sp) as features
13: M ← M ∪ {m}
14: end for
15: return M

Algorithm 1 provides a scheme of the previous idea. Let us illustrate its work-
ing process with an example taking n = 1 and t = 2. Let us also assume that
Fig. 3a shows two DTs learned from two different samples of D. The algorithm
starts with T1 and identify SP 1 = {{X1}, {X2}, {X3}}. Now SP ← SP 1 and
T2 are considered. The algorithm computes SP 2 = {{X1}, {X2}, {X3}, {X4}},
and so SP = {{X1}, {X2}, {X3}, {X4}}. Next, children sets are computed as:
children({X1}) = {X2,X3}, children({X2}) = {X1,X3,X4}, children({X3}) =
{X1,X2} and children({X4}) = {X2}. Therefore, the SP1DEs included in the
resulting MiniA1DE are those shown in Fig. 3b. If the same process is applied
with n = 2, SP 1 = {{X1,X2}, {X1,X3}, {{X2,X3}}, SP 2 = {{X1,X2},
{X1,X3}, {{X2,X3}, {{X2,X4}} and SP = {{X1,X2}, {X1,X3}, {X2,X3},
{X2,X4}}. Next, children sets are computed as: children({X1,X2}) =
{X3,X4}, children({X1,X3}) = {X2}, children({X2,X3}) = {X1,X4} and
children({X2,X4}) = {X1,X3}. Figure 4 shows the resulting MiniA2DE.

Like the original AnDE algorithm, MiniAnDE only works with discrete vari-
ables, so if numerical predictive attributes are included in the dataset, they must
first be discretized. Once the SPnDEs have been determined, only parametric
learning is required, which can be performed in a single pass through the dataset.
Therefore, the complexity of learning a MiniAnDE model is dominated by the
learning process of the set of decision trees. In this sense, it is worth noting
that due to the small number of instances in the microarray data, the obtained
tree will be shallow, which, coupled with the use of only discrete (discretized)
variables, results in a fast learning process. On the other hand, the inference
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Fig. 3. MiniA1DE obtained from the ensemble {T1, T2}
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Fig. 4. MiniA2DE obtained from the ensemble {T1, T2} in Fig. 3a

is also faster than in the original AnDE models since only a few SPnDEs are
aggregated instead of k.

The MiniAnDE algorithm can be instantiated with any decision tree and
ensemble learning algorithm, e.g., bagging [6] or random forest [7]. This fact,
together with the DT/ensemble learning hyperparameters (pruning or no-
pruning, max depth, number of trees, etc.), provides a wide range of combi-
nations to generate the MiniAnDE classifier, making it possible to fine-tune it
for a given dataset.

To conclude this section, we present a possible extension of the MiniAnDE
algorithm. As with AnDE, MiniAnDE is expected to be a better estimator
than NB for posterior class label probabilities. However, in some cases, some
attribute configurations and class values may be missing or underrepresented
in the learning dataset, resulting in a nearly uniform posterior probability dis-
tribution for the class given the input instance. To alleviate this drawback, we
produce the output as a convex combination of MiniAnDE and NB, adding it
to the ensemble according to a parameter α ∈ [0, 1]: p(c|x) = α pNB(c|x) + (1−
α) pMiniAnDE(c|x). We compare the MiniAnDE algorithm with α = 0 and α �= 0
in the experiments performed in Sect. 4.

4 Experimental Evaluation

In the next sections, we describe the datasets utilized, the algorithms evaluated,
the methodology employed, and analyze the results obtained.
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4.1 Data Sets

Table 1 describes the 19 microarray data sets used to evaluate the proposed
algorithms, commonly used in the literature [1,5,12,22].

Table 1. Data sets used in the experimental evaluation. I is the number of instances,
N the number of predictible variables and K the number of classes.

Data Set
Features

i n k

9 Tumors 60 5 726 9
11 Tumors 174 12 533 11
Breast 97 24 481 2
CNS 60 7 130 2
Colon 62 2 000 2
DLBCL 77 5 469 2
GLI 85 22 283 2
Leukemia 72 7 129 2
Leukemia 3 72 7 129 3
Leukemia 4 72 7 129 4

Data Set
Features

i n k

Lung 203 12 600 5
Lymphoma 3 66 4 026 3
Lymphoma 9 96 4 026 9
Lymphoma 11 96 4 026 11
MLL 72 12 582 3
Ovarian 253 15 154 2
Prostate 102 12 600 2
SMK 187 19 993 2
SRBCT 83 2 308 4

4.2 Reproducibility

The entire MiniAnDE algorithm’s family has been programmed from scratch and
tested using Java (OpenJDK 8) and the library WEKA 3.9.61. All experiments
were conducted on machines running the CentOS 7 operating system with an
Intel Xeon E5-2650 8-Core Processor limited to 8 threads and 32 GB of RAM
per execution.

To reproduce the experiments, all of the code and the execution scripts
are provided at GitHub2. Regarding the data, for convenience, we provide in
OpenML3 a common source repository for the 19 datasets, with reference to
their original articles.

4.3 Algorithms

In this study, the following algorithms have been evaluated:

– The MiniAnDE algorithm introduced in Sect. 3, with n = 1 and n = 2.
The following parameters have been fine-tuned by using grid-search for each
dataset:

1 https://www.cs.waikato.ac.nz/ml/weka/.
2 https://github.com/ptorrijos99/mAnDE.
3 https://www.openml.org/search?type=data&uploader_id=%3D_33148.

https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/ptorrijos99/mAnDE
https://www.openml.org/search?type=data&uploader_id=%3D_33148
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• Bagging is considered to generate the ensemble of trees used to learn the
structure of those SPnDEs included in the MiniAnDE model. The number
of trees is taken from the set {50, 100, 150, 200}.

• The weight of NB is chosen from the
set α = 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. The case of α = 0
is always reported, corresponding to the canonical MiniAnDE introduced
in Algorithm 1.

– The Naive Bayes algorithm [19].
– The Bagging ensemble algorithm [6]. The number of trees (50, 100, 150, and

200) is selected for each dataset using a grid-search.
– The Random Forest algorithm [7]. Default value

√
k is used to select the

random subset of variables evaluated at each split. The number of trees (50,
100, 150, and 200) is selected for each dataset using a grid-search.

Please, note that the original AnDE algorithm [21] is not included because
of its spatial complexity. In fact, under the resources described in the previous
section, the A1DE algorithm only can cope with 1 out of the 19 datasets (colon),
obtaining an accuracy of 80.64.

4.4 Methodology

We have taken the following design decisions:

– Each algorithm has been evaluated employing a double cross-validation.
Leave-one-out cross-validation has been used for external validation, and
stratified 5-fold cross-validation has been used for the internal validation in
which the best hyperparameter(s) value(s) are selected by using grid-search.
This approach ensured that the results were robust and not influenced by
the specific partitioning of the data, especially given the small number of
instances in microarray data.

– Numerical variables are discretized. Discretization intervals are learned from
the training partition and then applied over the validation/test one. We used
the following procedure: (1) supervised entropy-based discretization following
Fayyad and Irani algorithm [13] was applied; and (2) those variables left in
a single interval are then discretized into 2 intervals (bins) by using unsu-
pervised equal frequency. Note that variables discretized in a single bin by
Fayyad and Irani algorithm are those marginally independent to the class,
but can be relevant when used in conjunction with other attributes (e.g., as
in an X-OR dataset).

– The study’s results have been analyzed using the methodology specified in
[11,17], and the analysis has been conducted using the exreport R package
[2]. The analysis begins by performing a Friedman test [16] with the null
hypothesis that all algorithms have equal performance. If the null hypothesis
is rejected, a posthoc test using Holm’s procedure [18] is carried out to com-
pare all algorithms against the one ranked first by the Friedman test. Both
assessments are conducted at a significance level of 5%.
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4.5 Results

The summary of the accuracy results is shown in Table 2, including the result
of each algorithm4 for each database as well as the total average of each algo-
rithm. The algorithm(s) with the highest accuracy are highlighted in bold. In
accordance with the procedure described in Sect. 4.4, we analyzed the results
of our experiments. We found evidence to reject the null hypothesis of equal
performance across all algorithms with a computed p-value of 1.490 × 10−2. The
detailed results of the posthoc test are presented in Table 3, which shows the
ranking generated by the Friedman test and the p-value adjusted using Holm’s
procedure (non-rejected null hypotheses are boldfaced), along with the number
of wins, ties, and losses for each algorithm versus the algorithm that ranked first.
Based on the statistical analysis, we draw the following conclusions:

Table 2. Accuracy of each algorithm.

Data Set Algorithm
mA1DE mA2DE mA1DE α > 0 mA2DE α > 0 NB Bagging RF

11 Tumors 83.91 85.06 89.66 88.51 84.48 87.36 85.06
9 Tumors 33.33 35.00 50.00 48.33 53.33 36.67 36.67
Breast 67.01 67.01 64.95 68.04 69.07 67.01 62.89
CNS 60.00 65.00 63.33 71.67 60.00 73.33 65.00
Colon 85.48 87.10 87.10 87.10 87.10 85.48 87.10
DLBCL 89.61 84.42 84.42 81.82 80.52 87.01 88.31
GLI 87.06 85.88 85.88 84.71 82.35 85.88 85.88
Leukemia 95.83 95.83 97.22 94.44 87.50 91.67 94.44
Leukemia 3 94.44 94.44 95.83 94.44 83.33 94.44 87.50
Leukemia 4 91.67 90.28 90.28 90.28 79.17 88.89 77.78
Lung 90.64 91.13 92.61 94.09 72.91 96.55 89.16
Lymphoma 11 77.08 81.25 90.62 91.67 91.67 81.25 84.38
Lymphoma 3 95.45 93.94 98.48 98.48 100.00 93.94 93.94
Lymphoma 9 78.12 76.04 89.58 91.67 95.83 81.25 81.25
MLL 94.44 95.83 97.22 95.83 90.28 93.06 94.44
Ovarian 97.63 98.42 97.63 98.02 92.49 98.02 95.26
Prostate 93.14 91.18 91.18 88.24 65.69 91.18 86.27
SMK 70.05 70.05 71.66 71.66 65.24 70.59 65.24
SRBCT 98.80 97.59 98.80 97.59 92.77 95.18 100.00
Mean 83.35 83.44 86.13 86.14 80.72 84.15 82.14

4
mAnDE denotes the canonical MiniAnDE algorithm (α = 0) and mAnDE α > 0
denotes its combination with NB using α > 0. The parameter α is set using a grid
search and CV, as noted above.
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Table 3. Post-hoc test results for the accuracy of each algorithm.

Algorithm p-value Rank Win Tie Loss

MiniA1DE (α > 0) – 2.84 – – –
MiniA2DE (α > 0) 7.073 × 10−1 3.11 9 4 6
MiniA2DE (α = 0) 2.419 × 10−1 4.00 11 5 3
Bagging 2.419 × 10−1 4.08 12 2 5
MiniA1DE (α = 0) 2.419 × 10−1 4.16 12 2 5
Random Forest 3.432 × 10−2 4.74 14 2 3
Naive Bayes 8.492 × 10−3 5.08 13 1 5

– The MiniA1DE algorithm with α > 0 is ranked in the first place, although
there is no significant difference (confidence level 0.05) with respect to the
other three MiniAnDE algorithms and bagging. A significant difference is
observed with respect to NB and random forest.

– Both MiniAnDE algorithms with α > 0 rank ahead, although without signif-
icant difference among them, of their counterpart canonical versions without
incorporating NB. This corroborated the fact that in some cases, due to the
small sample size in microarray datasets, it is good to incorporate the pre-
diction of a simple low-bias classifier.

– Regarding the use of n = 1 or n = 2, there do not seem to be major differ-
ences in either MiniAnDE (α = 0) or MiniAnDE (α > 0), with either option
working better depending on the data set, resulting in an almost identical
average accuracy.

– NB is ranked in the last position, which is not unexpected due to the fact
that it is by far the simpler model tried. However, it is interesting to observe
the bad results obtained by RF, which is ranked behind bagging. It seems
that the use of pseudorandom DTs does not match with the large number of
variables and small data size of microarray data.

As for computational efficiency, the CPU time is shown in Table 4. As
expected, NB is the fastest algorithm (linear in the number of variables and
instances). On the other hand, the MiniAnDE algorithms require an affordable
amount of CPU time, almost identical to bagging, the classifier it uses to train
the trees. Furthermore, the effect of using MiniAnDE with α > 0 is practically
insignificant. In general, we can say that the MiniAnDE approach is the best
choice among the tested hypotheses when dealing with microarray data.
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Table 4. Execution time per L.O.O. iteration (seconds) of each algorithm.

Data Set Algorithm
mA1DE mA2DE mA1DE α > 0 mA2DE α > 0 NB Bagging RF

11 Tumors 4.05 4.94 5.31 5.23 0.83 4.50 1.50
9 Tumors 0.96 0.92 0.95 1.05 0.20 0.95 0.37
Breast 3.23 3.27 3.49 3.58 0.83 3.44 1.41
CNS 0.59 0.66 0.66 0.68 0.18 0.61 0.42
Colon 0.72 0.74 0.74 0.77 0.18 0.66 0.18
DLBCL 0.40 0.43 0.54 0.42 0.14 0.37 0.28
GLI 2.08 2.07 1.94 2.12 0.66 1.58 1.03
Leukemia 0.46 0.48 0.44 0.45 0.19 0.47 0.34
Leukemia 3 0.60 0.53 0.52 0.52 0.17 0.53 0.37
Leukemia 4 0.73 0.60 0.69 0.66 0.19 0.57 0.36
Lung 3.69 3.81 3.80 4.03 0.95 4.00 1.36
Lymphoma 11 0.96 1.06 1.02 0.90 0.18 0.87 0.42
Lymphoma 3 0.37 0.35 0.32 0.33 0.12 0.28 0.24
Lymphoma 9 0.81 0.86 0.88 0.86 0.21 0.80 0.29
MLL 0.92 0.81 0.89 0.85 0.29 0.70 0.55
Ovarian 3.00 3.03 3.07 2.98 1.23 2.94 1.50
Prostate 1.38 1.27 1.38 1.46 0.41 1.37 0.71
SMK 7.42 8.98 7.69 7.98 1.22 7.46 2.07
SRBCT 0.28 0.29 0.29 0.29 0.09 0.30 0.18
Mean 1.72 1.85 1.82 1.85 0.44 1.70 0.72

5 Conclusions

A new algorithm for learning AnDE-like classifiers has been proposed. The
method is tailored to the special case of microarray data, where few data
instances are available but the number of variables is so large (thousands) that
standard AnDE classifiers do not fit in memory. The proposed algorithm incor-
porates a structural learning stage, which based on the use of shallow decision
trees, allows the selection of a few SPnDEs in the resulting MiniAnDE ensemble.
Furthermore, a small subset of variables is included in each SPnDE, leading to a
very light model regarding spatial needs and providing fast inference. The experi-
ments’ results over 19 microarray datasets show the competitivity of our proposal
regarding decision tree-based ensembles, both in accuracy and efficiency.

As future works, we plan to study our proposal without the need of dis-
cretizing numerical variables, by considering AnDE models based on the use of
conditional Gaussian networks [14].
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Abstract. In this paper we propose to combine the paradigm of multi-
view semi-supervised learning with that of learning using privileged infor-
mation. The combination is realized by a new method that we introduce
in detail. A distinctive feature of the method is that it is classifier agnostic
which contracts with most of the methods for learning using privileged
information. An experimental study on a real-life problem shows that
using privileged information is capable of improving multi-view semi-
supervised learning.

1 Introduction

The task of supervised multi-view learning assumes that training data L is given
in multiple views Xm

1 while labeled by a common output variable Y [11]. To
solve the task, we first train prediction models hm : Xm → Y for all the views
and, then, aggregate their predictions to estimate the values of Y for new query
instances. Successful examples include applications in web, drug discovery, part-
of-speech tagging etc. for tasks that involve collecting data based on different
measurement processes.

Recently, Vapnik proposed a new paradigm of learning using privileged infor-
mation (LUPI) [10] that is closely related to multi-view learning. Given non-
empty views Xi ⊂ Xj and output variable Y LUPI seeks to find a prediction
model h : Xi → Y from labeled training data given in Xj . According to his def-
inition, to implement LUPI we need first to train prediction models h on data
given in bigger view Xj and then to estimate the values of Y for query instances
given in smaller view Xi. This means that view Xj \ Xi is a privileged view that
is available only during the training phase.

Vapnik and Izmailov proposed in [9] the first prediction model for LUPI,
SVM+. The key idea is to use the information from the privileged view to
estimate the values of the slack variables in the optimization process of SVM.
Pasunuri et al. proposed in [5] a LUPI model for decision trees: the data is first

1 A view is a subset of available input variables.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 144–152, 2023.
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clustered in privileged view Xj \ Xi to identify ”privileged” labels and then a
decision tree is built by selecting input variables using supervised information
from the initial output variable Y and privileged labels. Fouad et al. proposed
in [4] to adapt the distance metric in non-privileged view Xi using information
from privileged view Xj \ Xi and then to employ simple k-nearest neighbor in
view Xi for instance prediction.

Recently, LUPI was extended for semi-supervised learning when plenty of
unlabeled training data U is available in addition to labeled training data L.
The main extensions involve intrinsically semi-supervised maximum-margin clas-
sifiers [8] based on SVM+ [2,6].

In this paper we make one step further: we propose to combine the paradigm
of multi-view semi-supervised learning with that of LUPI. We develop a method
that implements this combination. A distinctive feature of the method is that
it is classifier agnostic which contracts with most of the methods for learning
using privileged information (see above). The model is experimented on a predic-
tion task of formulating final advices for secondary education of students in the
Netherlands. The experiments show that using privileged information is capable
of improving multi-view semi-supervised learning.

The rest of the paper is organized as follows. The specific task of multi-view
semi-supervised learning that we study in this paper is introduced in Sect. 2.
We consider two methods for this task in Sect. 3. We show experimentally in
Sect. 4 that the method that employs LUPI outperforms the one that does not.
Section 5 concludes the paper.

2 Task of Multi-View Semi-Supervised Learning

We assume the presence of K input variables Xk and one output class variable
Y . The input variables are divided into M number of views Xm such that ∅ ⊂
X1 ⊂ X2 ⊂, . . . ,⊂ XM = {X1,X2, . . . , XK}. We assume an unknown joint prob-
ability distribution P (Xm, Y ) defined over Xm × Y for all m ∈ {1, 2, . . . ,M}2.
Marginal probability distribution P (Xm) i.i.d. generates unlabeled data Um and
probability distribution P (Xm, Y ) i.i.d. generates labeled data Lm. Given train-
ing data unlabeled data Um and labeled data Lm for all m ∈ {1, . . . ,M}, the
task of multi-view semi-supervised learning is to provide an estimate ŷ of the
class variable Y for a query instance xm in view Xm for some m ∈ {1, . . . ,M}.
The task is illustrated in Fig. 1.

To estimate the class value for the test instance xm in view Xm we need a
classifier hm : Xm → Y for that view. In the next section we will consider two
possible ways how to learn classifiers hm for all m ∈ {1, 2, . . . ,M}.

3 Multiple Self Training with Privileged Information

We consider two model-agnostic methods for the task of multi-view semi-
supervised learning defined in the previous Section. The first method is a stan-
2 By construction for each m with 1 < m ≤ M probability distribution P (Xm−1, Y )
is a marginal distribution of probability distribution P (Xm, Y ).
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Fig. 1. Task of multi-view semi-supervised learning

dard multi-view self-training method (MVSTM). It does not employ privileged
information and is used as a baseline in the rest of the paper. The method oper-
ates uniformly for each view Xm with m ∈ {1, 2, . . . ,M}. It first trains classifier
hm on labeled training data Lm. Classifier hm is used to pseudo-label all the
instances in the unlabeled training data U . Those pseudo-labeled instances that
received labels with high confidences are added to data Lm

3 and removed from
data Um. The steps are repeated until convergence is established when no change
in data Lm and, thus, in data Um is observed. The pseudocode of the proposed
method is provided in Algorithm 1.

Algorithm 1. Multi-View Self Training Method
Input: Unlabeled data Um for m ∈ {1, 2, . . . ,M},

Labeled data Lm for m ∈ {1, 2, . . . ,M}.
Output: Index set of classifiers {hm}m∈{1,2,...,M} .

for m := M to 1 do
repeat

/* Self Training */
Train classifier hm on Lm;
for each unlabeled instance x ∈ Um do

y = hm(x);
if confidence value for label y is high then

Lm = Lm ∪ {(x, y)};
Um = Um \ {x};

until No change in set Lm;
output {hm}m∈{1,2,...,M}.

3 For example, if the prediction model is a probabilistic classifier, then the confidence
value is the posterior probability of the label for an unlabeled instance.
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The MVSTM method trains classifiers hm independently from each other.
Thus, it does not exploit the fact that probability distributions P (Xm−1) and
P (Xm−1, Y ) for any m are marginal to probability distributions P (Xm) and
P (Xm, Y ) for m ∈ {2, . . . ,M}. This issue is addressed during the prediction
phase. Given a query instance x in view Xmq

, the predictions for x from classifiers
hm for m ≤ mq are received and aggregated using a majority voting rule. In this
way the variance of the final predictions is reduced [11].

To exploit the relationship between probability distributions P (Xm) and
P (Xm, Y ) for m ∈ {2, . . . ,M} we propose to train classifiers hm by transferring
unsupervised and supervised information between the data in different views.
The unsupervised information transfer is employed for unlabeled data while the
supervised information transfer for labeled data. Both types of transfers are
realized in the direction from big views Xm+1 to small views Xm using two
procedures described below.

For the case of unlabeled data, given views Xm and Xm+1, we observe that
any instance x in Xm+1 has a unique projection pm(x) in Xm. Hence, the pro-
cedure for the unsupervised information transfer from view Xm+1 to view Xm is
straightforward: the projections pm(x) in Xm of all the instances x in the unla-
beled data set Um+1 are added to the unlabeled data set Um. In this way the
unlabeled data set Um can be substantially expanded with unlabeled projections
of the instances from Um+1 which in turn can improve self training in view Xm.

For the case of labeled data, given views Xm and Xm+1, we observe that if we
have an instance (x, y) in Xm+1 × Y then its projection pm(x) in Xm is likely to
receive the same value y for the output class variable Y (with probability greater
than zero). We employ this observation in a classifier-guided procedure for the
supervised information transfer from view Xm+1 to view Xm. The procedure first
projects all the labeled instances in Lm+1 to view Xm and adds them to labeled
data Lm. Then, it trains a classifier hm : Xm → Y on Lm. Finally, the procedure
uses classifier hm to output a label y for each unlabeled instance x ∈ Um+1 and
adds labeled instance (x, y) to Lm if classifier hm is confident in label y. In this
way the labeled data sets Lm can be substantially expanded which in turn can
improve self training in each view.

The procedures for the unsupervised and supervised information transfer
implicitly implement learning with privileged information. This is due to the
fact that both rules realize information transfer in the direction from big views
Xm+1 to small views Xm for m ∈ {1, . . . ,M − 1}. In this way the unlabeled
data set Um and labeled data set Lm are enriched by unlabeled and labeled
projections of instances from the unlabeled data set Um+1 and labeled data set
Lm+1, respectively. Thus, whenever we train a classifier hm : Xm → Y using a
self-training algorithm on Um and Lm we employ information from the privileged
view Xm+1 \ Xm that is not explicitly present. This implies that whenever we
classify with hm we also employ information from that privileged view.

The method that employs both procedures for the unsupervised and super-
vised information transfer is the main method that we propose for the task of
multi-view semi-supervised learning. It is called multi-view self-training method
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Algorithm 2. Multi-View Self Training Method with Privileged Information
Input: Unlabeled data Um for m ∈ {1, 2, . . . ,M},

Labeled data Lm for m ∈ {1, 2, . . . ,M}.
Output: Index set of classifiers {hm}m∈{1,2,...,M} .

for m := M to 1 do
repeat

if m �= M then
/* Unsupervised Information Transfer */
for each unlabeled instance x ∈ Um+1 do

Compute projection pm(x) of x in Xm;
Um = Um ∪ {pm(x)};

/* Supervised Information Transfer */
for each labeled instance (x, y) ∈ Lm+1 do

Compute projection pm(x) of x in Xm;
Lm = Lm ∪ {(pm(x), y)};

/* Supervised Information Transfer and Self Training */
Train classifier hm on Lm;
for each unlabeled instance x ∈ Um do

y = hm(x);
if confidence value for label y is high then

Lm = Lm ∪ {(x, y)};
Um = Um \ {x};

until No change in set Lm;
output {hm}m∈{1,2,...,M}.

with privileged information (MVSTMPI). Its pseudocode is given in Algorithm
2. Given unlabeled data set Um and labeled data set Lm for all the views
Xm with m ∈ {1, 2, . . . ,M}, the method outputs an index set of classifiers
{hm}m∈{1,2,...,M} for those views. This is realized iteratively from big views
Xm+1 to small views Xm. That is why, in the very first iteration when m = M ,
the method does not perform any information transfer. It just learns classifier
hM with self training on unlabeled data and labeled data sets UM and LM , and
then updates these sets if there are any changes caused by self training. In the
next iteration for m < M the method enriches first the unlabeled data set Um

and labeled data set Lm by unsupervised and supervised information transfer
from the unlabeled data and labeled data sets Um+1 and Lm+1. Once the sets
Um and Lm are complete, the method trains classifier hm using self training on
those sets. Then, it updates these sets if there are any changes caused by self
training.

The MVSTMPI method is a semi-supervised method. Its main differences
w.r.t. other semi-supervised methods are as follows:

– the unlabeled data in each view can be enriched with data from bigger views,
and

– the labeled data in each view can be enriched by labeling unlabeled data
using information from bigger views.
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Since data enrichment is realized prior of actual process of self training, it
can improve the process of semi-supervised learning.

The prediction procedure related to the MVSTMPI method is similar to that
of the MVSTM method. Given a query instance x in view Xmq

, the predictions
for x from classifiers hm for m ≤ mq are received and aggregated using a majority
voting rule. As before we aim at reducing the variance of the final predictions.

4 Experimental Study

The MVSTMPI method was designed on request to develop classifiers capa-
ble of predicting advices for secondary education for Dutch primary-education
students. Below we first describe the task, then the experimental setting, and,
finally, the results.

4.1 Task of Predicting Student Advice for Secondary Education

Any student in the Netherlands receives a final advice for secondary education by
the end of her/his primary school. There exist four possible advises: profession-
oriented education, technical education, higher general continued education, and
preparatory scientific education. The task of formulating the advises is a task of
teachers that follow the students: they take into account 51 nationally standard-
ized student tests for language and math over the last six years of the primary
school. The accuracy of the advises is important because they determine the opti-
mality of the educational environment for further development of the students.
That is why, we were asked to develop a decision-support system for teachers.
The system includes a classifier that predicts the advice for a student given the
student tests grades.

We formalized the task of predicting advice for secondary education as fol-
lows. Every student is represented by 51 input variables Xk that correspond to
51 nationally standardized student tests. The variables are organized in 6 views,
X1 ⊂ X2 ⊂ X3 ⊂ X4 ⊂ X5 ⊂ X6, so that variables Xk that correspond to the
tests prior to year m or in year m belong to view Xm. This means that a student
in year m is given by view Xm.

Since the advices for secondary education are given in the last year, only
students in year 6 have received actual advice. This means that the output
variable Y , that stands for the type of advice, has value only for students in
year 6. Thus, the data of students for year m < 6 is not labeled and the data of
students for year m = 6 is labeled. This makes the task for predicting advice for
secondary education as a specific instantiation of the task for multi-view semi-
supervised learning when unlabeled data Um is non-empty and labeled data Lm

is empty for m < 6 and unlabeled data Um is empty and labeled data Lm is
non-empty for m = 6 (see Fig. 1).

The data we received consists of records of 30 000 students collected over 11
years. We selected further these records in such a way that we could estimate
the accuracy rate of every classifier hm for m ∈ {1, . . . , 6}. For this purpose we
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recorded the final advices (labels) of the students in every year m < 6 noting
that they had actually received these advices after 6 −m years. This supervised
information was used only for estimating the accuracy rate of classifiers hm, not
for their training.

4.2 Experimental Setup

We experimented with the two methods proposed in the previous section: the
MVSTM and MVSTMPI methods in order to decide whether privileged infor-
mation improves the generalization performance. In this context, we note that
the MVSTM method is not directly applicable to our task of predicting advice
for secondary education since for m < 6 we have only unlabeled data Um. Thus,
we created a special version of the data for the MVSTM method. We artificially
created labeled data Lm for any m < 6 by projecting labeled data L6 in view
Xm.

The base classifier for the MVSTM and MVSTMPI methods was the
XGBoost classifier [1] with default settings. The methods were left till self-
training convergence that was established after 2 self-training iterations for both
methods.

The method of validation was 5-fold cross validation. The generalization per-
formance of the classifiers was measured using the accuracy rate.

4.3 Results

Table 1. The accuracy rates of classifiers f1 to f6 in the MVSTM and MVSTMPI
methods on the student advise data. The accuracy rates are given for the case of no self
training (No-ST), the first self-training iteration, and the second self-training iteration.
The accuracy rates classifiers f1 to f6 of MVSTM and MVSTMPI are compared for
each iteration using a paired t-test on 5% significance level and statistically better
classifiers are given in bold.

MVSTM No-ST iter.1 iter.2

h1 0.46 0.47 0.47

h2 0.54 0.54 0.54

h3 0.58 0.59 0.59

h4 0.61 0.62 0.63

h5 0.67 0.67 0.67

h6 0.72 0.72 0.72

MVSTMPI No-ST iter.1 iter.2

h1 0.46 0.49 0.49

h2 0.54 0.56 0.57

h3 0.58 0.60 0.60

h4 0.61 0.64 0.64

h5 0.67 0.68 0.68

h6 0.72 0.72 0.72

The results are provided in Table 1. They show that the MVSTM and
MVSTMPI methods produce the same results when no self training takes place
(due to the specific design of the data for the MVSTM method). They also pro-
duce the same results for classifier h6 since the data of the year-6 students is
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fully labeled. In all other cases when self training is on, the MVSTMPI method
outperforms the MVSTM method. We compared the classifiers of both meth-
ods for each iteration using a paired t-test on 5% significance level. The test
revealed that classifiers h1, h2, h3, and h4 in the MVSTMPI method have signif-
icantly higher accuracy rates than those of their counter parts from the MVSTM
method. The biggest gain we received for classifiers h1 and h2. This is due to the
fact that the unsupervised and supervised information transfer is maximized for
views X1 and X2; i.e. learning with privileged information is best presented for
these views.

5 Conclusion

In this paper we proposed a novel method for multi-view semi-supervised learn-
ing using privileged information. The method is classifier agnostic in contract to
most of the methods for learning using privileged information. The method was
tested on the task of predicting student advice for secondary education. The
experiments show that privileged information improves the predicted advises
and this improvement depends on semi-supervised learning. Therefore, future
research will focus on advanced semi-supervised learning algorithms that add
newly labeled data only if it statistically complies with the initial data [7] or it
directly leads to a better performance [3].
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Abstract. If we can predict the words a child is likely to learn next,
it may lay the foundations for developing a tool to assist child language
acquisition, especially for children experiencing language delay. Previous
studies have demonstrated vocabulary predictions using neural network
techniques and graph models; however, individually these models do not
fully capture the complexities of language learning in infants. In this
paper, we describe a multi-relationship-layer predictive model, based on a
graph neural network. Our model combines vocabulary development over
time with quantified connections between words calculated from fifteen
different norms, incorporating an ensemble output stage to combine the
predictions from each layer. We present results from each relationship
layer and the most effective ensemble arrangement.

Keywords: graph neural networks · language acquisition

1 Introduction

The acquisition of language and communication skills during early years plays a
crucial role in the overall cognitive and social growth of children, such that any
interruption or delay can have far reaching consequences to language develop-
ment and educational attainment in later years. Language impairment, where a
child’s language abilities are insufficient for their next stage of cognitive, edu-
cational, and social development, has been demonstrated to impede the child’s
development from an early age, and without proper support they can fall behind
and fail to catch up with their peers [1]. Developmental Language Disorder
(DLD), which is a condition whereby a child’s language development is delayed
or disordered for no clear reason, affects 6.44% of all UK children [2], and is
the most prevalent childhood disability, requiring specialist support in order for
affected children to learn and communicate to the very best of their ability [3].
DLD has been linked with lower academic achievement, lower employment and
poor mental health [4]. Even in neurologically ‘typical’ children, factors such as
their communication environment and family circumstances can have an effect
on their language development, and research has shown that delayed communi-
cation skills can lead to adverse learning outcomes several years later [5].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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To establish whether a child’s language is developing normally, standardised
tools are used such as the MacArthur-Bates Communicative Development Inven-
tory (CDI) [6,7]. The CDI consists of a series of questions and checklists designed
to assess vocabulary comprehension, production, gesture use, and early gram-
mar. It is usually accompanied by a Family Questionnaire that is compiled by
the child’s primary carer or by a researcher. By comparing the answers against
national norms, it is possible to establish whether the child is developing nor-
mally or could be delayed.

Originally designed as a paper instrument, online web or mobile platform
versions offer novel research prospects such as the capability to offer recommen-
dations and direction to parents regarding the words they should teach their
child next.

A simple but naive way of achieving this would be by referencing the Age-of-
Acquisition norms [8] that identify words that typical children would acquire at
a similar age. However, children tend not to learn the same words at the same
rate or age, and thus a more tailored approach is required, based on the child’s
current knowledge. This predictive technique could be used to inform the child’s
primary carer of ‘candidate’ words to emphasise when teaching language [9], and
form the basis of a novel language intervention tool. In this paper we present a
novel approach for predicting a child’s language acquisition by utilizing Spatio-
Temporal Graph Neural Networks (STGCN), which aims to improve upon the
existing literature in terms of accuracy. We evaluate the viability and efficacy
of using such a network, utilising published lexical datasets; and illustrate how
this approach is worthy of further investigation.

2 Existing Work

A seminal work on the prediction of word acquisition by young children based
on their current vocabulary, Beckage, Mozer & Colunga [10] explored the use of
conditional probabilities by examining the CDI questionnaire data of 77 subjects
over a 1-year period at monthly intervals. By using a network growth technique,
they built three different models based on calculating the conditional probability
of a word being learnt within the next month using different approaches, given
words that had been learnt overall and in the previous month. They found that
the accuracy of predictions could be enhanced by increasing the temporal res-
olution of the data (e.g. more frequent than monthly intervals) or by including
more meaningful connections between words in the predictive model.

Other work has looked at the use of Artificial Neural Network (ANN) models
for predicting the probabilities of word acquisition over a subsequent month [11].
ANNs have a long history of use in early learning research including language
modelling, and have proven themselves to be excellent statistical learning tools.
A number of different neural-network based predictive models were investigated
using various qualitatively different sources of information as inputs [10]. All
of these models augmented an initial set of 6 inputs representing demographic
information about the child. One model used a representation of the child’s cur-
rent vocabulary, as indicated by the answers provided by their parents to the
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CDI questionnaire, consisting of an additional 677 inputs. A different model
utilised a representation of the semantic features of words in the child’s vocabu-
lary, based on the McRae feature norms [12], through 30 additional inputs. Other
models considered the phonological composition of the child’s productive vocab-
ulary (represented by 37 additional inputs), or representations that captured the
production of words within specific categories of the CDI questionnaire (22 addi-
tional inputs). Other studies exploited a Word2Vec [13] based representation of
the child’s productive vocabulary that combined vectors in a high-dimensional
linguistic space and comprising 200 inputs.

Beckage et. al. [11] also explored the use of ensemble models to determine if
some language representations were unnecessary or if the combination of multiple
representations could improve the model’s predictability. From these studies,
they observe that: (i) a child’s existing vocabulary and demographic information
significantly affect their future vocabulary development; (ii) the specific words a
child knows are valuable in forecasting their future vocabulary growth; (iii) the
model that considered a child’s current vocabulary performed better than one
relying solely on demographic data; and (iv) the words in a child’s vocabulary
contain valuable information besides their age and current vocabulary size. They
also noted that models based on semantic features and phonology were less
effective than those models based on child demographics and current vocabulary,
as they don’t meaningfully combine the child’s existing vocabulary knowledge.

3 Child Vocabulary as a Multi-relationship Graph

Child vocabulary growth has been modelled in the literature using a variety
of network-based methods. Graphs have been used when modelling vocabulary
growth over time [14], whereas neural networks were used when attempting to
model the way that a brain acquires language [15]. These models exploit the fact
that a typical vocabulary consists of a collection of words that are inherently
connected with each other, and as such can be easily represented as a network.
Typically, words are represented as nodes, with edges representing some inter-
word relationship (e.g. Fig. 1 shows a semantic network that focuses on the word
water). In this model, each node of the graph represents a word and incorporates
a feature vector, which contains information about the state or features of the
word. Each node is also associated with a state representation of the child’s level
of knowledge regarding that node:

1. a child may understand a word without production;
2. a child may produce a word without meaning,
3. a child may both understand and produce a word, or
4. a child may have no knowledge of a word.

While cognitive nuances of word knowledge extend beyond these four discrete
states, for the purpose of analyzing a child’s vocabulary, they serve as easily
observable and universally understood indicators.
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In our study, we enhanced the model by integrating multiple relationships
that are effectively superimposed upon each other as in layers. In our struc-
ture, the nodes, representing words, are shared across all layers, while each layer
exhibits distinct edge configurations (see Fig. 2 for a visualisation). To incorpo-
rate a new observation into the model, the nodes’ feature vectors are suitably
adjusted to capture word knowledge at the respective time period.

Fig. 1. Simplified example of a vocabulary graph: word-association graph focused on
water. Edge and node features not shown.

As to which relationships to include in the model, we excluded those focus-
ing on words from an exclusively adult viewpoint, and we concentrated on those
more aligned with an infant’s cognitive perspective, and grounded in the lit-
erature. Relationships commonly used in language research include Semantic
Feature norms (ratings of the attributes or characteristics of words that provide
information about their meaning in context), Word Association data (for a given
cue word, the target word that a person immediately thinks of next), Phonologi-
cal Similarity data (the degree to which words sound similar when spoken), and
Psycholinguistic norms such as: Imageability (the ease with which a word can
be mentally visualised); Concreteness (the tangibility of a word as opposed to
an abstract concept, e.g. ‘chair’ is more concrete than ‘time’); Familiarity (rat-
ing a word based on how commonly it is used in everyday speech); and Word
Length (a measure of how difficult a word is to remember or say). From a cog-
nitive research perspective, Sensorimotor Norms allow to compare words from
the conceptual point of view of children at the earliest development stage, when
they learn to use their senses to build an understanding of the world and use
motor movements (grasping, sucking, touching) to interact with it.
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Specifically, for our model, we chose: Nelson et al. association norms [16],
which are utilised to construct a layer that accounts for the associative relation-
ships between words in human memory; the semantic feature production norms
by McRae et al. [12] and those by Buchanan et al. [17] to measure the similarity
of meaning between two given words. We also incorporate a measure of Phono-
logical Similarity, based on IPA phonemes, which are extracted from the BEEP
phonetic dictionary [18]. Finally, we use the Lancaster Sensorimotor Norms [19]
which evaluate English words based on six perceptual modalities: touch, hearing,
smell, taste, vision, and interoception), and five action effectors: mouth/throat,
hand/arm, foot/leg, (head excluding mouth/throat), and torso.
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Fig. 2. A Multi-relationship vocabulary graph structure.

Both McRae et al. and Buchanan et al. data is published along with cosine
similarity matrices, allowing for direct representation of connection strengths
between words. To similarly adapt the Lancaster norms to our model’s structure,
a weighted adjacency matrix was created for all possible word pairs within each
category. This weight was calculated by normalizing the product of each pair’s
scores, resulting in a strong connection between words with high scores in the
same category and weak connections between dissimilar words. Self-loops are
given a weight of 1.0. The Phonological Similarity model was constructed by
decomposing each word into its constituent IPA phonemes, derived from the
BEEP, and computing, for every pair of words, similarity scores based on the
Jaccard similarity metric, allowing us to create an adjacency matrix.

For all models, we used the adjacency matrices to define graph edges, and
created a list of nodes by de-duplicating the edges list. The nodes’ feature vectors
represent the level of knowledge that a child has of the word. This resulted in
a collection of graphs Gn = (Vn, En) for each category, where V represents the
vertices (i.e. nodes) and E represents the edges. A node list was created for every
observation in the data and was populated with the corresponding observed data.
These node lists were then combined to form a time series. The edge lists were
processed by combining each edge list with each node list in the time series,
resulting in the creation of a time series of graphs for each of the 15 models.
This was used as an input to our model, as explained in the following Section.
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4 Model Selection

Our aim is to predict a child’s future vocabulary based on the child’s past and
existing knowledge. Given our series of graphs representing different relationships
between words in a vocabulary, we can embed the nodes with feature vectors
representing the child’s current knowledge of the word (Fig. 3). Given that each
node has been classified as being ‘understood’, ‘understood and spoken’, ‘spoken
but not understood’, or ‘unknown’, a classifier is required that can re-classify
the nodes based on their features, connections and history.

Fig. 3. Example graph portion representing words and semantic connections between
them. Edges show strength of connection (in this case semantic relatedness). Node
colours represent word’s feature vectors: wet, water and drink are known and under-
stood by the child; cold, hot, and cup are either known or understood but not both,
and the remaining nodes represent words that are completely unknown to the child.

Graph Neural Networks (GNN) efficiently apply machine learning to graph-
structured data [20]. GNNs process the input graph by taking each node in turn
and aggregating information from its neighboring nodes and edges, updating the
representations of the nodes in each iteration, until a final representation for each
node is obtained. These node embeddings encode the structural and feature data
of themselves, their neighbours, and ultimately of all other nodes in the graph,
and can then be used in further operations such as edge prediction, classification,
labelling, feature prediction and more. In our application we classify the nodes
to determine the probability that the words that they represent are ‘known’.
Graph Convolutional Networks [21] are a variety of GNN that attempt to apply a
convolution operation to graphs, in a similar manner to traditional Convolutional
Neural Networks (CNNs). The type of GCN is determined by the convolution
filtering method and is either Spectral (where the convolutions take place in the
Fourier domain) or Spatial (in the spatial domain). Following Kipf & Welling
[22], we use a technique that bridges the two methods - it uses spectral graph
convolutions, but with some simplifications to reduce the processing overhead
that comes with computing a Fourier transform of a graph.
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An extension of the GCN model is the Spatio-Temporal Graph Convolutional
Network (STGCN), which considers features of a GCN as a function of both
space and time. They have been shown to work well in problems of traffic pre-
diction [23] where the aim is to predict the traffic speeds, given information from
sensors on other roads. The data from a road network with traffic sensors can be
described as a graph, with the sensors serving as nodes, direct routes between
sensors as edges, and the distance between sensors as edge weights. Each node
may have features such as vehicle speed or number of passing vehicles. By taking
the history of the sensor data into account as well as the relationship of the nodes
to each other, features of particular sensors can be predicted accurately and effi-
ciently [24]. This scenario is analogous to our word prediction problem - nodes
representing words rather than sensors, edges representing inter-word relation-
ship strength rather than distance between sensors, and features representing
the probability of increased word knowledge rather than vehicle speed. By com-
bining graph convolutional operations with temporal convolutional operations,
STGCNs are able to model the dependencies between nodes in a dynamic graph
structure over time, making it suitable for forecasting the relationships between
nodes at a future point in time, based on recent history as well as current state.
This makes it suitable for forecasting the future state of a child’s vocabulary,
given current and past states of the vocabulary and the relationships between
words.

5 Methodology

We have developed a STGCN-based model using Python and Stellargraph [25],
a software library built on Tensorflow [26] which facilitates the construction of
graph-based machine learning models. Our full model consists of 15 relationship
layers, each of which is a separate STGCN model that has been individually
trained and executed. Some nodes in these relationship layers may not have
connections as they have no meaningful associations with other words. When a
new prediction is required, a vector representing the child’s current vocabulary
is used to populate the feature vectors of each node on each relationship layer
- indicating that certain new words have been learned. The GCN classifier, in
conjunction with the STGCN’s spatial-temporal block, is then applied to these
input graphs to re-classify the ‘unknown’ nodes, from which we can determine
the words that are likely to be influenced the most by its neighbours, and so may
be learned next. This produces a list of candidate words from each relationship
layer, from which the most likely ones can be determined.

5.1 Assumptions and Data Preparation

Observational Data. Our observational dataset consists of item-level CDI
Survey responses extracted from all available forms in English downloaded from
Wordbank [27], combined with additional data collected via volunteers through
our website. We have chosen only data for which there are longitudinal sequences,
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to enable the STGCN algorithm’s spatial-temporal block to train on temporal
data. Words were converted to our standardised vocabulary to allow for dialect
differences. The overall data consisted of 718 observations (i.e. vocabulary inven-
tories), with 150 test subjects, each providing between four and six consecutive
observations.

Due to the nature of human-collected data about human behaviour,
inevitably there will be errors present. For instance, a child may be observed
at one time period as understanding, but not producing, a particular word, e.g.
the child may appear to understand ‘bath’ by going to the bathroom when a
parent says it. On a subsequent observation the child may use the word ‘bath’,
but use it incorrectly to refer to, say, a bath toy kept in the bathroom. Or, the
parent may not be aware that a child knows a particular word. The child may
have used the word at a grandparents’ home for instance. Parents can change
their mind if they believe that a child has said and/or understood a word, but
then they realise it is not so. Finally there is the added complication of correctly
understanding words produced by a toddler, which can often be far from clear.
Such data presents challenges, especially in a smaller dataset, where errors can
have a bigger negative effect on the model. Given that errors involving words
dropping out of the observed vocabulary could adversely affect the ability to
accurately train a classifier on the data, we remove contradictory data by gen-
erating two datasets: an optimistic dataset, in which we assume that children
have continued to understand the word in subsequent observation periods, and a
pessimistic dataset where we assume that they are false observations and that
the children did not in fact understand the word during the first observation.

Relationship Datasets. Arguably, standardizing data is one of the biggest
challenges when combining multiple independent sources of language data into
one model accounting for synonyms (‘rabbit’ and ‘bunny’), multiple dialects
(‘mommy’, ‘mummy’, ‘mom’, ‘mum’, ‘ma’, ‘mama’) and international spelling
variations (‘colour’ and ‘color’). In these cases we renamed the words to match
our own standardised vocabulary. To address the issue of homographs (words
with multiple meanings, like ‘back’ or ‘drink’), we maintain standardization by
appending a label to ambiguous words (e.g. ‘drink’ becomes ‘drink(beverage)’
and ‘drink(verb)’). For a child, certain words may hold different meanings com-
pared to adults. As an example, the idea of ‘fish’ being a food and ‘fish’ being
an animal are typically treated as distinct concepts for children, whereas for
adults ‘fish’ is understood as both a food and an animal at the same time. Again
these words are appended with a context-appropriate label. We created a Python
script to simplify the labelling and transforming process, necessary for handling
all 15 relationship datasets and all observational data.

After finishing the pre-processing of the input data, the data representing
the structure of input graphs was generated. For each relationship model, this
included Edge data, represented by an adjacency matrix, and a time-series of
Node lists, each depicting the state of nodes at a particular observation and
featuring a feature vector indicating the child’s understanding of the word at
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that time. This comprehension attribute was assigned a starting value from
one of four levels, reflecting the child’s knowledge of that word at the given
observation. (0.0 representing no comprehension, 0.3 representing production
without understanding, 0.6 representing understanding but no production, and
1.0 representing full comprehension and production).

5.2 Training and Validation

The training stage of our STGCN involves presenting the model with a time
series of observations of childrens’ vocabulary changing over time. The hyperpa-
rameters of our STGCN were: Epoch size 1000, Batch size 6, optimiser ADAM,
the loss function was Mean Absolute Error (MAE), and the metric function was
Mean Squared Error. Our Feedforward Neural Network model, trained only on
vocabulary data with no relationship element, had hyperparameters: Two hid-
den layers, Epoch size 1000, Learning Rate 0.8, Batch size 6, Momentum 0.7,
Alpha Decay 200, Loss Function Mean Squared Error (MSE).

Table 1. Example prediction made on the same data sample by all models. The Ground
Truth column shows new words that have been learned by the child since the previous
observation. The dots represent correct prediction of increased knowledge.

Ground Truth Head Torso Vis Mouth Foot Olf Gust Inter Haptic Aud Hand Nels Mcrae Phon Buch

BAA BAA • • • • • • •
BABY • • • • •
BATH • • • • • • • • • •
BUBBLES • • • •
CHOO CHOO •
DADDY • • • • • • • • • • • • • • •
GRANDMA • • • • • • • • • • • • •
GRANDPA • • • • • • • • •
MEOW • • •
MILK • • • • • • • • • • • • • •
MOO •
MORE • • • • • •
MUMMY • • • • • • • • • • • •
QUACK • • • • •
WOOF • • • • • • • • •
YES • • • • • • • • • •
YUM • • • • • • • • •

5.3 Ensemble Models

Given that we were utilising multiple predictive models for comparison in our
experiment, an ensemble algorithm was used in order to combine the outputs of
the individual models, and potentially improve predictability. There are many
approaches to model ensembles [28] and we evaluated the following techniques:
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Simple Average, Weighted Average, Majority Voting, OR Classifier and AND
Classifier. For each of these techniques, the predictive models’ outputs were eval-
uated to determine an increased level of knowledge, whereby a positive result
was obtained when the model predicted productive or receptive knowledge of a
word when the most recent observation showed that the child did not possess
such knowledge. The Simple Average ensemble takes the mean of all individual
models to arrive at a final output. The Weighted Average obtains the combined
output by averaging the individual models with different weights [28], assigning
more importance to some models compared to others. We chose to build fifteen
Weighted Average ensembles, each giving more weight to a different model, and
include the best two performers in the results table. Majority Voting obtains
a positive result only if more than half of the models have produced a posi-
tive prediction. The OR Classifier operates in a similar fashion to the OR logic
gate, whereby a positive output is obtained if any of the models indicate a pos-
itive prediction. Similarly the AND Classifier functions like an AND logic gate,
producing a positive outcome only when all input models agree on a prediction.

Table 2. Results scores of all individual models and ensembles.

Model Precision Recall F1 Accuracy

Semantic Relationships:

McRae et al. 0.32 0.48 0.38 0.58

Buchanan et al. 0.37 0.41 0.39 0.58

Word Association Relationships:

Nelson et al. 0.33 0.41 0.37 0.57

Phonological Relationships:

BEEP (Jaccard) 0.34 0.53 0.41 0.55

Sensorimotor Relationships:

Lancaster (Head) 0.30 0.46 0.36 0.53

Lancaster (Gustatory) 0.35 0.35 0.40 0.57

Lancaster (Mouth) 0.32 0.46 0.38 0.59

Lancaster (Olfactory) 0.37 0.47 0.41 0.58

Lancaster (Torso) 0.36 0.42 0.39 0.58

Lancaster (FootLeg) 0.33 0.47 0.38 0.56

Lancaster (Visual) 0.34 0.53 0.41 0.56

Lancaster (Interoceptive) 0.34 0.40 0.37 0.56

Lancaster (Auditory) 0.36 0.46 0.40 0.58

Lancaster (Haptic) 0.39 0.43 0.41 0.59

Lancaster (HandArm) 0.32 0.41 0.36 0.56

Ensembles:

Simple Average 0.22 0.24 0.23 0.26

Weighted Average (Buch. Semantic) 0.38 0.52 0.42 0.73

Weighted Average (Lanc Haptic) 0.37 0.52 0.43 0.72

‘OR’ Classifier 0.23 0.81 0.37 0.43

‘AND’ Classifier 0.06 0.07 0.06 0.36

Majority Vote 0.13 0.36 0.20 0.40

2-Layer Feedforward Neural Network 0.79 0.60 0.68 0.64
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5.4 Evaluation

By way of illustration of a typical result, Table 1 displays a randomly selected
output from the test dataset for each individual model. Despite similarities in
some regions (e.g. all models accurately predicting the appearance of the word
‘Daddy’ on this observation), it does show some stark differences in predictive
accuracy, at least on a per-observation level, as one may expect considering the
differences in word relationships.

The ‘optimistic’ version of the observational data, in which we corrected
contradictions in observations by assuming the child did in fact know words
that appeared to be ‘forgotten’, outperformed the ‘pessimistic’ version, which
assumed an observational error by the carer and that the child did not know the
word.

Table 2 shows the preliminary results of the fifteen models and six ensembles,
plus the output from a Feedforward Neural Network for comparison. In our
experiments, the standard Neural Network model displayed the highest accuracy
of 0.64, rendering it the best performing individual model. However the Weighted
Average ensembles all outperformed the Neural Network, with the Buchanan-
emphasised variant performing the best, showing an accuracy of 0.73. The other
ensemble algorithms generally showed a decrease in performance.

6 Conclusions and Future Work

We have presented a multi-relationship model that can be used to make predic-
tions about a child’s upcoming vocabulary, and the process of constructing it.
It has built upon ideas from existing research into infant language acquisition
prediction using Neural Networks and graph models, and we have expanded this
by considering the current and past vocabularies of a given child combined with
multiple relationships between the words. Our findings have shown increased
performance of this technique over a standard Neural Network based predictor.
Consequently, this technique could serve as a viable foundation for a prospec-
tive tool for parents and clinicians, by providing suggestions regarding the most
effective words to teach a given child at a particular time for optimal results.

We have identified a number priorities for future development. First, train-
ing on more observational data should increase the predictive power of the
models. Second, we plan to expand the number of models used to inform the
input graphs, including additional psycholinguistic and phonological relation-
ships. This in itself may open up new avenues of research. Third, there may be
validity in attempting to optimise the weights used to bias the Weighted Average
ensemble. Finally, there are parameters chosen during the process of transform-
ing data from norms into graphs that are worth examining for opportunities to
optimise.
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Abstract. There is little research on entity extraction in constructing
the knowledge graphs for urban firefighting. In this paper, we propose a
rule-based entity extraction method for this field. The Precision of the
experiment is 85.25%, while the Recall is 83.58%. In addition, we estab-
lish the relationships between entities in urban firefighting in advance
with the experience of domain experts. Through the above two steps,
we have initially established a knowledge graph in the field of urban
firefighting, which including 13 types of entities and 12 types of relation-
ships. This study will provide reference for the construction of knowledge
graphs in the field of urban firefighting.

Keywords: Urban Firefighting · Ontology · Knowledge Graph ·
Rule-based Entity Extraction

1 Introduction

With the development of the “smart city”, the traditional urban firefighting has
gradually evolved into intelligent firefighting. Applying the technology of the
knowledge graphs in urban firefighting can help the intelligence of urban fire-
fighting emergency management. The application of knowledge graphs technol-
ogy can improve the efficiency of urban firefighting emergency decision-making.

However, there are relatively few related studies on the construction of knowl-
edge graphs in the field of urban firefighting, and most of them only focus on
building the firefighting ontology. Additionally, most of the researches focus on
some espects of building such a knowledge graph, and lack of a relatively com-
plete knowledge graphs for urban firefighting. To solve this problem, in this
paper, we first complete the construction of urban firefighting domain ontology
by consulting domain knowledge. Then we extract entities from text with rule-
based entity extraction method, and define the relationships between different
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entities. Through these tasks, the construction of a knowledge graph for urban
firefighting domain is completed systematically.

The Sect. 2 presents related research on the construction of a knowledge
graph in the field of urban firefighting. The Sect. 3 talks about the construction
of a knowledge graph in the field of urban firefighting, including ontology con-
struction, entity extraction, fire level reasoning, fire event name establishment,
entity relationship establishment, and so on. The Sect. 4 includes the data collec-
tion and preprocessing, the characteristics of the network structure of the urban
firefighting knowledge graph, and the analysis of the experimental results. The
Sect. 5 is the conclusion.

2 Related Work

2.1 Urban Firefighting Ontology

Ontology is the conceptual template of a structured knowledge base, which is
used to define the types of things in the domain and the attributes used to
describe them; it is a generalized data model. In recent years, people have car-
ried out the work on the ontology construction of firefighting. Wang Fang et al.
constructed an ontology for fire emergency management, in this study, the effec-
tiveness and integrity of the constructed fire emergency ontology were verified
by qualitative evaluation and OntoQA quantitative evaluation [1]. On the basis
of the ontology construction method, Zhang Botao et al. realized the compre-
hensive integration of firefighting domain knowledge and laid the foundation for
the reasoning of industrial firefighting ontology [2]. Both methods construct an
ontology for the firefighting domain, but not specifically for the urban firefighting
domain.

2.2 Urban Firefighting Knowledge Graph

A knowledge graph is a semantic network that reveals the relationships between
entities, which can formally describe things in the real world and their interre-
lationships.

Al-Moslmi et al. summarized the related methods of entity extraction, which
applied natural language processing technology to entity extraction [3]. Rei M et
al. proposed a new architecture for combining alternative word representations.
Evaluating different architectures on a range of sequence labeling datasets shows
that scaling at the character level improves performance on each benchmark [4].

Nguyen et al. used convolutional neural networks for relation extraction,
and experimental results demonstrate the effectiveness of the proposed CNN
[5]. Ji G et al. propose a sentence-level attention model to select valid instances,
which fully utilizes the supervised information from the knowledge base, and the
experimental results show that the method significantly outperforms all baseline
systems [6].

For the disambiguation of knowledge graphs, Zhang Y et al. proposed a
novel representation learning method that combines global and local information
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and an end-to-end cluster size estimation method that significantly outperforms
traditional BIC-based methods [7].

In link prediction of knowledge graphs, Guo S et al. embedded the knowledge
graph based on the iterative guidance of soft rules, combined embedded learning
and logical reasoning, and made significant and consistent improvements on the
most advanced baseline [8]. Dettmers et al. used a multi-layer convolutional
network model for link prediction with high parameter efficiency [9].

In the research on the knowledge graphs in the fire domain, there is ontology-
based forest fire emergency modeling and reasoning, which defines a rule-based
framework to identify information in the domain [10]. Ge X et al. proposed a
forest fire prediction method that combines spatiotemporal knowledge graphs
and machine learning models. This method is conducive to the fusion of multi-
source spatiotemporal data and greatly improves the prediction performance in
real forest fire prediction scenarios [11].

Open public knowledge graphs include FreeBase, DBpedia, Schema.org,
Wikidata, OpenKG.CN1, and so on.Among them, OpenKG.CN has gathered
a large amount of open Chinese knowledge graphs data, and the CEC data set
contains 75 pieces of fire data, including information such as the time of the
fire, the location of the fire, the number of firefighters, the number of fire trucks,
casualties, and so on.

3 A Knowledge Graph for Urban Firefighting

3.1 The Framework for Building the Urban Firefighting Knowledge
Graph

The research content of this study includes the construction of an urban firefight-
ing ontology, rule-based entity extraction, abstract node reasoning and the con-
struction of urban firefighting knowledge graph. First, the study determines the
hierarchical structure of ontology, according to the collected domain information,
then determines the basic hierarchical structure of ontology, and gradually refines
it. Entity extraction rules are made according to the collected unstructured text
information, and then the fire level is deduced according to the extracted nodes,
after which the entity nodes are obtained. Finally, the knowledge graph is con-
structed by using Neo4j software, and the extracted entity nodes are stored in
csv files according to the corresponding categories, and then imported into Neo4j
in batches by using Cypher statements. The framework for building the urban
firefighting knowledge graph is shown in Fig. 1.

3.2 Construction of Urban Firefighting Ontology

The ontology contains 15 classes and 3 levels, of which the parent class is a fire
event. The following are 9 subcategories: fire name, fire level, geographical loca-
tion, cause of fire, number of firefighters, number of firefighting vehicles, fire loss,
1 Website of OpenKG : http://www.openkg.cn/home
Website of CEC data set: https://github.com/daselab/CEC-Corpus/tree/master/
CEC/%E7%81%AB%E7%81%BE

http://www.openkg.cn/home
https://github.com/daselab/CEC-Corpus/tree/master/CEC/%E7%81%AB%E7%81%BE
https://github.com/daselab/CEC-Corpus/tree/master/CEC/%E7%81%AB%E7%81%BE


Knowledge Graph of Urban Firefighting with Rule-Based Entity Extraction 171

Fig. 1. The framework for building the urban firefighting knowledge graph

command, and time information. Among them, there are three subcategories of
fire loss: the number of injuries, the number of deaths, and property losses. The
time information contains three subcategories: date, quarter, and time of day.
The ontology structure diagram of Fig. 2 shows the relationships between differ-
ent entity concepts, in which the circle represents different entities, the solid line
represents the relationship between the two kinds of concepts, and the dotted
line represents the information that can be derived from existing concepts.

3.3 Building the Urban Firefighting Knowledge Graph

The ontology in the previous section represents the relationships between differ-
ent entity concepts, firstly extracting the entity information that can be obtained
directly, then analyzing the fire level information according to the existing infor-
mation and naming the fire event. After the entity extraction is completed, the
relationships between different nodes in the knowledge graph is determined man-
ually according to the conceptual relationships of the ontology graph.

Rule-Based Urban Firefighting Entity Extraction and Abstract Node
Reasoning. For conventional entity nodes, entity extraction rules are defined
by manually consulting the relevant data in the field. The entity information
contained in the text is extracted according to the defined regular expression,
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Fig. 2. The urban firefighting Ontology

then the extracted nodes are classified according to different extraction rules.
Finally, the classified nodes are stored in a csv file through the Python statement,
and a column is a type of node. Then the csv files are placed in the import folder
of Neo4j, and the batch import of entity nodes is completed through the Cypher
statement. Cypher is the query language for Neo4j graph data. The extraction
rules for some entity nodes are shown in Table 1.

Table 1. Extraction Rule

Node name Extraction rule Example

Data \d{4}-\d{1,2}-\d{1,2} 2022-12-5

Time of day \d{1,2}:\d{1,2}:\d{1,2} 5:39:15

Geographical location .*?Province Gansu Province

Some information is not intuitively explained in the text, so the information
contained in the text must be synthesized in order to make an accurate judgment.
Generally, there is no fire name, and the knowledge graph needs the fire name
to connect the fire information, but using the place name or time alone as the
name will cause confusion because there are too many fires in the same place or
date. Therefore, the combination of geographical location and occurrence date
is used as the fire name.

There are three indicators to judge the fire level: the number injured, the
number of deaths, and property loss. According to these three indicators, the
fire can be divided into particularly major fire, major fire, large fire, and general
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fire. In this study, we first extract these three indicators, then judge according
to the extracted results. In order to facilitate the judgment of the fire grade, the
fire grade is coded in this study, which is shown in Table 2.

Table 2. Fire level coding and judgment standard

Fire level Coding Deaths Injured Property loss

General fire 1 <3 <30 <10 million yuan

Large fire 2 [3,10) [10,50) [10 million, 50 million)

Major fire 3 [10,30) [50,100) [50 million, 100 million)

Particularly major fire 4 >30 >100 >100 million

For the missing information in the fire text, the common method is to use
the average to replace the missing value, and when there is more missing data,
using the average to replace the missing value may cause overall data distortion
due to some larger values. Considering the correlation between the number of
casualties and property losses, the missing data value is set to 0 and the remain-
ing indicators are used to judge. The flow chart of the judgment algorithm is
shown in Fig. 3.

Fig. 3. The fire level judgment rule
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Construction of the Relationship in the Knowledge Graph of Urban
Firefighting. The knowledge graph in the field of urban firefighting belongs to
the vertical field, and the data in the field of firefighting need to be used, so the
relationships between entities can be determined by experience. After extract-
ing the entity nodes, the nodes are classified according to the extraction rules,
and the node information is stored in the csv file, then imported into Neo4j in
batches. Then manually define the relationships between nodes, through Cypher
statements to establish the relationships between different types of nodes.

4 Verification of the Proposed Method

4.1 Data Acquisition and Preprocessing

The data set we use is obtained by our team from the firefighting official website
and is related to the field of emergency management. The knowledge graph we
constructed includes 569 nodes and 827 edges. The data is stored in a unstruc-
tured way. Data preprocessing of the collected data includes the unification of the
format and loss property preprocessing. For example, to facilitate the extraction
of time format, we first unify the format of time and money.

There are also many ways of expression and units of lossed property, and the
reasoning of fire level needs to use lossed property, so it is necessary to unify its
units. In the direct replacement of text information, some words may be replaced
incorrectly, affecting the accuracy of text information. Here, the property loss
information is extracted first, then the extracted information is processed. The
extracted information is re-extracted and unified according to the rules, and it
is changed into the form of numerical value (the unit is yuan).

Table 3. The Nodes of Firefighting

Node name Semantic description Category

Data Specific information about the year Time information

month and day of the fire

Time of day The specific time of the fire Time information

Quarter Quarterly fire information, divided into four quarters Time information

Number of injuries The number of people injured in the fire Fire loss

Number of deaths The death toll in a fire Fire loss

Property losses Economic loss caused by fire Fire loss

Command Fire fighting deployment Fire event

Fire level The level of fire is divided into four levels Fire event

Geographical location Specific provincial and municipal location Fire event

information of the fire

Cause of fire The cause of the fire Fire event

Number of firefighters Number of firefighters deployed as a result Fire event

of rescuing the fire

Number of firefighting vehicles The number of firefighting vehicles deployed Fire event

as a result of rescuing the fire

Fire name It is expressed by the combination of geographical Fire event

location and date of the fire



Knowledge Graph of Urban Firefighting with Rule-Based Entity Extraction 175

4.2 The Knowledge Graph of Urban Firefighting

There are 13 kinds of entity nodes in the knowledge graph, and the types of
nodes are obtained according to the ontology. The meaning of its representation
and the category to which it belongs are shown in Table 3.

Fig. 4. The knowledge graph of urban firefighting

4.3 Result and Discussion

The experimental results show the effectiveness of this research. This research
has successfully completed the construction of urban firefighting domain from
ontology to a knowledge graph. The constructed knowledge graph contains 36
fire cases. In this study, the precision and recall rate are used to evaluate the
experimental results. Through calculation, the average precision of this study
reached 85.25%, and the average recall rate reached 83.58%. There are two main
reasons for the low recall rate. Firstly, there was not enough data to study, which
led to some sentence patterns not being considered when making rules. Secondly,
due to the characteristics of the rules, the constantly updated rules easily conflict
with the existing rules.

The Precision is the proportion of those which are correctly predicted as
positive class to the total forecast as positive class. The Recall is the proportion
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of those which are really positive among all the predicted positive classes.The
formulas for calculating accuracy and recall are shown in (1) and (2).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

The Precision and Recall of each type of node are given in Table 4. Because
there are few ways to describe the death toll, its Precision is relatively high,
reaching 100%. There are few clear data on property loss in our data, only
two pieces of data describe it, so there is a big gap between its Precision and
Precision. Due to the limitations of the rules and the flexibility of language
description, the Precision and Recall of fire reasons and command situations
are relatively low. The judgment of a quarter is related to the month, and even
if the month appears multiple times in the text, it is basically the same, so
its Precision and Recall rate have reached 100%. The data in our data set is
relatively small, in which the fire levels are all general fires, and the judgment of
fire level is related to the number of injuries, deaths and property losses. With
the constraints of these three types of nodes, its Precision is very high, reaching
100%.

Table 4. Precision and Recall for each type of node

Node name Precision Recall

Data 95.33% 95.33%

Time of day 81.31% 81.31%

Quarter 100% 100%

Number of injuries 97.14% 91.89%

Number of deaths 100% 94.44%

Property losses 100% 50%

Command 73.12% 67.33%

Fire level 100% 94.44%

Geographical location 69.16% 69.16%

Cause of fire 63.41% 57.78%

Number of firefighters 92.68% 90.48%

Number of firefighting vehicles 87.50% 85.37%

The knowledge graph is constructed by Neo4j software, and the extracted
nodes information is stored in the csv file. Then these nodes will be imported
in batches to get these nodes information. The nodes relationships are defined
manually according to the corresponding rules. After the nodes information are
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imported, the relationships are imported in batches through the defined rela-
tionships between different nodes. The result of the knowledge graph is shown
in Fig. 4.

5 Conclusion

This study is a preliminary attempt to establish a knowledge graph in the field
of urban firefighting. An ontology for urban firefighting is established firstly,
and then, a rule-based method is used to extract firefighting entities from the
unstructured text. In addition, the relationships between nodes in the firefighting
knowledge graph are obtained by domain experts according to their experience.
The experimental results show that the proposed method is effective and reason-
able. At present, there are only 13 nodes and 12 relationships in the proposed
knowledge graph.

In the future, we will continue to increase the precision and recall of the rule-
based entity extraction method, and carry out relationships extraction exper-
iment. In this way, we will further improve the scale of the proposed urban
firefighting knowledge graphs. Besids, we will try to apply this research to the
intelligent decision-making system for urban fire protection.
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Abstract. In a parallel network, the Wardrop equilibrium is the optimal
distribution of the given total one unit flow across alternative parallel
links that minimizes the effective costs of the links which are defined
as the sum of the latency at the given flow and the price of the link.
Meanwhile, the system optimum is the optimal distribution of the given
total one unit flow for which the average effective cost is minimal. In this
paper, we study the so-called Wardrop optimal flow that is the Wardrop
equilibrium as well as the system optimum of the network. We propose a
discrete-time replicator equation on a Wardrop optimal network for which
the Nash equilibrium, the Wardrop equilibrium and the system optimum
are the same flow distribution in the dynamic network. We also describe
the conceptual and functional model of intelligent information system
for dynamic traffic flow assignment in transportation networks.

Keywords: Dynamic network · Optimal flow distribution · Traffic
flow · Wardrop optimal flow · Wardrop optimal network · Replicator
equation · Dynamical model · Intelligent information system ·
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1 Introduction

The optimal traffic flow allocation is one of the most important problems with
both theoretical and practical aspects not only in transportation networks, but
also in economics and communication. In 1952 John Glen Wardrop formulated
two principles of optimality of flows in networks that describe the situations of
the user (or Wardrop) equilibrium and the system optimum. The first Wardrop
principle describes an optimal flow distribution across alternative parallel links
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in the network, namely, it states that the effective costs of all utilized links are
equal and less than the effective costs of those unutilized links for every fixed
source-destination pair, while the system optimum is the optimal distribution of
the flow for which the average effective cost for all used links is minimal. A flow
satisfying the Wardrop’s second principle is obviously optimal from a network
owner point of view. The problems of finding a Wardrop equilibrium and system
optimum are the topics of active research both in theory and practice. In general,
for a given network the flows that satisfy Wardrop’s first and second prinicples
do not coincide, but there are networks that have identical Wardrop equilibrium
and system optimum.

We study the Wardrop optimal flows that satisfy both principles that is
the Wardrop equlibrium as well as the system optimum. A network that has
a Wardrop optimal flow is called a Wardrop optimal network. We investigate
dynamic properties of the Wardrop optimal networks and examine the Wardrop
optimal flows on networks of parallel links [1]. In this setup, the traffic traveling
from the origin to the destination can use any of the alternative parallel links, and
the flow passing through each link of the network creates a congestion externality
that causes an increase in the time needed for the journey, which is captured by
an increasing link-specific latency function. We would like to stress that a great
amount of works related to the study of optimization problems in networks from
one side and of Wardrop equilibrium in networks from the other side mostly
focus on static networks, in which temporal factors are not taken into account.
However, many application fields require consideration of dynamic networks,
among which, for example, are transportation [2,3], evacuation planning [4],
electronic communication [5], job scheduling [6], network routing [7], and parallel
computing [8]. This necessity has led to the dynamic network flow model, often
called network flow over time [9–11].

Our approach to dynamic networks slightly differs from the known ones and
also brings some new properties to dynamic networks. The difference is that in
addition to free-flow transition time (or cost) and link capacity, usually associ-
ated with dynamic networks in the literature, in which the actual travel time
of the flow on a link depends on both the free-flow time and the capacity, we
consider the networks in which link latency functions change over time, more
exactly at each next time instant (iteration, observation) the functions may dif-
fer from the functions at the previous step. We can see that, using this approach,
the dynamic networks become more suitable and powerful for modeling networks
with congestion effects, such as transportation networks and communication net-
works, and include the situations of sudden road incidents, weather conditions,
or the season. To this end, we present a new dynamical model of optimal flow
distribution by proposing a discrete-time replicator equation on the Wardrop
optimal network, using the ideas of evolutionary game theory.

Evolutionary game theory, unlike the classical game theory, focuses on the
dynamics of strategy change. The Nash equilibrium, which was invented by Nash
[12,13], is the solution concept in classical non-cooperative game theory in which
each strategy in the Nash equilibrium is the best response to all other strategies
in that equilibrium. In other words, it is a strategy profile in which no player can
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do better by unilaterally changing their strategy to another strategy. It should
be noted that the primary way to study the evolutionary dynamics in games is
through replicator equations that are used to describe the evolutionary dynamics
of an entity called replicator which has means of making more or less accurate
copies of itself. The replicator equation, which is the cornerstone of evolutionary
game dynamics [14–17], shows the growth rate of the proportion of players using
a certain strategy and that rate is equal to the difference between the average
payoff of that strategy and the average payoff of the population as a whole. The
general idea is that replicators whose fitness is larger (smaller) than the average
fitness of population will increase (decrease) in numbers [18,19].

In this regard, we also provide a geometric description of the optimal flow
and describe the equilibrium and stability conditions of the replicator equation
dynamics. For the proposed replicator equation on the Wardrop optimal network,
the Nash equilibrium, the Wardrop equilibrium, and the system optimum are the
same flow distribution of the dynamic network. We also present an algorithm for
simulation of dynamic flow distribution in networks, and discuss conceptual and
functional structure of intelligent information system for dynamic traffic flow
assignment in transportation networks.

2 The Model of a Network

We consider a network of m parallel links between two nodes as a single origin-
destination pair. We let Im = {1, 2, . . . ,m} denote the set of links in the network.
We denote by xk ≥ 0, k ∈ Im, the total flow passing through the link k and
x = (x1, x2, . . . , xm) denote a flow vector of the network. We are interested in
the problem of routing total one unit of flow across m alternative parallel links.
Assuming all traffic is routed, we obviously have

∑m
i=1 xi ≤ 1. In the routing

problem, a journey time is the main component of a travel cost. The link journey
times increase when the load of flow becomes heavier that may lead to congestion.
Since the flow in each link causes congestion externality which increases the delay
while traversing the link, each link has a flow-dependent latency function

�k : [0,∞) → [0,∞), k ∈ Im

which measures the journey time as a function of the total flow xk on the link k.
Throughout this paper, for each k ∈ Im the latency function �k will be assumed
to be a convex, strictly increasing, continuously differentiable function.

Let L(x) = (�1(x1), . . . , �m(xm)) denote a latency vector function at a flow
vector x = (x1, . . . , xm). Hence a network Lm of m parallel links between two
nodes can be identified with the latency vector function Lm = (�1(·), · · · , �m(·)).
A network Lm = (�1(·), . . . , �m(·)) is called differentiable network (resp. convex
network) if all the latency functions �k are differentiable (resp. convex). In this
paper, we will interchangeably use a latency vector function and a network.

We denote by S
m−1 = {x ∈ R

m
+ :

∑m
i=1 xi = 1} the standard simplex. Define

supp(x) := {i ∈ Im : xi �= 0} and set intSm−1 = {x ∈ S
m−1 : supp(x) = Im}.

In order to characterize an optimal flow distribution in the network,
Wardrop’s first principle, the Wardrop equilibrium, is adopted: the effective costs
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of all utilized links are equal and less than the effective costs of those unutilized
links. It is worth mentioning that a Wardrop equilibrium is well-known and fre-
quently applied in transportation and communication networks [1,20–23]. It is
intuitively very appealing and has had successful applications in a wide variety
of social sciences. For a thorough review of the Wardrop equilibrium, one can
refer to [20].

A Wardrop equilibrium of a network Lm = (�1(·), . . . , �m(·)) is a flow vector
x = (x1, . . . , xm) ∈ S

m−1 such that

�k(xk) = min
i∈Im

{�i(xi)}, for all k ∈ Im with xk > 0,

i.e., the latency is the same across all links with nonzero flow and smaller than
the zero flow latency of the rest of the links. The average delay of a network
Lm = (�1(·), . . . , �m(·)) at flow x = (x1, . . . , xm) ∈ S

m−1 is given by the sum∑m
i=1 xi�i(xi). A system optimum of a network Lm = (�1(·), . . . , �m(·)) is a flow

x = (x1, . . . , xm) ∈ S
m−1 that minimizes the average delay.

Further, we assume that each link k in the network is owned by a service
provider who sets a link price of qk. Let q = (q1, . . . , qm) denote a price vector
of the network. In order to choose the amount of flow and the routing pattern
optimally, we define an effective cost of using link k to be the sum of the latency
�k(xk) and the link price qk when the total flow on the link k is xk, i.e., �k(xk)+qk.
Let L̃(x) := L(x) + q denote an effective cost vector at the flow vector x =
(x1, . . . , xm). We also assume that a reservation utility (link capacity) is R and
a flow is not being sent when the effective cost of the link exceeds the reservation
utility R. Let R = (R, . . . , R) denote a reservation utility vector (see Fig. 1). It
should be mentioned [1,21] that for any q ∈ R

m
+ with q ≤ R there always exists

a unique Wardrop equilibrium x(q) = (x(q)
1 , x

(q)
2 , . . . , x

(q)
m ) ∈ R

m
+ with either of

the following properties (we denote ‖x‖1 :=
∑m

k=1 |xk|):

�i(x
(q)
i ) + qi = min

k∈Im

{
�k(x

(q)
k ) + qk

}
< R, ∀ i ∈ supp

(
x(q)

)
, ‖x(q)‖1 = 1,

�i(x
(q)
i ) + qi = min

k∈Im

{
�k(x

(q)
k ) + qk

}
= R, ∀ i ∈ supp

(
x(q)

)
, ‖x(q)‖1 ≤ 1.

Definition 1. A flow vector x(we) =
(
x
(we)
1 , · · · , x

(we)
m

)
is a Wardrop equi-

librium if it is a solution to the following optimization problem

x(we) ∈ Argmax
y≥0

‖y‖1≤1

{
m∑

k=1

(
R − �k(x

(we)
k ) − qk

)
yk

}

.

Definition 2. A flow vector x(so) =
(
x
(so)
1 , · · · , x

(so)
m

)
is called a system opti-

mum if it is a solution to the following optimization problem

x(so) ∈ Argmax
y≥0

‖y‖1≤1

{
m∑

k=1

(R − �k(yk) − qk) yk

}

.
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For the definitions of a Wardrop equilibrium and the system optimum see also
[1,24,25]. In the next definition we introduce the notions of a Wardrop optimal
flow and a Wardrop optimal network.

Definition 3. A flow vector x(wof) =
(
x
(wof)
1 , · · · , x

(wof)
m

)
is called a Wardrop

optimal flow if it is simultaneously a Wardrop equilibrium and a system opti-
mum of the network. A network that has a Wardrop optimal flow is called a
Wardrop optimal network.

�1(x1) + q1, R

�2(x2) + q2, R

�m(xm) + qm, R

total one unit
of flow

Fig. 1. Model of a parallel network with m links

Given a network Lm (L̃m), a flow x = (x1, . . . , xm) ∈ S
m−1 is called a

Wardrop optimal flow if it is Wardrop equilibrium and system optimum of Lm

(L̃m). A network that has a Wardrop optimal flow is referred to as a Wardrop
optimal network. We denote by WOF the class of all Wardrop optimal networks.

3 The Main Results

All the definitions that we use in this section are summarized in the Appendix.
In this section we present our results on Wardrop Optimal Flows and propose
the replicator model of optimal flow distribution on dynamic networks. We also
study the stability and dynamics of the replicator equation.

3.1 Wardrop Optimal Flows

We begin with statements regarding the existence and uniqueness of a Wardrop
equilibrium and system optimum (optimal flow) of a network.

Proposition 1. Every network (latency vector function) Lm = (�1(·), · · · ,
�m(·)) has a unique Wardrop equilibrium in the simplex S

m−1.

From Proposition 1 we obtain the following statement regarding the unique-
ness of an optimal flow.

Proposition 2. There exists a unique system optimum for a differentiable and
convex network Lm = (�1(·), · · · , �m(·)).
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The following result provides some sufficient condition which ensures an exis-
tence of Wardrop equilibrium inside the simplex S

m−1 = {x ∈ R
m : ‖x‖1 =

1, x ≥ 0} and in fact describes the capacity of Wardrop’s equilibrium.

Proposition 3. Let �−1
k be the inverse function of the latency function �k for all

k ∈ Im and assume (q1, . . . , qm) = q < R = (R,R, . . . , R). Then the following
statements are true:

(i) If
∑m

k=1 �−1
k (R − qk) < 1 then ‖x(we)‖1 < 1;

(ii) If
∑m

k=1 �−1
k (R − qk) ≥ 1 the ‖x(we)‖1 = 1.

We consider a Wardrop equilibrium x(we) (a Wardrop optimal flow x(wof))
with full capacity 1, i.e., ‖x(we)‖1 = 1 (‖x(wof)‖1 = 1). Let S

m−1 := {x ∈ R
m
+ :

‖x‖1 = 1} be the simplex. Let L̃(x) = (�̃1(x1), · · · , �̃m(xm)) be an effective cost
vector at the flow x = (x1, . . . , xm), where �̃k(xk) = �k(xk) + qk is an effective
cost of the link k ∈ Im.

We now provide a characterization of a Wardrop optimal flow x(wof) with
full capacity 1, i.e. x(wof) ∈ S

m−1, in the following theorem.

Theorem 1. Given a differentiable and convex network L̃m = (�̃1(·), . . . , �̃m(·)),
a flow vector x = (x1, . . . , xm) ∈ S

m−1 is a Wardrop optimal flow if and only if
the following conditions are satisfied:

(i) �̃i(xi) = �̃j(xj) for all i, j ∈ Im with xi > 0 and xj > 0;
(ii) xi�̃

′
i(xi) = xj �̃

′
j(xj) for all i, j ∈ Im with xi > 0 and xj > 0;

(iii) �̃i(0) ≥ �̃j(xj) + xj �̃
′
j(xj) for all i, j ∈ Im with xi = 0 and xj > 0.

In case of interior flows, x ∈ IntSm−1, the condition (iii) can be omitted.
Given any flow vector p = (p1, . . . , pm) ∈ S

m−1 with p > 0, let x
p :=

(
x1
p1

, . . . , xm

pm

)
for any x ∈ S

m−1. Let WOF(p) be a set of all effective cost

vectors L̃(x) = (�̃1(x1), . . . , �̃m(xm)), whose Wardrop optimal flow is p. Then it
can be proved that the set WOF(p) is a convex cone.

3.2 Wardrop Optimal Flows on Dynamic Networks

Let 〈x, Ln(xp )〉 =
∑m

k=1 xk�n

(
xk

pk

)
be the average effective cost of the network

at the flow vector x ∈ S
m−1. We assume that the network users may dynamically

change the distribution of the total one unit flow over alternatively parallel links.
Namely, if x(n) = (x(n)

1 , . . . , x
(n)
m ) ∈ S

m−1 is the flow distribution of the users

at the step n then the relative growth rate x
(n+1)
k −x

(n)
k

x
(n)
k

of the flow on the link

k at the step (n + 1) is negatively proportional to the difference between the

effective cost �n

(
x
(n)
k

pk

)

of the link k at the step n and the average effective cost
〈
x(n), Ln

(
x(n)

p

)〉
=

∑m
k=1 x

(n)
k �n

(
x
(n)
k

pk

)

of the whole network at the step n.
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We propose the dynamic approach to optimal flow distribution on dynamic
networks as follows. Let x(n+1) = Rn(x(n)), where Rn : Sm−1 → S

m−1 is the
discrete-time replicator equation on Wardrop optimal networks defined by

(Rn(x))k = xk

[

1 + ε

(

�n

(
xk

pk

)

−
m∑

i=1

xi�n

(
xi

pi

))]

, ∀ k ∈ Im, n ∈ N, (1)

where {�n}n∈N
, �n : [0, p̄] → [0, 1] is a sequence of continuously differentiable

and uniformly strictly increasing functions, p = (p1, . . . , pm) ∈ intSm−1 is any
interior flow, p̄ := 1

min
i∈Im

pi
, ε ∈ (−1, 0). Some particular cases of Eq. (1) were

studied in [18,19].
We define the following constant

μ := sup
n∈N

[

max
x∈[0,p̄]

d

dx
(xfn(x))

]

< ∞.

Let ei be the vertex of the simplex S
m−1, i ∈ Im, and pα := 1

sα(p)

∑
i∈α piei

for all α ⊂ Im, where sα(p) =
∑

i∈α pi and p = (p1, . . . , pm) ∈ intSm−1.
Note that a flow x ∈ S

m−1 is called a common Nash equilibrium of the
replicator equation given by (1) if

〈x, εLn

(
x
p

)

〉 ≥ 〈y, εLn

(
x
p

)

〉

for all y ∈ S
m−1, n ∈ N.

We denote by
FixCom = {x ∈ S

m−1 : Rn(x) = x}
a set of common fixed points (Appendix, Def. 6) of the replicator equation (1).

Let S
|α|−1 := conv{ei}i∈α for α ⊂ Im, where conv(A) is the convex hull of

A, and intS|α|−1 := {x ∈ S
|α|−1 : supp(x) = α} be an interior of the face S

|α|−1.
To study the stability of fixed points of the replicator equation (1) and the

dynamics of (1) we employ a Lyapunov function.

Proposition 4. Let ε ∈ (− 1
μ , 0) ∩ (−1, 0). Then the following statements

hold true:

(i) Mp:k(x) := max
i∈Im

{xi

pi
}− xk

pk
for all k ∈ Im ia a decreasing Lyapunov function

over the interior intSm−1 of the simplex S
m−1;

(ii) Mpα:k(x) := max
i∈α

{xi

pi
} − xk

pk
for all k ∈ α ⊂ Im is a decreasing Lyapunov

function over the interior intS|α|−1 of the face S
|α|−1.

The asymptotic stability and the dynamics of the replicator equation (1) can
be described all over the simplex as in the following proposition.

Proposition 5. Let ε ∈ (− 1
μ , 0)∩ (−1, 0). Then an orbit of the replicator equa-

tion Rn : Sm−1 → S
m−1 starting from any initial point x ∈ S

m−1 converges to
the fixed point psupp(x) in the interior of the face S

|supp(x)|−1.
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The following proposition demonstrates the relationship between two distinct
points of the simplex S

m−1, and is needed for the proof of Theorem A..

Proposition 6. Let x,y ∈ S
m−1 be two distinct elements of the simplex S

m−1

such that y > 0. Let x
y := (x1

y1
, · · · , xm

ym
), ȳ := min

k∈Im

yk > 0 and ‖x − y‖1 :=
∑

k∈Im
|xk − yk|. Then the following statements hold true:

(i) min
k∈Im

xk

yk
< 1 < max

k∈Im

xk

yk
;

(ii) ȳ

[

max
k∈Im

xk

yk
− min

k∈Im

xk

yk

]

≤ ‖x − y‖1 ≤ m

[

max
k∈Im

xk

yk
− min

k∈Im

xk

yk

]

.

The main result of this paper presented in Theorem A., which describes the
dynamics of the replicator equation (1) for sufficiently small ε ∈ (−1, 0), is then
proved by using the Propositions 4, 5 and 6.

Theorem A. Let ε ∈ (− 1
μ , 0)∩(−1, 0). Then the following statements hold true:

(i) The common fixed points are FixCom({Rn}) = ⋃

α⊂Im

{pα};
(ii) The unique Wardrop optimal flow p is the only common Nash equilibrium;
(iii) The unique Wardrop optimal flow p is the only stable common fixed point;
(iv) Any interior orbit converges to the unique Wardrop optimal flow p.

4 Multi-agent Intelligent Transport System

Intelligent transport systems (ITS) are being developed to control and optimize
network traffic flows. The technologies used are mainly intelligent technologies,
that employ AI techniques, information technologies, and mathematical opti-
mal transport methods. The main feature of modern ITS is their integration
with methods of geoinformatics, spatial models, data mining, and geo/spatial
knowledge acquisition methods. In this section, we propose a conceptual model
of integrated multi-agent ITS and functional structures of some components of
the system. The multi-agent structure of ITS can be implemented through the
usage of domain-oriented components: (1) data collection component, respon-
sible for collecting, storing and retrieving statistical and real-time data. This
component is considered as the core of the agent, which is accessed by other
agents through certain interface protocols; (2) analytical data processing compo-
nent that includes subcomponents: model selection intended for storing models,
creating new models based on exisitng models and data and/or by using expert
knowledge bases, as well as configuring models and evaluating the adequacy
of models based on retrieved data and knowledge bases; modeling and analy-
sis designed for express analysis of situations and quick decision making using
the construction of model templates; the subcomponent of probabilistic models,
static models, and dynamic models intended for direct computations and detailed
analysis of transport tasks; decision-making allows one to find, prepare and con-
duct a rationale for control decisions that are necessary to achieve the goal.
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Fig. 2. Active Intelligent Control Subsystem of Transport Network

The main functions of the agent are storage of decisions, development of new
ones based both on the model and on the basis of expert knowledge base, and
evaluation of control decisions; (3) information representation and visualization
component, whose main task is the preparation of documents for the decision
maker. It is designed to present information in an efficient way, and it must
perform data transformation, for example, from text to graphical form, plotting,
creating animations or displaying using GIS technologies and 3D geomodeling.

The above components are implemented as agents and mapped onto a con-
ceptual model of multi-agent ITS. The model has a multi-level structure and
the number of agents at each level depends on the system configuration: (1) user
interaction level within information representation and visualization component;
(2) data search and collection within data collection component; (3) data classi-
fication and transformation level and (4) data modeling and analysis level both
within analytical data processing component. The construction of multi-agent
ITS is based on the distribution of functions between individual agents. Such a
system is a combination of intelligent and traditional components, autonomous
and interacting agents, where each solves its own “intelligent” task.

The subsystem of active intelligent control of transport network (Fig. 2) con-
sists of the following: (1) Measuring the traffic flow and analyzing data that
facilitates the transport network management; (2) Operative Planning including
the study of transport network behavior under various scenarios (such as bad
weather, accidents, road works, increased demand, etc.), as well as developing
control strategies that, when needed, increase the productivity of the transport
network and assess the suitability of the developed strategies in terms of their
cost and potential efficiency; (3) Strategy Selection as implementation of the
most promising strategies directly on the highways by installing the necessary
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equipment and software; (4) Decision Support System that filters incoming real-
time measurements, predicts the behavior of the transport system for the next
few hours and helps the dispatcher choose the control strategy that best suits
the situation; (5) Expert Knowledge module that uses retrospective data and
AI techniques in the process of developing of control strategies and their selec-
tion; (6) Simulator module based on mathematical transport models that uses
operative planning to run a large number of simulations of various scenarios and
potential traffic improvement actions, where scenarios may include redistribution
of traffic flows due to possible road works, increased travel costs, maximum road
capacity, etc.; (7) Geomatics module that incorporates telematics and geoinfor-
mation systems data is used for constructing dynamic transport model and its
calibration based on data processing methods.

The adequate and efficient traffic flow allocation requires the system of traffic
flow optimization and forecast whose structure is presented in Fig. 3. The com-
plex traffic flow simulaton subsystem that supports the active control of trans-
port network is shown in Fig. 4. It contains the components: (1) Model/Map of
TN provides the map of transport network of a city (area) in the form of a
directed graph; (2) Crossroads describes the configuration of crossroads and the
rules of passage of it; (3) Origin-Destination Traffic Flow provides the traffic flow
information and generates the flow distribution between fixed origin-destination
pairs; (4) Traffic Flow Simulator provides the simulation of flows in transport
network based on traffic light signals and current traffic flow in the network;
(5) Routing Module transforms the flow distribution into actual traffic flow allo-
cation/routes with the use of the current situation in the transport network
provided by the Traffic Flow Simulator; (6) Routes Scheduler contains informa-
tion on travels that are currently being performed, represented in the form of
routes as a sequence of links over which either the users are traveling or going to
travel; (7) Historic Data module provides information/data support and keeps

Fig. 3. Functional Structure of Traffic Flow Optimization and Forecast Subsystem
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Fig. 4. The Structure of Traffic Flow Assignment Simulation Subsystem

track of all the journeys in the network; (8) Traffic Flow Manager implements
the control of traffic flow assignment in the network.

The proposed generalized structures of ITS subsystems can serve as unified
models for the development of perspective advanced AI-based ITS and intelligent
control systems for dynamic traffic flow allocation in transportation networks.

5 Conclusion

We have introduced the notions of Wardrop optimal flows and Wardrop optimal
networks and considered a dynamical model of optimal traffic flow distribution
in parallel dynamic networks. We have provided an evolutionary game theory
formulation of dynamic approach to Wardrop optimal flows using the model of
discrete-time replicator dynamics on Wardrop optimal networks. We have also
proposed the conceptual and functional structure of intelligent information sys-
tem for intelligent control, optimization and forecast, and simulation of dynamic
traffic flow assignment in transportation networks. Future research will address
the study of Wardrop optimal flows on general dynamic networks and on gen-
eral directed networks, which then can be employed for modeling and analysis of
(mis)information spread [26], opinion dynamics and consensus models in com-
plex networks [27,28], as well as for modeling of flow distribution and interac-
tion in controlled dynamical systems and networks [29,30]. Another direction of
future work is to extend and improve the traffic flow modeling and optimization
algorithms, and perform algorithmic analysis of the developed models.

Acknowledgments. The authors wish to thank anonymous referees for useful com-
mens and suggestions toward improvement of the presentation of this paper.



Optimal Traffic Flow Distributions on Dynamic Networks 189

A Appendix

Definition 4. A sequence
{
x(n)

}
n∈N

with x(1) := x is called an orbit of the
point x ∈ S

m−1.

Let EεLm
(y,x) := ε(y,Lm(x)) = ε

∑m
i=1 yi�i(xi) and EεLm

(x,x) :=
ε(x,Lm(x)) = ε

∑m
i=1 xi�i(xi) for any x,y ∈ S

m−1 and ε ∈ (−1, 0).

Definition 5. A flow x is called a Nash equilibrium if one has EεLn
(x,x) ≥

EεLn
(y,x) for any y ∈ S

m−1. A flow x is called a strictly Nash equilibrium
if one has EεLn

(x,x) > EεLn
(y,x) for any y ∈ S

m−1 with y �= x.

Definition 6. A point x ∈ S
m−1 is called a common fixed point of the

sequence of the replicator equations {Rn}n∈N if one has Rn (x) = x for any
n ∈ N.

Definition 7. A continuous function ϕ : S
m−1 → R is called a Lyapunov

function if the number sequence
{
ϕ

(
x(n)

)}
n∈N

is a bounded monotone sequence
for any initial point x(1) := x ∈ S

m−1.

Definition 8. A common fixed point x ∈ S
m−1 is called stable if for every

neighborhood U(x) ⊂ S
m−1 of x there exists a neighborhood V (x) ⊂ U(x) ⊂

S
m−1 of x such that an orbit

{
y(n)

}
n∈N

with y(1) := y of any initial point
y ∈ V (x) remains inside of the neighborhood U(x).

Definition 9. A common fixed point x ∈ S
m−1 is called attracting if there

exists a neighborhood V (x) ⊂ S
m−1 of x such that an orbit an orbit

{
y(n)

}
n∈N

with y(1) := y of any initial point y ∈ V (x) converges to x. A fixed point
y ∈ S

m−1 is called asymptotically stable if it is both stable and attracting.

Definition 10. A common fixed point x ∈ S
m−1 is called asymptotically sta-

ble if it is both stable and attracting.
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Abstract. Graph Neural Networks (GNNs) are specialized neural net-
works that operate on graph-structured data, utilizing the connections
between nodes to learn and process information. To achieve optimal per-
formance, GNNs require the automatic selection of the best loss and
optimization functions, which allows the model to adapt to the unique
features of the dataset being used. This eliminates the need for man-
ual selection, saving time and minimizing the requirement for domain-
specific knowledge. The automatic selection of loss and optimization
functions is a crucial factor in achieving state-of-the-art results when
training GNNs. In this study, we trained Graph Convolutional Networks
(GCNs) and Graph Attention Networks (GAT) models for node classi-
fication on three benchmark datasets. To automatically select the best
loss and optimization functions, we utilized performance metrics. We
implemented a learning rate scheduler to adjust the learning rate based
on the model’s performance, which led to improved results. We evalu-
ated the model’s performance using multiple metrics and reported the
best loss function and performance metric, enabling users to compare
its performance to other models. Our approach achieved state-of-the-art
results, highlighting the importance of selecting the appropriate loss and
optimizer functions. Additionally, we developed a real-time visualiza-
tion of the GCN model during training, providing users with a detailed
understanding of the model’s behavior. Overall, this study provides a
comprehensive understanding of GNNs and their application to graph-
structured data, with a specific focus on real-time visualization of GNN
behavior during training.
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1 Introduction

Graph Neural Network (GNN) is a type of neural network that is designed
to operate on graph data structures [1]. In contrast to traditional neural net-
works that are designed to operate on vectors and matrices, GNNs operate on
graphs, which can represent complex structured data, such as social networks,
protein structures, and citation networks. GNNs use a message-passing approach
to update node representations based on the features of its neighboring nodes
and edges in the graph. This process is typically repeated multiple times to
allow each node to gather information from its immediate neighbors and gradu-
ally incorporate information from more distant nodes. The selection of loss and
optimization functions is crucial for achieving optimal performance in a given
task. However, the process of selecting the best combination of these functions
can be time-consuming and require significant domain expertise. Furthermore,
manual selection can be prone to bias and can overlook potential combinations
that may yield better results [2]. Therefore, an automatic approach for selecting
loss and optimization functions can save time and effort, and potentially lead
to better results by exploring a larger space of possibilities. This is especially
important in the context of GNNs, where the task of selecting the best loss and
optimization functions can be even more complex due to the inherent complexity
of graph data [3].

In this study, we introduced an automatic approach for loss function and
optimization in GNNs. One of the main types of GNNs we considered, GCN
[4], which is a feedforward neural network designed to operate on graphs. GCNs
apply a graph convolution operation to each node in the graph by aggregating
the feature representations of its neighboring nodes, allowing for effective mod-
eling of the local structure and neighborhood relationships of the graph data
[5–7]. Another type of GNN we considered, GAT [8], uses attention mechanisms
to weigh the importance of each neighbor node for a given node, allowing the
network to selectively focus on the most relevant information for each node. To
enhance the performance of GNNs, we proposed an automatic approach for opti-
mizing the loss function. This approach can save significant amounts of time and
resources that would otherwise be required for manual optimization. Our exper-
iments on various datasets demonstrate the effectiveness of our approach and
show that it outperforms existing methods in terms of accuracy and efficiency.

We also introduced real-time GCN training visualization as a tool to under-
stand the model’s behavior during the training process. The visualization pro-
vided insights into how the model learns and helped us identify any training
process issues that might affect the model’s performance. It is essential as it
provides immediate feedback on the behavior and performance of a model dur-
ing the learning process. This is particularly beneficial when working with com-
plex models that require extended training time. Real-time visualization allows
researchers and practitioners to diagnose and address any issues with the model
promptly, leading to better performance. Various simulators in diverse fields,
including computational biology [9], robotics [10], and game engines [11], have
introduced real-time visualization to enhance their models’ performance.
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Fig. 1. Real-time visualization of GCN training process, which allows for immediate
feedback on model performance and behavior during the learning process.

2 Proposed Architecture

In order to further optimize the performance of GNNs, we automated the selec-
tion process of the loss and optimization functions. In this study, we focused
on automating this process by developing an approach that selects the best
loss and optimization functions based on their respective performance metrics.
This automatic selection eliminates the need for manual selection, saving time
and minimizing the requirement for domain-specific knowledge. We trained and
tested two types of GNNs, namely GCNs, and GATs, for node classification on
three different benchmark datasets; Cora, CiteSeer, and PubMed [12]. During
training, we implemented a ReduceLROnPlateau [13] learning rate scheduler
that adjusts the learning rate based on the model’s performance, leading to
improved results. We evaluated the model’s performance using multiple metrics
and reported the best loss function, performance metric, and test accuracy. By
doing so, we provided a comprehensive understanding of the model’s behavior
and how it compares to other models. This framework allows for the selection of
the best loss and optimization functions based on their respective performance
metrics, resulting in optimal model performance.

Additionally, we also investigated a real-time GCN visualization to provide
a more comprehensive understanding of the model’s behavior during training.
The real-time GNN visualization of the GCN model allows users to track the
model’s training progress in real time, which is crucial for identifying and resolv-
ing any issues that may arise. It provides insights into how the model processes
information through the graph structure and enables users to make informed
decisions about the model’s optimization and loss functions. Figure 1 shows an
example of the GCN model training visualization during runtime, where the node
embeddings are updated after each iteration. By observing the changes in the
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embeddings over time, users can gain insight into the model’s performance and
make informed decisions about its optimization and loss functions. Therefore,
real-time GNN visualization is a powerful approach that helps users understand
the inner workings of GNNs and their ability to operate on graph-structured
data.

2.1 Automatic Search and Selection of Best Functions

The proposed architecture is designed to optimize the performance of GNNs on
graph-structured data. The architecture employs an automated selection process
for the loss and optimization functions, which allows for an optimal model perfor-
mance without requiring domain-specific expertise or manual selection of func-
tions. The selection process is based on a comprehensive evaluation framework
that considers multiple performance metrics for both the loss and optimization
functions. This framework enables the selection of the best functions based on
their respective performance metrics, leading to improved model performance
on graph-structured data. The automated selection process provides an effective
and efficient method for selecting the most appropriate loss and optimization
functions for GNNs. The use of multiple performance metrics ensures a com-
prehensive understanding of the model’s behavior and performance, allowing for
insights into its strengths and weaknesses. These insights can inform informed
decisions about its optimization and lead to better model performance.

Loss Search Phase. Algorithm 1 provides a high-level description of our pro-
posed architecture implementation. In order to train the GCN and GAT models
effectively, we first conduct a loss search phase. During this phase, our algo-
rithm automatically selects the best loss function based on the performance of
the models on the training data. To achieve this, we used a loss functions dictio-
nary that contains three types of loss functions: nll_loss, mse_loss, and l1_loss
[14]. Each of these loss functions can be used to train the models. However, the
choice of the loss function can have a significant impact on the performance of
the models, and different loss functions may be more appropriate for different
tasks.

In our implementation, we used a loss functions dictionary that contains
three types of loss functions: nll_loss, mse_loss, and l1_loss.

– nll_loss (negative log-likelihood loss) is often used in classification problems
and measures the difference between the predicted probabilities and the true
probabilities. It can be defined as:

nll_loss(ytrue, ypred) = −
n∑

i=1

ytrue,i log(ypred,i) (1)

where ytrue is the true label, ypred is the predicted label, and n is the number
of classes.
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Algorithm 1. An Algorithm for Automatic Optimization and Loss Function
Selection Using GNN Models
Require:
1: Start

Inputs :
Dataset D
Number of epochs N
List of loss functions LF = [L1, L2, . . . , Lm]
List of performance metrics PM = [P1, P2, . . . , Pn]
List of optimizers OPT = [O1, O2, . . . , Ok]
List of learning rates LR = [lr1, lr2, . . . , lrk]

Require:
Outputs :
GNN model accuracy
Best loss function L∗

Best optimizer O∗

Learning rate history LRH
Ensure:

Import the required packages and libraries
Load the dataset using Planetoid
Define the GNN model (GCN or GAT)
Dictionary of loss functions and their corresponding performance metrics

LF_PM = {L1 : [P1, P2, . . . , Pn], L2 : [P1, P2, . . . , Pn], . . . , Lm :
[P1, P2, . . . , Pn]}
Define a list of optimizers and their corresponding learning rates

OPT_LR = [(O1, lr1), (O2, lr2), . . . , (Ok, lrk)]
Initialize best loss function L∗ and best optimizer O∗ to None
Initialize empty dictionary loss_history
For each optimizer Oi and learning rate lri in OPT_LR:

a. For each loss function Lj in LF
i. Train the GNN model using Oi and Lj for N epochs and record the

training loss for each epoch
ii. Compute the performance metrics in PM for Lj on the validation set
iii. If L∗ and O∗ are None or the performance metric for Lj and Oi is

better than the current best performance metric, update L∗ and O∗

iv. Save the training loss history for Lj and Oi to loss_history
Compute the loss using the best loss function L∗

Backpropagate the loss and update the model weights using the selected optimizer
O∗

Adjust the learning rate using the ReduceLROnPlateau learning rate scheduler
Repeat steps 8 to 11 for a fixed number of epochs N
Record the learning rate history LRH
Plot the training loss over epochs for each optimizer and loss function combination
using loss_history
Return the GNN models , best loss function L*, best optimizer O*, and learning
rate history LRH

2: End



196 Sanaullah et al.

– mse_loss (mean squared error loss) is commonly used in regression problems
and measures the average squared difference between the predicted values and
the true values. It can be defined as:

mse_loss(ytrue, ypred) =
1
n

n∑

i=1

(ytrue,i − ypred,i)2 (2)

where ytrue is the true value, ypred is the predicted value, and n is the number
of samples.

– l1_loss (mean absolute error loss) is similar to mse_loss, but measures the
average absolute difference between the predicted values and the true values.
It can be defined as:

l1_loss(ytrue, ypred) =
1
n

n∑

i=1

|ytrue,i − ypred,i| (3)

where ytrue is the true value, ypred is the predicted value, and n is the number
of samples.

To automatically select the best loss function, our algorithm maps each loss
function to a corresponding performance metric that evaluates the model. For
example, nll_loss may be mapped to accuracy, mse_loss to mean squared error,
and l1_loss to mean absolute error. Our algorithm then evaluates the models
using these performance metrics and selects the loss function that yields the best
performance on the training data. The selected loss function is then used to train
the models for subsequent iterations. This automated approach to loss function
selection can save significant time and effort, as it eliminates the need for manual
experimentation with different loss functions. It also ensures that the best loss
function is used for training the models, leading to improved performance.

Optimizer Search Phase. To automate the selection of the optimization func-
tion, we used a similar approach to the loss function selection process. We cre-
ated a dictionary that contains various optimization functions such as Adam,
RMSprop, and SGD. Each optimization function has different hyperparameters
and can affect the model’s performance in different ways. To select the best opti-
mization function, we used a similar process to the loss function selection, where
we mapped each optimization function to a corresponding performance metric.
We then evaluated the models using these performance metrics and selected the
optimization function that yields the best performance on the validation data.
The selected optimization function was then used for subsequent iterations.

In the dictionary of optimization functions that we created, each optimizer
has its own set of hyperparameters that can be tuned to improve the perfor-
mance of the model. The Adam optimizer, for example, uses a combination of
momentum and adaptive learning rates to update the model’s parameters. It has
been shown to perform well on a wide range of deep-learning tasks, including
GNNs. The equations for the Adam optimizer are as follows:
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mt = β1mt−1 + (1 − β1)gt (4)

vt = β2vt−1 + (1 − β2)g2t (5)

θt = θt−1 − η√
vt + ε

mt (6)

where mt and vt are the first and second moments of the gradient, β1 and
β2 are exponential decay rates for the moments, gt is the gradient, θt is the
parameter at time t, η is the learning rate, and ε is a small constant added to
the denominator for numerical stability.

The RMSprop optimizer, on the other hand, uses a moving average of the
squared gradient to adjust the learning rate for each weight. It has been shown
to be effective in handling non-stationary and sparse gradients. The equations
for the RMSprop optimizer are as follows:

vt = βvt−1 + (1 − β)g2t (7)

where vt is the moving average of the squared gradient, β is the decay rate
for the moving average, and the other symbols have the same meaning as in the
Adam optimizer.

The SGD optimizer, or stochastic gradient descent, is a simple optimizer that
updates the parameters by taking small steps in the direction of the negative
gradient of the loss function. It has been shown to be effective in many deep
learning tasks, although it may require more iterations to converge than more
sophisticated optimizers. The equation for SGD optimizer is:

θt = θt−1 − ηgt (8)

where θt is the parameter at time t, η is the learning rate, and gt is the
gradient at time t.

Therefore, the automatic selection of the optimization function and the imple-
mentation of a learning rate scheduler can help improve the performance of
GNNs and other deep-learning models. These techniques allow for more efficient
training and can help prevent the model from getting stuck in local minima.

To further improve the training process, we implemented a ReduceLROn-
Plateau learning rate scheduler. This scheduler adjusts the learning rate during
training based on the performance of the model on the validation data. Specif-
ically, it reduces the learning rate by a factor of 0.1 if the validation loss does
not improve for a certain number of epochs. This technique helps prevent the
model from getting stuck in local minima and can lead to improved results.
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2.2 Real-time Training Visualization

Real-time visualization is a powerful tool that allows users to observe the behav-
ior of the GNN model during training in run-time. This approach provides a
comprehensive understanding of how the model processes information through
the graph structure and how it updates the node embeddings after each iteration.
By monitoring the model’s training progress in real-time, users can quickly iden-
tify and resolve any issues that may arise, ensuring that the model is optimized
for its intended use.

In addition, our real-time visualization offers users the ability to observe the
model’s behavior with different combinations of optimizers, loss functions, and
learning rates. This allows users to see the effect of each hyperparameter on
the model’s performance in real-time, and quickly identify the best combination
for their specific use case. By monitoring the performance of the model with
different hyperparameters, users can also gain valuable insights into the behavior
of the model and how it responds to changes in the data or hyperparameters. As
shown in Fig. 1, our real-time visualization provides a dynamic and interactive
way of understanding the model’s behavior during training. Users can explore
the model’s performance by adjusting the hyperparameters in real-time, and
observing how the model responds to different changes. This allows users to
experiment with different configurations and gain a deeper understanding of how
the model works and what is necessary for optimal performance. Therefore, this
real-time visualization is a powerful tool for understanding the GCN model’s
behavior, and it can be used to identify potential problems and fine-tune the
model accordingly.

3 Dataset

The datasets used in our evaluation of the proposed architecture were carefully
selected to represent different citation network scenarios. The Cora dataset com-
prises 2,708 scientific publications that are classified into one of seven classes.
Each node in the graph is represented by a binary bag-of-words vector that
captures the presence or absence of certain words in the corresponding publi-
cation, and the edges represent citation relationships between the publications.
Similarly, the CiteSeer dataset contains 3,327 scientific publications that are
classified into one of six classes. However, the features of each node are rep-
resented by a 3,703-dimensional sparse vector that indicates the presence or
absence of certain words in the corresponding publication. Again, the edges in
the graph represent citation relationships between the publications. Lastly, the
PubMed dataset is a biomedical citation network consisting of 19,717 scientific
publications classified into one of three classes. The features of each node are
represented by a 500-dimensional sparse vector that captures the presence or
absence of certain medical terms in the corresponding publication. The edges in
the graph also represent citation relationships between the publications. The use
of these datasets provides a diverse range of citation network scenarios, making
our evaluation more comprehensive and meaningful.
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Fig. 2. GAT loss function search during training on three benchmark datasets. Each
row shows the training process of the GAN model on a specific dataset

4 Findings and Analysis

The results of our evaluation of the proposed architecture are both interesting
and promising. Through an automated selection process of loss and optimization
functions, we were able to improve the performance of the GCN and GAT mod-
els compared to the traditional manual selection approach. This demonstrates the
efficiency and effectiveness of automated approaches in selecting the best combi-
nations of functions for a given task. Our comparison of the GCN and GAT mod-
els revealed that the former outperformed the latter in terms of accuracy on all
three benchmark datasets. This result suggests that the GCN model is more suit-
able for node classification tasks in the context of citation networks. Figure 2 and
3, show the automated search for the best loss function during training on each
dataset, highlighting the architecture’s ability to choose the best loss function for
each task. The plots demonstrate the effectiveness of our automated loss function
selection approach in improving the performance of GAN models for node classifi-
cation tasks in citation networks. Figure 4 displays the detailed results of each test
case, providing insights into the performance of the proposed GNN architectural
model on various datasets and under different experimental conditions.

Therefore, our evaluation of different optimization functions revealed that
the Adam optimizer consistently performed better than other optimizers on
all three datasets. This finding indicates that the Adam optimizer is a robust
and reliable optimization function for GNNs in the context of node classifica-
tion tasks. Therefore, our findings demonstrate the effectiveness of the proposed
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Fig. 3. GCN loss function search during training on three benchmark datasets. Each
row shows the training process of the GCN model on a specific dataset

Fig. 4. The detailed results of each test case, providing insights into the performance
of the proposed GNN architectural model on various datasets

automated approach for selecting loss and optimization functions and provide
valuable insights into the suitability of different functions for specific datasets.
These insights can guide the development of more efficient and accurate GNN
models for citation network analysis. Figure 5 visualizes a series of plots that
provide insights into the performance of the GCN model with different combina-
tions of optimizers and loss functions. The top left plot shows the total number
of epochs run for each optimizer, while the top right plot displays the sum of
the number of layers used by each loss function and the bottom left plot shows
the same information for each optimizer. The bottom right plot displays the
sum of the best metric achieved for each loss function. Finally, the central plot
shows the total epochs for each loss function, indicating which combinations of
optimizer and loss function produced the best results.
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Fig. 5. Visualization of the sum of epochs by optimizer, sum of epochs by loss function,
sum of number of layers by loss function, sum of number of layers by optimizer, and
the sum of best metric by loss function plots.

5 Conclusion

To summarize, we have developed a simple yet effective Automatic Loss Func-
tion and Optimizer Selection architecture that is interactive, fast, and easy to
use for understanding the mechanism of GNNs. The aim of this study was to
optimize the performance of Graph Neural Networks (GNNs) by automating
the selection of the best loss and optimization functions. By training Graph
Convolutional Networks (GCNs) and Graph Attention Networks (GAT) mod-
els for node classification on three benchmark datasets, we have demonstrated
the effectiveness of our approach in achieving state-of-the-art results. We have
also implemented a ReduceLROnPlateau learning rate scheduler that adjusts
the learning rate based on the model’s performance, leading to improved results.
The evaluation of the model’s performance using multiple metrics has enabled
users to compare its performance to other models, and the implementation of a
real-time GNN visualization of the GCN model has allowed users to observe and
understand the model’s behavior in detail. Our results emphasize the importance
of carefully selecting the loss and optimizer functions and providing a compre-
hensive understanding of GNNs and their application to graph-structured data.

This study serves as a foundational base for our future investigations, as
we aim to develop a Spiking Neural Network architecture where the optimal
hyperparameter values will be automatically selected by the model. We have
gained valuable insights into the flow of Machine Learning architecture through
this study, which will help guide our future research. By building on the findings
of this study, we hope to improve the performance of Spiking Neural Networks
and contribute to the advancement of the field.

Availability. In this study, we have made the code used in our experiments publicly
available on GitHub [15]. This allows other researchers to replicate our experiments
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and build upon our work and to ensure the reproducibility of our results, we have used
publicly available datasets for generating all the test cases.
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Abstract. Motivated by flow allocation in communication and trans-
portation networks we examine user equilibrium and system optimal
flows on networks of parallel links. User equilibrium is achieved when the
journey times on all the used routes are equal and less than any other
unused route. On the other hand the system optimal flow minimizes the
average journey times for all used routes. In this paper we study the con-
nection between user equilibrium and system optimums and investigate
networks that have identical user equilibrium and system optimal flows.
We identify a correspondence between the system optimum of a network
and the user equilibrium of the associated Pigovian network and use it
to show uniqueness of the system optimum. Using a characterization of
Wardrop optimal flows for differentiable convex networks, we show that
they are preserved via continuous, strictly increasing and convex func-
tions, uniform increase or decrease of the latency functions and network
addition and multiplication.

Keywords: Wardrop Equilibrium · System optimum · Resource
allocation · Congestion externalities

1 Introduction

The optimal flow allocation in a network is a central problem with both theoreti-
cal and practical aspects in fields as economics [12,15], transportation [1,16] and
communication [10,11]. In this respect, it was Wardrop in [16] who first iden-
tified the principles that capture two diverging notions of optimal flow inside
networks: the user equilibrium and the system optimum.
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Wardrop’s first principle, which describes the user equilibrium, states that
the journey times on all routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route. A flow satisfying
the above condition is also called a Wardrop equilibrium since users cannot reduce
their journey time by selecting a different route [2]. The second principle states
that the flow in the network minimizes the average journey times for all used
routes. A flow satisfying Wardrop’s second principle is clearly optimum from a
network operator perspective.

Although for a given network in general, the flows that satisfy Wardrop’s
first and second principles don’t coincide, there are networks that have identical
user equilibrium and system optimal flows. A flow that satisfies both principles
simultaneously is called Wardrop optimal flow and the corresponding networks
Wardrop optimal networks.

In the present paper we investigate Wardrop optimal flows on networks of
parallel links and the properties of the associated Wardrop optimal networks.
The flow from the origin to the destination node is distributed among the alter-
native links of the network and creates congestion externalities which cause an
increase in the time needed for the journey captured by a strictly increasing
link-specific latency function. We show that the user equilibrium and system
optimum of a given network are connected through the associated Pigovian net-
work and using this important relation we prove existence and uniqueness for
convex networks and obtain sufficient and necessary conditions characterizing
the system optimum of the network.

The paper is organized as follows: in the next section, we describe the net-
work framework and present the notions of user equilibrium, system optimum
and Wardrop optimal flow of a network. In Sect. 3, we present some useful prop-
erties concerning the existence and uniqueness of user equilibrium optimum in
our networks. The system optimum is investigated in Sect. 4. We introduce the
corresponding Pigovian network, prove existence and uniqueness and obtain suf-
ficient and necessary conditions for the system optimum. In Sect. 5 we examine
networks that have Wardrop optimal flows. We provide a characterization of
Wardrop optimal flows for differentiable convex networks and using this result we
show that Wardrop optimal flows are preserved via continuous, strictly increas-
ing, convex functions. Moreover, we prove that they are preserved by uniform
increase or decrease of the latency functions. Furthermore, we illustrate a method
to construct networks that admit any given point as Wardrop optimal flow and
prove that Wardrop optimal flows are preserved by network addition and mul-
tiplication.

2 Preliminaries

We consider networks of m parallel links Im = {1, 2, . . . ,m} between the two
nodes of origin and destination and denote by xi ≥ 0 the flow passing through
the link i of the network, for all i ∈ Im. In this setup, a unit total flow has to be
distributed among all network links. All traffic of the network is routed in the
sense that it holds
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∑m

i=1
xi = 1.

We denote by S
m−1 = {x ∈ R

m
+ :

∑m
i=1 xi = 1} the standard simplex and

using this convention the points of the simplex represent flows of the network.
For a given flow x, we define the support of x by supp(x) := {i ∈ Im : xi �= 0}
and denote by Int(Sm−1) = {x ∈ S

m−1 : supp(x) = Im} the set of all internal
points of the simplex. The flow in each link causes congestion which increases
the delay while traversing the link. This is measured by flow dependent latency
functions

�i(x) : [0, 1] → [0,∞), i ∈ Im,

which are assumed continuous and strictly increasing.
With this formalism, a network of m parallel links between two nodes can be

identified with the latency functions vector Lm = (�1(x), . . . , �m(x)). A differ-
entiable network (resp. convex network) is a network Lm = (�1(x), . . . , �m(x))
with all the latency functions �i(x) differentiable (resp. convex).

A user equilibrium or Wardrop equilibrium of a network Lm =
(�1(x), . . . , �m(x)) is a flow x = (x1, . . . , xm) ∈ S

m−1 such that

�k(xk) = min
i∈Im

{�i(xi)}, for all k ∈ Im with xk > 0,

i.e., the delay is the same across all links with nonzero flow and smaller than
the zero flow delay of the rest of the links [1]. The average delay of a network
Lm = (�1(x), . . . , �m(x)) at a flow x = (x1, . . . , xm) ∈ S

m−1 is given by the sum
∑m

i=1
xi�i(xi).

A system optimum of a network Lm = (�1(x), . . . , �m(x)) is a flow

x = (x1, . . . , xm) ∈ S
m−1

that minimizes the average delay [1].
Given a network Lm = (�1(x), . . . , �m(x)), a flow x = (x1, . . . , xm) ∈ S

m−1 is
called a Wardrop optimal flow if it is user equilibrium and system optimum of
the network Lm. A network that has a Wardrop optimal flow is called a Wardrop
optimal network.

3 User Equilibrium and System Optimum

In this section we present the properties of the user equilibrium and the system
optimum of a parallel network that we will need in the rest of the paper. The fol-
lowing lemma states that the user equilibrium is preserved by strictly increasing
mappings.
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Lemma 1. Given a network Lm = (�1(x), . . . , �m(x)) and a continuous and
strictly increasing function f(x) : [0,∞] → [0,∞), if a flow x = (x1, . . . , xm) ∈
S
m−1 is a user equilibrium of Lm then it is also a user equilibrium of the network

f(Lm) = (f(�1(x)), . . . , f(�m(x))).

In general, the system optimum is not preserved even under continuous,
strictly increasing and convex functions as opposed to user equilibrium. An
important question that arises naturally at this point concerns whether Wardrop
optimal flows are preserved by such transformations. This will be addressed in
Theorem 7 of Sect. 4.

The following property regarding existence and uniqueness of a user equilib-
rium will be necessary for our construction later on.

Proposition 1. Every network Lm has a unique user equilibrium.

Proof (Sketch of Proof). For any network Lm = (�1(x), . . . , �m(x)), we prove
that there is a unique flow x = (x1, . . . , xm) ∈ S

m−1 such that

�k(xk) = min
i∈Im

{�i(xi)}, for all k ∈ Im with xk > 0

by showing that this can be obtained by taking the inverse of a stictly increasing
function on an appropriate interval.

Now we proceed by examining internal points of the simplex S
1 and we

identify a necessary but not sufficient condition for such a flow to be system
optimum. This can be proved by considering ε-perturbations from one link to
the other and show that a better total latency always exists unless if the following
condition is satisfied.

Proposition 2. Given two differentiable latency functions �1(x), �2(x), if the
flow (x1, x2) ∈ Int(S1) is a system optimum of L2 = (�1(x), �2(x)) then it holds

�1(x1) + x1�
′
1(x1) = �2(x2) + x2�

′
2(x2). (1)

The above result can be generalized for m parallel links as follows.

Proposition 3. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if the
flow x = (x1, . . . , xm) ∈ Int(Sm−1) is a system optimum of Lm then for all
i, j ∈ Im it holds

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj).

Proof. Using the result of Proposition 2, for any i, j ∈ Im, if

�i(xi) + xi�
′
i(xi) > �j(xj) + xj�

′
j(xj).

then we can obtain a lower total delay by ε-reducing the flow of xi and simultane-
ously ε-increasing it for xj and vice versa if the direction of the above inequality
is the opposite. Since we assumed that x is a system optimum this can not be
the case so we get the result.
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The general case of flow x ∈ S
m−1 can be proved by taking into account zero

flows.

Theorem 1. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if x =
(x1, . . . , xm) ∈ S

m−1 is a system optimum of Lm then it holds

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

Given any differentiable latency function �i(x), we introduce the Pigovian
function

gi(x) = �i(x) + x�′
i(x).

In this way, to every differentiable network Lm = (�1(x), . . . , �m(x)) we can
associate the corresponding Pigovian network PLm = (g1(x), . . . , gm(x)) and
Theorem 1 can be reformulated illustrating the relation between a network and
it’s corresponding Pigovian network.

Theorem 2. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if a flow
x = (x1, . . . , xm) ∈ S

m−1 is a system optimum of Lm then it is a user equilibrium
of the corresponding Pigovian network PLm = (g1(x), . . . , gm(x)).

Proof. Direct result of Theorem 1 and the definition of the user equilibrium.

By employing Proposition 1 we obtain the following result regarding the
uniqueness of a system optimum.

Proposition 4. There exists a unique system optimum for a differentiable and
convex network Lm = (�1(x), . . . , �m(x)).

Proof. Since the functions �i(x) are differentiable in [0, 1] we get that their total
delay ∑m

i=1
xi�i(xi)

has at least one minimum, thus, by definition, there will be at least one sys-
tem optimum of Lm. Moreover since �i(x) are differentiable and convex we
get that the functions gi(x) will be continuous and strictly increasing. Hence
from Proposition 1 there will be a unique user equilibrium of the network
PLm = (g1(x), . . . , gm(x)). From Theorem 2, we get that every system opti-
mum of Lm is a unique user equilibrium of PLm. Therefore there is a unique
system optimum of Lm and it is the unique user equilibrium of PLm.

Combining Theorem 1 and Proposition 4 we obtain the following character-
ization of system optimums.
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Theorem 3. The flow x = (x1, . . . , xm) ∈ S
m−1 is the system optimum of a

differentiable and convex network Lm = (�1(x), . . . , �m(x)) if and only if

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

The system optimum of a network can be characterized as the user equilibrium
of the corresponding Pigovian network in the following way.

Theorem 4. The flow x = (x1, . . . , xm) ∈ S
m−1 is the system optimum of a

differential and convex network Lm = (�1(x), . . . , �m(x)) if and only if it is the
user equilibrium of PLm = (g1(x), . . . , gm(x)), i.e. if and only if it holds

�k(xk) + xkl
′(xk) = min

i∈In
{�i(xi) + xi�

′
i(xi)}, for all xk > 0.

4 Wardrop Optimal Networks

In this section we examine Wardrop Optimal networks i.e., networks that have
identical user equilibrium and system optimum. First we identify necessary con-
ditions for a user equilibrium to be system optimum.

Proposition 5. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if a
user equilibrium x = (x1, . . . , xm) ∈ S

m−1 of Lm is also a system optimum of
Lm then it holds

xi�
′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0

Proof. If x = (x1, . . . , xm) ∈ S
m−1 is a system optimum of Lm then, from

Theorem 3 it holds

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0

The result is obtained by taking into account that x = (x1, . . . , xm) ∈ S
m−1 is a

user equilibrium i.e., that it holds

�i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0.
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In the following Proposition we prove that if the network is in addition convex
then the conditions of Proposition 5 are sufficient.

Proposition 6. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)), if for a user equilibrium x = (x1, . . . , xm) ∈ S

m−1 of Lm it holds

xi�
′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0,

then it is a system optimum of Lm.

Proof. By considering Theorem 3 we only need to show that for x = (x1, . . . ,
xm) ∈ S

m−1 it holds

�k(xk) + xkl
′(xk) = min

i∈In

{�i(xi) + xi�
′
i(xi)}, for all xk > 0.

or equivalently

�i(xi) + xi�
′
i(xi) = �j(xj) + xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

The result is obtained by taking into account that x = (x1, . . . , xm) ∈ S
m−1 is a

user equilibrium i.e., it holds

�i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0

and
�i(0) ≥ �j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

Hence we obtain the following theorem describing the necessary and sufficient
conditions for a user equilibrium to be system optimum.

Theorem 5. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)), a user equilibrium x = (x1, . . . , xm) ∈ S

m−1 of Lm is a system opti-
mum of Lm if and only if it holds

xi�
′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0,

and

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

On the other hand if x is a system optimum, the requirements for x to be a
user equilibrium are more relaxed as it is illustrated in the following proposition.
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Proposition 7. Given a differentiable network Lm = (�1(x), . . . , �m(x)), if for
a system optimum x = (x1, . . . , xm) ∈ S

m−1 of Lm it holds

�i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0

then it is a user equilibrium of Lm.

Proof. By the definition of user equilibrium we only have to show that

�i(0) ≥ �j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

Since x is system optimum, by Theorem 1, we get that it holds

�i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0,

which concludes the proof.

The Wardrop optimal flows of a network can now be characterized as follows:

Theorem 6. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) a flow (x1, . . . , xm) ∈ S

m−1, is Wardrop optimal flow if and only if all
the following conditions hold.

i) �i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0,
ii) xi�

′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0,

iii) �i(0) ≥ �j(xj) + xj�
′
j(xj), for all i, j ∈ Im with xi = 0, and xj > 0.

For internal flows (x1, . . . , xm) ∈ Int(Sm−1) we obtain the following corollary of
the previous Theorem.

Corollary 1. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) a flow (x1, . . . , xm) ∈ Int(Sm−1), is Wardrop optimal flow if and only
if all the following conditions hold

i) �i(xi) = �j(xj), for all i, j ∈ Im with xi, xj > 0,
ii) xi�

′
i(xi) = xj�

′
j(xj), for all i, j ∈ Im with xi, xj > 0.

We are now ready to settle the question we posed in Sect. 3 regarding the
behavior of Wardrop optimal flows under strictly increasing and convex network
transformations.

Theorem 7. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) and a continuous, strictly increasing and convex function f(x) : [0,∞] →
[0,∞], if the flow x = (x1, . . . , xm) ∈ S

m−1 is a Wardrop optimal flow of Lm

then it is also a Wardrop optimal flow of

f(Lm) = (f(�1(x)), . . . , f(�m(x))).

Proof (Sketch of Proof). From Lemma 1 and given that x is the user equilibrium
of Lm we get that x is the user equilibrium of the network f(Lm). From x being
system optimum of Lm we prove the second condition of Theorem 6 for the set
f(Lm). Finally we need the convexity of f(x) to prove the third condition of
Theorem 6.
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From Theorem 7 we obtain that a Wardrop optimal flow is preserved if the
network is transformed by adding a constant toll price to the latency of each
link or by increasing (resp. decreasing) the latency on every link by the same
percentage. This is illustrated in the following corollaries.

Corollary 2. If a flow x ∈ S
m−1 is a Wardrop optimal flow of a differentiable

and convex network Lm = (�1(x), . . . , �m(x)) then it is also a Wardrop optimal
flow of the network

Lm + b = (�1(x) + b, . . . , �m(x) + b)

for all b > 0.

Corollary 3. If a flow x ∈ S
m−1 is a Wardrop optimal flow of a differentiable

and convex network Lm = (�1(x), . . . , �m(x)) then it is also a Wardrop optimal
flow of the network

aLm = (a�1(x), . . . , a�m(x)),

for all a > 0.

Moreover, since we only employ the convexity condition to prove the third
part of Theorem 6, we obtain the following.

Corollary 4. Given a differentiable and convex network Lm = (�1(x), . . . ,
�m(x)) and a continuous, strictly increasing function f(x) : [0,∞] → [0,∞],
if the flow x = (x1, . . . , xm) ∈ intSm−1 is a Wardrop optimal flow of Lm then it
is also a Wardrop optimal flow of f(Lm) = (f(�1(x)), . . . , f(�m(x))).

Wardrop optimal flows are also preserved if a network is transformed by tak-
ing powers of the latency functions and this can be alternatively proved without
using Theorem 7.

Proposition 8. If the flow x = (x1, . . . , xm) ∈ S
m−1 is Wardrop optimal flow

of the differentiable and convex network Lm = (�1(x), . . . , �m(x)) then it is also
Wardrop optimal flow of Lk

m = (�k1(x), . . . , �
k
m(x)), k ∈ N

∗.

Proof. Since x is Wardrop optimal flow of Lm, by the first condition of Theorem
6 we get

�ki (xi) = �kj (xj), for all i, j ∈ Im with xi, xj > 0 (2)

Taking into account the first and the second condition of Theorem 6 we have

xi(�ki (xi))′ = xi k �k−1
i (xi) �′

i(xi) = xj k �k−1
j (xj) �′

j(xj) = xj(�kj (xj))′. (3)

At this point we note that all latency functions are defined on the domain [0, 1],
hence the functions �ki (x) will be convex for all k ∈ N

∗ and we can used Theorem
6 to prove this proposition. From Eqs. 2 and 3 we get that the first two conditions
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of Theorem 6 are satisfied by x for the network Lk
m. It now remains to prove the

third condition, i.e., that for all i, j ∈ Im with xi = 0 and xj > 0 we have

�ki (0) ≥ �kj (xj) + xj

(
�kj (xj)

)′
= �kj (xj) + xj k �k−1

j (xj) �′
i(x)

Since x is Wardrop optimal flow of Lm, by taking the power of the third condition
of Theorem 6, for all for all i, j ∈ Im with xi = 0 and xj > 0 we have

�ki (0) ≥ (�j(xj) + xj�
′
j(xj))k = �kj (xj) +

(
k
1

)
�k−1
j (xj)xj�

′
j(xj) + C,

where C denotes the sum of the remaining terms of the binomial identity we
used above. The result follows by observing that C is positive.

Networks with identical flows admit the center of the simplex as the Wardrop
optimal flow as it is shown in the below proposition.

Proposition 9. A network Lm = (l(x), . . . , l(x)) with identical latency func-
tions across all links has a uniformly distributed Wardrop optimal flow.

Proof. It is easy to check that x = ( 1n , . . . , 1
n ). i.e., the center of the simplex

S
n−1, is the Wardrop optimal flow of Lm.

In a similar way we get that for any a priori given internal flow p =
(p1, · · · , pn) ∈ intSm−1, there exists always a network for which p is its Wardrop
optimal flow.

Proposition 10. Any internal flow p = (p1, · · · , pn) ∈ intSm−1 is the Wardrop
optimal flow of the network Lm = (x1

p1
, . . . , xm

pm
).

By combining the above result with Corollary 4, we can find more networks
admitting any given user equilibrium.

Proposition 11. An internal flow p = (p1, · · · , pn) ∈ intSm−1 is the Wardrop
optimal flow of the network Lm = (f(x1

p1
), . . . , f(xm

pm
)), where f(x) is any con-

tinuous, strictly increasing function.

The product of two differentiable and convex latency functions is also a dif-
ferentiable and convex function and thus we can use Theorem 6 to prove the
following result.

Proposition 12. If the flow x = (x1, . . . , xm) ∈ S
m−1 is Wardrop optimal flow

of the differentiable and convex networks Lm = (�1(x), . . . , �m(x)) and Lm =
(�1(x), . . . , �m(x)) then it is also Wardrop optimal flow of the network LmLm =
(�1(x)�1(x), . . . , �m(x)�m(x)).

Similarly with the above, we can use again Theorem 6 to prove the following,
since differentiable and convex functions are preserved by addition .
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Proposition 13. If the flow x = (x1, . . . , xm) ∈ S
m−1 is Wardrop optimal flow

of the differentiable and convex networks Lm = (�1(x), . . . , �m(x)) and Lm =
(�1(x), . . . , �m(x)) then it is also Wardrop optimal flow of the network Lm+Lm =
(�1(x) + �1(x), . . . , �m(x) + �m(x)).

By using Corollary 4 we can construct networks for given internal flows as
follows.

Proposition 14. For any polynomial P (x) = a0 + a1x + · · · + anxn, strictly
increasing and continuous in [0,1] and any internal flow p = (p1, · · · , pn) ∈
intSm−1 we can construct a network Lm = (�1(x), . . . , �m(x)) with �1(x) = P (x)
with Wardrop optimal flow p.

Proof. Assume P (x) = a0 + a1x + a2x
2 + · · · + anxn is a polynomial strictly

increasing and continuous in [0,1] and p = (p1, · · · , pn) any given flow. Then by
taking the image of the network Lm = ( x

p1
, . . . , x

pm
) via the function

f(x) = a0 + a1p1x + a2p
2
1x

2 + · · · + anpn1xn

we obtain a network that has P (x) as latency function on the first link. The
function f(x) is also continuous and strictly increasing in [0, 1] since from f(x) =
P (p1x) and 0 < p1 < 1 we get that f(x) is the composition of two strictly
increasing and continuous functions.

5 Conclusion and Future Work

We examined user equilibrium and system optimum in parallel networks with
congestion externalities and obtained sufficient and necessary conditions for the
system optimum. This leads to a characterization of Wardrop optimal flows
for differentiable convex networks from which we obtained important closure
properties preserving Wardrop optimal flows.

The importance of Wardrop optimal networks for transportation and com-
munication networks stems from the integration of the interests of both users
and system operators. Convergence to the Wardrop optimal flow inside such
networks will allow us to simulate dynamic flow distribution in networks in the
manner of [13,14]. Wardrop optimal flows can be investigated in the framework
of general directed graphs by identifying a fixed origin and destination node in
the graph and considering all possible paths from origin to destination as this
has been done using the path hyperoperation on directed graphs [7,9]. This will
allow us to model diffusion inside Wardrop networks as in [3] and moreover, as
another future direction, the capacity of graph recognizability to identify graph
properties (see [4–6,8]) can be employed towards the recognition of Wardrop
optimal networks.
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Abstract. Inspecting circumferential welds in caissons is a critical task
in the offshore industry for ensuring the safety and reliability of struc-
tures. However, identifying and classifying different types of circumferen-
tial welds can be challenging in subsea environments due to low contrast,
variable illumination, and suspended particles. To address this challenge,
we present a framework for automating the classification of circumferen-
tial welds using deep learning-based methods. We used a dataset of 4,000
images for experimental purposes and utilised three state-of-the-art pre-
trained Convolutional Neural Network (CNN) architectures, including
MobileNet V2, Xception, and EfficientNet. Our results showed superior
performance of EfficientNet, with high levels of accuracy (86.75%), recall
(91%), and F1-score (87.29%), as well as demonstrating efficient time.
These findings suggest that leveraging deep learning-based methods can
significantly reduce the time required for inspection tasks. This work
opens a new research direction toward digitally transforming inspection
tasks in the Oil and Gas industry.

Keywords: circumferential welds · offshore · remote visual
inspections · EfficientNet

1 Introduction

Managing ageing offshore energy production infrastructure poses significant chal-
lenges for operating companies, particularly about caissons. Caissons are verti-
cal tubes that hang beneath the platform topsides, often within the jacket’s
envelope. They are used for seawater intake, various discharge purposes, and as
carriers for subsea infrastructure [7].

The Topside, Splash-zone, and Subsea are the three primary segments of a
caisson (See Fig. 1). The Topside can be defined as the dry section zone located
under the deck. The Splash-zone is the area of the structure intermittently in
or out of seawater and is often submerged due to tides and winds. Finally, the
underwater section is usually the longest section to inspect and where most
anomalies are found.
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Fig. 1. Overview of the different caisson zones

Over the last few decades, caisson deterioration and failure have been signifi-
cant problems in the United Kingdom Continental Shelf (UKCS) region, accord-
ing to a recently published technical report [2]. Caissons are unlikely to lead
to overall structural collapse. Still, they may have negative consequences if a
failure occurs, which can escalate to a significant risk of dropped objects into
subsea structures. Examples include damage to jacket infrastructure, pipelines,
and risers. A failed caisson could hit the gas line resulting in gas release and
explosion from the ignition. The loss of a firewater caisson capability could also
disrupt operations, causing a shutdown of production platforms [2].

The vulnerability of caissons to internal corrosion is a major threat to their
structural integrity, and their internal inspection is essential to detect this type of
damage. General Visual Inspection (GVI) and Close Visual Inspection (CVI) are
the most commonly used inspection techniques. GVI is carried out by a remotely
operated vehicle (ROV) to detect major flaws and damages without prior asset
cleaning.On the other hand, aCVI ismore accurate and used to detect local defects
or damages, which requires cleaning marine growth. The still images of anomalies
detected during a CVI are usually manually inspected and reported [1].

A full-caisson inspection commences with cleaning and surface preparation.
Subsequently, robotic ultrasonic inspection equipment is remotely deployed to
collect thickness measurements throughout the entire length of the caisson, giv-
ing real-time inspection data that can be analysed to provide an initial evaluation
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Fig. 2. Comparison between the same anomaly before cleaning (left) vs the post-
cleaning (right)

of the caisson condition. Finally, inspection cameras are remotely deployed to
offer visual confirmation of flaws and abnormalities discovered during the ultra-
sonic inspection and the condition of the caisson surface and welds.

Residual stresses are inherent in welded components, with the magnitude of
the pressure reaching the yield strength of the material. The presence of tensile
residual stress has a detrimental effect on the structural integrity of engineering
constructions [13]. Therefore, during remote visual inspections of caissons, a cru-
cial aspect is the evaluation of the welds. Caissons are typically joined through
circumferential welds (CWs), which connect two round objects around their cir-
cumference. Since CWs are subjected to stress induced by surface tides and ocean
currents, localised corrosion and fatigue are likely to occur [14] (Fig. 3).

The remote visual inspection of circumferential welds in caissons is challeng-
ing due to various factors that can affect the image quality, including light-
ing conditions, material reflectivity, water motion, and water turbidity when
inspecting underwater. These challenges can lead to errors and significant time
consumption during the inspection. In other words, existing inspection manual
practices are prone to errors and are time-consuming.

Fig. 3. Example of a 180◦ caisson panoramic view of a circumferential weld with
defects.

This paper presents a deep learning-based framework to classify circumfer-
ential welds in caissons. An efficient classification system can help automate the
inspection process and speed up the asset integrity assessment, which will be
beneficial in the long run. The rest of the paper is organised as follows; Sect. 2
briefly presents related work, Sect. 3 explains the data collection process and pro-
cedures, Sect. 4 presents methods and the experimental validation, and Sect. 5
concludes the paper.
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2 Related Work

Automating inspection tasks has been a crucial area of research, with several
approaches developed to classify images and detect anomalies, mainly relying on
computer vision and deep learning-based methods. In recent years, deep learning-
based methods have shown promising results in image classification and anomaly
detection tasks. Various techniques in the literature utilize deep-transfer learning
and fine-tuning, where a pre-trained model is used as a starting point to train
the model further for specific tasks.

Ren et al. [9] proposed a deep learning approach for automated surface inspec-
tion using a pre-trained deep learning model to extract patch features from
images and generate a “efect heat map.” Similarly, several other researchers have
proposed deep-learning models for image classification. Luciane et al. [11] pro-
posed a deep-learning approach to classify underwater images into four categories
of corrosion severity. Bastian et al. [3] proposed a deep learning-based framework
that utilizes Convolutional Neural Networks (CNN) for detecting and classify-
ing corrosion in pipelines transporting water, oil, and gas. The study reported
an overall classification accuracy of 98%, indicating the effectiveness of deep
learning-based approaches for identifying pipeline defects.

Furthermore, Fu et al. [5] used a SqueezeNet pre-trained model to detect
anomalies in steel surfaces, which outperformed state-of-the-art frameworks such
as Enhanced Testing Machine (ETM) and Deep Convolutional Activation Fea-
tures with Multiple Logistic Regression (DCAF-MLR). However, the proposed
model was only evaluated on a single dataset(NEU), which may not represent
all scenarios in real-world steel surface defect classification tasks.

In another study, [8], the authors presented an experimental framework for
automating corrosion detection in subsea images using state-of-the-art computer
vision and deep learning techniques. They compared three different architectures
and image pre-processing methods and concluded that Mask R-CNN is the most
suitable algorithm for detecting corrosion instances in subsea images. However,
using a dataset not specifically tailored to subsea inspection may limit the gen-
eralizability of the results to other subsea inspection scenarios.

Despite recent advances in deep learning, some methods still rely on tradi-
tional machine learning approaches that require explicit feature extraction. For
example, in a study by Hoang and Tran [6], Support Vector Machines (SVM)
were employed to detect corrosion in pipelines, where the quality of the extracted
features played a critical role in achieving accurate results. In such cases, the
choice and design of the feature extraction method can be a crucial factor in the
model’s overall performance.

In summary, it can be said that most existing methods in the literature that
handles inspection tasks of offshore or onshore energy assets rely heavily on
deep-transfer learning methods, where models that have been trained on large
public datasets (e.g. ImageNet) are then reused to perform specific inspection
tasks.
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3 Methods

Circumferential welds have varying sizes, thicknesses, and colours depending
on various factors. However, all circumferential welds have a visible top and
bottom horizontal line, resulting from the Heat-Affected Zone (HAZ) created
during the welding process. The HAZ is a critical area of the weld that can have
a different microstructure and properties than the parent material due to the
heat generated during welding. Despite the horizontal line being a characteristic
feature the human eye can quickly identify, CWs can be challenging to spot on
the subsea section due to low contrast, suspended particles in the water, and
highly variable illumination.

3.1 Data Collection

A database of hundreds of remote visual inspection jobs was filtered to ensure a
representative sample of CWs covering different geographical regions and cais-
sons’ configurations. A Pareto chart was created to visualize the number of
inspection jobs per global region. This approach aimed to develop a robust model
with diverse CWs and background types. Afterwards, a team consisting of a
mechanical engineer, senior inspection engineer, and offshore operation manager
were consulted to establish clear guidelines for image classification under the
labels “cw” and “non-cw” (See Fig. 4)

Fig. 4. Circumferential weld (top) and non-circumferential weld (bottom)

A total of 4,000 images were obtained from the filtered database. These
images contained inspection stills in different format sizes and were manually
selected and labelled. The dataset was split into two labels named cw and non-
cw. Table 1 shows the data distribution between the training, validation and test
sets.

Note that all annotated data (stills and labels) have been checked for anno-
tation correctness three times; one from the inspection technician that collected
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Table 1. Dataset distribution

Label Training Validation Test Total

cw 1400 400 200 2000
non-cw 1400 400 200 2000

and reported the data, subsequently on-shore by the senior inspection engineer
for the approval of the report, and finally during the manual extraction of the
dataset itself by the offshore operations manager.

3.2 Data Pre-processing

Internal inspections can be affected by challenging environmental conditions and
lighting factors that negatively impact the quality of the captured images. To
address this issue, previous research, such as the study conducted by Pirie et al.
[8], has explored various filtering methods, including contrast-limited adaptive
histogram equalization (CLAHE), Grayscale, and Inpainting, to improve image
quality under such conditions. For our dataset, we found that a combination
of these three techniques was the most effective. In Fig. 5, a comparison is pre-
sented between the different filters we tested and our final custom filter applied.
The results show that the filter enhances the visibility of the top and bottom
horizontal lines of the weld and attenuates light reflection, leading to a more
uniform brightness across the image.

Fig. 5. Comparison of a circumferential weld using different filters.
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3.3 Transfer Learning

Transfer learning is a popular machine learning technique used to transfer knowl-
edge from pre-trained models to solve related problems. Instead of training a
CNN from scratch, transfer learning allows the reuse of pre-trained model weights
and adaptation for specific outputs by adding additional layers. This technique
offers faster training and better prediction results. To assess the accuracy of
state-of-the-art pre-trained CNN models in classifying CWs, experiments were
conducted using MobileV2, Xception, and EfficientNet.

MobileNet V2 is a highly efficient and simple CNN architecture commonly
used for mobile applications. Its unique feature is the depth-wise convolution,
which reduces model size and complexity with the low computational power
required for transfer. The architecture has 32 filters followed by 19 residual
bottleneck layers. Compared to its predecessor, MobileNetV1, this architecture
uses 30% fewer parameters and half the operators, enhancing prediction speed
performance while requiring minimal GPU requirements [10].

Xception is a CNN that contains 71 deep-layers and is considered a varia-
tion of Inception architecture. The Xception model is based entirely on depth-
wise separable convolution layers. The main idea of this architecture is to fully
decouple the cross-channel and spatial correlations in the feature map of the
convolutional neural networks. Xception achieves a top-5 accuracy on the Ima-
geNet database of 94.5%, outperforming state-of-the-art models such VGG16,
ResNet-152 and Inception V3 [4].

EfficientNet is a CNN architecture designed to optimize the accuracy and
efficiency trade-off by scaling the network’s depth, width and resolution. It intro-
duces a new compound scaling method that uniformly scales all three dimensions
of depth, width, and resolution in a balanced way. EfficientNet-B0, the smallest
variant, achieved a top-1 accuracy of 76.3% on the ImageNet dataset with only
5.3 million parameters, whereas EfficientNet-B7, the largest variant, achieved a
top-1 accuracy of 86.5% with 66 million parameters, surpassing other models
such as ResNet, DenseNet, and Inception-v3 on the same dataset. In this study,
EfficientNet-B0 was chosen for the experiment [12].

4 Experiments and Results

4.1 Experiment Setup

Image augmentation techniques were applied to the training dataset to opti-
mize the performance of the binary image classification models on detecting
CWs. Random rotation and flip were used to account for the possibility of CWs
appearing in different positions within the inspection image. As most CWs tend
to appear horizontally in the middle of the image, the flip technique was used to
create horizontal mirror images, and the rotation technique was used to make
slight variations in the angle of the CWs. These techniques helped to generate
additional training data, which allowed the model to learn to generalize better
to new images and reduce over-fitting.
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The batch size was set to 64 in this experiment. The models were compiled
with the Adam optimizer, binary cross-entropy loss function, and accuracy met-
ric. The learning rate for the optimizer was set to 10−4. The models were trained
for 25 epochs.

4.2 Results

The binary image classification model was trained and evaluated using three
CNN architectures: MobileNet V2, Xception, and EfficientNet. To present the
performance of each model, this section features confusion matrices displayed
in Fig. 6. Additionally, Table 2 provides a detailed comparison of each model’s
performance, measured by accuracy, recall, precision, and F1 score.

Fig. 6. Confusion Matrix (a) MobileNet V2, (b) Xception, and (c) EfficientNet

The presented results demonstrate that all three models achieve considerable
accuracy, with EfficientNet performing the best, attaining the highest scores
in accuracy, recall, and F1-score of 86.75%, 91.00%, and 87.26%, respectively.
Regarding precision, Xception outperforms the other two architectures, while
MobileNet V2 exhibits the lowest precision score among the three models.

Table 2. Comparison of CNN architectures for classification task

Architecture MobileNet V2 Xception EfficientNet

Accuracy 0.8125 0.8600 0.8675
Recall 0.8750 0.8900 0.9100
Precision 0.7778 0.8396 0.8387
F1 Score 0.8235 0.8641 0.8729

Careful consideration of all relevant factors, including model performance
and inference time, is necessary to select the most appropriate model for a given
application. While Xception achieves slightly higher precision than EfficientNet,
a thorough evaluation of model performance and inference time combination
revealed that EfficientNet is the preferred model for the classification task.
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5 Conclusion and Future Work

In this paper, we presented a framework for the automated classification of cir-
cumferential welds (CWs) in a caisson. A dataset of images representing inspec-
tion tasks was collected, labelled and enhanced using image processing methods.
The prepared dataset was then used to train three state-of-the-art CNN archi-
tectures: MobileNet V2, Xception, and EfficientNet. Based on extensive exper-
iments, EfficientNet emerged as the preferred model for the classification task
due to its strong accuracy, sensitivity, and F1-score metrics performance while
exhibiting a favourable trade-off with inference time. The methods developed
in this paper were deployed in production and used for visual inspection jobs,
achieving an average accuracy of 86.75%, a sensitivity of 91.00%, and an F1-score
of 87.29%. Currently, the framework is being integrated into the company’s data
pipeline process under the supervision of senior inspection engineers. In future
work, the authors plan to explore a multi-label classification model to automate
the identification of other types of anomalies, including pitting, cracks, thru-
wall defects, and localized wall loss commonly seen in caissons, especially in the
underwater section.
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LTD, and Innovate UK for supporting this project. Their contributions were essential
to this research.
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Abstract. The Neuromorphic (NM) field has seen significant growth in
recent years, especially in the development of Machine Learning (ML)
applications. Developing effective learning systems for such applications
requires extensive experimentation and simulation, which can be facili-
tated by using software frameworks that provide researchers with a set
of ready-to-use tools. The NM technological landscape has witnessed the
emergence of several new frameworks in addition to the existing libraries
in neuroscience fields. This work reviews nine frameworks for developing
Spiking Neural Networks (SNNs) that are specifically oriented towards
data science applications. We emphasize the availability of spiking neu-
ron models and learning rules to more easily direct decisions on the most
suitable frameworks to carry out different types of research. Furthermore,
we present an extension to the SpykeTorch framework that enables users
to incorporate a broader range of neuron models in SNNs trained with
Spike-Timing-Dependent Plasticity (STDP). The extended code is made
available to the public, providing a valuable resource for researchers in
this field.

Keywords: frameworks · spiking neural networks · spiking neurons ·
neuromorphic · software · machine learning · unsupervised learning

1 Introduction

The development of Deep Learning (DL) algorithms was greatly eased by the
introduction of purposely developed software packages. These packages, or frame-
works, usually offer a wide range of software tools that aim to speed up the
development of Machine Learning (ML) pipelines as well as make the algorithms
available to a larger audience. When referring to conventional DL, i.e. non Neu-
romorphic (NM), several famous libraries exist, such as TensorFlow (TF) [2],
PyTorch [43] or Caffe [32]. The field of Neuromorphic engineering has recently
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 227–238, 2023.
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seen the emergence of several new software frameworks thanks to the renewed
interest in its potential. However, these frameworks are often in an early develop-
ment stage when compared to their conventional DL counterpart, being limited
in the tools they offer, their documentation, and the support from the commu-
nity. Some more established frameworks also exist, but they are often directed
towards particular communities and use cases [48], or they are neuroscience-
oriented frameworks rather than NM-ML development tools. Furthermore, effec-
tive data science algorithms that can close the gap with other conventional
methodologies still need to be developed. Indeed, algorithms employing Spik-
ing Neural Networks (SNNs) are already more energy efficient than conventional
Convolutional Neural Networks (CNNs) [25], however, they are not as effec-
tive on ML tasks in terms of accuracy. Hence the importance of having good
software frameworks that enable customization, simulation and deployment of
SNNs. This requires combining a number of key elements into a pipeline such as
learning rules, connectivity patterns, and spiking neurons. Regarding the spik-
ing neurons, emerging NM chips such as Loihi 2 [41] allow the use of customized
models. It has been shown in the literature that different types of neuron mod-
els can solve certain tasks more effectively than other models [22,36]. Therefore
it can be beneficial for researchers to use a framework that enables seamless
experimentation with different types of neurons.

This work contributes by providing a review of data science-oriented frame-
works and highlighting the key features they offer. By restricting our review to
this kind of frameworks, we hope to help boosting new research in NM for ML
applications. Further to this, we develop an expansion1 of the SpykeTorch [38]
framework that enables the user to experiment on a wider variety of different
spiking neuron models. By doing this, we aim to enlarge the scope of the research
in SNNs to different spiking neuron models, and to thus build new algorithms
that can leverage the latest advances in the NM hardware.

2 Related Works

When presenting a new software framework, authors often report other similar
works and draw comparisons with them [27,38]. In these instances, differences in
terms of offered features are highlighted, as well as the advantages of using the
newly presented software over the existing ones. Other works specifically focus
on reviewing the existing frameworks for the development of SNNs. One example
is given by [45], where the authors make a subdivision of the software packages
into three main groups depending on whether they are NM chips toolchains,
SNN simulation frameworks or frameworks that integrate SNNs and DNNs.
Another work [25] gives an introductory overview of SNNs and then reviews
some prominent simulation frameworks. The authors also define a simple clas-
sification task and compare accuracy and execution time obtained by using the
different frameworks. These previous two works consider frameworks regardless
of their research orientation, i.e. they consider both neuroscience-oriented and
1 Code available at https://www.github.com/daevem/SpykeTorch-Extended.

https://www.github.com/daevem/SpykeTorch-Extended
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Table 1. Key elements of the reviewed frameworks. The “A-” stands for adaptive,
whereas “H-” stand for heterogeneous.

Framework Nengo Lava SNN
Toolbox

Norse PySNN snnTorch SpikingJelly BindsNet SpykeTorch

Spiking Neurons LIF
A-LIF
IZ

LIF
RF∗

A-LIF∗

A-RF∗

A-IZ∗

Σ − Δ

IF LIF
AdEx
EIF
IZ
LSNN

IF
LIF
A-LIF

LIF
Recurrent LIF
2nd Order LIF
LSNN

IF
LIF
pLIF
QIF
EIF

IF
LIF
A-LIF
IZ
SRM

IF
LIF∗∗

QIF∗∗

EIF∗∗

AdEx∗∗

IZ∗∗

H-Neurons∗∗

Learning Rules Oja
BCM
BP

SLAYER
STDP
3-Factor

Pre-trained SuperSpike
STDP

STDP
MSTDP
MSTDPET

BPTT
RTRL

BP STDP
Hebbian
MSTDPET

STDP
R-STDP

Conversion from TF/Keras PyTorch TF/Keras
PyTorch
Caffe
Lasagne

– – – PyTorch PyTorch –

Destination
Backend/Platform

Loihi
FPGA
SpiNNaker
MPI
CPU/GPU

Loihi
CPU/GPU

SpiNNaker
Loihi
pyNN
Brian2
MegaSim

CPU/GPU CPU/GPU CPU/GPU CPU/GPU CPU/GPU CPU/GPU

∗ Only available in Lava-DL.
∗∗ Added in this work.

data science-oriented frameworks. In this work, we specifically highlight soft-
ware packages that are data science-oriented and developed in Python or with
a Python interface. Furthermore, we also include in our review other different
frameworks and highlight some key features and neuron models that they offer
for developing SNNs.

3 Software Frameworks

Many of the software libraries for the development of SNNs are oriented toward
the needs of the neuroscience and neurobiology fields [25]. Because SNNs process
inputs and communicate information in a way similar to the human brain, they
are particularly suited for simulations of brain areas activations. Nevertheless,
the recent emergence of NM engineering as a field for developing ML algorithms
has highlighted the need for suitable frameworks. Consequently, following, we will
present some of the most prominent software packages to develop data science-
oriented SNNs along with their main features, which are also summarized in
Table 1.

3.1 Nengo

Nengo [5] is a Python package for building and deploying neural networks. It is
composed of several sub-packages to be used in case of different needs and des-
tination platforms. NengoDL is to be used when aiming to convert a CNN built
using TF/Keras into its Nengo spiking version. NengoLoihi allows to deploy NNs
natively built in the Nengo Core package onto Loihi chips. Other packages are
NengoFPGA, NengoSpiNNaker, NengoOCL and NengoMPI. Nengo builds on
top of a theoretical framework called the Neural Engineering Framework (NEF)
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[50]. Computations are based on the three principles of the NEF: neural repre-
sentation, transformation, and neural dynamics. Neurons in Nengo are organized
in Ensembles, and different types of neuron models are available, among which
the Leaky Integrate-and-Fire (LIF) [33], and Izhikevich’s (IZ) [30] models. Con-
nections between ensembles are designed to allow a transformation of the infor-
mation from one ensemble to another. Training in Nengo is possible with the Oja
[40], BCM [7] and backpropagation (BP) learning rules. Using Nengo as a tool
for the development of SNNs has the main advantage of having the possibility
to target a wide variety of backends and to convert conventional DNNs into a
spiking equivalent [25]. Nengo also allows for a certain degree of customization of
the components; however, it remains very oriented towards the NEF structure.

3.2 SNN Toolbox

SNN Toolbox [46] provides a set of tools to perform automated conversion from
conventional Artificial Neural Network (ANN) models into SNNs. Conversion
is possible from three different DL frameworks, namely TF/Keras, PyTorch,
Caffe and Lasagne [16]. The framework supports conversion to models for PyNN
[15], Brian2 [51], MegaSim [35], SpiNNaker [24], and Loihi [14] where the SNN
can be simulated or deployed. However, depending on the components used in
the original ANN, some of the target platforms might not be available. During
the conversion phase, Integrate-and-Fire (IF) neurons are used for a one-to-one
substitution. These are then tuned so that their mean firing rate approximates
the activation of the corresponding neuron in the original ANN. Neural networks
must be pre-trained in their original framework. Tuning conversion parameters
and performing inference is possible either through the command line or through
a simple GUI.

3.3 Lava

Lava [1] is a relatively recent framework built by Intel’s Neuromorphic Comput-
ing Lab (NCL). The framework results from an evolution from the Nx SDK soft-
ware for Loihi chips, but aims to target other hardware platforms as well. Lava
is composed of 4 main packages, namely Lava (core), Lava-DL, Lava Dynamic
Neural Fields (DNF) and Lava Optimization. The current state of the plat-
form includes the development of deep SNNs trained with SLAYER [49], and of
SNNs converted from PyTorch. On-chip training through SLAYER is currently
not available. Instead, models need to be trained off-chip, and weights must be
exported to be used within the Lava core package. Within Lava-DL, a number
of neuron models are defined, such as the LIF, Resonate-and-Fire (RF) [31], RF
Izhikevich, Adaptive LIF [26], Adaptive RF, and Sigma-Delta [12] modulation
models. The core package currently supports LIF and Sigma-Delta modulation
neurons. Recent developments in the framework have seen the implementation of
on-chip learning functionalities through STDP and customized 3-factor learning
rules.
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3.4 PyTorch-Based Frameworks

Norse

Norse [44] is a relatively recent PyTorch-based framework. It was developed with
the aim of easing the construction of SNNs for ML solutions. This framework
offers a wide range of neuron models, such as the LIF, LIF variants and exten-
sions, and Izhikevich’s model. It also provides a LSNN [6], a spiking version of
the LSTM (Long Short-Term Memory) [28]. Norse has a functional program-
ming style. Neurons are mainly implemented as functions and do not hold an
internal state. Instead, the previous state of the neuron needs to be provided
as an argument at each iteration. The framework mainly allows for two types
of learning: STDP [37], and SuperSpike [53]. Therefore, both local unsupervised
learning and surrogate gradient learning are possible. Overall, Norse provides a
good degree of flexibility and allows leveraging all of the features of PyTorch,
such as GPU acceleration.

PySNN

PySNN [8] is another framework based on PyTorch aimed at developing ML
algorithms. Similarly to Nengo, connections between two neurons are modelled
as separate objects that have properties and can affect the transmission of a
signal. For instance, they can explicitly account for connection delays. Neuron
models in PySNN embed the concept of spike trace, which can be used for
learning purposes. Some available neuron models are the IF, LIF and ALIF.
Concerning the learning rules, it is possible to use either STDP or MSTDPET
(Modulated STDP with Eligibility Traces) [20]. The framework also provides
some useful utilities to load some NM datasets. A downside of using PySNN is
that the documentation is not complete.

SnnTorch

SnnTorch [18] also bases its architecture on PyTorch. Connectivity between
layers is enabled by leveraging PyTorch standard layers. Spiking neurons are
thought to be used as intermediate layers between these. Spiking neurons are
modelled as classes that hold their own internal state. Available models include
LIF-based models, second-order LIF models, recurrent LIF models, and LSTM
memory cells. Learning in snnTorch takes place with BP Through Time (BPTT)
using surrogate gradient functions to calculate the gradient of the spiking neu-
rons. The framework also offers the possibility to use a Real-Time Recurrent
Learning (RTRL) rule, which applies weight updates at each time step, rather
than at the end of a sequence of inputs. The network output can be interpreted
using both a rate-based approach and a time-to-first-spike (TTFS) approach.
Finally, snnTorch provides access to the N-MNIST [42], DVS Gestures [3], and
the Spiking Heidelberg Digits [13] datasets, and includes useful network activity
visualization tools.
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SpikingJelly

SpikingJelly [19] is a framework using PyTorch as a backend and adopting its
coding style throughout. It provides implementations of IF, LIF, parametric LIF
(pLIF), Quadratic IF (QIF), and Exponential IF neuron [21] models. The fir-
ing of neurons in SpikingJelly is approximated by a surrogate function (such as
the sigmoid) that allows differentiation. The framework provides several utilities
to read NM and non-NM datasets. Concerning the NM datasets, it is possi-
ble to both read them with a fixed integration time-window and with a fixed
number of frames. Among the available datasets, there are the CIFAR10-DVS
[34] dataset, the DVS Gestures dataset, the N-Caltech101 [42] dataset, and the
N-MNIST dataset. Finally, SpikingJelly also provides functionality for ANN to
SNN conversion from PyTorch.

BindsNet

BindsNet [27] is a library for the development of biologically inspired SNNs.
Despite having PyTorch as a backend, the coding style differs slightly. Execu-
tion is implemented by running the network for a certain amount of time on
some input rather than explicitly looping through the dataset. BindsNet sup-
ports several types of neuron models: IF, LIF, LIF with adaptive thresholds,
Izhikevich’s, and Spike Response Model (SRM)-based [26] models. Connections
are modelled explicitly and link one node of the network with another. Recur-
rent connections are also possible. The provided learning rules are biologically
inspired and can be either two-factor (STDP or Hebbian) or three-factor (MST-
DPET); hence no BP-based learning rule is proposed. Through sub-classing, it
is possible to customize neurons, input encoding and learning rules. The frame-
work also provides utility tools to load datasets, such as the spoken MNIST,
and DAVIS [9] camera-based datasets. Finally, BindsNet includes a conversion
system to convert neural networks developed in PyTorch into SNNs.

SpykeTorch

SpykeTorch is PyTorch-based library for building SNNs with at most one spike
per neuron. This means that for each sequence of inputs, each neuron is allowed
to fire only once. Because of this, tensor operations can be easily used to com-
pute neuron activations. Because NM data includes the concept of time, what is
normally treated as the batch dimension in PyTorch, it is interpreted as the time
dimension in SpykeTorch. The framework is built to support STDP and Reward-
modulated STDP (R-STDP) with a Winner Takes All (WTA) paradigm, and
using convolutions as a connection scheme. The only available neuron model is
the IF, which is provided as a function. Finally, the framework provides function-
alities to encode non-NM input through difference of Gaussians and intensity to
latency transforms, as well as some inhibition functions.
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Fig. 1. Example flowchart for SpykeTorch-Extended. After the definition of the com-
ponents of the SNN, each data sample is required to be decomposed into its forming
time steps before being processed by the SNN. This ensures that learnt parameters will
influence the result of the next iteration.

4 SpykeTorch Spiking Neurons

For the purpose of developing NM-ML algorithms based on STDP, SpykeTorch
allows a high degree of customization and flexibility to the user. However, as
mentioned in Sect. 3.4, the framework originally provides a single spiking neuron
model, the IF. This does not have a voltage leakage factor, which means that its
internal state can only increase until it is reset. In order to augment the usage
potential of SpykeTorch, we expand the library by implementing a new set of
spiking neuron models, for a total of 8 new models, as show in Table 2. By intro-
ducing more complex neuron models, the original workflow and implementation
patterns adopted in the original framework cannot be easily utilized. Therefore,
the following are some details about the differences introduced to accommodate
such neuron models in the library. We refer to the framework resulting from our
changes as SpykeTorch-Extended.

4.1 Spiking Neurons Implementation Details

In our implementation of spiking neurons, we consider a subset from the phe-
nomenological family of neuron models due to their computational efficiency [36].
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This includes: Leaky IF (LIF) [33], Exponential IF (EIF) [21], Quadratic IF
(QIF) [17], Adaptive Exponential IF (AdEx) [10], Izhikevich’s [30], Heteroge-
neous Neurons.

The LIF model is a single-variable neuron model and is the most widely
used for the development of NM-ML systems [23,29,36,39,52]; the EIF and QIF
models are other single-variable models that include different types of complexi-
ties in their equation, and are also the base for more complex models, the AdEx
and Izhikevich’s respectively; the AdEx and Izhikevich’s models are two-variable
neuron models that have also been widely studied and employed in the literature
[4,11,47].

Due to the greater complexity of the newly introduced neurons, we deviate
from the original implementation and adopt an object-oriented approach for
the neurons. This allows them to retain an internal state and other properties.
Nevertheless, to maintain compatibility, neuron objects are callable and share the
same output format as in the original implementation. Furthermore, we do not
restrict neurons to firing only once per input sequence. This only depends on the
choice of parameters for a given neuron, such as the refractory period. Another
difference with the previous implementation is that the neurons are expected to
receive events one time-step at a time. While this introduces a overhead on the
computational time, it allows to simulate real-time processing, and also ensures
the decay of the membrane potential and that weight updates due to STDP
affect every subsequent moment in time, thus making the system more realistic.
A neuron layer in SpykeTorch-Extended is characterized by at least the set of
parameters of a LIF neuron; however, more complex neuron models will require
more parameters. A layer of neurons in this system can be better depicted as a
set of neuronal populations. The number and size of the population reflect that
of the input that is processed by the layer. Thus, a single population is intended
as the group of neurons corresponding to one of the feature maps produced by
a convolutional layer.

As a result of the changes above, the standard workflow in SpykeTorch-
Extended requires some adjustments with respect to the original version. In
Fig. 1, we report an example flowchart of how a pipeline using the new neuron
models could look like. As the flowchart highlights, each input is expected to be
unravelled into all the time steps it is composed of and, for each time step, all
the events that took place in such a time span are to be fed forward to the SNN.

4.2 Heterogeneous Neuron Classes

The implemented neuron classes create a layer of spiking neurons that share the
same hyper-parameters. We refer to this as being a homogeneous layer of neurons
because they all react in the same way to the same sequence of inputs. However, it
might be useful to have neurons reacting differently to one input, since this could
mean being able to learn different kinds of temporal patterns within the same
layer. Because of this, we further implement heterogeneous neuron classes for the
LIF, EIF, and QIF classes. Specifically, they provide a set of τrc values that are
uniformly distributed within a range specified by the user through the parameter
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tau range. We limited the current implementation to a uniform distribution for
simplicity, and limit the heterogeneity to the τrc parameter since this directly
influences the time scale to which the neuron is sensitive. Nevertheless, future
developments will consider other types of distributions and parameters.

Table 2. Summary of newly added spiking neurons to SpykeTorch. All the neurons
share a base set of parameters with the LIF, but they may require more depending on
the neuron type, which are briefly reported in the short description.

Neurons Short Description

LIF [33] Uses the integral solution to the differential equation in [26].

EIF [21] Single-variable model with an exponential dependency. Has parameters
delta t for the sharpness of the curve, and theta rh as a cut-off
threshold for the upswing of the curve [26].

QIF [17] Single-variable model with a quadratic dependency. Has parameters a for
the steepness of the quadratic curve, and u c as the negative-to-positive
updates crossing point of the membrane potential [26].

AdEx [10] Two-variables model similar to the EIF, but with an adaptation variable.
It adds parameters a and b, respectively for adaptation-potential coupling
and adaptation increase upon spike emission.

IZ [30] Two-variables model similar to the QIF, but with an adaptation variable.
It adds parameters a for the time scale of the adaptation variable, b for
the sub-threshold sensitivity of the adaptation, and d for the adaptation
increase upon spike emission.

H-Neurons Heterogeneous versions of LIF, EIF, and QIF neurons with uniformly
distributed tau rc parameter

5 Conclusions

In this work we have presented a review of 9 Python frameworks for the devel-
opment of spiking neural networks oriented towards data science applications.
We have seen that several of them use PyTorch as a base to leverage the GPU
acceleration, to exploit the existing functionalities it offers, and to ease the tran-
sition for users that come from a conventional DL background. Nevertheless,
they all differ slightly in their implementations and in the SNN development
tools they offer. Other frameworks like Nengo and Lava do not have such a base,
but provide conversion methods to increase usability. This review also highlights
how, despite restricting our field of view to data science-oriented libraries, there
is a wide variety of frameworks. This is possibly due to growing interest that
SNNs have lately received, however this also reflects the lack of an established
and widespread framework like in the case of PyTorch or TF/Keras for conven-
tional DL. Finally, we report our extension to a specific framework, SpykeTorch,
that includes several new spiking neurons to use for simulations. Our additions
require a modification of the original workflow, but enable real-time processing
simulation with STDP. By doing this, we hope to promote and speed up future
research in this direction, as well as to contribute to the development of richer
software frameworks.
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Abstract. Energy market liberalization brings new opportunities, since
large consumers have direct access to energy trading to buy energy for
the next day. However, that requires a good estimation of the expected
amount of energy and its hourly distribution in advance. On the other
hand, smart energy meters are being installed in many facilities with
the aim of achieving holistic submetering systems. These systems consist
of a set of meters structured in several levels, so that there are hier-
archical relations among upstream and downstream meters. This infor-
mation could be exploited for achieving accurate one-day-ahead energy
predictions. However, submetering systems might be incomplete due to
unavailable meters or lost energy. In this paper, we propose a hierarchi-
cal prediction method for incomplete submetering systems that is based
on 2D convolutional neural network (2D CNN) and is able to perform
day ahead prediction of power consumption. This method exploits the
hierarchical relations among meters and considers periodicity in order
to forecast the power consumption for the next day. The proposed hier-
archical method has proved to be more accurate and fast to forecast
power consumption in incomplete submetering systems than using an
individual predictions.

Keywords: Hierarchical prediction · Power consumption ·
Submetering systems · Convolutional Neural Networks

1 Introduction

Since energy markets are liberalized, large consumers can resort to energy auc-
tions to buy the necessary energy for the next day. For that purpose, they need
to estimate in advance the amount of energy and its hourly distribution, since
energy prices vary each hour. Typically, energy trading takes place in the mid-
dle of each day (at noon). Thus, having an accurate one-day-ahead prediction
becomes vital for an adequate purchase. As a baseline prediction, buyers could
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use the energy consumption from the previous day or from the same day of the
past week, considering the periodicity of energy consumption. However, they
could make use of specific prediction methods to obtain the power consumption
with more accuracy.

It is interesting to note that smart energy meters are being installed in many
facilities, achieving holistic submetering systems [12]. These meters measure,
storage and communicate data [24] and are placed at strategic points in the
energy supply systems, establishing hierarchical relations among upstream and
downstream meters. Note that the sum of measurements from individual lower
meters should be equal to a measurement from the aggregated higher meter and
this information could be useful for achieving more accurate energy predictions.
In a submetering system, it could be also required to predict the energy con-
sumption in several downstream meters (bottom level), not only in the main one
(top level), i.e., energy consumption could be analyzed at a more granular level.
However, not all meters might be available in the submetering system or the
sum of individual consumption might not match with the aggregated consump-
tion due to lost energy. Therefore, classic bottom-up and top-down approaches
for hierarchical prediction would fail since they rely on complete submetering
systems.

For that reason, in this paper we propose a method to perform a hierarchical
prediction of the power consumption in incomplete submetering systems. This
method aims to yield forecasts which are coherent across the particular meters
at different levels of a submetering system. It is based on a convolutional neural
network that exploits the periodicity of the power consumption and the hierarchy
of the meters in the submetering system.

The structure of this paper is as follows: the state of the art is reviewed
in Sect. 2. The proposed method is presented in Sect. 3. Section 4 describes the
experiments, presents the results and discusses them. Finally, in Sect. 5, conclu-
sions are exposed.

2 Related Work

Energy prediction or load forecasting has become a key aspect for electricity
management. Although an accurate forecast in lower levels is more difficult than
in higher levels, the use of smart meters contributes to improve the performance
of prediction models. In general, several techniques for smart meter data analyt-
ics can be found in literature [2,26]. Other reviews have studied methods in load
forecasting [5], time-series [10], machine learning techniques for building load
prediction [28], or also focused on using artificial neural networks [17]. Assuming
the prediction problem as a time-series analysis, the autoregressive integrated
moving average (ARIMA) is a widely-used method [6]. The addition of exter-
nal variables to the model through exogenous inputs (ARIMAX) have improved
accuracy, e.g., the use of occupancy data allowed a slight improvement of the
accuracy when applied to the forecast of power demand in an office building
[19]. A methodology was also developed for forecasting daily electric power load
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in Kuwait [3] based on decomposition and segmentation of time-series analyzed
with methods such as moving average, exponential smoothing or ARIMA.

Other machine learning techniques have been studied for prediction of next
day electricity load in public buildings [11]. In that work, several models were
developed for energy forecasting of different equipment (air, lighting, power,
etc.), showing the support vector regression (SVR) model the best results. SVR
was also applied to develop a generic strategy for short-term load forecasting
[8], using feature selection and particle swarm global optimization for hyperpa-
rameter tuning, and for an energy forecasting model of multi-family residential
buildings in order to study the impact temporal and spatial granularity has on
model accuracy [13].

Artificial neural networks, including the advances of deep learning, have been
widely implemented to build energy prediction models [17], being feed forward
neural networks (FFNN) the most popular architecture because of its easy imple-
mentation. Since energy data are temporal-oriented, another preferred network
class is that of recurrent neural networks (RNN). They can be seen in examples
such as nonlinear autoregressive neural network with exogenous inputs (NARX)
applied to an institutional building [16], a hybrid model based on long short term
memory networks (LSTM) and an improved sine cosine algorithm to optimize
hyperparameters [23], and a Gate-Recurrent Unit (GRU) model [27]. Moreover,
convolutional neural networks (CNN) have been shown as an efficient time-series
model for day-ahead building-level load forecasting [7], which has also been used
in combination with fuzzy time-series analysis [21]. Being hybrid models an
alternative to enhance performance of other baseline methods, a common com-
bination includes RNN and CNN. For instance, a CNN-LSTM neural network
was proposed to extract spatial and temporal features [15], CNN with GRU was
used as an effective alternative in terms of preciseness and efficiency [22], and
RNN for past preservation and 1D convolutional inception module helped to
calibrate the prediction time and the hidden state vector values [14].

Finally, another approach for load forecasting is to consider the hierarchical
structure of the power grid. In [25], the load of a root node of a subtree was
forecasted using a wavelet neural network. The child nodes were categorized
based on similarities, so that the forecast of a regular child node was proportional
to the parent node load forecast, while the irregular child nodes were calculated
individually using neural networks. Another novel approach using hierarchical
information for load forecasting was proposed in [4], where three methods based
on combined aggregation (bottom-up aggregation, top-down aggregation and
regression aggregation) were devised to obtain overall consumption. Two case
studies were conducted and results showed that aggregative model combination
is an effective forecasting technique in smart grids.

3 The Proposed Method

Classic bottom-up and top-down approaches for hierarchical prediction require
complete data in all levels of the submetering system. Unlike them, the proposed



242 S. Alonso et al.

F
ig
.
1
.
H

ie
ra

rc
h
ic

a
l
p
re

d
ic

ti
o
n

b
a
se

d
o
n

C
N

N
.



Hierarchical Prediction in Incomplete Submetering Systems Using a CNN 243

method is able to predict the energy consumption for the next day in incom-
plete submetering systems. For that purpose, on the one hand, the method should
exploit the hierarchical structure of the data, i.e., the hierarchical relations among
upstream and downstream meters. On the other hand, it should also consider the
periodicity (daily,weekly,monthly, etc.) of energy consumption in order to perform
the day ahead prediction. Therefore, the method should learn both from hierar-
chical and temporal patterns. Figure 1 shows the proposed method, which is based
on 2D convolutional neural network (2D CNN) that processes time (hours of the
day) and levels of the hierarchy (submetering structure).

Let us define a submetering structure with L levels from the top to the bottom,
being N the total number of meters. The top level contains one main meter (M1)
and the bottom level includes NL meters (ML.1,ML.2, . . .ML.NL). Intermedi-
ate levels consist of different number of meters, i.e., N2, N3, N4, . . .. Each meter
provides hourly measurements of power consumption (24 samples per day). Let us
assume that there could be some zones without meters (where data are unavail-
able), especially in the intermediate and bottom levels, so the proposed method
could exploit existing data to predict the next power consumption.

Data from several previous days (D) is used due to the periodicity of the
power consumption. Therefore, input data contains hourly power consumption
of certain past days (D) for several meters (N) belonging to the submetering
structure. Width and height dimensions of the input data correspond to past
hours (24 ·D) and meters (N), respectively, so the size of the input will be (24 ·
D×N). In order to consider relationships among different levels of the hierarchy
L, the kernel height of the 2D convolutions should include all meters along this
dimension, so it should be fixed to N . On the contrary, different kernel widths
could be used in order to capture the periodicity of the power consumption,
so it will be an adjustable parameter (T ). Thus, the size of the kernel will be
T × N . Finally, the width of the strides in the convolutions should be equal
to kernel width (T ), avoiding overlap in time dimension (maximizing extracted
temporal patterns). Note that there are no strides in the meters dimension. The
output of the proposed method will be one day ahead prediction of hourly power
consumption for several meters, so its size is (24 ×N).

The proposed method comprises an input layer whose dimensions (width and
height) are past hours and meters (24 · D × N). A unique channel is used. The
main layer is based on a 2D CNN layer in which the input is convolved with the
kernel (T ×N) producing the output filters with dimension 24 ·D/T . The kernel
must include all meters, so the height dimension of the convolution must be equal
to number of meters (N). Furthermore, with the aim of extracting independent
temporal patterns along the day, the strides must have the same width dimension
(hours) than the kernel (T ). Relu activation function will be added to process non-
linearities. Then, the output of the 2D CNN is flattened (Filters×24·D/T ). Next,
a dense layer is required to combine all features, so every features should influence
each value of the output vector. The number of neurons should be multiple of num-
ber of ahead predicted hours and meters (24 · N). A linear activation function is
used here in order to provide the predictions. Finally, an output layer reshapes the
output data to (24 ×N) dimensions.
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Table 1. Electrical meters at the Hospital of León used in the experiments.

Meter No. Meter location Submetering level

#0 Main supply Level 0

#1 Module 10 Level 2

#2 North Zone Elevators Level 3

#3 Module 2 Level 2

#4 North Zone HVAC Level 3

#5 Module 3 Level 2

#6 South Zone Elevators Level 3

#7 Air Handling Units Level 3

4 Experiments and Results

4.1 Submetering System and Dataset

The submetering system deployed in the Hospital of León [18] is used to assess the
proposed approach.This system consists ofmore than 30 electricalmeters installed
in several strategic points of the electricity supply system (in themain supplypoint,
in transformation centers, in the distribution panels, etc.) To perform the experi-
ment, 7 representative submeters corresponding to zones with high consumption
(more than 10% of the total consumption each) were selected among those subme-
ters. This experiment design shows the ability of the proposed approach to be used
even for incomplete submetering systems. Table 1 lists the representative meters.
Although these meters measure and store several variables, only power consump-
tion [KW] is used in the experiments. Power datawere collected from2018March to
2019 July using a sampling period of 1 min. Daily electricity profiles were obtained
by resampling data each 1 h. Therefore, the size of the dataset is 507 electricity pro-
files with 24 samples from 8 m (including the main meter).

4.2 Experiments

The dataset was standardized between [-1, 1] and split into training, validation and
test datasets. Data corresponding to 1 year (365 d, 72%) were used to train and
validate the proposed approach and the remaining data (142 d, 28%) were used
to test it. Weekly periodicity was considered, by setting D to 7 past days. A 3-fold
cross-validation was performed to tune the hyperparameters of the hierarchical 2D
CNN. The hyperparameters were the number of filters, the kernels and the strides
of the convolutions. After several preliminary runs, a range of hyperparameters
was established and then, a grid search was performed. The number of filters were
chosen between 8 and 128 and the kernels and strides were chosen between 24 and
3 h, i.e., from (24,8) to (3,8) for the kernel and (24,1) to (3,1) for the strides. Filters,
kernel and strides were established to 64, (24,8) and (24,1), respectively, through
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Table 2. Prediction errors using the validation dataset (average values).

Filter Kernel Strides Average Forecasting

RMSE MAE

Hierarchical Individual Hierarchical Individual

8 24 24 35.32 ± 1.02 39.43 ± 0.37 23.64 ± 0.16 26.17 ± 0.42

12 12 33.42 ± 0.69 36.90 ± 0.84 21.62 ± 0.41 23.38 ± 0.54

8 8 33.82 ± 0.85 36.47 ± 0.95 22.15 ± 0.51 23.12 ± 0.67

6 6 33.54 ± 1.16 35.77 ± 0.58 21.90 ± 0.98 22.49 ± 0.49

3 3 33.45 ± 0.66 35.22 ± 0.84 21.93 ± 0.27 21.92 ± 0.57

16 24 24 34.05 ± 0.61 36.38 ± 0.82 22.81 ± 0.50 22.90 ± 0.69

12 12 33.17 ± 1.25 35.44 ± 0.60 21.60 ± 0.66 22.02 ± 0.60

8 8 33.03 ± 1.42 34.89 ± 0.93 21.33 ± 0.71 21.63 ± 0.60

6 6 33.39 ± 0.85 35.48 ± 0.65 21.60 ± 1.05 21.87 ± 0.39

3 3 34.04 ± 0.45 34.84 ± 0.84 22.05 ± 0.54 21.34 ± 0.49

32 24 24 33.28 ± 0.99 35.14 ± 0.66 21.58 ± 0.74 21.40 ± 0.39

12 12 32.68 ± 1.35 34.76 ± 0.60 21.03 ± 0.48 21.35 ± 0.30

8 8 33.61 ± 0.96 34.68 ± 0.59 21.66 ± 0.56 21.39 ± 0.55

6 6 33.50 ± 1.18 34.84 ± 0.74 21.74 ± 0.85 21.49 ± 0.44

3 3 34.08 ± 1.75 35.07 ± 0.74 22.05 ± 0.77 21.65 ± 0.25

64 24 24 32.56 ± 1.16 35.14 ± 0.75 20.95 ± 0.69 21.58 ± 0.27

12 12 34.22 ± 0.98 34.75 ± 0.48 22.32 ± 0.84 21.39 ± 0.25

8 8 34.51 ± 1.61 34.86 ± 0.30 22.56 ± 0.70 21.57 ± 0.20

6 6 34.81 ± 1.30 34.79 ± 0.73 22.30 ± 0.89 21.27 ± 0.50

3 3 34.34 ± 1.46 35.58 ± 0.28 22.32 ± 0.38 22.08 ± 0.39

128 24 24 33.30 ± 1.39 34.60 ± 0.66 21.78 ± 0.22 21.09 ± 0.52

12 12 34.91 ± 1.24 35.07 ± 0.42 22.27 ± 0.13 21.57 ± 0.21

8 8 35.94 ± 0.60 35.06 ± 0.82 23.85 ± 0.68 21.54 ± 0.62

6 6 35.78 ± 1.95 35.53 ± 0.47 23.17 ± 0.67 21.81 ± 0.28

3 3 34.54 ± 0.45 35.46 ± 0.97 22.43 ± 0.22 22.05 ± 0.63

cross-validation.An individual 2D CNN per meter was also trained in order to com-
pare both methods. Using the same procedure, filters, kernel and strides were set
to 128, (24,1) and (24,1), respectively. Training epochs were set to 50 for all models
(hierarchical and individual ones).

The experiments were executed on a PC equipped with an Intel Core i7-6700
3.40GHz CPU and 16GB RAM. Python 3.10.6, Keras 2.10.0 [9], Tensorflow
2.10.0 [1], pandas 1.5.1 and scikit-learn 1.1.3 [20] are used to implement them.

4.3 Results and Discussion

RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) have been
chosen as evaluation metrics. Table 2 shows the result of the validation pro-
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Table 3. Prediction errors with the optimal hyperparameters using the validation
dataset.

RMSE MAE

Hierarchical Individual Hierarchical Individual

Filters 64 128 64 128

Kernel 24 24 24 24

Strides 24 24 24 24

Meters #0 105.76 ± 5.36 113.88 ± 6.53 71.62 ± 2.23 73.75 ± 3.49

#1 25.03 ± 1.86 26.12 ± 1.26 16.08 ± 1.20 16.61 ± 1.00

#2 6.42 ± 0.44 6.20 ± 0.24 3.79 ± 0.12 3.69 ± 0.16

#3 71.29 ± 4.20 76.47 ± 4.88 48.13 ± 4.44 46.89 ± 4.82

#4 3.88 ± 0.38 3.13 ± 0.32 2.70 ± 0.18 2.04 ± 0.14

#5 34.84 ± 3.21 37.46 ± 1.57 17.08 ± 0.73 17.93 ± 0.35

#6 6.83 ± 0.82 7.35 ± 0.32 3.29 ± 0.20 3.44 ± 0.17

#7 6.47 ± 0.11 6.20 ± 0.41 4.86 ± 0.11 4.36 ± 0.23

#Avg 32.56 ± 1.16 34.60 ± 0.66 20.95 ± 0.69 21.09 ± 0.52

cess. The prediction average errors for the 8 m were computed. The hierarchical
method yields the lowest errors (RMSE and MAE) using 64 filters, (24,8) kernel
and (24,1) strides. The average prediction errors are 32.56±1.16 and 20.95±0.69,
respectively. On the contrary, the individual method provides the lowest errors
(RMSE and MAE) using 128 filters, (24,1) kernel and (24,1) strides. The aver-
age prediction errors are 34.60 ± 0.66 and 21.09 ± 0.52, respectively. Note that
the hierarchical method yields slightly higher errors than the individual method.
These optimal hyperparameters are used for hierarchical and individual methods
in order to compare validation and test results for each meter.

Table 3 shows the prediction errors for each meter using the validation
dataset. As it can be seen, the hierarchical method provides lower RMSE errors
for five meters (#0, #1, #3, #5, #6) whereas the individual method only has
lower RMSE errors for three meters (#2, #4, #7). According to MAE, the hier-
archical method is lower for four meters (#0, #1, #5, #6) and the individual
method also yields lower errors for other four meters (#2, #3, #4, #7).

Table 4 shows the prediction errors for each meter using the test dataset.
Average values were also computed. The hierarchical method gives an average
RMSE error of 39.02 whereas the individual method yields a higher value (40.16).
However, the hierarchical method provides slightly higher average MAE error
(26.08) than the individual method (25.57). As expected, test average errors
are higher than validation average errors (both RMSE and MAE errors), so
there exist coherence in the results. Analyzing each meter, it can be stated the
hierarchical method provides lower RMSE errors for five meters (#1, #2, #3,
#5, #6) whereas the individual method only has lower RMSE errors for three
meters (#0, #4, #7). Regarding to MAE error, the hierarchical method provides
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Table 4. Prediction errors using the test dataset.

RMSE MAE

Hierarchical Individual Hierarchical Individual

Filters 64 128 64 128

Kernel 24 24 24 24

Strides 24 24 24 24

Meters #0 148.50 148.04 96.91 97.36

#1 25.48 27.42 18.65 18.18

#2 6.47 6.61 4.29 4.32

#3 80.18 85.43 57.17 57.34

#4 4.94 3.47 3.74 2.51

#5 31.61 36.83 17.76 17.16

#6 6.39 7.72 3.30 3.44

#7 8.58 5.76 6.82 4.25

#Avg 39.02 40.16 26.08 25.57

lower errors for four meters (#0, #2, #3, #6) and the individual method also
yields lower errors for other four meters (#1, #4, #5, #7).

As expected, meter #0 in the top level of the hierarchy has the highest RMSE
and MAE errors (using validation and test datasets). In contrast, meters #2,
#4, #6, #7 in the bottom level possess the lowest RMSE and MAE errors.
Thus it can be remarked, meters located in a a higher level of the submetering
structure measure more power consumption and, consequently, their prediction
errors are greater.

In addition to the errors, training and inference times were evaluated. Train-
ing a hierarchical method takes only 2.68 s whereas training an individual method
per meter takes 10.58 s in total, i.e., an average time of 1.32 s per model. On the
other hand, the hierarchical method is able to predict the test dataset in 0.14 s
whereas forecasting the test dataset for each meter using the individual method
lasts 0.84 s in total. Therefore, it can be remarked the hierarchical method can
predict faster with acceptable errors. In short, the hierarchical method provides
predictions either comparable or slightly superior to those provided by the indi-
vidual method, but more efficiently.

Although the proposed hierarchical method is able to perform accurate and
fast predictions of the power consumption in incomplete submetering systems, it
presents some drawbacks. Figure 2 shows the prediction of the power consump-
tion for different zones (#0-main supply, #6-south elevators and #7-air han-
dling units) using both hierarchical and individual methods during one week.
Note that, selected meters #0, #6 and #7 are located at different levels of the
submetering structure (level 0 or top and 3 or bottom). For meter #0, it can
be seen that there are small differences between hierarchical prediction (in red)
and individual prediction (in green), nevertheless, the hierarchical prediction is
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Fig. 2. Prediction of the power consumption in different meters.

closer to the real data (in blue), since it is more accurate than individual predic-
tion. However, both predictions clearly fail when forecasting power consumption
for a holiday (samples between 1080 and 1110). That is due to the fact that
both methods use a similar kernel (24-width) that learns periodic patterns of
the past power consumption, but not singular behaviours. Meter #6 shows the
same problem, since the use of elevators depends on the activity in the building
(there are few people on holidays). On the contrary, air handling units work
continuously during a year (heating and cooling), so both methods are able to
predict power consumption more accurate corresponding to meter #7. Thus,
it leads to the conclusion that exogenous variables (holidays, activity, occupa-
tion, etc.) should be introduced to the model in order to take into account this
scenario.

Another drawback of the proposed hierarchical method is dealing with noise
introduced by some meters, which is especially true for those located at the
bottom level, which measure lower power consumption. In this paper, seven
representative submeters measuring high power consumption have been used,
discarding the remaining ones. The proposed method should be able to tackle
this problem by filtering the noise and extracting the meaningful patterns.

5 Conclusions

In this paper, we propose a hierarchical prediction method for incomplete sub-
metering systems. It is based on 2D convolutional neural network (2D CNN) and
is able to perform day ahead prediction of the power consumption. This method
exploits the hierarchical relations among meters (submetering structure) and
considers the periodicity (temporal patterns) of the power consumption in order
to forecast the power consumption for the next day.
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The proposed hierarchical method has proved to be more accurate and effi-
cient for forecasting power consumption in incomplete submetering systems than
using an individual method for each meter. RMSE errors are lower for the most
of the meters and MAE errors are at least similar. Furthermore, both training
and predicting times are much shorter.

As future work, a dilated CNN could be trained to create dependencies among
power consumption corresponding to the same previous hours, considering differ-
ent periodicities (daily, weekly, monthly, etc.) in one step. Furthermore, exoge-
nous variables could be processed by the method in order to improve the predic-
tions, especially those corresponding to singular consumption patterns, such as
holidays. The method should also be adapted to filter the noise corresponding to
lower power consumptions and to exploit all available meters in the submetering
system. Additionally, the results and subsequent discussion could be extended
by considering longer or shorter previous samples, by predicting more values
ahead (e.g., two days ahead) or by analyzing errors in different levels of the
submetering structure.
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Abstract. The Internet of Things (IoT) has rapidly emerged as a cru-
cial driver of the digital economy, generating massive amounts of data.
Machine learning (ML) is an important technology to extract insights from
the data generated by IoT devices. Deploying ML on low-power devices
such as microcontroller units (MCUs) improves data protection, reduces
bandwidth, and enables on-device data processing. However, the require-
ments of ML algorithms exceed the processing power, memory, and energy
consumption capabilities of these devices. One solution to adapt ML net-
works to the limited capacities of MCUs is network pruning, the process
of removing unnecessary connections or neurons from a neural network. In
this work, we investigate the effect of unstructured and structured prun-
ing methods on energy consumption. A series of experiments is conducted
using a Raspberry Pi Pico to classify the FashionMNIST dataset with a
LeNet-5-like convolutional neural network while applying unstructured
magnitude and structured APoZ pruning approaches with various model
compression rates from two to 64. We find that unstructured pruning out
of the box has no effect on energy consumption, while structured prun-
ing reduces energy consumptionwith increasingmodel compression.When
structured pruning is applied to remove 75 % of the model parameters,
inference consumes 59.06 % less energy, while the accuracy declines by
3.01 %. We further develop an adaption of the TensorFlow Lite frame-
work that realizes the theoretical improvements for unstructured prun-
ing, reducing the energy consumption by 37.59 % with a decrease of only
1.58 % in accuracy when 75 % of the parameters are removed. Our results
show that both approaches are feasible to significantly reduce the energy
consumption of MCUs, leading to various possible sweet spots within the
trade-off between accuracy and energy consumption.
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1 Introduction

Driven by the shift towards Industry 4.0 and the Internet of Things (IoT),
machine learning (ML) on edge devices has gained increasing attention. It has
huge potential to increase energy efficiency, privacy, responsiveness, and auton-
omy of edge devices. Until today, research in edge ML has focused mainly
on mobile devices, but there is also a lot of interest in microcontroller-based
devices [2]. Tiny machine learning (TinyML) brings machine learning to low-
power devices such as microcontroller units (MCUs), enabling many new appli-
cations. However, this area also brings challenges [2]. The most critical chal-
lenge is that microcontrollers have few computational resources compared to
traditional ML devices. Exemplary, the RP20401 microcontroller, developed by
Raspberry Pi Foundation has 264KB of SRAM, a dual-core ARM Cortex-M0+
CPU with 133MHz clock frequency, and 2MB of flash memory. Most of today’s
deep learning models exceed the storage capacity of such MCUs. Additionally,
TinyML systems often use batteries to enable applications like augmented real-
ity glasses [2]. To achieve a long battery life of these systems, very low energy
consumption is crucial.

Neural network pruning is a promising approach to simultaneously tackle
restrictions regarding storage capacity and energy consumption. It refers to the
deletion of selected connections, nodes, or layers of neural networks to improve
memory usage and computational efficiency while having moderate to no effects
on the accuracy [6], robustness [17], and explainability [21]. It is conceivable that
the energy consumption of MCUs decreases when the deployed neural network is
pruned. We run a series of experiments to examine the impact of neural network
pruning on the energy consumption of a convolutional neural network (CNN)
for two types of neural network pruning and nine compression rates.

Our contribution is twofold. First, we show that structured neural network
pruning out of the box decreases the energy consumption of the CNN, while
unstructured pruning does not substantially decrease the energy consumption of
the CNN. Further, we propose an adaption to the matrix multiplication method
of the TensorFlow Lite framework that allows realizing of theoretical improve-
ments regarding the inference time and the energy consumption. The remainder
of this work is structured as follows. The next section introduces the theoretical
concepts relevant to this work. Section 3 describes our initial experiments, whose
results are presented in Sect. 4. In Sect. 5, we propose our approach to realize the
theoretical improvements of unstructured pruning with TensorFlow Lite before
we conclude our work in Sect. 6.

2 Theoretical Background

In this section, we provide a brief background on TinyML and neural network
pruning, two important areas of machine learning research due to their potential
in deploying ML models on resource-constraint devices.
1 https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf.

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
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2.1 TinyML

TinyML is a paradigm that deals with ML models running on ultra-low-power
devices like embedded systems [2,18]. Today’s ML models are frequently hosted
on cloud systems that offer powerful hardware systems, but they frequently expe-
rience challenges with excessive energy consumption, privacy concerns, latency,
and reliability issues. TinyML enables microcontroller units to process data on-
chip instead of outsourcing the computation to external cloud systems. This
results in better energy efficiency, improved privacy, low latency, and minimal
connectivity dependencies [18].

The main challenges TinyML systems are facing are energy constraints and
computational resources (CPU power and memory capacity). TinyML systems
often rely on limited energy sources to keep the energy consumption as low as
possible, such as batteries in the range of 10 – 100mAh or on energy-harvesting
approaches. Additionally, dedicated hardware accelerators and compact software
are used to tackle these restrictions [18]. Due to limited hardware capacities,
TinyML systems can have as little as four orders of magnitude less processing
power available compared to typical ML systems [2]. Most CPUs used in TinyML
systems have a clock speed of 10 – 1000MHz [18].

2.2 Neural Network Pruning

Network pruning involves removing unnecessary parameters from a deep neural
network (DNN) to reduce storage, memory usage, and computational resources.
Overparameterization is common in modern NNs, resulting in redundancy in
the models and excessive resource requirements. However, carefully selecting the
parameters to be pruned, i.e. removed, can not only minimize resource require-
ments but also improve accuracy. This highlights the significance of network
pruning in optimizing the performance and efficiency of DNNs [4,7]. Neural net-
work pruning was initially proposed in 1989 by LeCun et al. [16] and later refined
by Hassibi et al. [8].

Multiple methods exist to create a pruned model from an untrained model [3].
Most of them follow or derive from the algorithm described by the researchers
in [5]. For generalization, Blalock et al. defined four dimensions to categorize
different pruning methods: structure, scoring, scheduling, and fine-tuning [3].

The pruning structure defines whether individual or grouped parameters are
removed [3,7]. In unstructured pruning, parameters with lower importance are
set to zero, resulting in a sparse network. The size of the network with respect to
the number of parameters stays the same [3]. Without modern libraries or hard-
ware, the computational effort is not reduced [7]. Structured pruning removes
entire neurons, filters, or channels, resulting in a new network structure with
fewer parameters [3]. To select parameters with lower importance, different scor-
ing methods are used. This selection is performed either globally or locally with
different strategies. Furthermore, the selection is distinguished whether the selec-
tion is weight-based or activation-based [10]. Scheduling refers to when pruning
is applied. Pruning can be conducted in small pruning steps or in one big step [3].
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It is common to continue training after pruning, a process referred to as fine-
tuning. One approach is to reinitialize the network. Another approach is to
continue with the previously trained parameters [3].

Even though previous work considered the energy efficiency of pruned neural
networks [7, e.g.], to the best of our knowledge, no work has examined this issue
in the context of MCUs, that come with their own specific implications.

3 Experiments

The aim of this section is to evaluate the impact of model pruning on energy con-
sumption. Specifically, the effect of various levels of network pruning on energy
consumption will be measured while running a model with an architecture sim-
ilar to the LeNet-5 model [15] on the RP2040 microcontroller. This will provide
insights into the energy-efficiency trade-offs of model pruning. As recommended
in [3], the model compression rate is defined as follows:

CR :=
original number of parameters

new number of parameters
(1)

The consumed energy of the MCU is given as a scaled value in joules and depends
on the CR in the experiment.

3.1 Experimental Setup

A Raspberry Pi Pico (RPP) was selected as the MCU under analysis as its ARM
Cortex-M0+ architecture is the most energy-efficient in the ARM Cortex-M
series. To measure the current IµC consumed by the MCU we apply the widely
used approach of a shunt resistor with a dimension of Rshunt = 1Ω [12]. The
consumed energy is calculated by E =

∫ t2
t1

v(t) · i(t) dt . The voltage drop on
the shunt resistor Rshunt is measured by an oscilloscope. The image data is
transmitted to the RPP via the Universal Asynchronous Receiver Transmitter
(UART) interface. The schematics of the measurement setup is shown in Fig. 2
in Appendix A.

Due to the limited resources of the Raspberry Pi Pico the Fashion-MNIST
dataset2, a standard dataset commonly used in research, is selected for compa-
rability. The dataset consists of 60 000 training images and 10 000 test images
of garments distributed over ten distinct classes (T-shirt/top, Trouser, Pullover,
Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). Each image has a size of
28× 28 pixels with one channel.

The model architecture is based on the architecture of a LeNet-5 network [15].
To reach a compression rate of up to 64, the architecture was modified. The first
convolutional layer was increased to twelve channels (from six) and the second
layer to 32 channels (from 16) to prevent the accidental removal of all channels
in a single layer. The remaining layer dimensions remain unchanged, resulting
2 https://github.com/zalandoresearch/fashion-mnist .

https://github.com/zalandoresearch/fashion-mnist
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in a model architecture with 110 742 parameters. For the model training, we
follow the authors of [13,20]. Therefore, we use the categorical cross entropy loss
function, the RMSprop optimizer and an early stopping callback (based on the
model’s validation accuracy).

We implement one unstructured and one structured pruning approach to
the model. Both approaches are applied iteratively, globally, and the models are
fine-tuned after each pruning step with the remaining weights. For unstructured
pruning the weights are selected based on their magnitude [7] and for structured
pruning we apply the average percentage of zero (APoZ) approach [11]. The set
of compression rates to be examined is {2, 3, 4, 8, 16, 24, 32, 48, 64}.

3.2 Implementation

The models are implemented in TensorFlow [1]. Unstructured pruning is con-
ducted with the TensorFlow pruning utility and structures are eliminated from
the network with the keras-surgeon3 library before the model is converted into
a TensorFlow Lite model. To run the pruned models on the RPP, we use the
MicroInterpreter from the TensorFlow Lite framework. Image samples are trans-
mitted to the RPP via the UART interface. After the image is received, the model
classifies it, and the RPP returns the predicted class. To increase the accuracy of
the energy and time measurements, we classify 30 different images and average
over all results. During the classification, we utilize an oscilloscope to observe the
current consumed by the RPP. Eventually, we calculate the consumed energy as
described in Sect. 3.1. The accuracy values are computed for the whole testset.

4 Experimental Results

This section summarizes the results of our experiment described in the previ-
ous section. We analyze both pruning approaches with regard to the models’
accuracy, inference speed, and energy consumption. The results are illustrated
in Fig. 1. Further, we provide a table of all results in Appendix B.

Figure 1a shows that both, unstructured and structured pruning decrease the
accuracy moderately for compression rates up to four. The base models have accu-
racy values from 89.37% to 89.29%. We report a decrease in accuracy of approxi-
mately 1.6% (unstructured pruning) and 3.0% (structured pruning), respectively.
For lower compression rates, unstructured pruning leads to slightly better accuracy
values, while beyond this point the accuracy of the unstructured pruned model
decreases faster. At a maximum compression rate of 64, the compressed model
using unstructured pruning achieves an accuracy of 42.9% while the model pruned
with structured pruning reaches 77.4%. These findings are in line with existing
research that has shown that moderate pruning does not reduce a model’s accu-
racy significantly, while extensive pruning leads to a sharp decrease in the model’s
performance. However, no increase in accuracy was observable for moderate prun-
ing which contrasts prior work (e.g. [9,11,17]), but this might be due to the small
network capacity considering the problem difficulty.
3 https://github.com/BenWhetton/keras-surgeon/tree/b0b892988e725b9203afc48e639c49d06155

b59b.

https://github.com/BenWhetton/keras-surgeon/tree/b0b892988e725b9203afc48e639c49d06155b59b
https://github.com/BenWhetton/keras-surgeon/tree/b0b892988e725b9203afc48e639c49d06155b59b
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Fig. 1. Overview of the results comparing unstructured pruning, structured pruning,
and unstructured pruning with our framework adaption.

The base model has an inference time of 1.29 s. In Fig. 1b it is visible that the
inference time for the model pruned with unstructured pruning (blue) remains
steady over all compression rates. In contrast, the inference time of the model
pruned with structured pruning (red) decreases linearly with an increasing com-
pression rate, reaching a low of 27 milliseconds at a compression rate of 64.

Figure 1c shows that the energy consumption of one inference run evolves
similarly to the inference time with increasing model compression. The base
model consumes 149mJ. Unstructured pruning slightly increases the expenditure
up to 154mJ for a compression rate of 64, while structured pruning leads to a
linear decrease down to 4mJ, effectively reducing the consumption by 97%.

Finally, Fig. 1d shows the trade-off between energy consumption and accu-
racy. Data points to the upper left are strictly more desirable as they relate to
higher accuracy and lower energy usage. It is visible that structured pruning



Optimizing Energy Efficiency in IoT with Neural Network Pruning 257

(red) outperforms the unstructured approach (blue) in every instance, due to
the non-reduced energy consumption of unstructured pruning.

5 Unstructured Pruning Speedup

In order to exploit the potential of unstructured pruning for low compression
rates where it outperforms the structured approach accuracy-wise we analyze
why unstructured pruning does not improve energy consumption. We propose an
optimization of the TensorFlow Lite framework to partially realize its theoretical
improvements.

5.1 Performance Bottleneck and Improvements

The implementation of the dense layer involves a multiply-accumulate (MAC)
operation nested within three loops and includes an activation function. The
runtime complexity of the three nested loops is O(din · dout · b), where din is
the input depth, dout is the output depth, and b is the number of batches. In
numerical terms, the base model necessitates 10 692 MAC operations for the
dense layers.

Concerning the convolutional layer, we first describe the calculation of a
single feature map at a specific location in the image. The calculation consists of
a MAC operation nested within three loops. Therefore, the runtime complexity
of calculating a single feature map at one location is O(din · fx · fy), where fx
is the filter width, and fy is the filter height. This feature map calculation is
required on every location in the image and for every channel, leading to a total
runtime complexity of O(din ·fx ·fy ·dout ·xout ·yout · b), where xout is the output
width, and yout is the output height. In numerical terms, the unpruned model
needs 491 184 MAC operations for a convolutional layer to calculate the output.

Weights that are removed by unstructured pruning are set to zero, neverthe-
less, each activation calculation is performed regardless of whether the weight
was removed by unstructured pruning and therefore its value was set to zero, or
not. Therefore, no reduction in energy consumption is achieved when unstruc-
tured pruning is utilized. The idea of our framework improvement is to skip
costly MAC operations for zero-weights and thereby reducing the number of
MAC operations. A TensorFlow Lite floating-point model is represented using
IEEE-754 floating-point numbers. Simply checking weights for zero would require
complex floating-point comparisons. To avoid this, we only check the exponent of
the IEEE-754 representation for zero, resulting in a more efficient check without
floating-point comparisons. As a consequence, numbers with a zero exponent but
with a non-zero fraction part are also classified as zero in our check. This simpli-
fication classifies numbers in the range [-1.17549421069e-38, 1.17549421069e-38]
as zero. However, as low-magnitude weights are commonly removed by pruning,
especially with low-magnitude pruning as used in our case, this effect is negligi-
ble. Eventually, for zero-valued weights we skip computing the product between
the weight and the corresponding activation of the previous layer, resulting in
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Listing 1.1. TensorFlow Dense layer implementation4. The dark-gray code lines (5–6)
were replaced by our improvement (light-gray, 7–10).

1 for (int b = 0; b < batches; ++b) {

2 for (int out_c = 0; out_c < output_depth; ++out_c) {

3 float total = 0.f;

4 for (int d = 0; d < accum_depth; ++d) {

5 total += input_data[b * accum_depth + d] * // TensorFlow code

6 weights_data[out_c * accum_depth + d];

7 const float fWeight = weights_data[out_c * accum_depth + d]; // improved dense layer

8 if (float_check_exponent_not_zero(fWeight)) { // with zero weights

9 total += input_data[b * accum_depth + d] * fWeight;

10 }

11 }

12 float bias_value = 0.0f;

13 if (bias_data) {

14 bias_value = bias_data[out_c];

15 }

16 output_data[out_c + output_depth * b] = ActivationFunctionWithMinMax(

17 total + bias_value, output_activation_min, output_activation_max);

18 }

19 }

Listing 1.2. Simplified IEEE-754 zero check added to common.h5.
1 inline bool float_check_exponent_not_zero(float f) {

2 short* p = (short*)&f;

3 p++;

4 short c = *p;

5 c = c << 1;

6 char* pe = (char*)&c;

7 pe++;

8 char e = *pe;

9 return e != 0;

10 }

a significant runtime improvement. The improved performance is evident in the
code block of Listing 1.1, which highlights the optimizations we implemented
for the dense layer to reduce the number of MAC operations. Our simplified
exponent zero-check is illustrated in Listing 1.2. The improvement for the con-
volutional layer is implemented analogous.

5.2 Results

Applying the framework optimization described in the previous subsection leads
to the following result: As expected, the imprecision of minor values around zero
4 https://github.com/tensorflow/tensorflow/blob/b6fee828d995ae13d6083e37b597df766904cacd/

tensorflow/lite/kernels/internal/reference/fully_connected.h
5 https://github.com/tensorflow/tensorflow/blob/b6fee828d995ae13d6083e37b597df766904cacd/

tensorflow/lite/kernels/internal/common.h

https://github.com/tensorflow/tensorflow/blob/b6fee828d995ae13d6083e37b597df766904cacd/tensorflow/lite/kernels/internal/reference/fully_connected.h
https://github.com/tensorflow/tensorflow/blob/b6fee828d995ae13d6083e37b597df766904cacd/tensorflow/lite/kernels/internal/reference/fully_connected.h
https://github.com/tensorflow/tensorflow/blob/b6fee828d995ae13d6083e37b597df766904cacd/tensorflow/lite/kernels/internal/common.h
https://github.com/tensorflow/tensorflow/blob/b6fee828d995ae13d6083e37b597df766904cacd/tensorflow/lite/kernels/internal/common.h
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does not impact the model’s accuracy. Therefore the curves for unstructured
pruning with and without the framework adaption are identical in Fig. 1a. How-
ever, the adaption causes a significant improvement in terms of inference time
(Fig. 1b) and energy consumption (Fig. 1c). Specifically, for a compression rate
of four, the energy consumption is 88mJ which amounts to a decrease of 40%
compared to standard unstructured pruning and is only 27mJ higher than the
structured approach. When applying compression at the rate of 64 the model
consumes 68mJ, which is a decrease of 56% relative to the standard approach
but still one order of magnitude higher than structured pruning.

The results with regard to the inference time are similar: at the compres-
sion rate of four, inference takes 0.745 s, which is a 37% decrease compared to
standard unstructured pruning and only 0.227 s slower than the structured app-
roach. For a compression rate of 64, inference takes still 0.569 s, which is an 57%
improvement over the standard approach, but again one order of magnitude
higher than the structured approach.

Obviously, these improvements do influence the trade-off between accuracy
and energy consumption. Figure 1d shows that unstructured pruning with our
proposed framework improvement is strictly better than standard unstructured
pruning, and is superior to structured pruning in some cases.

6 Conclusion

This work analyzes the impact of pruning convolutional neural networks in the
TinyML domain on energy consumption. In detail, unstructured and structured
pruning approaches are applied to a LeNet-5-like network. We perform infer-
ence on a Raspberry Pi Pico, which uses an RP2040 chip and measure energy
consumption, inference speed, and accuracy on the FashionMNIST dataset. Our
results show that structured pruning out of the box decreases energy consump-
tion and inference time up to over 97% for a compression rate of 64, while
standard unstructured pruning has no (positive) impact on energy usage and
inference speed.

We further analyze why unstructured pruning did not improve energy con-
sumption in our experiment setting and found that the computationally expen-
sive MAC operations are also performed for zero-valued weights. As the examined
ARM Cortex-M0+ architecture does not have a floating-point unit, all floating-
point operations are emulated by software. Therefore we develop an adaption
of the TensorFlow implementation, where all MAC operations with zero-valued
weights are suppressed. This results in a substantial speedup and reduction of
energy usage. Checking weights, represented in the IEEE-754 format, for zero
would also induce a costly floating point operation. To make the check as effi-
cient as possible, only the exponent of the weight is checked for zero. With this
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optimization, we achieve a reduction of up to 54% in energy consumption and
inference speed for a compression rate of 64 compared to standard unstructured
pruning.

6.1 Recommendations

Our experiments show that out of the box, structured pruning provides a sig-
nificant improvement in energy consumption, while unstructured pruning does
not. However, with our framework adaption, we also realize improvements in
inference speed and energy consumption for unstructured pruning. This results
in situations where the trade-off between accuracy and energy consumption is
more favorable when unstructured magnitude pruning is applied. That is, while
for higher compression rates > 8, structured pruning is favorable in terms of
both accuracy and energy consumption, for lower compression rates, unstruc-
tured pruning with our framework adaption provides a feasible option to decrease
energy consumption without offering up significant classification performance.

While only one unstructured pruning approach – magnitude-based pruning –
was examined in this work, it is noted that our framework adaption will increase
the efficiency of other methods (on the same hardware). This is especially notable
as research [17,19] shows that in other settings, unstructured pruning approaches
outperform structured pruning for a wide range of compression rates with stable
accuracy values for high compression rates. Nevertheless, it must be considered
that strong compression reduces the model’s accuracy when deciding on the
trade-off between energy consumption, inference speed and accuracy.

6.2 Delimitation and Further Research

As this work analyzes only the impact of pruning on the energy consumption
of a CNN on the Raspberry Pi Pico , further research is necessary to answer
whether the observed results are generalizable to other network architectures,
pruning methods, data sets, and microcontroller architectures, with and with-
out hardware FPUs. Furthermore, the influence of a hardware FPU should be
investigated, as well as the application of network quantization, which has the
potential to improve energy consumption [14], especially for MCUs without hard-
ware FPU. Finally, it should be investigated whether the performed adaptation
of the TensorFlow Lite framework is also applicable to quantized networks.
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A Measurement Setup

Fig. 2. Measurement setup to measure the energy consumption of the Raspberry Pi
Pico during execution. Both the oscilloscope and the USB-to-UART converter are
connected to a PC, which evaluates the results.

B Experimental Results

Table 1. Results of the conducted experiments. Classification accuracy, energy con-
sumption and inference time are measured for various compression rates (CR) for three
different pruning techniques each: unstructured magnitude pruning (UMP), average
percentage of zero structured pruning (APoZ SP), and unstructured magnitude prun-
ing with our adaption (UMP-A).

CR Accuracy [%] Energy Consumption [J] Inference Time [s]
UMP APoZ SP UMP-A UMP APoZ SP UMP-A UMP APoZ SP UMP-A

1 89.37 89.29 89.37 0.149 0.149 0.141 1.292 1.292 1.313

2 88.79 86.89 88.79 0.146 0.081 0.107 1.289 0.713 0.935

3 88.48 87.22 88.48 0.144 0.072 0.094 1.289 0.609 0.808

4 87.79 86.28 87.79 0.146 0.061 0.088 1.290 0.518 0.745

8 84.21 83.31 84.21 0.147 0.043 0.076 1.297 0.361 0.652

16 76.10 82.29 76.10 0.147 0.028 0.073 1.301 0.247 0.604

24 74.31 80.87 74.31 0.147 0.016 0.070 1.303 0.132 0.589

32 71.56 80.45 71.56 0.149 0.015 0.069 1.304 0.131 0.580

48 68.11 79.45 68.11 0.152 0.009 0.069 1.308 0.073 0.572

64 42.90 77.41 42.90 0.154 0.004 0.068 1.309 0.028 0.569
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Abstract. Skin cancer is one of the most dangerous forms of cancer
and can be lethal. In general an early diagnosis in the preliminary stages
can significantly determine the probability of fully recovering. Nonethe-
less, early detection of skin cancer is an arduous and expensive pro-
cess. Although this type of cancer is visible, this does not simplify the
diagnosis, as cancerous tumours look extremely similarity to normal
lesions. Examining all pigmented skin lesions via surgical treatments
causes significant soreness and scarring. Consequently, there is a need
for an automatic and painless skin cancer detection system with high
accuracy. Recently, Machine Learning (ML) and Deep Learning (DL)
have demonstrated promising results in prediction and classification, skin
cancer detection has been performed exceptionally well by them. This
paper compares the effectiveness of several DL models which tackle the
problem of automatic skin cancer detection using pre-trained models
of Convolutional Neural Networks (CNNs), namely ResNetv2, VGG16,
EfficientNet-B5, and EfficientNet-B7. These are compared with a ML
model, namely the Support Vector Machine (SVM), in order to deter-
mine whether or not the examined skin sample is cancerous. The results
show that the four CNN models outperform the SVM in accuracy, preci-
sion, recall and F1-score, especially EfficientNet-B7 provides the highest
F1-score to reach 84.22%.

Keywords: Skin Cancer · SVM · CNN · Deep learning · Machine
Learning

1 Introduction

Skin cancer is a common type of cancer where abnormal growth of skin cells
occurs and spreads, invading other parts of the body [1]. A number of recent
studies have revealed that skin cancer is among the most dangerous types of can-
cer [2]. Although the skin is an easily accessible site for examination, it is often
difficult to diagnose skin cancers as many benign lesions visually resemble malig-
nant ones. Consequently, an accurate clinical diagnosis can only be concluded
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 267–278, 2023.
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from a biopsy and subsequent histopathological examination. Two challenges
that arise are: i) determining how many biopses to perform and ii) which skin
lesions should be tested; these are both typically based on visual inspection and
haptic response. Despite many efforts, there remains a need for an automated,
noninvasive diagnostic method capable of directing biopsies to characterize skin
lesions [3]. As with all types of cancer, it has been demonstrated that screening
and preliminary detection of skin cancer is the most reliable indicator of com-
plete recovery. Early detection of skin cancer results in a 94% ten-year survival
rate [4]. Recent technology can now detect skin cancer at an early stage. Such
methods utilise computer vision as part of the medical image diagnosis [2]. Using
ML and DL, clinicians and patients can streamline diagnostic and therapeutic
procedures in a single visit [3]. As one of the most threatening forms of can-
cer, skin cancer detection will be the focus of our research. We will display the
performance of the ML model using SVM, and DL models using CNN.

SVM is a supervised learning algorithm that was invented by Vapnik and
Chervonenkis [5]. Statistical learning theory states that SVMs are considered
one of the most effective ML algorithms for classification and regression. It has
been successfully applied to the recognition of images, categorizing texts, diag-
nosing medical conditions, remote sensing, and classifying motions [6]. Further
details of SVM are represented in [7]. CNN is a DL network with an architec-
ture designed for image analysis trained through supervised learning [8]. CNNs
use labelled data such as dermoscopic images with their corresponding diag-
noses or ground truths to determine a relationship between the input data and
the labels. As a result, CNNs can apply learned operations to unknown images
and classify them using the extracted features [8]. Clinical dermatology and
dermatopathology diagnose largely through the recognition of visual patterns.
Therefore, using CNNs can help develop additional and/or improved clinically
meaningful databases [9].

Proposed Solution.This research seeks to identify skin lesions using Computer-
Aided Diagnosis (CAD) systems created by a CNN classifier, as they have proven
effective for image classification tasks. We will build our system to take the input
image, resize it and remove any noise. The model then segments the input image
to separate the lesion from the surrounding skin. Finally, the model will classify
the lesion into one of two categories: either benign or malignant. Our model was
trained using a dataset of images taken from the International ImageCollaboration
Archive (ISIC) [10]. Eventually, the purpose of this research is to develop and train
these DL models, as well as present results that indicate the performance of the
various approaches on specific medical classification tasks.

The rest of the paper is organized as follows. Section 2 reviews different
approaches used in previous works on skin cancer detection. Section 3 presents
our methodology to tackle the problem. Section 4 includes the experimental
design. Section 5 presents the implementation of our methodology and the lim-
itations and issues that accrued during this phase. Section 6 shows the details
of the experiments and a discussion of the results. Lastly, Sect. 7 concludes this
research paper.
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2 Literature Review

A growing number of studies have used ML and DL to detect skin cancer in
recent years. This section aims to provide a summary of previous related works,
describing the models, datasets, techniques, and performance of each case.

Sarkar et al. [11] proposed a Deep Depthwise Separable Residual Convolu-
tional Network model. The model was trained and validated using a subset of
the ISIC dataset, and was also tested on 3 other datasets (PH2, DermIS, and
MED-NODE). The authors used multiple pre-processing methods such as image
denoising using the Non-local Means denoising technique, image enhancement
using the CLAHE-DWT algorithm, and selecting multiple color channels [12].
The channels selected were RGB color space channels, saturation channels of
the HSV color space, the b* channel of the CIELAB color space, and finally the
inverted grey scale color space channel. The model’s performance was observed
with various kernel sizes, with the best performance being 99.49% accuracy and
a 0.9948 F1 Score on the ISIC dataset using a 4×4 kernel and 4 residual blocks.
Garg et al. proposed in [13] a system using CNNs to identify skin cancer and
categorize it. A MNIST HAM-10000 dataset was used for skin cancer images. For
the classification task, the authors trained a CNN network to classify the given
images in the dataset in their respective classes. Moreover, transfer learning was
used as well by applying models such as ResNet and VGG16 to increase the clas-
sification accuracy of the images, and to compare the accuracy of the model with
that of the proposed DL model [14]. Furthermore, to accomplish the optimization
purpose, the authors used Adaptive Moment Estimation (Adam) optimizer [15].
They found that the ResNet model which is pre-trained in ImageNet dataset
could be beneficent, and found that it is the successful classification of cancer
lesions in the HAM1000 dataset. Also, they mentioned that learning algorithms
such as Random Forest, XGBoost, and SVMs were not very effective for classifi-
cation tasks, and do not give promising results, where the accuracy of Random
Forest was 65.9%, XGBoost was 65.15%, and SVM was 65.86%. On the other
hand, their CNN model gave a weighted average precision of 0.88, a weighted
recall average of 0.74, and a weighted F1 Score of 0.77. The transfer learning app-
roach applied using VGG model gave an accuracy of 78%, whereas the ResNet
model gave an accuracy of 90.5%.

Daghrir et al. [16] used a CNN and two ML classifiers, KNN and SVM to train
a set of features describing the borders, texture, and color of a skin lesion. The
authors employed a color enhancement technique known as Gaussian (DOG) for
pre-processing and noise reduction in order to remove hair from lesion images, as
well as Morphological Active Contours without Edges (MorphACWE) for lesion
segmentation. The authors chose 640 lesion images from the ISIC Archive for
models’ training. The models’ accuracy results were 57.3% for the KNN model,
71.8% for the SVM model, 85.5% for the CNN model, and 88.4% on majority
voting.

Al-masni et al. [17] proposed a model for lesion segmentation using a Full-
resolution Convolutional Network (FrCN). The segmented images were classified
using a Deep Residual Network, namely ResNet-50 [18]. The authors used the
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International Skin Image Collaboration (ISIC) 2017 dataset for training and
testing and used rotation transformation on training data to augment more
images. In addition, they used transfer learning and fine-tuning to address the
shortcomings of their models. The classifier achieved 81.57% accuracy and 75%
F1 Score. The classifier was compared to two other classifiers that did not use
segmentation to demonstrate the superior performance of the model.

Nataha et al. [19], developed a skin cancer detection CNN model that can
classify skin cancer types and detect them early. The model was trained and
tested on the state-of-art CNNs, namely Inception V3, ResNet50, VGG16,
MobileNet, and InceptionResnet [20–23] and performed a seven-class classifi-
cation of the skin lesion images. The models were tested on the following two
datasets: ISIC 2018, and ISIC 2019. They measured the accuracy, precision,
recall, F1 score, and support for every class of skin lesion disease. The results
of the average metrics achieved by all final CNNs were as follows. In ResNet,
researchers got an accuracy of 85%, a precision of 0.86, a recall of 0.85, and an
F1 Score of 0.85. In MobileNet, researchers got an accuracy of 85%, a precision
of 0.86, a recall of 0.85, an F1 Score of 0.85, and support of 6944. In VGG16,
researchers got an accuracy of 87%, a precision of 0.87, a recall of 0.87, and
an F1 Score of 0.87. In Inception V3, researchers got an accuracy of 90%, a
precision of 0.90, a recall of 0.90, and an F1 Score of 0.90. Lastly, in Incep-
tionResnet, researchers got an accuracy of 91%, a precision of 0.91, a recall of
0.91, and an F1 Score of 0.91. Fu’adah et al. [24] built a system that used a
CNN with three hidden layers, 3 × 3 filter sizes, and output channels of 16, 32,
and 64, respectively, to automatically diagnose skin cancer and benign tumor
lesions. The used dataset in this study is an augmentation of the ISIC dataset
composed of four classes: Dermatofibroma, Nevus Pigments, Squamous-Cell Car-
cinoma (SCC), and Melanoma. In total 4,000 images were used, of these 3000
were training images and 1000 were validation images. These images were trained
using the CNN model with several optimization techniques, such as Stochastic
Gradient Descent (SGD), Root Mean Square Propagation (RMSprop), Adam
and Nesterovaccelerated Adaptive Moment Estimation (Nadam) optimizer with
a learning rate of 0.001 and using loss categorical cross-entropy [25–27]. Their
results showed that the Adam optimizer provides the highest performance, with
an accuracy value of 99%, a loss of 0.0346, and precision, recall, and F1 Score
values of 0.91. Moreover, they noted that the proposed model has promising
usage as an existing tool for medical personnel.

3 Methodology

After evaluating the related works, the analysis has established that CNN and
SVM are the most appropriate models for this challenge. To evaluate their per-
formance, we first preprocess the lesion images, and then we segment them.
After that, we evaluate the performance of the CNN and the SVM models. An
overview of our proposed models is presented below in Fig. 1.
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Fig. 1. Graphical Representation of the Proposed Methodology.

3.1 Preprocessing and Segmentation

We denoised the skin lesion dataset, using the DullRazor algorithm, a method
used to tackle the issue of hair detection and removal based on the result in [28].
DullRazor algorithm stages are specified as follows: converting the original image
to grayscale. Closing to the grayscale image, using a linear or cross-shaped kernel.
Calculating the difference between the resulting image and the original. Apply
binary thresholding to obtain a mask with the hairs in the image. Finally, Replace
the pixels in common between the mask and the original image, with pixels
from the latter. Later, we apply U-Net which is a neural network architecture
designed for image segmentation to separate the image from the studied regions
and unwanted regions [29].

3.2 CNN Classifiers

For the classification task, we use the following four CNN pre-trained models,
which are ResNet50V2, VGG16, EfficientNet-B5 and EfficientNet-B7. These four
chosen models provide diverse architectures, computational requirements and
performance characteristics, making them suitable for our task. Mathematical
details about ResNet50V2, VGG16, EfficientNet-B5 and EfficientNet-B7 can be
found in, [18,22,30].

3.3 SVM Classifier with Feature Extraction

The technique of feature extraction will be employed for the SVM. This method
proves to be efficient in decreasing the dimensionality of large datasets, par-
ticularly when utilized in conjunction with SVM algorithms, which require a
significant amount of computational resources [31]. Reducing the number of fea-
tures in the dataset can make the training process more efficient and manage-
able. The following features will be extracted from lesion images for skin cancer
classification:
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– Area and Perimeter of the lesion: These features provide valuable
insights into the characteristics of a skin lesion and can be used to distinguish
between various types of skin lesions. The area represents the two-dimensional
extent of the lesion, while the perimeter indicates the length of the boundary
of the lesion. Together, these measurements provide a comprehensive picture
of the size and shape of a skin lesion.

– RGB and HSV: These features will be used to differentiate between different
types of skin lesions based on their color characteristics. RGB values can be
used to determine the exact color of a lesion. HSV, on the other hand, can be
useful in analyzing the different aspects of the lesion’s color. By using both
RGB and HSV features, a more comprehensive understanding of the lesion’s
color can be obtained, which can be useful in differentiating between different
types of skin lesions.

– Mean and Standard Deviation of RGB and HSV: These features pro-
vide information about the distribution of color intensity values in the image
and can be used to distinguish between subtle differences in color. By mea-
suring the mean and standard deviation of the RGB and HSV channels, we
can quantify the distribution of color information in the image and use that
information to differentiate between different types of skin lesions. This infor-
mation can be especially useful in cases where the differences in color between
lesions are subtle, but still important to consider in making a diagnosis.

4 Experimental Design

4.1 Dataset

In this research, we use the International Skin Imaging Collaboration (ISIC)
dataset [10]. ISIC is a public provided dataset for academia and industry part-
nerships which designed to facilitate the application of digital skin imaging to
help reduce melanoma mortality. We split the dataset as follows: 80% for the
training set, 10% for the validation set, and 10% for the test set. Dataset’s Images
Ground-Truth was based on each lesion’s medical diagnosis. A total of 20,092
images were used. 11063 images of benign types, and 8732 images of malignant
types. Following the pre-processing of the dataset described in the Subsect. 3.1,
the segmentation task will be deployed on 10,015 of the 20,092 images as that
was provided with a mask and was used to train a U-Net model to segment the
rest of the images as described in the Subsect. 3.1.

4.2 Experiments

We have conducted two different experiments using the two models mentioned in
the methodology. First, we use the CNN classifiers, we conduct the first experi-
ment by taking a subset of images and preprocessing them by resizing, and then
denoise them using the DullRazor technique. A U-Net network will be used to
output a mask for each image, and the mask will be applied to the images to
remove the background, and finally, the output dataset will be used to train
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the CNN classifiers. Secondly, we use the SVM classifier, in this experiment,
we implement an SVM model using our pre-processed and segmented images to
compare the results with our CNN models.

5 Implementation Details

In order to implement our experiments, we have chosen Python as it is the most
suitable programming language for ML and DL experiments. It provides a vari-
ety of libraries to support the implementation process. As implementing these
experiments consumes a lot of hardware resources, Google Colaboratory was
our choice to run them [32]. The reason for this is that it provides cloud-based
resources like GPUs. We used several libraries, including TensorFlow’s Keras,
OpenCV, Scikit-Learn, and SciPy. Keras is a Python-based DL API that runs
on top of TensorFlow and provides a high-level interface for developing DL neu-
ral networks [33]. OpenCV is an open-source Python library used for image
processing and computer vision. Many algorithms are available that can be used
to identify objects, detect and recognize faces, and more [34]. Scikit-Learn
is an open-source Python library for ML and statistical modelling. Among its
features are algorithms for classification, regression, clustering, and dimension
reduction, as well as unsupervised and supervised learning techniques [35]. SciPy
is a library that takes on standard problems, and mathematical computations,
using arrays and manipulations [36]. We provide below a pseudocode of algo-
rithms used throughout these experiments. Our experiments with the DullRazor
algorithm have produced intriguing results, which demonstrate its effectiveness
in detecting and removing hair from images. Below algorithm 1 explains the
details steps of DullRazor. Algorithm 2 shows a pseudocode for U-Net which is
used in the segmentation task. In the image classification task using SVM, the
model is available in Scikit-learn. For an image classification task using CNN,
the four chosen models are available in tensorflow.keras.applications module.
Algorithm 1: DullRazor
Input : Image Array
Output: Image Array After Applying DullRazor Algorithm
grayimage = RGB2GRAY(image)
blackhat =
MorphologyEx(grayimage,MORPH_BLACKHAT, filter9×9)

blurredimage = GaussianBlur(blackhat, filter3×3)
mask = BinaryThreshold(blurredimage, threshold = 15,maxval =
255)

output = Inpaint(image,mask, inpaintRadius =
6, INPAINT_TELEA)



274 M. Alzamel et al.

Algorithm 2: U-Net Model Training Function
Input : DIR “Dataset directory”
Output: masks for images with no available mask
(trainingData, trainingMasks), (validationData, validationMasks) ←
loadDataset(DIR=DIR)

model ← getUNet()
callbacks ← CSVLogger and ModelCheckpoint callbacks
model.fit(trainingData, trainingMasks, batchSize=32, epochs=30,
validationData=(validationData, validationMasks), callbacks=callbacks)

images ← loadDatasetWithNoMask()
masks ← empty set
for image ∈ images do

prediction ← model.predict(image)
mask ← applyOtsuThreshold(prediction)
append mask to masks

end

6 Results and Discussion

In this section, we explain the SVM and CNN hyperparameter tuning results
and later we demonstrate compassion between SVM and CNN of the testing
results.

6.1 Parameters Tuning

Hyperparameter tuning is one of the fundamental ways to enhance the perfor-
mance of ML and DL models. During the learning process of a model, hyperpa-
rameters are passed in order to make corrections or adjustments. Diverse data
patterns may necessitate distinct constraints, weights, or learning rates for the
same ML model. These kinds of measurements are referred to as hyperparam-
eters [37]. We tuned the hyperparameters of our SVM model by using Grid
Search. Grid Search, also known as the Estimator, is a tuning technique aiming
to calculate hyperparameters’ optimal values. It is an exhaustive search that is
performed on specific parameter values of a specific model [38]. The ranges of
values to tune the hyperparameter in SVM are as follows: C: [0.001, 0.01, 0.1,
1, 10, 100, 1000], kernel: [linear, poly, rbf, sigmoid] and gamma: [0.0001, 0.001,
0.01, 0.1, 1, 10, scale, auto]. After performing the grid search, the optimal hyper-
parameters for our SVM model were found to be C = 1000, gamma = auto, and
kernel = rbf. This indicates that a high value of C, the radial basis function
(RBF) kernel, and an automatic setting for gamma were the best choices for our
problem.

To tune the hyperparameters of the four CNN models, we use KerasTuner,
which is a scalable, easy-to-use hyperparameter optimization framework that
alleviates the difficulties associated with hyperparameter search. KerasTuner
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comes with Bayesian Optimization, Hyperband, and Random Search algorithms,
and is designed to be extensible so that researchers can experiment with new
search algorithms [39]. The hyperparameters we tuned are Dropout, Dense layers
sizes, Learning Rate and Pooling type. Each hyperparameter has a range of
values to make the tuner decide which value is more suitable, the ranges of
values are as follows: Dropout 1: Range [0, 0.8], Dsense layer 1: [4096, 512, 256],
Dropout 2: Range [0, 0.6], Dsense layer 2: [128, 64, 32], Learning Rate: Range [1e-
4, 1e-7] and Pooling type: [Average, Max]. Using the above mentioned processing
techniques and model parameter tuning libraries. We present the results of the
CNN models in Table 1 on the test set using the preprocessed dataset.

Table 1. CNN Parameters Tuning Results.

Model Dropouts Dense layers Learning Rate Pooling type

EfficientNetB5 [.4, .2] [256, 32] 1e-05 Average pooling
EfficientNetB7 [.8, .6] [512, 256] 7e-5 Max pooling
ResNet50V2 [.3, .1] [4096, 32] 9e-06 Average pooling
VGG16 [.3, .0] [4096, 64] 5e-06 Max pooling

6.2 Results

As the primary objective of our research is to investigate the effectiveness of SVM
and CNN models of skin lesions classification. We provide a detailed analysis of
the performance metrics of the proposed trained models and compare them with
existing methods. Table 2 demonstrates the Accuracy, Recall, Precision and F1-
Score for each model. The results show that EfficientNet-B7 provide the highest
Accuracy which reaches 85% and Recall which is 88% among the other 4 models.
On the other hand, the EfficientNet-B5 gives the highest Precision which is 88%
with respect to the other compared models. For the four chosen CNN models
there is a slight difference in the performance measurement results including
Accuracy, Recall and Precision leading to the F1-Score for EfficientNet-B7 being
the superior result with a minor difference among the others, whereas the F1-
score for EfficientNet-B7, EfficientNet-B5, ResNet50V2, VGG16 and SVM are
84%, 80%, 80%, 80%, 67%, respectively. Ultimately, the CNN models give greater
Accuracy, Precision, Recall and F1-score compared with the SVM model.

Table 3 shows the time complexity for SVM model and for each of the
CNN models using datasets and without augmented data. Additionally, we used
Google’s colab that have over 500 GPUs to speed up the run.
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Table 2. SVM and CNN Models Testing Results.

Model Dataset Accuracy Recall Precision F1 Score

EfficientNet-B7 Segmented 0.856219 0.882151 0.805643 0.842163
EfficientNet-B5 Segmented 0.843781 0.737986 0.883562 0.804239
ResNet50V2 Segmented 0.831343 0.779176 0.823458 0.800705
VGG16 Segmented 0.840796 0.779176 0.842822 0.809750
SVM Segmented 0.748693 0.657175 0.738796 0.695600

Table 3. Models’ Training Time

Model Dataset Training Time

EfficientNetB7 Segmented 1253 s
EfficientNetB5 Segmented 6003 s
ResNet50V2 Segmented 787 s
VGG16 Segmented 915 s
SVM Segmented 3983 s

7 Conclusion and Future Work

In this research, we tackled the problem of detecting skin cancer automatically
using four CNN models. The proposed solution starts with some image pre-
processing: image resizing and image denoising using DullRazor. Later, tumour
segmentation from skin lesions is applied to the images using U-Net. Finally, a
classification stage is deployed using four pre-trained CNN models: ResNetV2,
VGG16, EfficientNet B5, and EfficientNet B7, and compared their performance
with SVM. After presenting and analyzing the models’ performance, we found
that EfficientNet-B7 has the highest accuracy which is 86.91%. Our experi-
ments show that the CNN model outperforms the SVM model in Accuracy,
Recall, Presecion and F1-Score. The results show that EfficientNet-B7 provides
the highest accuracy and Recall with respect to the other compared models,
having 85.62% Accuracy and 88.21% Recall. However, the results provide that
the EfficientNet-B5 gives the highest Precision compared with observed models
which reachs up to 88.35%. Notably, there is a need for larger and more diverse
datasets to further improve the performance of DL algorithms in this domain.
Consequently, as future work will study image augmentation using GAN models
and how can help complex DL models’ performance measurements in detecting
malignant skin lesions.
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Abstract. Sales forecasts are an important tool for inventory manage-
ment, allowing retailers to balance inventory levels with customer demand
and market conditions. By using sales forecasts to inform inventory man-
agement decisions, companies can optimize their inventory levels and avoid
costly stockouts or excess inventory costs. The scale of the forecasting
problem in the retail domain is significant and requires ongoing attention
and resources to ensure accurate and effective forecasting.Recent advances
in machine learning algorithms such as deep learning have made possible
to build more sophisticated forecasting models that can learn from large
amounts of data. These global models can capture complex patterns and
relationships in the data and predict demand across multiple regions and
product categories. In this paper, we investigate the cross-learning scenar-
ios, inspired by the product hierarchy frequently utilized in retail planning,
which enable global models to better capture interdependencies between
different products and regions. Our empirical results obtained using M5
competition dataset indicate that the cross-learning approaches exhibit
significantly superior performance compared to local forecasting bench-
marks. Our findings also suggest that using partial pooling at the lowest
aggregation level of the retail hierarchical allows for a more effective cap-
ture of the distinct characteristics of each group.

Keywords: Deep learning · Time series forecasting · Cross-learning ·
Retailing · Hierarchical aggregation · Intermittent data

1 Introduction

Sales forecasts play a critical role in inventory management, as they provide
insights into the expected demand for a product or service [6]. They help busi-
nesses to determine the quantity of products they need to order and the amount
of stock they need to hold. If the forecast predicts strong demand, a company may
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choose to increase inventory levels to avoid stockouts and lost sales. Conversely,
if the forecast predicts weaker demand, a company may choose to decrease inven-
tory levels to avoid excess inventory costs. By forecasting future demand, busi-
nesses can plan their production schedules and produce the right amount of
inventory to meet customer demand without overproducing, which could lead
to overstocking or wastage. Sales forecasts can also help businesses prepare for
seasonal fluctuations in demand.

The forecasting problem in the retail domain is large-scale because it involves
predicting sales for a vast number of products, across multiple channels, with
numerous variables affecting demand [15,18]. Retailers often have an extensive
product catalog with thousands of unique items, ranging from perishable goods
like fresh produce to non-perishable goods like electronics and clothing. Each
of these products has unique demand patterns, which can vary by region, sea-
son, day of the week, time of day, and promotional events. Forecasting sales for
each of these items is a complex and challenging task. Moreover, typically they
sell products through multiple channels, including physical stores, online stores,
mobile apps, marketplaces, and more. Each of these channels has its own set
of challenges and opportunities that must be taken into account when forecast-
ing sales. Furthermore, in the retail domain, demand forecasting must be done
frequently, often weekly or even daily, to ensure that inventory levels are opti-
mized. This means that the forecasting problem requires advanced models and
techniques that must be: (1) automatic, minimizing the need for manual inter-
vention or expert knowledge, (2) robust i.e. capable to handle different types of
data and scenarios, such as missing values, outliers, and non-linear relationships
between variables, and (3) efficiently scaleable to handle large volumes of data
and be easily adapted to changing business needs [16,17].

The traditional approach to time series forecasting has been to treat each
series as a separate entity, resulting in local forecasting models that forecast each
series in isolation. Examples of such models include the Exponential Smooth-
ing State Space model (ETS) [9] and AutoRegressive Integrated Moving Average
Model (ARIMA) [4]. However, in recent times, many companies collect large vol-
umes of time series data from similar sources, such as sales data for thousands of
products in retail. While local forecasting techniques can still be applied to these
situations, they fail to exploit the potential for pattern learning across multiple
time series. Global forecasting models (GFM), on the other hand, are a more
recent development that attempt to capture more complex patterns in the data,
such as nonlinear relationships and interactions between variables [10]. These
models are often based on machine learning algorithms, such as neural networks,
support vector machines, or gradient boosting. GFM can capture those depen-
dencies by analyzing multiple time series simultaneously, taking into account the
interdependencies between the time series [7]. Specifically in the retail domain
they can potentially capture cross-product and cross-region dependencies, lead-
ing to more accurate predictions across the entire product catalog. Cross-product
dependencies refer to the relationship between different products, where changes
in one product can impact the demand or performance of another product (the
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sales of one product may influence the sales of another product, particularly if
they are complementary or substitutable). Cross-region dependencies refer to the
relationship between different regions or locations, where changes in one region
(impacted by regional factors such as weather patterns or economic conditions)
may influence the demand or performance of another region.

In contrast to local models that have unique parameters for each individual
series, GFM utilize a common set of parameters (such as weights, in the case
of neural networks) that are applied to all time series being analyzed. GFM
are currently being developed and implemented with success, as evidenced by
the works of [2], and have emerged victorious in prominent forecasting compe-
titions like the M4 [12] and M5 competitions [13], as well as all recent Kag-
gle competitions focused on forecasting [3]. The fundamental concept on which
these studies are based, and which explains the efficacy of global models, is
that there must be some form of relationship between the series, allowing the
global model to identify patterns across them. However, none of these studies
attempts to explain or establish the properties of this relationship. While certain
research has linked high levels of relatedness between series with greater simi-
larity in their shapes/patterns and stronger cross-correlation [19], other studies
have proposed that higher relatedness is associated with greater similarity in
the extracted features of the series under consideration [1]. The first research to
provide some insights into the problem is the recent study by [14], which theoret-
ically proves that, despite the heterogeneity of the data, there is always a GFM
that can perform equally well, or even better, than a set of local models for any
dataset. Furthermore, in an extensive empirical research, the authors show that
a slightly increase in the complexity of global models makes them extremely
competitive, surpassing the performance of local state-of-the-art ones on the
majority of datasets. Therefore, according to this work, in theory GFM’s perfor-
mance is not dependent on the relationship between series. However, it is worth
to reinforce that this work concentrates on the complexity of the model rather
than examining relatedness, and on this matter the authors conclude that the
complexity of global models can be achieved by incorporating more lags, using
non-linear/non-parametric models and implementing data partitioning.

Hence, when it comes to global models, the key is to determine the optimal level
of complexity that surpasses local methods. More recently, [7] made a simulation
study to compare the accuracy of global models with traditional time series fore-
casting methods on datasets with different characteristics. Their results indicate
that GFM’s better performance is related to the availability of data, the complex-
ity of patterns in the series and the complexity of the model used, and underpin
that having complex non-linear modelling capabilities and the ability to exploit
more data, GFM are more competitive under difficult forecasting conditions such
as short series, heterogeneous series and minimal prior knowledge of the data pat-
terns. Despite these efforts, there has been a lack of research on how the relatedness
between series impacts the effectiveness of GFM in real-world demand forecast-
ing problems, especially when dealing with challenging conditions such as highly
lumpy or intermittent data very common in retail.
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The research conducted in this study was driven precisely by this motiva-
tion: to investigate the cross-learning scenarios driven by the product hierarchy
commonly employed in retail planning, which enable global models to better cap-
ture interdependencies across products and regions. The layout of the remainder
of this paper is as follows. Section 2 describes our forecasting framework devel-
oped for the evaluation of the cross-learning approaches and Sect. 3 provides the
details about its implementation. Section 4 presents and discusses the results
obtained, and Sect. 5 provides some concluding remarks and promising areas for
further research.

2 Deep Learning Model

Deep learning has had remarkable success in computer vision and has since
been applied to various fields, such as natural language processing and robot
control, making it a popular choice for machine learning tasks. However, the
adoption of deep learning in time series forecasting has been relatively slower
compared to other areas, and the lack of a clear experimental protocol makes
it challenging to compare with other forecasting methods. Despite this, deep
learning has shown excellent performance in multiple domains when trained on
large datasets, which gave us confidence in its potential for time series forecast-
ing. Nevertheless, there has been limited research on deep learning approaches
for intermittent demand [11], which involves forecasting sequences with spo-
radic values and a significant number of zeros [5]. To address this, we chose
to use DeepAR, an autoregressive recurrent neural network model introduced
by Amazon in 2018 [19], which has demonstrated success in various time series
applications and is considered a leading deep-learning forecasting model.

2.1 DeepAR

Formally, denoting the value of item i at time t by zi,t, the goal of DeepAR
model is to predict the conditional probability P of future sales zi,t0:T based on
past sales zi,1:t0−1 and covariates xi,1:T , where t0 and T are respectively the first
and last time points of the future

P (zi,t0:T |zi,1:t0−1,xi,1:T ). (1)

Note that the time index t is relative, i.e. t = 1 may not correspond to the
first time point of the time series. During training, zi,t is available in both time
ranges [1, t0−1] and [t0, T ], known respectively as conditioning range and predic-
tion range (corresponding to the encoder and decoder in a sequence-to-sequence
model), but during inference zi,t is not available in the prediction range. The
network output at time t can be expressed as

hi,t = h(hi,t−1, zi,t−1,xi,t;Θ) (2)
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where h is a function that is implemented by a multi-layer RNN with long short-
term memory (LSTM) cells [8] parameterized by Θ. The model is autoregressive
in the sense that it uses the sales value at the previous time step zi,t−1 as an
input, and recurrent in the sense that the previous network output hi,t−1 is fed
back as an input at the next time step. During training, given a batch of N
items {zi,1:T }i=1,...,N and corresponding covariates {xi,1:T }i=1,...,N , the model
parameters are learned by maximizing the log-likelihood of a fixed probability
distribution as follows

L =
N∑

i=1

T∑

t=t0

log l(zi,t|θ(hi,t)) (3)

where θ denotes a linear mapping from the function hi,t to the distribution’s
parameters, while l represents the likelihood of the distribution. Since the
encoder model is the same as the decoder, DeepAR uses the all the time range
[0, T ] to calculate this loss (i.e., t0 = 0 in Eq. 3). The primary aim of DeepAR is
to forecast a single future value in each step. In order to forecast multiple future
steps during the inference phase, the model produces forecasts for the following
period repeatedly until the end of the forecast horizon. The model is first given
past sequences (t < t0), and it generates the forecast for the initial period by
drawing samples from the trained probability distribution. The forecast for the
first period is then used as an input to the model to generate the forecast for
the second period, and so on for each succeeding period. Since the forecast is
based on prior samples from the predicted distribution, the output of the model
is probabilistic and represents a distribution of sampled sequences rather than a
deterministic value. This sampling approach has the benefit of creating a prob-
ability distribution of forecasts, which can be utilized to assess the accuracy of
the predictions.

2.2 Tweedie Loss

To tackle the problem of zero-inflated distribution in sales, we used the negative
log-likelihood of the Tweedie distribution for the loss function. The Tweedie
distribution’s probability density function is defined as follows:

f(y;μ, φ, p) =
yp−1 exp

(
yμ1−p

φ(1−p)

)

φ(1− p)ypΓ
(

1
1−p

) , y > 0 (4)

where Γ is the gamma function and μ, φ and p are the mean, dispersion and
power parameters, respectively. When 1 < p < 2, it takes the form of a compound
Poisson-gamma distribution frequently applied to data sets exhibiting positive
skewness and numerous zeros. The extent of diversity or heterogeneity in the data
is regulated by the dispersion parameter φ. If φ is small, the data is described
as having high dispersion, while a large value of φ suggests homogeneity in the
data.
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3 Empirical Study

This section provides information on the empirical evaluation of this study,
including the selection of data, performance metrics, benchmarks, and the frame-
work used as the basis for implementing cross-learning forecasting models.

3.1 Dataset

For a study’s findings to have significance, they need to be reproducible and
comparable to other relevant studies. With this in mind, we used the M5 com-
petition’s data, a widely recognized, established, and openly accessible dataset.
The aim of the M5 Accuracy competition was to generate point forecasts for
time series that depict the hierarchical unit sales of Walmart, the largest retail
company in the world in terms of revenue [13]. The M5 dataset comprises unit
sales data for 3,049 products that are categorized into three categories - Hob-
bies, Foods, and Household - and seven product departments that disaggregate
the aforementioned categories. The products are sold across 10 stores located
in three states - California (CA), Texas (TX), and Wisconsin (WI). The most
granular level of data, i.e., product-store unit sales, can be grouped based on
either location (state and store) or product-related information (category and
department). The M5 dataset covers a period of approximately 5.4 years, start-
ing from January 29, 2011 to June 19, 2016, on a daily basis, totaling 1969 days.
Figure 1 and Fig. 2 show the time series plots of the unit sales for the 30,490
items (3,049 products × 10 stores), grouped by six aggregation levels: Total,
State, Category, Store, Department and State-Department.

3.2 Partial Pooling of Multi-level Data

The framework that is being presented implements a partial pooling approach,
which is inspired by the different levels of aggregation found in the hierarchical
structure of Walmart. From the provided multi-level data, six different levels of
data such as total, state, store, category, department and state-department are
first prepared. Second, we obtain five levels of partial pools: 3 state pools, 10
store pools, 3 category pools, 7 department pools and 21 state-department pools.
Although complete pooling, which involves using a single forecasting model for
the entire dataset, can capture interdependencies among products and regions,
partial pooling, which uses a separate forecasting model for each pool, is often
better suited for capturing the unique characteristics of each group.

3.3 Model Selection

We maintained the M5 competition’s framework preserving the final 28 days of
each series for out-of-sample testing (May 23, 2016 to June 19, 2016) and utiliz-
ing the remaining data for in-sample training (January 29, 2011 to May 22, 2016,
1941 days). Finding the appropriate model that performs well during testing is
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Fig. 1. Monthly aggregate unit sales time series over all items (top), states (center)
and categories (bottom).

crucial in order to attain the highest level of accuracy. In general, the validation
set is used to select a model. The effectiveness of a deep learning model, specif-
ically, relies on several settings, including hyperparameters and initial weights.
The last 28 days of the in-sample training were used for validation (April 25,
2016 to May 22, 2016). We implemented our DeepAR models in GluonTS using
Pytorch. Table 1 presents the hyperparameters and their range of values used in
the model selection. The hyperparameters optimization process was carried out
using Optuna optimization framework. In Table 2, the data pools are listed along
with the optimal hyperparameter values selected for each corresponding DeepAR
model. The Root Mean Squared Error (RMSE) [17] was used to measure model
selection.

3.4 Results

The cross-learning approaches for each level of aggregation were evaluated by
calculating the Mean of the Root Mean Squared Scaled Error (MRMSSE) [13],
where RMSSE is defines as follows:
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Table 1. Range of values for DeepAR hyperparameters used in the optimization pro-
cess.

Hyperparameter Values considered

Context length 28

Prediction length 28

Number of hidden layers (HL) {1, 2, 3, 4}
Hidden size (HS) {20, 40, 60, 80, 100, 120, 140}
Learning rate (LR) [1e−5, 1e−1]

Dropout rate (DR) [0, 0.2]

Batch size (BS) {16, 32, 64, 128}
Scaling True
Number of epochs 100

Number of parallel samples 100

Number of trials 50

RMSSEi =

√√√√
1
h

∑n+h
t=n+1 (zi,t − ẑi,t)

2

1
n−1

∑n
t=2 (zi,t − zi,t−1)

2 , (5)

where zi,t is the value of item i at time t, ẑi,t is the corresponding forecast,
n is the length of the in-sample training and h is the forecast horizon, 28 days
in this case study. The RMSSE is scale-independent and hence suitable for com-
paring the forecasts across multiple products of different scales and units. This
is achieved by scaling the forecasts errors by the Mean Squared Error (MSE)
of the 1-step ahead in-sample naïve forecast errors, to match the quadratic loss
of the numerator. Squared errors favour forecasts that track the mean of the
target series. In the field of forecasting, it is common to use forecast averaging
as a complementary approach to using multiple models. Numerous studies have
demonstrated the effectiveness of averaging the forecasts generated by individ-
ual models in enhancing the accuracy of forecasts. Based on this idea, we com-
puted the arithmetic mean of forecasts generated by the various cross-learning
approaches that were developed from the available data pools, and denoted
this as DeepAR-Ensemble. The results show that the cross-learning approaches
outperform significantly the benchmarks. Our results indicate that the cross-
learning approaches exhibit significantly superior performance compared to the
benchmarks. As expected, the DeepAR-Ensemble exhibited the most superior
performance among the various cross-learning approaches. It is surprising to note
that the performance differences among the various cross-learning approaches
that were evaluated are not significant, implying that DeepAR-Total could serve
as a suitable and straightforward solution in this case. It is noteworthy that the
DeepAR-State-Department approach performs better than other cross-learning
methods, indicating that utilizing partial pooling at the lowest aggregation level
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Table 2. Data pools built from multi-level data and optimal hyperparameters values
found for the corresponding DeepAR model.

Aggregation level Data pool Size RMSE HL HS LR DR BS

Total (1) 30490 2.147 3 100 0.00562 0.1077 16

State (3) CA 12196 2.130 3 120 0.00339 0.0515 32
TX 9147 1.921 1 140 0.00449 0.0955 128
WI 9147 2.348 3 100 0.00076 0.1039 16

Store (10) CA 1 3049 2.212 4 120 0.00180 0.1549 16
CA 2 3049 2.044 3 100 0.01287 0.1281 32
CA 3 3049 2.652 3 140 0.00806 0.1993 128
CA 4 3049 1.450 3 120 0.00733 0.1309 32
TX 1 3049 1.781 1 80 0.00213 0.1009 16
TX 2 3049 1.913 2 60 0.01639 0.0021 128
TX 3 3049 2.052 3 40 0.00655 0.1279 64
WI 1 3049 1.706 3 80 0.00869 0.1720 128
WI 2 3049 3.092 2 120 0.00178 0.0115 64
WI 3 3049 2.079 3 140 0.00537 0.0258 64

Category (3) Foods 14370 2.686 4 140 0.00513 0.0168 16
Hobbies 5650 1.650 4 40 0.00271 0.0481 16
Household 10470 1.409 3 60 0.00322 0.0011 32

Department (7) Foods 1 2160 2.644 3 20 0.01331 0.0389 128
Foods 2 3980 1.882 2 120 0.00094 0.0735 16
Foods 3 8230 2.996 4 100 0.00040 0.0524 16
Hobbies 1 4160 1.855 2 120 0.00157 0.0169 16
Hobbies 2 1490 0.829 3 60 0.00038 0.1250 32
Household 1 5320 1.793 4 100 0.00243 0.0646 32
Household 2 5150 0.837 4 100 0.00003 0.1635 64

State-Department (21) CA-Foods 1 864 2.687 3 40 0.00002 0.1187 128
CA-Foods 2 1592 1.671 2 100 0.02818 0.1600 32
CA-Foods 3 3292 2.826 3 80 0.00471 0.0718 32
CA-Hobbies 1 1664 2.231 3 60 0.00172 0.0229 16
CA-Hobbies 2 596 0.847 4 20 0.03534 0.0028 128
CA-Household 1 2128 1.925 3 20 0.00465 0.1048 32
CA-Household 2 2060 0.955 2 20 0.00622 0.1640 64
TX-Foods 1 648 2.270 1 120 0.00003 0.0440 64
TX-Foods 2 1194 1.473 1 140 0.09178 0.1924 64
TX-Foods 3 2469 2.718 3 120 0.00537 0.0475 32
TX-Hobbies 1 1248 1.612 2 140 0.01623 0.0602 32
TX-Hobbies 2 447 0.907 4 80 0.00023 0.0870 128
TX-Household 1 1596 1.722 1 120 0.00859 0.0426 16
TX-Household 2 1545 0.770 1 100 0.00148 0.1987 128
WI-Foods 1 648 2.810 4 40 0.00002 0.1893 128
WI-Foods 2 1194 2.431 3 80 0.00100 0.0059 16
WI-Foods 3 2469 3.464 2 140 0.00091 0.0762 16
WI-Hobbies 1 1248 1.498 1 40 0.00032 0.1963 32
WI-Hobbies 2 447 0.707 1 80 0.05757 0.0489 64
WI-Household 1 1596 1.695 3 120 0.00597 0.0703 16
WI-Household 2 1545 0.705 2 100 0.00629 0.0120 16
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Table 3. Performance of the cross-learning approaches according to MRMSSE and its
improvement against two benchmarks: ARIMA and Seasonal Naïve.

MRMSSE Improvement over ARIMA Improvement over SNaive

Cross-learning approaches
DeepAR-Total 0.783405 16.16% 36.70%
DeepAR-State 0.781190 16.39% 36.88%
DeepAR-Store 0.782332 16.27% 36.79%
DeepAR-Category 0.780938 16.42% 36.90%
DeepAR-Department 0.781195 16.39% 36.88%
DeepAR-State-Department 0.780556 16.46% 36.93%
DeepAR-Ensemble 0.776851 16.86% 37.23%
Benchmarks
ARIMA 0.934364 - 24.50%
Seasonal Naïve 1.237630 −32.46% -

allows for a more effective capture of the distinct characteristics of each group
(Table 3).

4 Conclusions

Sales forecasts are essential for inventory management in the retail industry,
enabling retailers to balance inventory levels with customer demand and market
conditions. Recent advancements in machine learning algorithms, such as deep
learning, have allowed for the development of more sophisticated forecasting
models that can capture complex patterns and relationships in data and predict
demand across various regions and product categories. This paper investigates
cross-learning scenarios, inspired by the product hierarchy used in retail plan-
ning, which enable global models to better capture interdependencies between
different products and regions. The empirical results obtained using the M5
competition dataset indicate that cross-learning approaches outperform local
forecasting benchmarks, and utilizing partial pooling at the lowest aggregation
level of the retail hierarchy can better capture the unique characteristics of each
group.
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Abstract. Attention deficit/hyperactivity disorder (ADHD) is a neu-
rodevelopmental disorder that is typically diagnosed in young children.
ADHD is heterogeneous by nature with subjects exhibiting various com-
binations of inattention, impulsiveness, and hyperactivity. ADHD typi-
cally persists into adulthood and increases the likelihood of diverse men-
tal health issues and comorbid disorders such as depression, anxiety and
learning disabilities. The ramifications of ADHD may worsen with age.
In this paper, we propose a novel approach for the diagnosis of ADHD
from resting-state fMRI (rs-fMRI) images using Capsule Network paired
with LSTM Network. Combining the predictions of the Capsule Network
along with the LSTM Network with the help of a voting classifier ensures
that both aspects of the data - the sequential features for every subject’s
scan from the LSTM Network along with the attributes of the entire
scan itself from the Capsule Network can be combined to fill in some
gaps between each of their predictions and give a better prediction as
a whole. Our proposed model achieves an accuracy of 80% on the KKI
dataset and 73.33% on Peking-I dataset which is an improvement over
the existing approaches.

Keywords: Attention Deficit/Hyperactivity Disorder · Deep
Learning · Machine Learning · Capsule Network · LSTM Network

1 Introduction

Attention Deficit/Hyperactivity Disorder (ADHD) is one of the most widespread
neurodevelopmental diseases in children and is typically first detected in infancy.
Children with ADHD have acute and/or severe behavior difficulties that interfere
with their capacity to lead regular lives.

Standard methods of detecting ADHD include taking a characteristic inter-
view of the individual, gathering information about possible symptoms from
friends and family, DSM-5 checklists, behavioral rating scales and other psycho-
metric tests if deemed necessary. Recently, advances in the imaging and neural
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networks fields have enabled the automatic diagnosis of ADHD with Blood Oxy-
gen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI)
[2,6]. Functional MRI is a noninvasive technique used to measure and map the
brain activity. Examining not only brain structure but also brain activity during
a task could reveal particulars about the causes of ADHD.

In the proposed approach, we present a deep learning model that combines
the results from two different networks - a capsule network and an LSTM net-
work. The ADHD-200 dataset was used to train the models [1]. This dataset
consists of fMRI scans, using which we prepare a CSV with the preprocessed
features for each subject. We train the capsule network using fMRI scans and
the LSTM network is trained on the preprocessed features using the prepared
CSV. The results from both the networks are then combined using an average
probability classifier to derive the final inference.

We discuss the existing approaches for ADHD detection in Sect. 2. We
describe the dataset in Sect. 3. We present our proposed approach and method-
ology in Sect. 4. Section 5 presents the obtained results, and Sect. 6 concludes
the paper.

2 Literature Survey

Kuang et al. proposed a deep belief Network (DBN) comprising three hidden
layers with greedy RBMs to determine the presence of ADHD and its subtypes,
using the ADHD-200 dataset. Multiple restrained Boltzmann machines (RBMs)
stacked on top of each other, represented each layer in the DBN hierarchy. The
DBN architecture consisted of multiple layers represented by Restricted Boltz-
mann Machines (RBMs). Methods such as the Brodmann mask, Fast Fourier
Transform algorithm (FFT) and max-pooling frequencies were used to lower the
dimensionality of fMRI data. DBN was applied to different DMN areas in fMRI
such as the Prefrontal cortex, Visual cortex and Cingulate cortex [7].

Hao et al. used the Deep Bayesian Network, which is a combination of Deep
Belief Network proposed by [7] along with the Bayesian Network. In their work,
features of relationships were drawn out using the Bayesian network and the
Deep Belief Network was used for normalization and dimension reduction of
fMRI data in every Brodmann area. Finally, an SVM classifier was used to dis-
criminate between ADHD subtypes and classify them into control, combined,
inattentive or hyperactive. The combination of the two networks performed bet-
ter than a deep belief network single. The deep belief network is a stack of
RBMs whereas the foundation of the Bayesian network is a directed acyclic
graph (DAG). Max-Min Hill Climbing (MMHC) algorithm was applied to effi-
ciently learn the structure of the Bayesian network [4].

Zou et al. noticed that functional and structural data in the brain are com-
plementary to each other, they proposed “multi-modality CNN architecture” to
assimilate both, functional along with structural MRI data. Their work men-
tions six types of 3D features, comprising three types of morphological features
and three types of functional features. The high-level characteristics from each
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modality were extracted using a 3D CNN-based method. Low-level features were
preserved in tensors of the third-order and 3D CNN was trained on them, unlike
earlier techniques that largely regarded these features as vectors and thus ignored
potential 3D local patterns [15].

Mao et al. developed a deep learning system based on granular computing
termed 4-D CNN, which was trained using changes that are derivative in entropy
and allow the granularity to be computed at a sequential level by stacking the
layers. For rs-fMRI images, which typically constitute a temporal series of 3-D
frames, methods such as feature pooling, long short-term memory (LSTM) and
spatio-temporal convolution were presented for temporal and granular processing
and integration. To begin with, 3-D CNNs were used to scale 3-D spatial features.
Subsequently, feature pooling and long short-term memory (LSTM) were used
to fuse features together in the time dimension. A 4-D CNN architecture was
suggested to concurrently learn the spatio-temporal features [9].

Riaz et al. applied an end-to-end network to classify ADHD. They proposed
DeepFMRI model that comprises three components: a feature extractor, a sim-
ilarity network, and a classification network. Backpropogation algorithm was
used to train the model to differentiate between healthy controls and subjects
with ADHD. This trained end-to-end model predicts the classification charac-
terization directly from the raw fMRI time-series signals [10].

In [8], a multi-network of long short-term memory (multi-LSTM) was pro-
posed by Liu et al. to identify ADHD. They used GMM-based ROIs cluster-
ing method to identify the clusters and a multi-LSTM model to collaboratively
extract the crucial signal between various clusters. They included phenotypic
information in the model to improve the results of the classification.

In [13], Wang et al. proposed two deep learning approaches for ADHD clas-
sification using fMRI scans. The first method employed ICA-CNN architecture.
This method utilized independent component analysis to separate distinct com-
ponents from each subject. Separate components were then given as input fea-
tures into a convolutional neural network to differentiate ADHD patients from
the usual controls. The second method, learns the latent features from the corre-
lations between the regions of interest of the brain and these latent features are
then used by new neural network to solve the classification task. They showed
that with empirical results both methods are able to outperform the classical
methods such as logistic regression, support vector machines etc.

Kim et al. presented a system consisting of a separate channel attention
convolutional network (SC-CNN), which directly encodes the time series of the
region of interest (ROI) to detect ADHD on the rs-fMRI data. This framework
consisted of two stages in the network, where the first stage of the SC-CNN
network encoded the time-series signal of the fMRI data for each area of the brain
(channel signal) and a second attention network which captured the temporal
interaction features between the extract fusion and the regions [5].

Zhang et al. used a Separate Channel CNN - RNN Architecture, ‘SCCNN-
RNN’ can extract spatial and temporal information from fMRI data. Specifi-
cally, ‘SCCNN-RNN’ can be divided into two parts with different purposes. The
SCCNN part can extract the features of the BOLD signal in each ROI with
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1-D CNN and the RNN part can learn the spatial relation of the ROIs. Three
modified models were also explored: (1) Separate Channel CNN - RNN with
Attention (ASCRNN), (2) Separate Channel dilate CNN - RNN with Attention
(ASDRNN), (3) Separate Channel CNN - slicing RNN with Attention (ASS-
RNN). All the three modified models had the attention mechanism in common
[14].

3 Dataset

Data from the ADHD-200 Consortium was used for the proposed approach1.
A total of 776 MRIs and phenotypic data were collected from various centers
(including NYU Child Study Center, Peking, OHSU, KKI, NI, BHBU, Pitt, and
WUSTL) to build this dataset. This dataset comprises an “unrestricted pub-
lic release of resting-state fMRI (rs-fMRI) and anatomical datasets aggregated
across 8 independent imaging sites, 491 of which were obtained from typically
developing individuals and 285 in children and adolescents with ADHD (ages:
7–21 years old)”. This dataset also includes each subject’s phenotypic infor-
mation, such as their age, sex, diagnostic status, dimensional ADHD symptom
measures, different IQ measures and their lifetime medication status. Based on
visual time-series inspections, the resting-state functional MRI scans are also
subject to preliminary quality control assessments. The ADHD-200 Consortium
hosted a competition in 2011 to identify ADHD biomarkers [3]. By preprocessing
the data and sharing the results openly, the Preprocessed Connectomes Project
(PCP) makes the competition more accessible to a wider range of researchers.
Using their preferred tools, the three teams preprocessed the ADHD-200 data.
Athena pipelines use tools from the FSL and AFNI software packages, NIAK
pipelines employ CBRAIN’s Neuroimaging Analysis Kit, and Burner pipelines
use SPM8 for voxel-based morphometry. Each dataset contains no protected
health information and is anonymous in accordance with the HIPAA guidelines
and the 1000 Functional Connectomes Project/INDI protocols.

4 Proposed System

4.1 Preprocessing and Feature Extraction

The fMRI images in the ADHD-200 dataset are 4-dimensional images. Thus,
the dimensions need to be reduced and converted into feature vectors. The scans
went through multiple preprocessing steps such as realignment, normalization,
smoothing and slice time correction. We have primarily used the data which
were preprocessed using the Athena pipeline under the PCP to perform the
preprocessing and feature extraction stages for the fMRI scans [1]. The AFNI and
FSL neuroimaging toolkits were combined in a shell script used to process the

1 http://preprocessed-connectomes-project.org/adhd200/

http://preprocessed-connectomes-project.org/adhd200/
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images in this pipeline. The Athena preprocessing scripts and the preprocessed
ADHD-200 data set are available on the official Neuro Bureau website2.

The following steps are included in the Athena pipeline:

– Slice time correction
– Motion correction to reduce the noise introduced while scanning
– Creating a standard mean image by averaging the volumes
– Preprocessing anatomical information to obtain down-sampled WM and CSF

masks
– Using EPI volumes to extract WSM and CSF time-courses
– Using Band-pass filter (0.009 < f > 0.08 Hz) voxel time courses to exclude

certain frequencies
– Using a Gaussian filter with an FWHM of 6 mm to blur the filtered and

unfiltered data

Fig. 1. High Level Design

Analyzing abnormal brain activity was done using aberrant ReHo signals that
are connected to modifications in local brain region neuronal activity. The frac-
tional amplitude of low-frequency fluctuations (fALFF) was used to assess the
2 https://www.nitrc.org/projects/neurobureau.

https://www.nitrc.org/projects/neurobureau
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relative contribution of low-frequency fluctuations in a specific frequency band.
AFNI was used to extract ReHo and fALFF. Seed-Based Correlation (SBC)
was performed on the scans, where connectivity was estimated using correla-
tions between time series for all remaining brain voxels. The Nilearn library in
Python was used to calculate this connectivity. The atlas of the brain was also
used since it captures the regions of the brain in a common coordinate space,
and this is useful for mapping the features to their respective regions. A CSV
file with the preprocessed features is prepared, which is then used as an input in
the further stages to train the model. The columns of the CSV file include the
coordinates of the points in each fMRI scan, 10 functional connectivity features,
ReHo features, fALFF features along with the age, gender, handedness, verbal
IQ and performance IQ values of each subject. The rows of the CSV contain
every point of each scan for every subject, one after the other. Figure 1 depicts
the high level design of our proposed approach.

4.2 Capsule Networks

Capsule Networks are a type of artificial neural network that can retain spa-
tial information and other key properties as opposed to convolutional neural
networks that could lose some vital information, such as the spatial connectiv-
ity between the points in an image. Capsule networks, unlike traditional neural
networks, use capsules instead of neurons. All the crucial information from an
image that forms a vector is included in capsules. Capsules, contrary to neurons,
which output a scalar amount, keep a record of the feature’s orientation. Thus, if
the location of the feature is varied, the value of the vector remains unchanged,
whereas the direction will move toward the change in position.

Capsule networks help avoid the data loss that occurs during pooling oper-
ations in CNNs. Capsule networks consider the spatial relationship between the
features into consideration, unlike the convolutional neural networks (CNNs).
This information is a fundamental aspect of the data analysis, and the exami-
nation of this spatial relationship aids in identifying images in a more improved
manner. We implement a Capsule Network where the fMRI scans are fed into
the network as inputs. It involves generating inverse graphics of the input image
with the help of the Dynamic Routing algorithm [11] amongst the lower and
higher level capsule layers, and then decoding these inverse graphics back to
the original input image, minimizing the loss between the original scan and the
regenerated scan. The routing algorithm is being run 4 times (Figs. 2 and 3).

As shown in Fig. 2, the first part of the capsule network architecture consists
of 3 layers: (1) a 3-D convolutional layer (2) the primary capsule layer (3) the final
capsule layer. The second part of the architecture includes a Decoder network,
which is shown in Fig. 3. The Decoder network has 4 connected layers, the first
3 layers being dense layers, which use ReLU with an alpha value of 0.1 for their
activation functions and the final layer, also a dense layer, utilizes a Sigmoid
activation function. We have eliminated the pooling layer and instead have used
larger kernel sizes of 15 in the convolution layers. For capsule networks, we have
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Fig. 2. 3 Layered Capsnet

Fig. 3. Decoder Architecture

augmented 16 time slices from each subject’s fMRI scan and used a learning rate
scheduler and run it for a greater number of epochs where:

LearningRatenew = LearningRateold ×LearningRateCoefficientEpochNo.

4.3 LSTM Networks

Long short-term memory (LSTM) is a special type of recurrent neural network
that enables the learning of long-term data and establishes relationships over
time [12]. A sequential feed of data into the network is the best way for them to
perform effectively. As opposed to RNNs that suffer from vanishing gradients or
long-term dependence problems, LSTMs do not come with these drawbacks. An
example of gradient vanishing may be found in a neural network where informa-
tion is lost as connections recur from time to time over a long period. In short,
LSTMs ignore useless data/information in the network to avoid a vanishing gra-
dient in its network.

The LSTM Network consists of 3 parts as depicted in Fig. 4.
A decision is made in the first part, which determines whether the prior

timestamp’s information should be remembered, or whether it is irrelevant and
should be forgotten. A cell will then learn new information from the input it
receives in the second part of the algorithm. In the third and final part, the cell
communicates its updated information from the current time stamp to the data
in the next time stamp.
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Fig. 4. LSTM Network

The input from the CSV file consisting of the extracted features and the
phenotypic information is used to generate embeddings, which are fed as the
input to an LSTM network. Three LSTM layers, each having a dimension of 64,
are stacked together, with each layer being the input to the next one, and the
third layer is then provided as the input to another singular LSTM layer. This
layer has the same dimension of 64, having a Leaky ReLu activation function
with an alpha value of 0.1, since negative values need to be handled. We end
the network with 3 Dense layers having 64, 64, and 4 units respectively, using
a Leaky ReLU activation function with an alpha value of 0.1 for the first 2
layers, and a Softmax activation function for the third layer. Finally, we compile
the model with a Sparse Categorical Cross Entropy loss function and an Adam
optimizer. And at last, we trained the model for 100 epochs with a batch size of
32.

For the final step, an average prediction classifier is used as an ensemble model
which combines the prediction from each model equally. The output from the
capsule network and the LSTM network is combined to give a better prediction
on average than the individual models.

5 Results and Discussion

This section highlights the performance of the proposed Capsule-LSTM model on
discriminating ADHD in the rs-fMRI data obtained from the ADHD-200 dataset.
We chose to use dataset from two sites for training, validating and testing our
model, the KKI and Peking-I site, since they yielded the highest accuracy as per
the existing literature. For training, 80% of the dataset was used from each site,
that is 64 subjects from both the KKI and Peking-I datasets, and the remaining
20% of the dataset was used for validation and hyperparameter tuning, that is 16
subjects for both the KKI and Peking-I datasets. For testing, 15 subjects from
the test dataset of both the sites KKI and Peking-I was used. Table 1 compares
the performance accuracy of our model on the test set for the sites KKI and
Peking-I with similar approaches already existing in literature.

A confusion matrix is a way to visualize and summarize the performance of a
classification algorithm on test data. A confusion matrix for binary classification
is depicted by Fig. 5. For a classifier model, it creates a table with predicted values
on one axis and true values on the other. The cells of the table correspond to True
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Positive (TP), False Negative (FN), False Positive (FP) and True Negative (TN)
values. The term true positive (TP) indicates the number of positive samples
classified correctly, the term true negative (TN) indicates the number of negative
samples classified correctly, the term false positive (FP) indicates the number
of true negative samples which were classified as positive, and the term false
negative (FN) indicates the number of true positive samples which were classified
as negative. Accuracy, precision, sensitivity, specificity, and F-score are the most
popular metrics for measuring the performance of a classification model.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Sensitivity/Recall =
TP

TP + FN

Specificity =
TN

TN + FP

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall

True
class

Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Fig. 5. Confusion Matrix for Binary Classification

The confusion matrices depicted in Figs. 6 and 7 take into account 15 test
subjects each from the KKI and Peking-I sites respectively.
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For the KKI data, the average prediction classifier reported an accuracy of
80.00%, sensitivity of 66.67%, specificity of 88.89%, precision of 80.00% and an
F1-Score of 72.73% for the discrimination of ADHD.

Using Peking-I data, the average prediction classifier could identify ADHD
with an accuracy of 73.33%, sensitivity of 42.86%, specificity of 100%, precision
of 100% and a 60.00% F1-Score.

True
class

Prediction outcome

p n total

p′ TP
4

FN
2

6

n′ FP
1

TN
8

9

total 5 10

Fig. 6. Confusion Matrix for KKI testing dataset

True
class

Prediction outcome

p n total

p′ TP
3

FN
4

7

n′ FP
0

TN
8

8

total 3 12

Fig. 7. Confusion Matrix for Peking-I testing dataset
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Table 1. Performance comparison of ADHD prediction models on the ‘ADHD-200’
dataset

Paper Model Accuracy Year

[15] 3D CNN 69.25% 2017

[9] 4D CNN 71.3% 2019

[10] DeepfMRI 73.1% 2018

[8] Multi LSTM 73.7% 2020

[13] ICA-CNN 67% 2022

[13] Corr-AE 69% 2022

[7] Deep Belief Network 72.72% 2014

[4] Deep Bayesian Network 72.73% 2015

[5] SC-CNN-Attention 68.6% 2021

[14] SCCNN-RNN 70.6% 2020

Proposed System Capsule-LSTM 80% (KKI) 73.3% (Peking-I) 2022

6 Conclusion and Future Scope

We present a pioneering deep learning and classification framework using Cap-
sule Network and LSTM, based on the ADHD-200 dataset to detect the pres-
ence of ADHD using rs-fMRI scans. Data from the KKI and Peking-I sites in
the ADHD-200 dataset are used. With a classic CNN being the most preva-
lent model used, choosing a Capsule Network instead allowed us to retain the
spatial connections between the features. We also used an LSTM network to
remember and preserve the important features extracted from the scans. The
rs-fMRI scans are four-dimensional and undergo multiple preprocessing steps
such as slice time correction, realignment, smoothing and normalization using
the Athena pipeline. These images then undergo feature extraction through the
same pipeline where features like ReHo, fALFF and the functional connectivity
features are extracted, using which a CSV file with these features and additional
phenotypic information is prepared. This data is given as an input to the LSTM
Network to perform sequential model training on. A Capsule Network is trained
on the fMRI images directly. These models are then fed testing data from the
testing datasets, both giving an accuracy metric each. The accuracy metrics
obtained from both of these networks are then fed into an average probability
classifier to give the final and overall accuracy of the Capsule-LSTM network.
The training and validation split of the dataset is 80% and 20% respectively,
and the final accuracies obtained for the KKI and Peking-I datasets are 80%
and 73.33% respectively, obtained by feeding the testing data for each of the
sites into the trained model.

In the future, Capsule Networks can be combined with a range of other
models to further improve classification performance, as well as make use of
sMRI scans for added information. The decoder network can be optimized to



302 A. Dey et al.

better suit the dimensions of the MRI scans. It can also be used to predict ADHD
index rather than ADHD type using a form of Capsule Network regression.
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Abstract. When dealing with Deep Learning applications for open-set
problems, detecting unknown samples is crucial for ensuring the model’s
robustness. Numerous methods aim to distinguish between known and
unknown samples by analyzing different patterns generated by the model.
Among these methods, those that utilize the model’s output are con-
sidered the most widely applicable and practical for pre-trained mod-
els. Despite their effectiveness, there are also other techniques that can
enhance Out-of-distribution detection methods by calibrating or trans-
forming logit scores. In this study, we propose two approaches for out-of-
distribution detection using logit transformation. One approach is based
on the likelihood from a Gaussian distribution of logits. Additionally, we
extend our method to a multivariate perspective using a mixture of Gaus-
sian distributions to obtain better score disentanglement for traditional
out-of-distribution detection methods. Our approaches were evaluated
in various multi-class classification scenarios. The results showed that
our logit transformation method using Gaussian distribution led to an
improvement of up to 11% in terms of AUROC, and up to 32.6% in
FPR95 if compared to other methods.

Keywords: Deep Learning · Out-of-Distribution detection · Gaussian
distribution

1 Introduction

Deep Learning (DL) models have found widespread use in various applications,
ranging from autonomous driving [18] and pest detection, to speech recognition
[21]. However, in an open-set scenario, accuracy is not the only aspect that
matters, but also safety and reliability [7]. Depending on the problem at hand,
other aspects may also become relevant. Some aspects can be optional but highly
desirable, such as explainability, or essential, such as the ability to handle unseen
data robustly [25].

Most Deep Learning models are trained to recognize only a specific set of
classes, referred to as In-distribution (ID) classes. Typically, these are the same
classes that the model is used in the test phase [3]. However, this approach
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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assumes that the model will only encounter input data from those classes, which
is not always true in an open-set scenario. In reality, it is difficult (or even
impossible) to guarantee that all input data will belong to known classes [20].
As a result, the model needs to be robust and able to handle Out-of-distribution
(OOD) samples, which can come in various forms depending on the problem.

To identify OOD samples, auxiliary methods are often employed. These meth-
ods use patterns from the model to distinguish between ID and OOD samples.
Because the goal is to identify whether a sample belongs to any known class,
traditional methods often rely on the model’s output, such as Maximum Softmax
Probability (MSP) [8] and MaxLogit [6].

Although these techniques are widely used, they may contain limitations.
For instance, some models can generate overconfident scores for unseen classes,
which can lower the effectiveness of these methods for OOD detection [11]. To
mitigate this issue, additional techniques are often applied with these methods to
generate more reliable scores for OOD detection. These techniques may involve
different strategies, such as modifying the training strategy to reduce confidence
in unseen data [10] or calibrating the output scores [4].

In this article, we introduce two approaches for OOD detection that utilize
the output space. These methods are inspired by the standardization of logits
in semantic segmentation [13] and involve adapting the logit using Gaussian
distribution-based techniques. The contributions of this work are threefold:

1. We introduce two straightforward approaches for OOD detection in multi-
class classification. The first approach transforms the logits into a likelihood
for a class-specific multivariate Gaussian distribution. We also propose adapt-
ing this approach, based on a mixture of Gaussian distributions, to generate
an average likelihood.

2. We evaluate the effectiveness of our approach as an extension to two existing
OOD detection methods, namely MSP and MaxLogit. Because these methods
rely on the logit vector, our approach can be easily adapted to work in a
similar manner.

3. We assess our approaches in different tasks, datasets, and model architec-
tures. The proposed methods showed effectively better capability for OOD
detection, compared to similar approaches.

2 Related Works

Out-of-Distribution (OOD) detection is a critical aspect of building robust Deep
Learning models that can perform well in an open-set scenario. The specific
applications and methods of OOD detection vary according to the task at hand,
but they typically involve identifying and labeling unknown samples appropri-
ately for complex problems such as autonomous driving [6] and farmland crop
segmentation.

One of the most common methods for Out-of-Distribution (OOD) detection
involves using the softmax output as an OOD score, known as Maximum Softmax
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Probability (MSP) [8]. This method is based on the idea that unknown class
samples would generate lower confidence scores for each known class, which are
then used to distinguish ID and OOD data. However, using softmax output can
sometimes lead to overconfident scores on unknown data or exploit in adversarial
attacks [24], which has led to the development of adaptations to address these
problems. For example, in [15], the authors proposed an adaptation that uses
input perturbation to transform the output score for OOD detection.

To avoid the issues associated with the softmax, some authors have sug-
gested using the logit and other scoring functions directly for OOD detection.
For instance, [16] proposes using an entropy-based function to transform the
logit into a score for OOD detection. Additionally, [6] suggests using the maxi-
mum logit value directly for OOD detection, similar to MSP. The key difference
is that the logit space is unnormalized, which can emphasize differences between
known and unknown samples.

Although many OOD detection techniques rely on the output space, some
researchers have explored ways to adapt traditional methods to address the chal-
lenges of OOD detection. One approach involves adjusting the training process
to improve OOD detection, such as by exposing models to unknown samples [19]
or simply modifying the loss function [22]. However, these methods may have
limited applicability to pre-trained models. Another common approach is to use
various logit transformations in traditional OOD detection methods. For exam-
ple, temperature scaling can be used to recalibrate output scores, as proposed in
[4]. Additionally, [13] suggests standardizing logits before using the Max Logit
method, which normalizes class-wise scores and ensures the same OOD threshold
for each known class.

The ease and applicability of using the logit to compute the OOD score have
led to various efforts to adjust the output of Deep Learning models for better
OOD detection. While strategies exist to improve the results of the aforemen-
tioned methods by adjusting the logits, there are still gaps that require further
investigation, such as exploring multivariate logit transformations or experiment-
ing with other functions to recalibrate them.

3 Our Proposed Approaches

In this section, we propose two methods to enhance Out-of-Distribution (OOD)
detection using a Gaussian density estimator to recalibrate the logit scores. Addi-
tionally, we introduce a modification that uses a univariate Gaussian distribu-
tion, based on the Standardized Max Logit technique.

Our approaches focus on class-wise normalization to rescale the different
scales and distributions of the logits. To achieve this, we fit a distribution for
each class and transform the logits into likelihoods, putting all values on the
same scale. Inspired by [13], we propose using a Gaussian distribution to fit the
logits. For better understandability, the authors in [13] proposed an adaptation
to the logit scores by using a standardization method, described in Eq. 1.
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sc =
lc − μc

σc
(1)

where sc, lc, μc and σc are the new score, logit value, mean, and standard
deviation corresponding to class c. In that case, μc and σc are obtained using
the logit scores from the training set.

The remaining of this section presents new approaches that utilize the idea of
logit transformation with a Gaussian distribution. These techniques are variants
of the Standardized Max Logit method, aimed at producing OOD scores that
can more effectively distinguish between known and unknown samples.

3.1 Gaussian Max Likelihood

Instead of using standardization to recalibrate the logit scores, we propose the
Gaussian Max Likelihood (GML), which transforms the logit value into likeli-
hood. Let L be the set of logit vectors related to the training set and Lc a subset
of logit value lc at position c, corresponding to the known class c with C known
classes. To fit a Gaussian distribution for each known class, we calculate the
mean μc and the standard deviation σc using Lc, which is repeated for every
known class c.

In test time, we consider a logit vector l and recalibrate each value according
to the Eq. 2. In that case, we need to change each value of the logit, which may
recalibrate the scores for OOD detection.

sc =
1

√
2πσ2

c

exp
(
− (lc − μc)2

2σ2
c

)
(2)

where lc is the logit value at position c, μc and σc are the mean and standard
deviation corresponding to class c, and sc is the score after the gaussian trans-
formation. If the logit belongs to a known class, the likelihood would be high
in this position and approximately zero in all other positions. The transformed
logit’s norm approaches zero for an unknown class, as the likelihood of each class
would be nearly zero.

On further examination of the mathematical formulation, it can be observed
that this method bears similarities to the Standardized Max Logits approach.
However, this method places a significant penalty on samples that lie outside the
distribution, which can aid in differentiating the scores of known and unknown
samples.

3.2 Gaussian Mixture Max Likelihood

Based on the Gaussian distribution, we tested another approach by transforming
the logits into likelihood by using a mixture of multivariate Gaussian distribu-
tions, denoted as Gaussian Mixture Max Likelihood (GMML). In that case, we
follow the standard procedure to fit the Gaussian Mixture Model [17], and then
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use the probability density function of a Gaussian distribution to transform the
logit score, as stated in Eq. 3:

sc = ln
K∑

k=1

πkN (l | μk,Σk) (3)

where πk is the mixing coefficient for the k-th component, μk and Σk are the
mean vector for the k-th component and the covariance matrix for the k-th
component and class c, respectively, and N (l | μ,Σ) is the multivariate Gaussian
probability density function with mean μ and covariance matrix Σ evaluated at
logit l. Depending on the problem, a mixture of Gaussian distributions can be a
better approach to estimating the class-wise likelihood of the logits, instead of
only a multivariate Gaussian distribution.

Using a multivariate Gaussian distribution can capture the relationship
between the logit value and the known class and all other logits. To illustrate
this advantage, Fig. 1 shows an example of binary classification, using a two-
dimensional logit vector l, with l1 and l2 axis. For the GMML method, logit
vectors that don’t lie in any multivariate distribution for each class are more
likely to be considered an OOD, even if the logit values individually can be
closer to ID logits.

Fig. 1. Examples of OOD samples in label space.

4 Experiments

This section presents the experimental protocol to evaluate our proposed
approaches, such as the chosen OOD methods, auxiliary techniques, datasets,
and metrics. In this work, we focused on multi-class classification problems for
image and text classification.
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4.1 Datasets

For image classification, we followed the same procedure for dataset selection as
related works in OOD detection [8,20], choosing both the ID dataset Din and
OOD datasets Dout. We selected the CIFAR-10 dataset for Din, which consists of
10 known classes in relatively low resolution. For Dout, we chose four benchmark
datasets with classes that differ from those in CIFAR-10. Two of these datasets
are semantically different, namely the Textures and House Numbers (SVHN)
datasets, while the other two are closer in proximity: the iNaturalist and Places
365 datasets. Each pair of Din and Dout denote an experiment, using OOD
detection methods to distinguish them. Hence, it’s essential to guarantee that
there is no overlap between these two datasets.

For text classification, we evaluated the proposed approaches in experiments
considering two Din datasets individually: i) the Emotion dataset, which con-
sists of phrases extracted from the internet and labeled into six basic emotions;
and ii) the AG News, which is a collection of news headlines divided into four
classes (World, Business, Sports, and Science/Technology). For Dout, we select
two traditional datasets for text classification: Stanford Sentiment Tree (SST)
and IMDB datasets, which are datasets related to sentiment analysis of film
reviews. Therefore, an experiment consists of a pair of Din and Dout, in which
we evaluate the capability to distinguish between known and unknown samples.

4.2 OOD Methods

To demonstrate the benefits of our approaches, we selected two strong baseline
methods that use logits directly, Maximum Softmax Probability (MSP) [8] and
Max Logit [6]. MSP is a traditional technique for OOD detection that exploits
the softmax probability as the OOD score. A lower score indicates a higher
likelihood of being an OOD sample. On the other hand, Max Logit uses the
maximum logit value as the OOD score. It can be seen as an unnormalized
version of MSP, alleviating the problems related to overconfidence in MSP.

In addition to these traditional methods, we evaluated techniques that apply
logit transformation for OOD detection. We selected Standardized Max Logit
(SML) [13], mathematically described in Sect. 3. Furthermore, we chose Tem-
perature scaling [4], a traditional output-calibration technique, as an auxiliary
technique to the MSP. The Temperature scaling strategy adjusts the output
probabilities by a constant T as shown in Eq. 4.

sc =
elc/T

∑C
j=1 elj/T

(4)

where lc is the value of logit l at position c, C is the total number of classes, T
is the temperature scaling and sc is the calibrated softmax output at position c.

4.3 Metrics

We have selected two standard metrics to evaluate the OOD detection task in
multi-classification problems.
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AUROC (Area Under Recall Operating Curve) is probably the most com-
mon metric to evaluate the OOD detection methods. For the OOD detection
problem, we consider our task as a binary problem, considering only ID and
OOD classes. This metric summarizes the Recall Operating Curve by using the
area under the curve. Therefore, the higher the AUROC, the better the model
to distinguish those classes.

FPR95 is another metric used to evaluate how well the method behaves on
a threshold-defined value. This metric indicates the False Positive Rate (FPR)
when the True Positive Rate (TPR) is 95%. In other terms, the FPR95 highlights
the capability to distinguish OOD samples and most of the ID samples.

4.4 Experimental Details

To evaluate our proposed approach, we used the same experimental procedure
in all experiments. During the testing phase, we randomly selected 1000 samples
from each set of Din and Dout (when applicable) and computed the average
metrics over 10 runs. We chose three different model architectures for image
classification and four different Dout datasets for CIFAR10 as Din. Also, we
selected two datasets as Din in the text classification task and used the same
model architecture for both.

Our proposed approach using univariate Gaussian distribution is a
parameter-free method, making it an advantage as it eliminates the need for
hyperparameter tuning. However, for the GMML approach, we tested a narrow
range of numbers of components, varying from 2 to 4. To tune the hyperparam-
eter of the MSP with temperature scaling, we used a grid search with values
ranging from 0.5 to 2, with increments of 0.1.

We also assess the impact of these OOD detectors across different model
architectures. In image classification, we used a pre-trained Vision Transformer
(ViT) model [2] on the CIFAR-10 dataset, and two traditional models, ResNet
[5] and DenseNet [12], which were fine-tuned on the CIFAR-10 dataset using a
similar approach as presented in [23]. Since we were already evaluating the OOD
detection in two Din datasets for text classification, we chose to use only one
model architecture in our experiments. We opted for the BERT model architec-
ture [1], pre-trained on different datasets according to the Din.

5 Results and Discussion

This section presents the results of our multi-class classification experiments,
where we evaluate our approaches against methods that rely solely on the output
space and calculate the OOD score in a single forward run during inference.
Although Temperature Scaling is not typically considered an OOD method, as
explained in Sect. 4, we have included MSP with temperature scaling as a variant
method in the experiments.
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5.1 Image Classification

For image classification, Tables 1 and 2 show the results for OOD detection using
AUROC and FPR95 metrics, respectively.

Table 1. OOD detection for image classification - AUROC ↑

Model Dout MSP Temp MaxLogit SML GMML GML

ViT SVHN 0.9922 0.9950 0.9978 0.9968 0.9965 0.9975
iNaturalist 0.9782 0.9782 0.9825 0.9840 0.9737 0.9899
Places365 0.9673 0.9795 0.9673 0.9795 0.9853 0.9945
Textures 0.9993 0.9995 0.9997 0.9994 0.9997 0.9994

DenseNet SVHN 0.6767 0.6767 0.6843 0.7365 0.7445 0.7202
iNaturalist 0.6581 0.6221 0.6190 0.6220 0.7103 0.6220
Places365 0.7138 0.6865 0.6839 0.6865 0.7177 0.6815
Textures 0.6824 0.7289 0.6679 0.6670 0.7418 0.7073

ResNet SVHN 0.6979 0.6979 0.6826 0.6816 0.7507 0.5955
iNaturalist 0.6952 0.6941 0.6952 0.6941 0.7584 0.6012
Places365 0.6786 0.6168 0.6626 0.6617 0.7221 0.5816
Textures 0.7058 0.6334 0.6880 0.6866 0.7536 0.5974

Table 2. OOD detection for image classification - FPR95 ↓

Model Dout MSP Temp MaxLogit SML GMML GML

ViT SVHN 0.0095 0.0060 0.0053 0.0070 0.0051 0.0050
iNaturalist 0.1283 0.1283 0.0975 0.0907 0.1233 0.0807
Places365 0.0632 0.00570 0.0552 0.0470 0.0504 0.0370
Textures 0.0016 0.0001 0.0011 0.0005 0.0001 0.0001

DenseNet SVHN 0.6285 0.6310 0.6581 0.6221 0.6003 0.7220
iNaturalist 0.6843 0.7365 0.6710 0.6702 0.7571 0.6702
Places365 0.6427 0.7022 0.6274 0.6264 0.7198 0.6264
Textures 0.6574 0.7289 0.6319 0.6335 0.8920 0.8372

ResNet SVHN 0.7670 0.7661 0.7928 0.7669 0.7018 0.7309
iNaturalist 0.7881 0.7569 0.7573 0.7549 0.7041 0.9337
Places365 0.8135 0.7879 0.7901 0.7879 0.6253 0.9482
Textures 0.7798 0.7569 0.7612 0.7537 0.7064 0.9346

At first glance, we observed that transformer-based models performed better
than other methods, even for baseline models, for detecting out-of-distribution
(OOD) data. While the reported accuracy metrics for multi-class classification
tasks didn’t show a significant difference, some authors suggest that transformer-
based models can have superior OOD detection capabilities, regardless of the
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Fig. 2. Max logit density distribution for (a) ResNet model; (b) ViT model architec-
tures

specific task [9,14]. This advantage resulted in better OOD-based metrics and
slight improvements by using the auxiliary techniques, especially in terms of
the AUROC. Notably, we found that our approaches consistently outperformed
other methods for OOD detection using the Vision Transformer model.

Regarding the other two architectures, we had a better understanding of
why auxiliary techniques could be beneficial. We found that one of the primary
differences was the significant dissimilarity in the scale of logits from both ID and
OOD data, which was not as pronounced in the ResNet architecture, illustrated
in Fig. 2. This discrepancy was reflected in more entangled max logit values,
which made it challenging to develop an effective OOD detector relying solely
on uncalibrated scores using the MaxLogit method. However, methods that use
class-wise calibration of logit scores could mitigate this issue, especially if the
entire logit vector was taken into consideration instead of just the maximum
value, as GMML does. For ResNet, the GMML increased up to 10.7% in terms
of AUROC if compared to the MSP method, reported in the iNaturalist as Dout.
Similar results are found for the DenseNet architecture, which showed that our
approaches outperformed similar methods for OOD detection.

5.2 Text Classification

For text classification, we changed the Din while maintaining the same model
architecture. We also evaluated the same methods for OOD detection, whose
results are presented in Tables 3 and 4.

For the first set of experiments, using the Emotion dataset as Din, we
observed that all of the logit recalibration strategies enhanced the OOD detec-
tion, for both AUROC and FPR95 metrics. However, our approach outperformed
those strategies, increasing the AUROC up to 11.0% and decreasing the FPR95
up to 32.6% using AG News as Dout, if compared to the SML method. The pro-
posed approaches provided a better disentanglement to generate an OOD score
in the fuzzy region between OOD samples and ID ones with lower confidence.

For the experiments using AG News as Din, however, we noticed a more
controversial problem. For all of these experiments, the usage of logit transfor-
mation techniques lowered the capability of such methods for OOD detection.
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Table 3. OOD detection for text classification - AUROC ↑

Din Dout MSP Temp MaxLogit SML GMML GML

Emotion AG News 0.9018 0.9410 0.9464 0.9610 0.9690 0.9680
IMDB 0.9018 0.9690 0.9464 0.9610 0.9692 0.9667
SST 0.8460 0.8672 0.8851 0.9144 0.9313 0.9393

AG News Emotion 0.8669 0.8669 0.9017 0.8836 0.6496 0.8876
IMDB 0.7839 0.7839 0.8220 0.8093 0.8163 0.8038
SST 0.8271 0.8271 0.8653 0.8496 0.6049 0.8408

Table 4. OOD detection for image classification - FPR95 ↓

Din Dout MSP Temp MaxLogit SML GMML GML

Emotion AG News 0.7617 0.3384 0.3476 0.2479 0.1678 0.1425
IMDB 0.7617 0.3384 0.3476 0.2479 0.1673 0.1671
SST 0.8380 0.5407 0.5511 0.4570 0.3281 0.3299

AG News Emotion 0.6055 0.6055 0.4695 0.8720 0.9765 0.4905
IMDB 0.8596 0.8596 0.8220 0.8093 0.8163 0.8038
SST 0.6882 0.6882 0.8653 0.8496 0.6208 0.6049

One of the issues that we found is that logit distribution for some of the known
classes behaved in an odd manner, as illustrated in Fig. 3. Controversy from the
literature, where, generally, training samples produce higher logits than test set
or unknown samples, in this example, we can see that the opposite happened.
This could generate a problem in the logit recalibration strategies, which can
make an OOD sample more likely to be an ID class, especially for the multivari-
ate Gaussian approach, in which logits from its class may impact the likelihood
for other classes as well.

Fig. 3. The distribution problem for AG News dataset experiment; (a) Max logit dis-
tribution for the training set, test set and OOD samples; (b) Max logit after GMM
transformation
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6 Conclusion

This paper introduced two strategies that utilize output space-based methods to
improve OOD detection, based on the use of the Gaussian distribution, either
through a univariate Gaussian or a mixture of Gaussian. Our experiments showed
that our strategies effectively distinguished between known and unknown classes,
thereby improving the baseline methods. However, we also observed that logit
transformation alone could not be used without additional analysis of the logit
distribution, as seen in the last experiment of the text classification section. We
plan to further evaluate our approaches in various scenarios to better understand
these methods for OOD detection.
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Abstract. LoockMe is an artificial intelligence-powered location scouting plat-
form that combines deep learning image analysis, cutting-edge machine learning
natural language processing (NLP) for automated content annotation, and intelli-
gent search. The platform’s objective is to label input images of local landscapes,
and/or any other assets that regional film offices want to expose to those inter-
ested in identifying potential locations for the film production industry. The deep
learning-based image analysis achieved high classification performance with an
AUC score of 99.4%.Moreover, the state-of-the-artmachine learningNLPmodule
enhances the platform’s capabilities by analyzing text descriptions of the locations
and thus allowing for automated annotation, while the intelligent search engine
combines image analysis with NLP to extract relevant context from available
data. The proposed artificial intelligence platform has the potential to substan-
tially assist asset publishers and revolutionize the location scouting process for
the film production industry in Greece.

Keywords: artificial intelligence · deep learning · transfer learning · natural
language processing · location scouting · film production · search engine

1 Introduction

Artificial intelligence (AI) has the potential to revolutionize various industries by stream-
lining and automating complex tasks. In recent years, deep learning (DL) has made sig-
nificant strides in the fields of image analysis and natural language processing, making
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it possible to extract meaningful insights from vast amounts of raw data. One potential
application of AI is in location scouting for film production, where identifying suitable
locations can be a crucial aspect of the filmmaking process.

DL has also been utilized in location recognition based on image classification tasks,
where the objective is to identify photos of a certain area or site. A variety of studies
have investigated the performance of DL analysis for location classification. Kim et al.
[1] propose a method of automatically classifying tourist photos by attractions using DL
models and feature vector clustering, which allows for the flexible extraction of cate-
gories for each tourist destination and improves classification performance with a small
dataset. D’Haro et al. [2] present a system that uses a CNN-basedmodel to automatically
recognize landmarks in Singapore through images, which is combined with metadata
information to provide information about specific places. The proposed model achieved
an F1 score of 81% over a set of six different landmarks. Hettiarachchi et al. [3] pre-
sented a hierarchical place recognition system that fuses visual and location information
using DL models, achieving a recall of 95.7% on the Tokyo Outdoor Places dataset.
These results demonstrate the potential of DL models for location image classification
tasks, which can have practical applications in fields such as tourism, urban planning,
and location scouting.

Text annotation is the process of assigning labels to documents and their con-
tents. Such annotation supported by machine learning (ML) tools has been applied
in domains such as the biomedical domain [4], social network post analysis [5], and
emotion detection [6].

In this paper, an AI platform that integrates DL image analysis and ML NLP to
label images of locations in Greece is presented. LoockMe is designed to perform DL-
and ML-based data analysis, including images and text descriptions, respectively, and
extract relevant information about locations that might be of interest to film production
companies.

The contributions of this study can be summarized as follows:

• The proposed transfer learning framework for image analysis is a high-performing,
easy-to-deploy, and effective methodology for domain adaptation tasks.

• Extend the publicly available imaging and NLP pre-trained models by adapting them
to new domains.

• The interplay between the NLP and the AI image annotation component can
significantly accelerate the location registration process on the LoockMe platform.

• The proposed platform architecture will allow the ML models to improve over the
life cycle of the service, despite the data shift as the language and imaging databases
get larger.

2 Material and Methods

2.1 Data Collection

Data collection is crucial to building robust and highly accurate image recognition mod-
els. Public and open imaging datasets can provide a diverse and representative sampling
of sites for highly precise analysis and classification. For legal and ethical reasons,
collecting license-free images is important because using copyrighted images without
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permission for model development could be prohibited in many areas. An open-source
image scraper [7] was used to automatically download data from Google Search (www.
google.com) based on specific criteria such as the size of the pixel array of the image, key-
words relevant to Greek landmarks, and the availability of a creative commons license.
The search was performed on the Google search website with the abovementioned con-
straints, and the link was passed to the image scraper software. Terms in both Greek
and English were used to search for imaging categories such as “ancient amphitheater”
(164), “ancient temple” (171), “Byzantine architecture” (43), “Greek urban landscape”
(29), “village (island)” (129), “old port” (39), “olive grove” (57), “ancient ruins” (33),
“traditional Greek architecture” (23), “traditional stone bridge” (89), “vineyard” (136),
“windmill” (107), “saltpan” (18), as presented in Fig. 1. Assessing image quality and
discarding images based on the relevancy of the search term was key to enhancing the
robustness of the dataset. In particular, from the twenty terms, three returned irrelevant
or low-quality images, and four returned fewer than seven images per term. Finally,
thirteen classes were used to develop the DL model. The model is available online1.

Fig. 1. Samples of the collected LoockMe imaging dataset

2.2 Deep Learning-Based Image Analysis

Image Pre-processing and Data Stratification. All images were resized to a pixel
array of 256 by 256 pixels as required by the DL analysis. The statistics of the pixel
distribution of the collected dataset used for the standardization of the images were
extracted exclusively from the training set and applied to the other sets. In particular,
after standardization, the final pixel distribution is characterized by unit variance and a
zero mean. Five-fold cross-validation was used to split the convergence and testing sets.
The convergence set was further split into training (80%) and validation (20%) sets by

1 http://www.github.com/trivizakis/loockme-model/.

http://www.google.com
http://www.github.com/trivizakis/loockme-model/
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applying holdout cross-validation. In particular, the training set was used for fitting the
model, and the validation set was used for early stopping of the training phase. Finally,
the testing set remained unseen across experiments to avoid data leaks and fairly evaluate
the models. The class balances were preserved across sets.

Transfer Learning. Transfer learning (TL) is a popular technique in DL that involves
using pre-trained models as a starting point for training with less data. Adapting Ima-
geNet [8] weights is a commonly used solution in DL image analysis [9–11]. This is
because the source models were trained on a large dataset with a wide variety of images,
and consequently the learned filters, which are low-level texture detectors, are trans-
ferable across domains. Therefore, TL with such pre-trained models allows for better
and faster convergence on a much smaller dataset. The convolutional part of the source
model was transferred to a target model with new input and neural network layers, as
depicted in Fig. 2, enabling the adaptation of the source model to a new classification
domain. In the context of location identification, TL was used to train DL models to
classify images of local landscapes as potential filming locations. This approach can
save significant amounts of time and resources since the pre-trained model already has
learned low-level features that are useful for the new problem. Part of the transferred
convolutional neural network remained frozen, while the new layers were adapted on
the relatively size-limited LoockMe dataset, improving the target model’s accuracy and
reducing the risk of overfitting. In this study, eight models with different architectures
and layer types were used, including themost prominent: a) VGG [12], b) Inception [13],
c) Xception [14], d) ResNet [15], e) NasNet [16], f) MobileNet [17], and g) DenseNet
[18], available in the Keras [19] online repository.

Fig. 2. The TL implementation for image analysis. Three settings for neurons were tested
including 256, 512 and 1024 neurons in the hidden layer.

Hyper-parameters Optimization. TL does not require optimizing the parameters of
the architecture except for the neural network part of the deep model. The convolutional
part of the model was transferred to the target model, while new input and neural layers
were added. Several neural network settings were tested. In particular, a single hidden
layer with either 256, 512, or 1024 neurons was examined. The criteria for assessing
the convergence status of the deep models was the minimum loss that maximizes the
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prediction accuracy in the validation set. Additionally, for the same task, learning curves
for loss and accuracy were also considered for evaluating each model’s convergence
status.

2.3 Natural Language Processing Service

Service Functionalities. The natural language processing service was designed to pro-
vide a solution both to the content provider and to the end-user. The former provides
a description of an image and receives intelligent suggestions for annotation, while the
latter provides a query of a desired location and receives a collection of relevant images.
By utilizing a pre-defined set of ontology terms, a pre-trained unsupervised algorithm,
and distance algorithms, the service is capable of capturing the semantic relationships
within a given text. As a result, it provides intelligent methods for the user.

Data Collection – Film Offices. Since the service relies on a pre-trained ML algo-
rithm, data collection was focused on ontology development. To this end, relevant search
vocabularies were identified by examining existing solutions on the internet. Data were
collected by employing Python programming language tools and web scraping tech-
niques to extract information from various film offices. The sites were categorized into
logical categories and subcategories, which included flat and multi-level categorization
with each category further divided into individual subcategories.

The Creation of the Ontology. The ontology constitutes a main, static component of
the NLP service. The creation of such a file required the implementation of certain steps
that are described below:

1. Aggregation of all the terms of the existing Film Offices.
2. Addition of terms that correspond to the unique geographical, architectural features

of Greece and its history.
3. Refinement and cleaning of the ontology after multiple quality checks to ensure it

was efficient and accurate.
4. Ontology optimization.
5. Creation of a final version of the ontology after continuous conversions and

evaluations.

The final version was comprised of 13 categories, 31 subcategories (Table 1), and
649 terms. The ontology termswere originally stored inXLS file format and transformed
into XML file format with Python programming language scripts.

General Approach and Description of the Techniques Used. The NLP service man-
ages and understands term representations at a programming level using vector word
embeddings. Word embeddings are fixed-length vectors constructed using word co-
occurrence statistics based on the distributional hypothesis [5]. This hypothesis states that
words appearing in the same contexts tend to have similar meanings, and mathematical
operations such as (e.g., addition, subtraction) can be used [6].

Another component of the service is GloVe (Global Vectors for Word Representa-
tion), a log-bilinear model with a weighted least-squares objective. GloVe is trained on
aggregated global statistics of word co-occurrence, allowing it to represent words as
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Table 1. The LoockMe ontology: Main categories and subcategories.

Categories Subcategories 
Facilities Agriculture, Educational, 

Healthcare, House Type, 

Industrial, Institution-

al/Government, Sport 

Facilities, Tourist accom-

modation, Worship-

Religious Buildings 

Trade Facilities Individual shops, Shopping 

Areas 

Environment-

Landscapes-City 

Areas 

Transportation  

Ancient-Historic 

Monuments 

Architectural Appearance and Condition, 

Architectural Style, Special 

Interest 

Categories Subcategories 
Culture-Leisure Museum-Exhibits-Art, 

Recreation, Theatre-

Auditorium 

CHRONOLOGICAL-

Period 

Modern Greece 

REGIONAL-

Administrative Region  

Attica, Central Greece, 

Central Macedonia, 

Crete, East Macedonia 

and Thrace, Epirus, 

Ionian Islands, North 

Aegean, Peloponnese, 

South Aegean, Thessaly, 

West Greece, West 

Macedonia 

REGIONAL-Proximity  

REGIONAL-

Coordinates 

Film Genre-Mood

Background View

linear sub-structures in the vector space. Thus, using mathematical functions such as
Euclidean distance, it is possible to calculate the percentage of linguistic or semantic
similarity between two words based on GloVe’s word representations [7].

The service combines all necessary components to construct a comprehensive NLP
tool capable of processing text and extracting meaning, capturing the semantic relation-
ships of a given text and specific terms within the ontology. An overview of the service’s
functionality:

The content provider or end-user writes a description/sentence.

1. The service receives an API request.
2. The NLP pipeline processes the request.
3. The service returns an API response.

The response includes a set of terms for annotation or a collection of images,
depending on the use case. A more detailed representation is shown in Fig. 3.

The set of functions that were applied for the operation of the service is analyzed
individually and descriptively in the next steps. If necessary, the input is split into separate
sentences depending on the use case.

1. The function takes a string of words as input and converts them to lowercase, while
also handling capital letters and dashes (-, _).

2. It uses the word_tokenize() function from the NLTK library to remove all punctuation
from the input.

3. It splits the resulting string into a list of unique words.
4. It lemmatizes the words in the list using the WordNetLemmatizer class from the

nltk.stem package.
5. It removes all stopwords from the list using the stopword corpus from the nltk.copus

package.
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Fig. 3. A detailed overview of the NLP service.

6. It returns the modified list of words.

After the pre-processing steps, the input will undergo three separate NLP pipelines,
each referred to as processes (a), (b), and (c).

• The first process (a) uses the set of words proposed by the user to find embeddings.
• The second process (b) uses the set of all nouns found in the user’s input.
• The third process (c) uses themain part of the sentence that comes before determiners,

adverbs, or subordinating conjunctions, if they exist.

The parts of the sentence are identified using the pos_tag function of the NLTK
library, which tags each word in the input text with a part of speech. This allows the
service to extract themain part of the sentence for use in the third process. Tomeasure text
similarity to the ontology terms, cosine similarity was employed in all three processes
with a threshold of 65%. This choice of metric and threshold was determined after
experimentation and analysis of the results.

2.4 LoockMe Platform

The LoockMe platformwas designed on the same principles that big film offices [20–22]
were built upon. In particular, key features of these successful services were integrated
intoLoockMewith the ambition of extending their baseline functionality and usability by
incorporatingAI analysis tools, such asNLPandDL image analysis, as depicted in Fig. 4.
The LoockMe database offers information to film/content professionals and producers
about the accommodations, auxiliary support services, other technical infrastructure
required, and other metadata of the depicted location.

Two main use case scenarios are available on the platform: a) content upload, and b)
location recommendation. During the content upload, the input images are analyzed by
the DL-based module, and a list of relevant terms are recommended for approval to the
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Fig. 4. The workflow of the LoockMe smart search engine. NLP, natural language processing.

user. Multiple models are leveraged for this task including the custom LoockMe model,
an ImageNet model with reduced outputs only to relevant classes, and the Place356
model [23, 24]. For the location recommendation, the NLP module of the platform
can detect the most relevant keywords from the search query of the user. Then, these are
matched to the database of LoockMe, and the best locations are returned to the front-end.

3 Results

Image Analysis. The DL analysis was conducted on a computational node integrating
an IntelXeon central processing unitwith twenty threads, thirty-two gigabytes of random
access memory, and an NVidia Quadro M4000 graphics processing unit with eight
gigabytes of video memory. The dataset splits and experimental protocol were kept
constant across all experiments, with the key differentiating factors being the number of
neurons, and the transferred layers of the pre-trainedmodels. In total, 120 uniquemodels
were evaluated, including 24 architectures (eight architectures by three neural network
settings) in five different splits of the LoockMe dataset (k-fold cross-validation). The
dataset consists of 1038 samples across 13 classes. Four types of data augmentation
transformations were performed: 1) flipping from right to left, 2) flipping from top
to bottom, 3) rotation at 90°, and 4) rotation at 270°. The training sets consisted of
approximately 650 samples, which were augmented to more than 3250 images. 90% of
the transferred convolutional layers remained frozen, while the rest were adapted to the
new domain. A batch size of 16 samples and a learning rate of 10–4 were used. All the
metrics are presented in the mean ± standard deviation% format.

The top-performing architectures in terms of F1 score include Inception v3 (88.0 ±
2.2), Xception (89.0± 1.6), and DenseNet (89.8± 1.0). The latter achieved the highest
accuracy with the lowest prediction variability in its 512-neuron layer architecture, as
presented in Table 2. It is worth noting that despite the fact that the examined dataset
is highly imbalanced, the convolutional layers of the DenseNet architecture learned an
invariance feature representation that was highly transferable to the examined study’s
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Table 2. The performance of each deep model on the unseen testing sets based on the five-fold
cross-validation methodology.

Architecture Accuracy AUC (OvR)

Number of
Neurons

256 512 1024 256 512 1024

DenseNet121 90.0 ± 2.7 90.3 ± 0.7 88.9 ± 2.2 99.3 ± 0.2 99.4 ± 0.5 98.9 ± 0.4

Inception v3 89.6 ± 2.4 88.4 ± 1.7 85.5 ± 3.4 99.1 ± 0.3 99.3 ± 0.4 98.8 ± 0.5

Inception Residual
v2

88.7 ± 1.8 88.3 ± 1.5 87.4 ± 2.5 99.4 ± 0.2 99.4 ± 0.2 99.1 ± 0.4

MobileNet v2 84.6 ± 1.8 85.3 ± 1.5 86.3 ± 0.7 99.0 ± 0.3 98.8 ± 0.3 98.7 ± 0.2

NasNetm 85.0 ± 3.5 86.3 ± 3.0 86.2 ± 3.3 98.6 ± 0.6 98.8 ± 0.7 98.7 ± 0.3

ResNet50 68.8 ± 1.5 69.0 ± 1.8 71.0 ± 3.9 95.0 ± 0.9 94.7 ± 1.0 95.2 ± 0.9

VGG16 87.5 ± 1.8 88.4 ± 3.0 86.1 ± 4.3 99.2 ± 0.2 99.2 ± 0.2 99.0 ± 0.4

Xception 89.5 ± 2.0 89.2 ± 1.4 88.7 ± 2.7 99.2 ± 0.1 98.9 ± 0.6 99.1 ± 0.4

domain. In contrast, the rest of the architectures’ most commonmisclassification classes
were those with the least representation in the dataset, as presented in the confusion
matrix of the ResNet in Fig. 5b.

Fig. 5. Confusionmatrices of the best- (a) versus the worst-case convergence (b) model. The class
numbers represent: 0. Ancient amphitheater, 1. Ancient temple, 2. Byzantine architecture, 3. Greek
urban landscape, 4. Village (island), 5. Old port, 6. Olive grove, 7. Ancient ruins, 8. Traditional
greek architecture, 9. Traditional stone bridge, 10. Vineyard, 11. Windmill, 12. Saltpan.

The transferability of the DensetNet layers was superb, especially when compared
to the poorly converged ResNet. For the latter architecture, the validation loss remained
very high (Fig. 6e), greater than 1 during the training phase, which explains the very
low prediction accuracy on the unseen testing set. Figure 6 also highlights the impact
of the pre-trained weights in the proposed DL model, since the convergence of these
models is performed in just a few epochs despite the size-limited LoockMe dataset. The
low performance of some classes (Fig. 5. Classes: 3, 7, 8) can be attributed to the very
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low sample size per class and the visual similarities with other classes. In particular, the
class “Greekurban landscape” ismiscategorized as “Byzantine architecture” and “village
(island)”. This is because the background in some samples of “Byzantine architecture” is
often a Greek city, for instance when a church is depicted. Similarly, “ancient ruins” are
classified as “ancient amphitheater”, and “TtraditionalGreek architecture”,whichmostly
consists of old stone buildings, as “ancient ruins” or “village (island)”. Nevertheless,
despite the superior performance of the DenseNet-based models, it is clear that there is
room for an even better convergencewith a lower loss than the one thatwas achieved (loss
of 0.27), as seen in the learning curves in Fig. 6d. This will be addressed by integrating
retraining routines in LoockMe that will alleviate any data drifting issues during the
platform’s life cycle.

NaturalLanguageProcessingService. TheNLP service and pipelineswere developed
and refined through continuous evaluation and validation, including rigorous testing on
two separate validation sets pro-vided by field experts coming the Greek National Centre
ofAudiovisualMedia andCommunication (EKOME) and a private production company.
In addition, the processeswere designed to generalizewell beyond the specific da-ta used
in the validation sets, with the goal of creating anNLP service that can effectively process
natural language input in real-world scenarios. The overall effective-ness of the NLP
service on the validation sets have a total of 88% accuracy.

Fig. 6. Two types of learning curves are presentedbasedon: a) accuracy (top), andb) loss (bottom).
The convergence of the high performing DenseNet (a, d) is compared to the poorly fitted ResNet
(d, e).
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4 Discussion

The present study introduced an artificial intelligence (AI) platform that integrates DL
image analysis and NLP processing to label raw input data for location scouting in
Greece. The LoockMe platform is aiming to automate and streamline the process of
identifying potential locations for film production companies by analyzing large vol-
umes of raw data, including images and text descriptions, and extracting relevant infor-
mation about the location. LoockMe offers several benefits, such as accurate image
classification, time-, and cost-effective location scouting.

One of the main advantages of the platform is its ability to accurately identify loca-
tions that may meet the specific requirements of film production companies. This was
achieved through the use of DL models, which can analyze unseen images and extract
relevant information with high accuracy. LoockMe can lead to time and cost effec-
tiveness as it automates the process of identifying potential locations, which will save
resources for film production companies. This will allow them to focus on other more
creative and demanding aspects of the production process. Additionally, LoockMe can
alleviate the drawbacks of filming in a foreign country, where language and cultural
barriers may require additional resources. By adapting text descriptions and collecting
a custom imaging dataset of locations in Greece, the proposed DL model was able to
identify key features and characteristics of the locations, such as sites of historical and
cultural significance.

The proposed infrastructure automates the process of identifying potential locations
by using production terminology. In particular, the use of AI reduces the need for manual
labor, which can be costly. Therefore, the LoockMe platform offers a cost-effective solu-
tion for location scouting in Greece, allowing filmmakers to identify suitable locations
without having to hire large teams of expert scouts.

One of the few limiting factors of LoockMe is that the prediction accuracy of the
platform depends on the quality of the data being used. If the data is of low quality, the
platformmaynot be able to accurately identify suitable locations.Therefore,mechanisms
for retraining and fine-tuning current versions of the models will be integrated and will
be triggered based on the presence of new data on the platform. Additionally, limitations
in understanding local languages and dialects could lead to errors in the analysis of
text descriptions and, therefore, the annotation of imaging data. The models, such as
Places365, that were developed with open datasets may not be able to fully capture the
cultural differences of Greek architecture and cityscapes that could affect the suitability
of a location for film production.

In future iterations of LoockMe, the DL analysis module should be expanded to give
a comprehensive and accurate understanding of the locations and multiple landmarks in
an image that are being considered. This would help filmmakers make better decisions
about possible locations.

5 Conclusion

The use of an artificial intelligence platform that integratesDL image analysis and natural
language processing for location scouting in Greece offers significant benefits such as
accuracy, time-savings, cost effectiveness, and a comprehensive understanding of the
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locations being considered. Overall, the platform fulfills an important unmet need in
Greece, and offers a user-friendly solution for location scouting in Greece.
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Abstract. This paper presents a proposal for object detection as a first
stage for the analysis of Human-Object Interaction (HOI) in the context
of automated functional assessment. The proposed system is based in a
two-step strategy, thus, in the first stage there are detected the people in
the scene, as well as large objects (table, chairs, etc.) using a pre-trained
YOLOv8. Then, there is defined a ROI around each person that is pro-
cessed using a custom YOLO to detect small elements (forks, plates,
spoons, etc.). Since there are no large image datasets that include all the
objects of interest, there has also been compiled a new dataset including
images from different sets, and improving the available labels. The pro-
posal has been evaluated in the novel dataset, and in different images
acquired in the area in which the functional assessment is performed,
obtaining promising results.

Keywords: Image processing · Object detection · Occupational
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1 Introduction

In the field of occupational therapy, there is a branch of study in which patients
are evaluated according to criteria related to the quality with which certain types
of actions are carried out. These actions are household chores or daily routines
with which the patients are familiarized, hence, they are used to perform them,
easing the execution of the tasks. The specialists are responsible of evaluate
these tasks using prompts or truth tables, with which the quality of the actions is
quantitatively set, to get a functional assessment. They do this just by observing
the patients, without any supporting tool to automate the procedure.

One of the methods used for this objective is called AMPS (Assessment
of Motor and Process Skills) [9]. The AMPS is a tool that allows a thorough
and unbiased evaluation of an individual’s ability to perform Activities of Daily
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Living (ADLs) in real-life situations. It includes over 125 tasks that can be done
in different settings and with varying levels of difficulty, ranging from simple
self-care tasks to more complex ones in various environments such as at home,
supermarkets or parks.

In physiotherapy, professionals use the clinical assessment of the degree of
functional limitation of individuals through automated analysis of the perfor-
mance of ADLs. However, the evaluation of the performance of these ADLs can
be subjective and strongly depends on the person who is doing the evaluation.

During the execution of the ADLs, one of the evaluated aspects are the inter-
actions of the patients with different objects, determining if the chosen objects
are correct or not, if the patient pick it up adequately, etc. It this context, this
paper is focused on the detection and classification of Human-Object Interac-
tion (HOI) as a part of a system for automatic functional assessment from image
sequences, in which HOI analysis consist on finding people and things and rec-
ognizing the intricate relationships between them [16].

Due to the characteristic of the analyzed ADLs, the proposed system must
be able to detect the different involved objects such as: tables, chairs, cupboards,
forks, clothes, etc. that can be very small in the images. Furthermore, the sys-
tem must be non-intrusive, preventing the execution of the actions from being
affected, thus the cameras are located in fixed positions in the environment.

There are numerous works related to HOI in different contexts, what can be
divided into sequential and parallel approaches [17,25]. The sequential methods
first detect the object in the scene and then analyze the interactions, whereas the
parallel ones detect interactions directly from image sequences. In the sequential
approaches, interactions can be detected by appearance [11] or using graphs
[23,24] and connecting them by context, relationships or structural information.

In [5] the authors use RGBD-HOI descriptors to evaluate ADLs, however, the
camera is located in front of the patients, what can be intrusive and modify they
behaviour. There also exist some datasets with different ADLs such us Toyota
Smarthome [7], but it does not include the ADLs of interest.

Due to the characteristics of the objects and interactions, the proposed sys-
tem is sequential, and it is divided into different steps as it can be seen in the
general block diagram in Fig. 1.

Fig. 1. General block diagram of the Human-Object Interaction proposal.
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The first module consists of detecting people and the objects with which they
may interact. Then, the second one searches for possible connections between the
person and the detected objects and generates an association that links them.
Finally, the last module analyzes the context of the scene and the connections
to classify the interactions and obtain the final output.

This work is develop under the EYEFUL project [1], that aims to develop
a methodology to design, implement and evaluate automated clinical tests of
functional limitations, which give objective assessments with clinical validity, and
eliminate the interference in test performance caused by the physical presence
of the assessor. Furthermore, the subjectivity of the human assessor will be
replaced by an automatic system that extracts multisensory information from
the environment during the functional assessment of the user.

The set up for the EYEFUL project is installed in a simulated apartment
located in the Rey Juan Carlos University (URJC), distributed as shown in
Fig. 2). It includes a living room, a kitchen, a bathroom and a bedroom, but
the chosen ADLs take place in the kitchen and the bedroom. Besides, there are
different cameras Stereolabs Zed 2i [4] and Intel Realsense D455 [3] located in
the environment as shown in Fig. 2.

Fig. 2. URJC apartment map.

The rest of the paper is organized as follows: Sect. 2 present the collected
dataset including the different objects of interest. Then, Sect. 3.1 describes the
object detection proposal. Finally, Sect. 4 present the main results and the con-
clusions and future work are included in Sect. 5.

2 GEFAD-Objects Dataset

For this paper, we have compiled images and annotations from some existing
datasets to get enough quantity of instances for fine-tuning a model to the objects



Object Detection for Functional Assessment Applications 331

needed for the applications of interest. We have named this compilation as Gein-
tra Functional Assessment Dataset - Objects (GEFAD-Objects). Below, there are
described the analyzed Datasets.

– Microsoft COCO [18]. Common Objects in Context is a dataset created
with the goal of advance in the object recognition task in the context of
the scene. It gathers images of everyday scenes in their natural context. It
accumulates a total of 91 object classes, with 2.5 million instances labelled
in 328k images. This dataset includes image classification, object detection
and semantic segmentation. The dataset is interesting for this work because
it includes almost every kitchen object under study (bowl, chair, wine glass,
knife, spoon, fork and table). COCO provides the labels in JSON format
(based on dictionaries), the same chosen for the GEFAD-Objects dataset.

– ImageNet [8]. It is the very first large-scale image ontology published in
2009 and based on the WordNet framework. It provides approximately from
500 to 1000 images for the synsets in WordNet. At the beginning, it included
5247 synsets and 3.2 million images, but now it provides 14,197,122 images
and 21841 synsets indexed [2]. Despite the number of images and synsets,
from ImageNet it has not been possible to get more than 1000 instances for
every object (except for the class “chair”). The format in which the labels
are present is XML so it require a conversion.

– Open Images [15]. It includes 1.9 million and over these images, it pro-
vides more than 15 million bounding boxes that are each assigned to 600
different item categories, with unified annotations for image classification,
object detection and visual relationship detection. It is noteworthy that this
dataset annotates visual relationships between them, which support visual
relationship detection. This dataset is very complete and provides a lot of
instances for our purpose, mainly for the classes of chair and table, but it is
not so useful for other less common categories. Labels are provided in CSV
format.

– LVIS [12]. It is a Large Vocabulary Instance Segmentation dataset published
in 2019, able to recognize more than 1000 object categories. LVIS has empha-
sized learning from few examples, but it presents over 2 million instances in
164k images. The objects are segmented with high-quality masks, but it also
includes the labels of the bounding boxes. Besides, this dataset also uses the
JSON format.

– Epic-kitchens [6]. This is a first-person point of view dataset, consisting of
videos recorded by 32 participants doing kitchen chores. It includes 55 h of
video, divided into 11.5M frames, where 454.3K object bounding boxes are
labelled. Although the characteristics of this dataset can be interesting for
this work, the labels were incorrect, so it has been discarded.
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Table 1, summarizes the classes that appear in each dataset. It is work high-
lighting that, all datasets are open source within Creative Commons Attribution
license.

Table 1. Classes present in each of the used datasets.

Object COCO ImageNet OpenImages LVIS

Plates X X X

Fork X X X X

Glass X X X

Knife X X X X

Shoe X X

Spoon X X X X

Since there were detected some problems in the annotations of the collected
datasets, such as not including the label “person”, a label propagation algorithms
has been used to avoid problems.

To do that, all the chosen images were classified using a pre-trained neural
network. The obtained results were compared to the available labels by comput-
ing the intersection over union (IoU). This procedure allows adding between the
annotations obtained. After doing this, there were added more than 40k new
instances to the dataset (taking into account “person”).

Once all datasets are collected, the labels are transformed into JSON format
to standardize them and ease the process of managing the data. In summary,
GEFAD-Objects dataset includes the categories shown in Table 2, where there
is also shown the number of instances and the percentage of labels belonging to
each class.

Table 2. List of categories in GEFAD-Objects dataset.

Category Id Number of instances Percentage

Plates 0 34083 32.1%

Fork 1 10513 9.9%

Glass 2 25675 24.2%

Knife 3 13947 13.1%

Shoe 4 11354 10.7%

Spoon 5 10708 10.1%

Total – 106280 100%
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3 Object Detection for Functional Assessment Evaluation

The object detection module requires detecting several specific objects involved
in the analyzed ADLs, such as the kitchen objects (plates, glasses, cutlery, etc.) or
the bedroom ones (underwear, shoes, socks, etc.), as well as other more common
elements as people, chairs or tables.

Most of the available pre-trained models are able to detect the common
elements, however there have problems detecting specific objects, specially if
there are small in the image (such as the kitchen objects), so it is needed to
adapt the model for detecting the objects involved in the analyzed ADLs, using
the collected dataset described in Sect. 2 as described below. Furthermore, some
elements such as the tablecloth and napkins, can not be detected using these
networks, thus, there has been proposed an approach for detecting these elements
based on their color.

3.1 Object Detection by Pattern

There are numerous approaches for object detection based on neural networks,
that can include one or two stages. One-stage models, such as You Only Look
Once (YOLO) [20,21] and Single Shot Detector (SSD) [19], search in a single step
for both candidate regions containing objects and the classes and coordinates
of the objects. Two-stages models first identify candidate regions to contain
objects, and then refine the location and identification of object classes in the
second step, i.e. Fast RCNN [10], Faster RCNN [22] or Mask RCNN [13].

In this work, there is used YOLO, due to its high accuracy with a low com-
putation time. Specifically, it is used YOLO v8 [14]. However, this YOLO archi-
tecture present a lack of detections of small objects, due to the input image sizes
used for training the network. To avoid these problem, after detecting people and
common elements with a pretrained YOLO, a region of interest (ROI) around
each person is cropped and processed again, using a customized YOLOv8 to
improve detection of small objects, as shown in Fig. 3. Furthermore, the second
stage has been fine-tunned including the objects of interest.

To get better training results, it is recommended to use at least 1500 images
and 10000 instances per class, as well as to include background images, which
are images with no objects of the dataset. Image variety and label consistency,
accuracy and verification are also recommended.

The base neural network is a light version YOLOv8s to avoid overfitting due
to the reduced size of the dataset.

We found that the higher is the number of epochs for training, the networks
obtains better metrics, but qualitatively, the results obtained in our images are
not improving. In Table 3 there are presented the training metrics after 100 and
500 epochs.

3.2 Object Detection by Colour

As commented before, some objects can not be detected with AI methods,
because they are difficult to differentiate using characteristics related to shape
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Fig. 3. Representation of the levels object detection for the functional assessment con-
text.

Table 3. Metrics of YOLOv8 after fine-tuning with GEFAD-Objects.

Epochs Precision Recall mAP50 mAP50-95

100 0.76435 0.52489 0.60366 0.44413

500 0.85721 0.59349 0.6801 0.52387

or size, specially with fabrics, such as napkins, tablecloth and socks. In these
cases, the classification is based on color, since the evaluation is carried out in a
controlled environments, and the colors of the different elements are known.

The classification is carried out in the HSV colour space, since it is possible
to delimit the colours by its hue. For example, in Fig. 4, there must be detected
the tablecloth (green) and the napkins (pink), that can be segmented in the HSV
colour spectre shown in Fig. 5.

Fig. 4. Object detection differentiating by colours (Color figure online).

This allows detecting objects that the Deep Neural Networks (DNN) can not
obtain.
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Fig. 5. Segmentation of the HSV colour space.

4 Experimental Results

This section presents the results obtained with the proposal for object detection
with two stages shown in Fig. 3, and with the colour classification.

As it has been explained in Sect. 3, first there are detected the common
objects (table, chairs) and people using YOLOv8. These objects can be detected
with high accuracy. An example of the obtained detections in an image acquired
in the URJC apartment is shown in Fig. 6.

Fig. 6. First stage detections. People in green, chairs in red and tables in blue (Color
figure online).

In the second stage, there is only analyzed a ROI centered in the detection
of the person (purple point), with a 640× 480 pixels shape (purple rectangle),
and it has been trained for detecting only the objects of interest.

The confusion matrix of this model is shown in Fig. 7. Here it is possible to
check that the plates is the category which the model best performance, but
the correlation between “the predicted background” and the true positives is
high. This fact means that the objects are not being detected, so they are false
negatives.

In spite of the confusion matrix obtained, the metrics related to train and
validation loss and precision are good and they improve every epoch.
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Fig. 7. YOLOv8 confusion matrix fine-tuned with GEFAD-Objects (500 epochs).

However, we test the network in real environments and the results are shown
in Fig. 8. In the confusion matrix, the diagonal is very highlighted and the metrics
are acceptable, so theoretically we have to receive relative good results.

We get some detections for every object, but they have low confidence, being
imprecise and unstable, even the spoon are not detected and the network is
confusing the spoons with the plates.

These results are due to the quality and the perspective of the images of
the dataset. We noticed that most of the images are taken with a first person
point of view, that hence, differ from the one of interest. Trying the model in a
complex image with such characteristics gives the result shown in Fig. 9.

Finally, in Fig. 10 there is presented the detection of the napkin, which has
green colour, applying the method explained in the Sect. 3.2.

Fig. 8. Results of the second stage of the object detector.
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Fig. 9. Detections of YOLOv8-GEFAD-Objects with a better point of view.

Fig. 10. Results of the detection by colour extraction.

5 Conclusions and Future Works

This paper presents the work developed with the projection of detecting and
classifying Human Object Interactions (HOIs) in controlled scenes, where phys-
iotherapists evaluate Activities of Daily Living (ADLs), and it is focused on the
objects detection stage.

Since there are not large image datasets including all the objects involved in
the analyzed ADLs, there has been compiled a dataset named GEFAD-Objects,
including images for different available dataset, and adapting their labels to
JSON format.

There has also been proposed a two-step approach for detecting the objects
that the person in the scene may interact with. In the first stage, there are
detected chairs, tables and people with a YOLOv8 trained with COCO. Then,
there is cropped a ROI of size 640× 480 pixels that is used as input in the second
stage. This stage is based on a YOLOv8 model trained with GEFAD-Objects
dataset that allows detecting other objects of interest (shoe, plate, glass, knife,
spoon and fork).

Furthermore, a color based detector has also been proposed for those elements
that can not be detected by the neural network, such as the tablecloth or napkins.

The detected objects, will be used for HOI analysis in a future work, focused
on the functional assessment environment.

With this work, we set the structure of a HOI detector, but some aspect
must be improved, in order to allow it obtaining enough accuracy with the point
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of view of the cameras in the URJC apartment. Furthermore, also the color
classification algorithm can help to improve the object detection results, since
different elements have different colors.
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Abstract. In the field of pattern recognition, researchers are trying to
figure out how to make a machine that can accurately recognize and
predict handwritten digits. The problem falls into the category of object
detection and multi-class classification. Several machine learning (ML)
algorithms have been used and optimized to achieve effective prediction
results for digit recognition. A generic research question that comes up
in this context is the usage of specific ML algorithms for performing this
task. The purpose of this work is to build efficient deep learning (DL)
algorithms to recognize digits and compare their performance with that
of conventional ML algorithms. Two of the most common DL algorithms,
convolutional neural network (CNN) and multilayer perceptron (MLP)
or artificial neural network (ANN), are used here. A widely used con-
ventional ML algorithm, Support Vector Machine (SVM), which usually
provides robust performance in general classification tasks, is also used.
The performance of these algorithms is compared and analyzed based on
accuracy and test results. The MNIST dataset from Kaggle’s Digit Rec-
ognizer competition is used here for training and testing the model. A
graphical user interface (GUI) is constructed, in which the implemented
ML model can be used to predict real-time user input of handwritten
digits.

Keywords: Pattern Recognition · Object Detection · Classification ·
Supervised Machine Learning · Digit Recognition · Deep Learning
(DL) · Convolutional Neural Network (CNN) · Multilayer Perceptron
(MLP) · Support Vector Machine (SVM) · MNIST Dataset · Graphical
User Interface (GUI) · Performance Analysis

1 Introduction

Handwriting-digit recognition is when a computer can read the numbers that
a person writes by hand. As we know, these handwritten digits are not always
so legible and can be written in many different styles, so it will be a hard task
to make the machine recognize them [1]. Handwriting recognition and optical
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character recognition (OCR) can be done with a number of programs and tech-
nologies that are available right now. Digit recognition is a subset of the hand-
written text identification problem. It encompasses a variety of image processing,
computer vision, and ML approaches. One of the key difficulties associated with
digit recognition is that different users write the digits with a varying degree
of difference in shape, size, and orientation of the digits. Hence, it is essential
to extrapolate appropriate image processing and computer vision techniques in
effect so that the handwritten digit images can be converted to an appropriate
pixel format and subsequently to a time series dataset [2]. In this project, the
main emphasis would be given to the already-recorded MNIST dataset of hand-
written data. One of the primary objectives of this project would be to apply
appropriate classification problems to a few of the conventional and wisely used
ML algorithms and assess relevant performance metrics for each one of them.
The following ML algorithms would be used for the classification tasks: convolu-
tional neural network (CNN), multilayer perceptrons (MLP), and support vector
machine (SVM). Implementing highly optimized classifier models based on each
of the ML algorithms and comparing their accuracy scores are the fundamental
objectives of this project. An imperative task associated with this objective is to
create an appropriate user interface where the handwritten data of the user can
be provided as input. To accommodate this feature, a GUI is created through
which users can provide digitally recorded handwritten data in the respective
interface slab.

2 Related Work

Character recognition is a very good example of pattern recognition. An impor-
tant research problem in this aspect is the problem of handwritten digit recogni-
tion. The ML algorithms can be applied to perform classification on the MNIST
data available for digit recognition. The work by M. Jain et al. gives a detailed
approach to handwritten digit recognition using a CNN [3]. In their work,
70000 handwritten images containing digits in the range of 0-9 from the MNIST
database are used for building the classification model. The implementation is
carried out using the Tensorflow library in a Python environment. An adaptive
moment estimation (ADAM) was used for the optimization of the model. The
CNN system validation accuracy of 99.16% was achieved for a particular MNIST
dataset.

In this other paper by Saeed Al Mansoori [4], ANN was used to classify 5000
samples from the MNIST database in a way that was similar to the task above. A
MLP neural network is made, which has 25 hidden neurons and can go through
a maximum of 250 iterations. First, the geometric mean method was used, and
then the cross-validation technique was used to find the best number of hidden
neurons. Back propagation, which is based on gradient descent, is used to train
4000 samples from the MNIST database. The remaining 1000 samples were used
for testing through the feed-forward algorithm.
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Several conventional ML approaches have been used by various researchers.
In the work by Hafiz Ahamed et al. [5], a very powerful classification technique
called SVM is used. This method achieved a test accuracy of 97.8%.

3 Algorithms Overview

A brief overview of the theoretical ideas behind the ML models used in this
project is discussed in this section.

3.1 Convolutional Neural Network (CNN)

A CNN is a deep learning algorithm that takes an image as input and assigns
parameters like weight, bias, etc. to different parts of the image so that it can
be distinguished from other images. The fundamental motivation to use CNN
for handwritten digit image recognition comes from the fact that CNN is one
of the most powerful ML techniques for image classification. The efficacy of
CNN lies in the fact that it can successfully capture the spatial dependencies in
an image through the application of particular filters. CNN learns the features
automatically without mentioning them explicitly, and this way it can accurately
extract the right and relevant features from the input vectors. The architecture
of a convolutional network (Fig. 1) contains three types of layers: convolutional
layer, pooling layer, and output layers [6,7].

Fig. 1. Basic CNN architecture.

3.2 Multilayer Perceptron (MLP)

MLP is a type of ANN where neurons are grouped in layers and only forward
connections exist. A typical MLP consists of an input layer followed by one or
several hidden layers and output layers, including neurons, weights, and transfer
functions [8]. Signals are usually transmitted in one direction throughout the
network: from input to output without any loop. This architecture is called
feedforward [9]. Each neuron (noted i) transforms the weighted sum (weight wij,
bias bi of inputs xj into an output yi using a transfer or activation function
(f). We can combine the output yi from all the neurons together and get the
resultant output y as:

y = f(Wx + b) (1)
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Fig. 2. MLP with one hidden layer.

If there is only one input layer and one output layer in the model above
(Fig. 2), this is called a perceptron. MLP is composed of an input layer, at least
one hidden layer, and an output layer. The calculations are the same as for a
perceptron, but there are now more hidden layers to integrate before the output
y is reached [9].

h1 = f(W 1x + b1) (2)

y = f(W 2h1 + b2) (3)

3.3 Support Vector Machine (SVM)

SVM comes under the category of supervise machine learning algorithms. It can
be used for classification as well as regression problems, but it’s widely used for
classification. The primary goal of SVM is to identify the optimal hyperplane,
which is the plane that is most distant from both classes (green and blue) (Fig. 3).
This is achieved by identifying multiple hyperplanes that best classify the labels,
then selecting the one that is most remote from the data points or has the
maximum margin [10]. In this, we generally plot data items in n-dimensional
space, where n is the number of features and a particular coordinate represents

Fig. 3. Optimal Hyperplane using the SVM algorithm. (Color figure online)
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the value of a feature. We perform the classification by finding the hyperplane
that distinguishes the two classes. It will choose the hyperplane that separates
the classes correctly. SVM chooses the extreme vectors that help in creating
the hyperplane. These extreme cases are called support vectors, and hence the
algorithm is termed a support vector machine [5]. A set of labeled training
patterns like (xi,yi) can be separable linearly if there exists a vector w and a
scalar b such that the following conditions

wxi + b ≥ 1 if yi = 1 (4)

wxi + b ≤ 1 if yi = −1 (5)

are valid for all the elements contained in the training set. The optimal hyper-
plane that separates the training set with maximal margin can be expressed
as:

w0x + b0 = 0 (6)

Since the goal is to increase the margin as much as possible, Hyperplane
should be as far away from instances of both classes as possible. The SVM algo-
rithm tries to construct a decision boundary in such a way that the separation
between the classes becomes as wide as possible [5].

4 Implementation

This section contains the articulation of various steps to preprocess the data and
implement as well as test the classifier model. The implementation is discussed
in detail below.

4.1 Package Import

All algorithms are implemented in the Python programming language using the
PyCharm IDE. CNN and MLP models are implemented using software libraries
such as Tensorflow and Keras. SVM is implemented using the Scikit-Learn pack-
age in the Python language. Numpy, Pandas, and Matplotlib packages are used
for data pre-processing and visualization.

4.2 Data Preprocessing and Handling

The dataset comes in two CSV files (source Kaggle [12]), which are training
and testing data. The Python OS Library is used to load the dataset from
the base folders. The first column of the dataset, which contains the labels, is
removed. The training dataset is loaded in a pandas dataframe as a variable
named ‘train’, and the testing dataset is the same in ‘test’. To visualize the
distribution of corresponding labels in our dataset, matplotlib function is used
to plot a graphical representation as in Fig. 4.
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Fig. 4. Distribution of Digit Labels in Dataset.

CNN. The pixel values in the dataset are in the range of (0, 255). We normalize
this data to the range of (0, 1) since this range is a good format for working
with neural network models. This normalization is achieved by dividing the
value of each pixel by 255 and converting it to a numpy array. The length of
the array is 784 (28× 28) pixels. To feed the data into the Keras model, this
array is reshaped to have dimensions 28× 28× 1 (height×weight× channel).
The additional dimension is used as 1 in the case of the greyscale channel. The
training dataset is divided into a training set and a validation set with an 80%
to 20% ratio.

MLP. Since ANN can process input in vector format, the training dataset is
normalized to the range (0, 1) with a dimension of (42000, 7784) and stored in a
variable X train. Also, corresponding labels are created and stored in a variable,
Y train. The training and validation set is divided into 80% to 20% ratio.

SVM The training dataframe is normalized and stored in a variable called
source, and the corresponding labels dataframe is stored in a variable ‘target’.
The scikit-learn train test split function is used to split the dataset into a
training and validation set ratio of 75% to 25% ratio.

4.3 Model Creation

The ML model or architecture and the parameters that go with it can be set up
based on what is needed.

CNN Model. Sequential and functional models can be constructed using
Keras. When a simple stack of layers with precisely one input tensor and one
output tensor is required, the sequential API model works best. Since the afore-
mentioned factor satisfies our requirement, we used it in the construction of our
CNN model. The activation function in the convolution is the Rectified Linear
Unit (ReLU).
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MLP Model. Two factors need to be considered while passing values in this
parameter: how many hidden layers need to be in the neural network and how
many neurons need to be in the respective hidden layers. The proposed neural
network model here consists of three MLP layers. We use the Keras Sequential
class here for formulating the basic neural network. This model in Keras is
considered a sequence of layers, and each layer gradually distills the input to
generate the output data. As suggested, the dense layer is a linear operation,
and hence the sequence of the same would be a good fit for a linear functionality
approximation. In our task, the MNIST digit classification problem is a highly
non-linear process. Hence, using ReLU as an activation function performs best
in the dense layers for non-linear mappings. In the output layer, a unit of size
10 with a softmax activation function is used.

SVM Model. The SVM algorithm is carried out by a kernel that changes
a data space into the form that is needed. In our architecture, we apply the
kernel trick to transform low-dimensional input space into a higher-dimensional
space. In this way, it converts non-separable problems into separable problems,
implying more dimensions. Radial Basis Function Kernel (RBF) is used in our
architecture. Theoretically, RBF can map an input space in infinite dimensional
space, as can be inferred from the equation below:

K(x, xi) = e(−γ
∑

(x−x2
i )) (7)

Here, γ is the parameter that has the range of (0,1) [11]. In scikit-learn, the
SVM model is built using the SVC function. The gamma parameter indicates how
far the training reaches. C is a hyperparameter in SVM that controls error. Both
C and gamma need to be set before training the model. In our architecture, C
value has been set to 400, and gamma value is set to ‘scale’ mode.

4.4 Model Compilation, Evaluation and Optimization

Until a reasonable level of efficiency and accuracy is achieved, the model should
be calibrated with hyperparameter tuning and model optimization as discussed
below:

CNN Model. The following enhancements and model validation techniques
have been used in our CNN model:

– Data Augmentation: To improve accuracy and prevent overfitting, we used
the data augmentation technique, which generates data from existing sam-
ples by applying different transformation techniques to the original dataset.
In the Keras package, this task is performed via the keras preprocessing
ImageDataGenerator class. This increases the number of distinct samples as
input images and allows the model to show better validation accuracy.
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– Optimization: The RMSprop algorithm is used in Optimizer. The basic
functionality of the algorithm is to maintain a moving (discounted) average
of the square of gradients and divide the gradient by the root of this aver-
age. We used callback functionality to invoke a checkpoint so that when the
learning process stops improving with the given parameters, it stops. This
way, by setting a large number of epochs, we can make sure optimal results
are obtained.

– Model Fitting and Validation: At first, the number of steps is defined
by normalizing training length by batch size. The model is compiled with
the defined optimizer and categorical cross-entropy as the loss function. The
model is fitted with the determined parameters, like augmented functions,
steps, callbacks, etc. For model evaluation, a prediction on the validation set
is performed, and the same is checked with the highest probability scale. The
predicted class is compared with actual values of the output, and validation
accuracy is obtained. A confusion matrix with the predicted model and the
actual model is constructed and plotted with relevant labels.

MLP Model. The following are used in our MLP model:

– Loss Function: Categorical cross entropy is used as the loss function since
the nature of the classification is multi-class.

– Optimizer: Adam, an adaptive learning rate optimization, is used for weight
optimization. It can automatically calibrate the amount to update and fine-
tune parameters based on adaptive estimates of lower-order moments. As per
the Sklearn guidelines, Adam works quite well with large datasets for training
and validation.

– Metrics: In our model, during training, validation, and testing, the accuracy
metric is used. Accuracy is the percent of correct predictions compared to the
actual true values of the data.

SVM Model. The SVM parameter selection has been done by calibrating
the hyperparameters several times over different settings and determining the
optimal value obtained by manual tuning. For model evaluation, an accuracy
score and confusion matrix are created.

4.5 Testing and Saving Model

Once the model is validated with reasonable accuracy, it is tested with Kaggle’s
competition test dataset, which is part of the MNIST main dataset of the same.
The models don’t know anything about the test dataset, so the result would
show how well the model works. The data frame containing the test result is
stored in a CSV file. The trained models are stored in TF or Pickle format.
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4.6 Graphical User Interface (GUI)

The idea is to create a GUI through which a user can enter one or more English
digits in the widget, which will then generate one or more images. The pixels
will be converted to numerical arrays and predicted by the previously trained
ML model. The accuracy of the prediction score would also be displayed in the
widget.

Packages Used. The following packages and libraries are used for this:

– Pyscreenshot package to copy the contents of the screen to a pillow image
memory.

– Tkinter package for the Python interface to the GUI toolkit.
– OpenCV to perform necessary image processing operations.
– Numpy for handling the image in array format for the ML model to process.
– Keras to load the ML models.

GUI Design. The Tkinter package provides a variety of GUI elements like
buttons, widgets, entry fields,display areas, etc. Tk() is the main method that
is used to create the main window of the function. At first, the saved ML model
is loaded with the Keras package. In our design, two widget classes-Canvas and
Button-are used. Canvas is used in our application to draw the digit. Buttons
map directly to the user interface. Two buttons, Recognize Digit and Clear
Widget, are used in our design. The following functions are used to trigger the
mainloop():

– clear window(): Used to clear the canvas window.
– start event(): Binds event called <B1-Motion> which signals that a mouse

cursor is moved in the widget.
– draw lines(): Used for drawing lines on the canvas.

Computer Vision Tasks. We implement the function Recognize Digit() which
inherently performs the task of recognizing the digit drawn on the canvas. First,
we use ImageGrab module from Pyscreenshot library to take a screenshot of
the screen, crop the rectangular region containing the drawing, and store it
as an image in PNG format. Subsequently, OpenCV is used to determine the
contour of the saved image, which would be useful for object detection and
recognition. The last part of this section contains the creation of bounding boxes
for contours and extracting regions of interest. The image is pre-processed to
28×28 pixels to support ML model input. Finally, model.predict() method
is used to recognize the digit drawn in the canvas by drawing a bounding box
surrounding the drawing and predicting the image classification outcome.

5 Results

All the models were trained and tested in an Intel Core i7 CPU and NVIDIA
1050 Ti GPU hardware environment.
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5.1 CNN

After performing the training with the specified and tuned parameters, the CNN
model achieved a training accuracy of 97.5% and a validation accuracy of 99.21%.

Fig. 5. CNN Model Confusion Matrix.

The confusion matrix (Fig. 5) generated from the post-validation assessment
indicates all the labels (here the digits 0, 1,..., 9) received true positive values of
more than 99%. The CNN model scores 0.99110 out of 1.0.

5.2 MLP

The trained MLP model achieved a training accuracy of 99.6% and a validation
accuracy of 97.6%. The MLP model scores 0.97417 out of 1.0.

5.3 SVM

The trained SVM model achieved an overall validation accuracy of 97.83%. This
model scores 0.97907 out of 1.0, which indicates a highly accurate outcome.

5.4 Real Time Detection from GUI

The GUI is tested with real-time digit inputs that are drawn over the canvas.
The recognized digit with the prediction score in percentage is displayed in the
next window (Fig. 6). It can be observed that all the digits drawn, even if slanted
to some extent, have been predicted accurately by the model.
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Fig. 6. Recognized digit with the prediction score.

6 Performance Analysis

Accuracy and scores have been chosen to perform a comparative analysis of the
respective models in detecting digits from the MNIST database and displayed
in Table 1. Accuracy is the best way to measure how well a model has learned to
classify. The score here is an important parameter that tests how well the model
can predict from a completely new dataset. As per the comparison analysis, it
can be inferred that the convolutional network has the best score in accuracy
as well as the highest Kaggle test score by margin compared to MLP and SVM,
and gives us the best performance for detecting handwritten digits based on the
MNIST datasets. Whereas the performances of the MLP and SVM models are
quite similar based on their scores. Both MLP and SVM do significantly well.

Table 1. Performance Analysis of Models.

ML Model Accuracy (%) Score out of 1.0

CNN 99.21 0.99110

MLP 97.61 0.97417

SVM 97.83 0.97907

7 Conclusion

In this study, three machine learning (ML) algorithms were used to recognize
handwritten numbers from the MNIST database from the Kaggle competition.
Two of the algorithms were based on deep learning, and the other was a more tra-
ditional ML method. The performance of all the models was compared based on
their overall accuracy and ability to correctly predict results for new datasets.
Different hyper-parameter tuning and optimization techniques were tried and
tested, and the best-fit models were implemented. Additionally, a GUI-based
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real-time digit recognition platform was designed, and the ML model produced
accurate predictions for all the user inputs where the user drew digits in the
Tkinter user interface window. It is observed that CNN provided the most accu-
rate prediction, whereas MLP and SVM performed on a similar scale. Hence, it
can be concluded that CNN would serve as the best-fit model for image-based
classification problems, including handwritten digit recognition.

References

1. Chychkarova, Y., Serhiienkob, A., Syrmamiikha, I., Karginc, A.: Handwritten Dig-
its Recognition Using SVM, KNN, RF and Deep learning Algorithms. https://
ceur-ws.org/Vol-2864/paper44.pdf. Accessed 23 Feb 2023

2. Niu, X.X., Suen, C.Y.: A novel hybrid CNN-SVM classifier for recognizing hand-
written digits. Pattern Recogn. 45(4), 1318–1325 (2012)

3. Jain, M., Kaur, G., Quamar, M.P., Gupta, H.: Handwritten digit recognition using
CNN. In: 2021 International Conference on Innovative Practices in Technology and
Management (ICIPTM), Noida, India, pp. 211–215 (2021)

4. Al Mansoori, S.: Intelligent handwritten digit recognition using artificial neural
network. Int. J. Eng. Res. Appl. 5(5(Part -3)), 46–51 (2015). https://www.ijera.
comISSN. ISSN : 2248–9622

5. Ahamed, H., Alam, S.M.I., Islam, M.M.: SVM based real time hand-written
digit recognition system. In: Conference: International Conference on Engineer-
ing Research and Education School of Applied sciences & Technology, Sylhet
(2019). ] https://www.researchgate.net/publication/330684489 SVM Based Real
Time Hand-Written Digit Recognition System

6. Zargar, S.A.: Introduction to Convolutional Neural Networks (2021). https://
www.researchgate.net/publication/350955402 Introduction to Convolutional
Neural Networks

7. IBM: Convolutional Neural Networks. https://www.ibm.com/topics/
convolutional-neural-networks. Accessed 14 Feb 2023

8. Voyant, C., et al.: Time series modeling with pruned multi-layer perceptron and 2-
stage damped least-squares method. In: International Conference on Mathematical
Modeling in Physical Sciences, IC-MSQUARE, Czech Republic (2013)

9. Popescu, M., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.E.: Multilayer per-
ceptron and neural networks. WSEAS Trans. Circ. Syst. Arch. 8, 579–588 (2009)

10. Saini, A.: Support Vector Machine(SVM): a complete guide for beginners (2021).
https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-
complete-guide-for-beginners/. Last Accessed 24 Feb 2023

11. Aiman Ngadilan, M.A., Ismail, N., Rahiman, M.H.F., Taib, M.N., Mohd Ali, N.A.,
Tajuddin, S.N.: Radial Basis Function (RBF) tuned Kernel Parameter of Agarwood
Oil Compound for Quality Classification using Support Vector Machine (SVM). In:
9th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah
Alam, Malaysia 2018, pp. 64–68 (2018)

12. Kaggle: MNIST Dataset Description, Digit Recognizer-Learn computer vision fun-
damentals with the famous MNIST data. https://www.kaggle.com/competitions/
digit-recognizer/data

https://ceur-ws.org/Vol-2864/paper44.pdf
https://ceur-ws.org/Vol-2864/paper44.pdf
https://www.ijera.comISSN
https://www.ijera.comISSN
https://www.researchgate.net/publication/330684489_SVM_Based_Real_Time_Hand-Written_Digit_Recognition_System
https://www.researchgate.net/publication/330684489_SVM_Based_Real_Time_Hand-Written_Digit_Recognition_System
https://www.researchgate.net/publication/350955402_Introduction_to_Convolutional_Neural_Networks
https://www.researchgate.net/publication/350955402_Introduction_to_Convolutional_Neural_Networks
https://www.researchgate.net/publication/350955402_Introduction_to_Convolutional_Neural_Networks
https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/
https://www.kaggle.com/competitions/digit-recognizer/data
https://www.kaggle.com/competitions/digit-recognizer/data


Towards Automatic Assessment of Quiet
Standing Balance During the Execution

of ADLs

Irene Guardiola-Luna(B) , Leticia Monasterio-Exposito ,
Javier Macias-Guarasa , Alvaro Nieva-Suarez , Marina Murillo-Teruel ,

Jose Luis Martin-Sanchez , and Sira Elena Palazuelos-Cagigas

Universidad de Alcalá, Department of Electronics, Edificio Politécnico, Ctra.
Madrid-Barcelona km 33,600, 28805 Alcalá de Henares, Spain

irene.guardiola@edu.uah.es

Abstract. The current method used to estimate the balance a person
has during the performance of Activities of Daily Life (ADLs) is through
the application of standardized scales used by occupational therapists to
evaluate a person’s motor skills and performance quality during those
activities, such as the Assessment of Motor and Process Skills scale
(AMPS). In this paper, we propose a method to automate the evalu-
ation of a person’s balance during the stage of quiet standing still while
a person is completing an ADL. Our proposal is aimed to first estimate
the projection of the person’s center of mass (CoM) from the 3D position
of the body joints by applying theoretical and deep learning approaches.
Then, we aim to predict a clinically validated objective balance score
from previous estimations of the CoM and the Center of Pressure (CoP),
using different neural network models. While there are other proposals in
the literature, the lack of publicly available datasets makes it difficult to
do an extensive comparison, so we compare our proposal with state-of-
the-art results in two publicly available datasets, improving their results.

Keywords: Quiet standing still balance · Automatic Estimation ·
Deep learning

1 Introduction

The Assessment of Motor and Process Skills (AMPS) is an observational evalua-
tion tool that allows occupational therapists to simultaneously assess a person’s
motor skills and the quality of their performance while carrying out activities of
daily living (ADLs) [12].

One of the motor skills that is evaluated in AMPS is whether the patient
stabilizes their body position. The occupational therapist would give a subjective
score from 1 to 4, based on the task being performed by the person [13].
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In order to remove the subjectivity of the occupational therapist and the
disturbance that the presence of the therapist exerts on the patients who are
performing the ADLs, we propose to use an automatic system that provides
clinically validated objective assessments. This would allow us to detect limi-
tations in people’s stabilization skills at an early stage, which may be due to
a specific pathology or to physical and/or cognitive changes caused by aging.
In the latter case, the poor standing posture is due to the deterioration in the
function of the sensory organs over the years, with the visual system being the
one that most affect posture control. To compensate for the loss of vision, the
vestibular and somatosensory systems intervene so that the person can maintain
a stable posture, but not without increasing the sway [2].

The assessment of the balance of the patient during the execution of ADLs
has to be done in different stages since while executing a task there will be
sequences in which the balance is static and others where the balance is dynamic.
The final system we are pursuing will use information from video and depth
sequences of the user performing ADLs, to automatically estimate an objective
balance score. However, as a first stage, in the present paper we are proposing
a system to evaluate the balance during the quiet standing still stage, aimed at
being consistent with the score given by an occupational therapist with the help
of different clinical balance assessment tools, such as the Balance Error Scoring
System (BESS) [4] or the Balance Evaluation Systems Tests (BESTest) [17].

2 Related Work

The assessment of the balance has been studied previously, but not so much
how to obtain a quantitative assessment of the balance (a score), as opposed to
the direct consequence of the loss of balance, referred to as fall risk assessment,
where people are classified as fallers or non-fallers [24,30].

To assess the balance quantitatively, different technologies have been used
to obtain different types of data: balance boards [27], inertial sensors [1,3],
accelerometers [25] and depth sensors [5,14,23].

An indicator of loss of balance is the position and displacement of the pro-
jection of the center of mass (CoM). This must be within the base of support,
which is the polygon formed between the outer sides of the feet. From the base
of support, it is possible to define the limits of stability, the area within the
base of support in which the person can remain stable, limits that decrease with
age. The most frequently used parameter to assess the quiet standing still pos-
ture is the body sway, directly related to the measure of the center of pressure
(CoP) displacement, which is the most common posturographic value used in
the literature. More specifically, it is the CoM displacement that indicates the
body’s sway and the CoP is the neuromuscular response to the displacement of
the CoM [10].
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To the best of our knowledge, there are very few research works that propose
an automatic system capable of scoring the balance of a person. The ones with
the highest accuracy on the prediction use private datasets [5,23,33]. In [3] they
use the trunk sway data to determine a score between 1 and 5, stating that they
obtain an 83% of accuracy. In [27] they get a mean absolute error between 0.642
and 2.658 points from features obtained from CoP data while using as a ground
truth simplified BESTest scores.

The position of the CoP has been previously automatically estimated from
the body joints as in [6], or by employing graph convolutional networks [9] and
3D body landmark sequences as the input.

Many studies use CoP-derived parameters (displacement, velocity, path
length and/or area) to estimate the postural sway and, hence, the balance. These
parameters could give us information about neural or sensorimotor dysfunctions,
yet the CoM can eventually be stabilized through the movement of the CoP. It
would be more accurate to use the CoM, but it is difficult to determine and it
is usually an estimated parameter. Some studies claim that combining the CoM
and CoP displacement values provides more information on balance than either
of them alone. Therefore, they propose the variable ||CoP−CoM|| as the distance
between the CoP and CoM, as it provides a better estimate of the effectiveness
of postural control, being more decisive than other metrics [20].

The CoM of a person during a static stance can be estimated:

1. From anthropometric parameters: Direct (or whole body approach), using
experimental techniques on living subjects to obtain anthropometric values;
and indirect (or segmental) through, for example, corpse studies [15]. In this
paper we will apply the two most commonly used estimations, either consid-
ering the body as a set of segments or a simplified version that only monitors
one marker, assuming that it represents CoM position (typically located at
the 5th lumbar vertebra (L5)).

2. By low-pass filtering the CoP signal, with a cut-off frequency esti-
mated according to the anthropometric characteristics of the body, usually
0.5Hz [10].

To estimate the CoM position of the body, two classical reference anthro-
pometric tables can be used. One from De Leva [7], who adapted the inertial
parameters from the Zatsiorsky studies [34], and another from Dempster [8],
modified by Winter [32]. The most used model was that of De Leva as it had
a larger sample size of living subjects. However, since Winter improved Demp-
ster’s model by incorporating in vivo measurements into the small sample size
of corpses, it has become the most widely used model. They contain information
about the weight of each segment as a percentage of the total body weight, and
the position of the CoM relative to the length of each segment. The body CoM
is calculated as the weighted sum of each body segment’s CoM [32], Eq. 1.

com =
1
M

NS∑

i=1

fipi, pi = (xp, yp, zp) + ld[(xd, yd, zd) − (xp, yp, zp)], (1)
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where com is the body’s CoM 3D position; M is the total body’s weight; pi is the
3D position of the CoM for each body segment; (xp, yp, zp) and (xd, yd, zd) are the
3D coordinates of the proximal and distal joints of each segment, respectively;
ld is the factor of CoM per segment length; fi are the fractions of the total
body mass determined by the corresponding studies; and NS is the number of
considered segments.

This strategy is referred to as the segmental method, and its downside is
that the estimations may be wrong when the subjects do not have the same
characteristics as the studies population, such as in the case of children or people
with pathologies, and to a lesser extent women and non-Caucasians.

In [31], the authors propose to obtain the location of a human’s CoM from
the information captured by a depth camera, achieving a Root Mean Squared
Error (RMSE) of 0.89 cm on the x-axis (anterior-posterior) and 1.72 cm on the
y-axis (medio-lateral).

In this paper, we aim at evaluating the feasibility of obtaining a clinically vali-
dated assessment of quiet standing balance based on the 3D position of the joints
of the human body obtained by a depth camera. In order to achieve this, and
taking into account that there are no public databases available that include
both, the 3D joints positions of subjects performing ADLs not static balance
tests, and the associated balance score, we describe an approach with two differ-
ent models that are tested separately. We first evaluate a system to obtain the
position of the projection of a human’s CoM from the 3D positions of the body’s
joints (Sect. 3). Then, we evaluate a proposal to obtain an estimation of a clin-
ically validated standing still balance score from values derived from the CoM
and CoP estimations (Sect. 4). The diagram of the system is shown in Fig. 1.

Fig. 1. Diagram of the full system proposal.
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3 CoM Estimation

3.1 System Proposal

Our proposal is the use of a neural network that behaves as a CoM estimator
(regressor) from the 3D positions of simplified 15 body joints. The multilayer
network architecture proposed consists of a fully connected layer at the input,
one or two fully connected hidden layers, and a final fully connected layer. Each
of the intermediate layers is followed by batch normalization, with dropout and
ReLU activation functions. The optimizer selected was Adam [19] and the loss
metric used was the mean squared error (MSE), Eq. 2. It calculates the average
of the l2 norm between the CoM ground truth and the predicted values.

MSE =
1
N

N∑

i=1

||comGT − comEST ||2, (2)

where comGT and comEST are the CoM ground truth and predicted values,
respectively.

To further assess the accuracy of our proposal, we compare it with the seg-
mental methods described above using Eq. 1, based on the fractions provided
by the two classical anthropometric tables references, De Leva’s and Dempster’s
(referred to below as DeLeva and Dempster). We will also provide a comparison
with the simplification of using the marker located at the 5th lumbar vertebra
(referred to as L5 below).

For consistency reasons in the comparison, the body has been segmented into
the same amount of parts to compare the use of the two anthropometric tables:
head and neck, trunk, thigh, calf, and feet.

3.2 Experimental Setup

Dataset. To evaluate the performance in the estimation of the 3D position of
the CoM, we have made use of the only public dataset with body joints and CoM
information [29]. It contains the 3D position of 42 reflective markers attached to
anatomical landmarks of the human body, the ground reaction forces of subjects
that were in a quiet standing posture over a dual force platform during 60 s, and
the CoP, as well as the CoM for the duration of each trial. The database does not
include the position of the upper limb joints, as each subject had to keep their
arms close to their trunk during the recording. The ground truth CoM position
they provide was calculated by applying Dempster’s model to an altered trunk
segment, in which they include the arms, head, and trunk.

The database contains 12 trials of 49 persons, 27 young people between 21.8
and 37.9 years old, and 22 older people between 61.14 and 84.7 years old. Four
tasks were defined. In all of them, the person was requested to stand still, and
there were 4 variations, combining the use of a firm surface or a surface covered
with foam, and the state of the eyes, either opened or closed. For each of the
tasks, each person had up to three attempts to execute it.
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The database partition considers 81% of the full dataset for training, 9% for
validation, and 10% for testing, with no common users between the test and
train+validation subsets. We also roughly forced half of the components of each
subset to belong to the young people cohort and the other half to the older
people cohort.

As previously indicated, in the real implementation of the system, the 3D
position of the body joints will be obtained by a depth camera. Therefore, a map-
ping was made between the position of the markers provided in this database,
obtained using reflective markers [21,22], and the position of the joints provided
by a depth camera (such as the Microsoft KinectTM v2). Thus, excluding the
upper limbs, we went from 42 to a simplified version of 15 joints.

Performance Metrics. We will be using the following evaluation metrics:

– The Mean Absolute Error (MAE, Eq. 3), which is the mean of the absolute
value difference between the predicted value and the ground truth.

MAE =
1
2N

N∑

i=1

∑

j∈{x,z}
|cj,comGT

− cj,comEST
|, (3)

where N is the number of predictions, cj with j ∈ {x, z} is the (x, z) coor-
dinates of the corresponding CoM ground truth or its estimation (the 1/2
in the equation normalizes as we only consider two coordinates in the CoM
projection to the ground).

– Additionally, we have added the Percentage of Correct Keypoints (PCK,
Eq. 4), calculated as the percentage of the predicted CoM that fall within a
certain threshold distance to the ground truth position.

PCKthr =
1
N

N∑

i=1

ci, where ci =

{
1 if ||comGT − comEST || < thr

0 otherwise
, (4)

where thr is the given threshold.

3.3 Results

The results for MAE and PCK1 cm obtained with the proposed network are
shown on the left side of Fig. 2, as a function of the network architecture.
Training parameters were optimized in preliminary experiments on the train-
ing+ validation subsets: Dropout was set to 0.5, and rectified linear unit activa-
tion functions (ReLU) were used. The optimizer selected was Adam [19] and the
best results were obtained with a batch size of 100, and a learning rate of 10−2.

Figure 2 shows the results with the best ones enclosed in red rectangles. As
we can see in the left graphic, the best average MAE obtained was 0.35 cm with
an PCK1 cm of 76.40% when the network topology is 1024-1025-512-3. This
suggests that an architecture with two hidden layers is effectively capturing the
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Fig. 2. (Left) PCK1cm (the higher the better) and MAE (the lower the better) depend-
ing on the network layer sizes (input-hidden-output). (Right) MAE results comparison
for different systems. Best results are enclosed in red rectangles (Color figure online).

relation between the input data and the CoM position. If we change the accuracy
threshold to 2.5 cm, PCK2.5 cm increases to 100%.

The right graphic of Fig. 2 shows a comparison between our proposed network
and the segmental and simplified methods described above. The neural network
shows the highest performance (red rectangle), with a MAE of 0.35 cm, followed
by the L5 simplification with a MAE four times bigger, of 1.43 cm. This implies
that the deep learning approach is more suitable for accurately estimating the
CoM position, hence, the possible use of this model to obtain the CoM position
in a different environment. Between the two theoretical models, Dempster gives
a slightly better result because the CoM ground truth of this database was
calculated using Dempster’s anthropometric model (with the full set of joints).

Additionally, we have calculated the RMSE, obtaining a value of 0.51 cm to
get an idea of where our results stand in comparison to [31], where they achieved
0.89 cm, clearly improving their performance.

4 Score Estimation of the Quiet Standing Postural
Stability

4.1 System Proposal

Before describing the system, we first checked the performance of a simpler
CoM estimation procedure. Since the database used does not provide 3D joint
positions, we have obtained the CoM by low-pass filtering of the provided CoP
signal from the database used in Sect. 3.2. When applied to the network described
in Sect. 3.1, a MAE of 0.62 cm and an PCK2.5 cm of 98.17% were obtained. The
error is acceptable and similar to that of [6], that obtained 0.5 cm, and better
than the 1.1 cm to 2.5 cm of other studies, as reported by [6]. Our RMSE value
of 0.84 cm is also better than the 0.89 cm of [31].
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Our proposal is again using a neural network approach. Given that the
assigned scores vary between 0 and 6 (in increasing values of good balance
behavior), the problem can be posed as a classification or a regression task.
The different network architectures that have been evaluated are:

– Regressor model: Composed by a fully connected layer as the input, one
hidden and one at the output.

– Classifier model: Using the same architecture as the regressor model, but
implementing a softmax function at the output layer.

– CNN model: Consisting of an input and hidden 1D convolutional layer, fol-
lowed by two hidden and output fully connected layers. At the output, we
apply a softmax function.

The optimizer used in all the models was Adam [19]. Each intermediate layer is
followed by batch normalization and a ReLU function as the activation layer. In
terms of the loss metric, the one used in the training was MAE (Eq. 3).

In addition to these architectures, experiments were also carried out using
the auto-sklearn toolkit [11], in which we tested 15 different machine learning
classification algorithms, to provide additional comparison elements.

4.2 Experimental Setup

Dataset. In our state-of-the-art revision, we only found two public datasets that
included clinically validated scores using clinical balance assessment tools. One of
them [26], provides the scores of multiple motor scales of individuals with Parkin-
son’s disease. The other one [28], which was the one we finally selected, also
provides multiple motor scale scores, including the Mini-BESTest scale scores,
but considering healthy subjects, and interesting data such as raw data of the
force, moments of forces, and centers of pressure of subjects that were in a quiet
standing posture over a force platform during 60 s in four different conditions.
The clinical balance score was also provided with information about the subjects
and balance conditions and the results of all the evaluation tests. This database
contains 12 trials of 163 persons (116 females and 47 males), between 18 and 85
years old. The task conditions were the same as those described in Sect. 3.2 for
the dataset provided by [29].

We will compare our results with those achieved in [27]. To ensure consis-
tency in the comparison, we have followed the same data handling procedure,
for both the data processing and the database splitting tasks. As we did in the
dataset splitting described in Sect. 3.2, we selected approximately the same num-
ber of older and young people in each subset. We have also used the same input
features proposed by [27] (statistics on the provided signals) but calculated on
the ||CoP−CoM|| distance, instead of just using the CoP signals.

Our comparison will be focused on the estimation of the Sensory Orientation
subscale within the BESTest (that gets values from 0 to 6), as the CoP data is
only recorded for this Sensory Orientation task.
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Performance Metrics. For this system, we will provide details on the MAE
metric of Eq. 3, as it is the same one provided in [27], to ease the comparison
task.

Fig. 3. MAE of the test set for different models, architectures, and batch sizes. On
the left are the results for the classifier and regressor models and on the right are the
results of the CNN model. The best result is enclosed in a red rectangle (Color figure
online).

4.3 Results

For every model, we evaluated the performance of three different feature sets:
the statistics for the ||CoP−CoM|| distance (60 features), the statistics from
the ||CoP−CoM|| distance in the z-axis (anterior-posterior) and x-axis (medio-
lateral) dimensions (120 features), and the statistics from the CoP signal (120
features).

The results for MAE obtained with each network are shown in Fig. 3, as a
function of the network architecture. Training parameters of the network were
optimized in preliminary experiments on the training+ validation subsets. Next
to every bar, you can find the architecture and batch size information of the
classification and regression model in this order: input layer-hidden layer-batch
size. The order for the CNN model is: 1D convolutional input layer - hidden 1D
convolutional layer - hidden fully connected layers - size of the kernel - stride.

Analyzing Fig. 3, we can see how the regressor approach is better than the
classifier one, and how the CNN does not improve the results obtained by the
regressor, as well as informing us that the choice of hyperparameters greatly
affects the performance. The best result is obtained with a batch size of 64, a
learning rate of 10−1, an input layer size of 128, an intermediate layer size of
64, and using 60 input features, i.e. the ||CoP−CoM|| distance statistics, which
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is in line with the conclusions of [20]. The lowest MAE value obtained with
this model for the Sensory Orientation subscale within BESTest is 0.611 points,
which is slightly better than the one obtained in [27], which was 0.642 points,
becoming the best-published estimate with this database so far. If we normalize
per score range, our model obtains a normalized mean absolute error of 10.18%
which means an accuracy of 89.82%. This is an acceptable error, so the model
could be applied under a different environment.

5 Conclusions and Future Work

In this paper, we have proposed two systems. The first one, aimed at estimating
the CoM from the 3D positions of human body joints, and the second one to
estimate a clinically validated balance score from features derived from the CoM
and CoP estimations. In both cases, we are addressing the standing still balance
assessment task, as a previous stage to evaluate the balance behavior of users
performing ADLs in functional evaluation tasks such as AMPS.

Regarding the first system proposal, we have obtained promising results of
the estimation of a human’s CoM ground projection based on the position of the
human body joints, achieving an MAE of 0.35 cm on the public database pro-
vided in [29]. Our proposal clearly outperforms traditional segmental estimators
and those using the simplified L5 assumption.

Regarding the standing still balance score estimation task, we have improved
the state-of-the-art results in the Sensory Orientation estimation task using this
subscale within the BESTest scale, achieving a prediction very close to the clin-
ically validated score provided by occupational therapists.

These initial results, when completed with the estimation of dynamic balance
score values, will be very useful for the objective assessment of the stability of
subjects during the performance of ADLs in functional evaluation tasks, oriented
toward the early identification of balance deficiencies in patients. Overall, these
results are promising and suggest that the technology can play an important role
in the objective assessment of human body stability.

As for future work, we plan to explore the use of temporal models such as
LSTMs [16] or ESNs [18] to improve the results obtained for the assessment of
the human body stability during the quiet standing phase. We will also address
the exploitation of the ||CoP−CoM|| 2D and 3D trajectory images by using
image-based processing by CNNs. Our main final target will be the derivation
of static+dynamic balance assessment in ADL-related evaluations, including the
systems proposed in this paper.

Acknowledgments. This work has been partially supported by the Spanish Ministry
of Science and Innovation MICINN/AEI/10.13039/501100011033 under projects EYE-
FUL (PID2020-113118RB-C31) and ATHENA (PID2020-115995RB-I00), by CAM
under project CONDORDIA (CM/JIN/2021-015), and by UAH under projects
ARGOS+ (PIUAH21/IA-016) and METIS (PIUAH22/IA-037).



362 I. Guardiola-Luna et al.

References

1. Noamani, A., Vette, A.H., Rouhani, H.: Instrumented functional test for objective
outcome evaluation of balance rehabilitation in elderly fallers: a clinical study.
Gerontology 68, 1233–1245 (2022)

2. Aoki, H., Demura, S., Hirai, H.: Age-related changes in body sway when standing
with eyes closed or open and on stable and unstable surfaces. Am. J. Sports Sci.
Med. 6, 33–38 (2018)

3. Bao, T., Klatt, B.N., Whitney, S.L., Sienko, K.H., Wiens, J.: Automatically eval-
uating balance: a machine learning approach. IEEE Trans. Neural Syst. Rehabil.
Eng. 27(2), 179–186 (2019)

4. Bell, D.R., Guskiewicz, K.M., Clark, M.A., Padua, D.A.: Systematic review of the
balance error scoring system. Sports Health 3(3), 287–95 (2011)

5. Chakravarty, K., Suman, S., Bhowmick, B., Sinha, A., Das, A.: Quantification of
balance in single limb stance using kinect. In: 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 854–858, March 2016

6. Chen, S.C., Hsieh, H.J., Lu, T.W., Tseng, C.H.: A method for estimating subject-
specific body segment inertial parameters in human movement analysis. Gait Pos-
ture 33(4), 695–700 (2011)

7. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J.
Biomech. 29(9), 1223–1230 (1996)

8. Dempster, L.: Patterns of Human Motion. Prentice Hall Inc., Englewood Cliffs,
New Jersey (1971)

9. Du, C., Graham, S., Depp, C., Nguyen, T.: Multi-task center-of-pressure metrics
estimation with graph convolutional network. IEEE Trans. Multimedia 24, 2018–
2033 (2022)

10. Duarte, M., Freitas, S.M.S.: Revision of posturography based on forceplate for
balance evaluation. Braz. J. Phys. Ther. 14(3), 183–192 (2010)

11. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, vol. 28, pp. 2962–2970 (2015)

12. Fisher, A.G., Jones, K.B.: Assessment of Motor and Process Skills: Development,
Standardization, and Administration Manual, vol. 1, 7th edn. Three Star Press
(2012)

13. Fisher, A.G., Jones, K.B.: Assessment of Motor and Process Skills: User Manual,
vol. 2, 7th edn. Three Star Press (2012)

14. Glass, S.M., Napoli, A., Thompson, E.D., Obeid, I., Tucker, C.A.: Validity of an
automated balance error scoring system. J. Appl. Biomech. 35(1), 32–36 (2019)

15. Hay, J.G.: The center of gravity of the human body. Kinesiology 3, 20–44 (1973)
16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,

1735–80 (1997)
17. Horak, F.B., Wrisley, D.M., Frank, J.: The balance evaluation systems test

(BESTest) to differentiate balance deficits. Phys. Ther. 89(5), 484–498 (2009)
18. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-

ing energy in wireless communication. Science 304(5667), 78–80 (2004)
19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
20. Lafond, D., Duarte, M., Prince, F.: Comparison of three methods to estimate the

center of mass during balance assessment. J. Biomech. 37(9), 1421–1426 (2004)
21. Leardini, A., Biagi, F., Merlo, A., Belvedere, C., Benedetti, M.G.: Multi-segment

trunk kinematics during locomotion and elementary exercises. Clin. Biomech.
26(6), 562–571 (2011)



Towards Automatic Assessment of Quiet Standing Balance 363

22. Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R., Benedetti, M.G.: A
new anatomically based protocol for gait analysis in children. Gait Posture 26(4),
560–571 (2007)

23. Mazumder, O., Chakravarty, K., Chatterjee, D., Sinha, A., Das, A.: Posturography
stability score generation for stroke patient using kinect: fuzzy based approach. In:
2017 39th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 3052–3056, July 2017

24. Montesinos, L., Castaldo, R., Pecchia, L.: Wearable inertial sensors for fall risk
assessment and prediction in older adults: a systematic review and meta-analysis.
IEEE Trans. Neural Syst. Rehabil. Eng. 26(3), 573–582 (2018)

25. Noamani, A., Nazarahari, M., Lewicke, J., Vette, A.H., Rouhani, H.: Validity of
using wearable inertial sensors for assessing the dynamics of standing balance. Med.
Eng. Phys. 77, 53–59 (2020)

26. de Oliveira, C.E.N., et al.: A public data set with ground reaction forces of human
balance in individuals with Parkinson’s disease. Front. Neurosci. 16, 865882 (2022)

27. Ren, P., et al.: Assessment of balance control subsystems by artificial intelligence.
IEEE Trans. Neural Syst. Rehabil. Eng. 28(3), 658–668 (2020)

28. dos Santos, D.A., Duarte, M.: A public data set of human balance evaluations
(2016). https://doi.org/10.6084/m9.figshare.3394432.v2

29. dos Santos, D.A., Fukuchi, C.A., Fukuchi, R.K., Duarte, M.: A data set with
kinematic and ground reaction forces of human balance. PeerJ 5, e3626 (2017)

30. Sun, R., Sosnoff, J.J.: Novel sensing technology in fall risk assessment in older
adults: a systematic review. BMC Geriatr. 18(14), 1471–2318 (2018)

31. Wei, W., Dey, S.: Center of mass estimation for balance evaluation using convolu-
tional neural networks, pp. 1–7 (2019)

32. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 4th edn.
Wiley, September 2009

33. Wu, J., et al.: Automated assessment of balance: a neural network approach based
on large-scale balance function data. Front. Pub. Health 10, 882811 (2022)

34. Zatsiorsky, V.: Methods of determining mass-inertial characteristics of human body
segments. In: Contemporary Problems of Biomechanics (1990)

https://doi.org/10.6084/m9.figshare.3394432.v2


Deep/Machine Learning in Engineering



Adaptive Model for Industrial Systems
Using Echo State Networks

José Ramón Rodríguez-Ossorio1(B) , Antonio Morán1 , Juan J. Fuertes1 ,
Miguel A. Prada1 , Ignacio Díaz2 , and Manuel Domínguez1

1 SUPPRESS research group, Escuela de Ingenierías, Universidad de León,
Campus de Vegazana, León 24007, Spain

{jrodro,a.moran,jj.fuertes,ma.prada,mdomg}@unileon.es
2 Electrical Engineering Department University of Oviedo,

Edif. Departamental Oeste 2, Campus de Viesques s/n, Gijón 33204, Spain
idiaz@uniovi.es

https://suppress.unileon.es

Abstract. When a model of an industrial system is developed, it is
expected that this model performs consistently when applied to other
identically designed systems. However, different operating hours, degra-
dation or maintenance, among other circumstances, cause a change in
the dynamics of the system and result in the model not performing as
expected. For this reason, it is necessary to build a model that continu-
ously adapts to changes in the dynamics of the system, in order to handle
such deviations and thus reduce the estimation error.

This paper proposes the development of an adaptive model based on
Echo State Networks to estimate the level of a water tank. For this pur-
pose, two identically designed industrial pilot plants are used, taking one
of them as a reference for the parameterization, training and validation
of the model, and applying the developed model to the other one in order
to evaluate the adaptation to changes in the dynamics of the system.

Keywords: Echo State Networks · Dynamics · Data-based
Modelling · Online Learning

1 Introduction

Physical systems modelling in the industrial sector is a relevant task, since it
allows the behaviour of these systems and their evolution over time to be anal-
ysed and understood in depth, and it is essential to detect anomalous behaviours
and to improve the efficiency and optimization of processes in the context of an
increasingly competitive industry, that aims to maximise production at lowest
possible costs. However, modelling real industrial systems is extremely complex,
since a large amount of process data is available in a relatively simple way, but
extracting knowledge about system dynamics from this data is not so straight-
forward.
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In this context, what is known as Industry 4.0 [4,9] comes into focus, a
new paradigm considered as the fourth industrial revolution, which involves the
introduction of digital twins among other technologies. These digital twins are
virtual models of real systems that allow the aforementioned objectives of effi-
ciency improvement or detection of anomalous situations to be achieved [14].
For a proper implementation of a digital twin, it will be necessary to develop
a model as faithful as possible to the real system: the closer the model is to
reality, the better the digital twin will work and the better these objectives can
be achieved.

Moreover, the generated model should be as flexible and adaptable as pos-
sible, allowing generalisation and adjustment to identical systems with similar
characteristics. This adaptation is an additional challenge, as models are devel-
oped for particular systems with specific peculiarities, and, although they are
expected to generalise system main characteristics, they are very sensitive to
small differences or variations and will start to fail if applied to a different sys-
tem.

There are few modelling algorithms that allow this adaptive learning, but
most of these require complex, resource-intensive and time-consuming trainings.
As an example, Long Short Term Memory (LSTM) algorithm, an special Recur-
rent Neural Network (RNN) approach, made possible effective training for large
datasets, but implies a harder training, slow convergence and other kind of sta-
bility problems [8]. As an alternative, Echo State Networks (ESN) are another
variation of RNN proposal, which have the same power and advantages as RNNs
but require much simpler and lightweight training [16] and include the posibil-
ity of online training for easier adaptation to changes in the modelled physical
system.

This paper proposes the application of Echo State Networks for the modelling
of industrial pilot plants, using one plant as a reference for the parameterisation,
training and validation of the model, with both offline and online training, and
then testing the online adaptation of the developed model to another plant
identical to the first one.

The paper is structured as follows: Sect. 2 describes the basics of ESN, their
operating principles and the main training methods used; Sect. 3 presents the
pilot plant used and the methodology for working with ESN; Sect. 4 shows the
results obtained with the developed model and its adaptation to another identi-
cally designed system; and finally concludes in Sect. 5.

2 Echo State Networks

Recurrent neural networks of the type called Echo State Networks (ESN)
enable the modeling of non-linear systems through supervised learning [5]. ESNs
respond to an input signal with a fixed, randomly created recurrent neural net-
work that consists of a reservoir of neurons with non-linear response signals,
generating the desired output signal by a trainable linear combination of all
these responses [6]. ESNs are a very interesting approach to recurrent neural net-
works as they are a particular form of a state-space model. A set of first-order
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differential equations is used in the generic state-space model of a non-linear
dynamical system to generate a vector of outputs y(k) ∈ R

q from a vector of
inputs u(k) ∈ R

p and from a vector of states x(k) ∈ R
n, as it can be observed

in the expression:

x(k + 1) = f(x(k),u(k)) (1)
y(k) = g(x(k),u(k))

where f and g are, typically, non-linear functions. Echo State Networks, based
on the idea of nonlinear expansion [11], are a specific type of state-space model
in which a high-dimensional vector of states x(k) ∈ R

n, a nonlinear model in the
state equation, and a linear model of the output from the state are taken into
consideration, as it can be seen below:

x(k) = σ(Wresx(k − 1) +Winu(k)) (2)
y(k) = Woutx(k)

where Wres ∈ R
n×n is the reservoir matrix, Win ∈ R

n×p is an input matrix and
Wout ∈ R

q×n is the output matrix. This model given in (2) is a particular case
of the state-space representation shown in (1), where the state equation uses the
common sigmoid nonlinear function σ. In this state-space model, matrices Wres

and Win are constructed using random values, with minor adjustments to drive
the system’s stability edge. This is the basic and most straightforward form of
the ESNs. However, there are other more intricate variations, such as the usage
of a feedback term, including y(k) in the system state equation, or also the use
of direct connections from the input to the readout, which are represented in the
output equation [10]

The model shown in (2) can be applied recursively to produce a sequence
of state vectors {x(k)} of size n from an input or excitation sequence {u(k)}
that, when combined with N samples, can be arranged into a matrix: X =
(x(1),x(2), . . . ,x(N)) ∈ R

n×N .
The matrix X thus constitutes a reservoir of dynamic transient modes xi(k),

since it represents the evolution over time of each of the n states within the states
vector x(k). If the Wres and Win matrices have been generated with the appro-
priate parameters, this matrix of states X thus provides a great richness and
variety of dynamic behaviors. When ESNs are used to model non-linear dynamic
systems, one of their main applications, the n dynamical modes obtained must
be combined to estimate the system output. Thus, the output matrix can be
defined as: Y = (y(1),y(2), . . . ,y(N)) ∈ R

q×N .
With this matrix Y, the output equation of the ESN model in (2) implies

a linear regression problem Y = WoutX, that can be tackled with usual least
squares techniques. Among the regression methods available for obtaining the
readout of the model, two groups can be distinguished:

– Offline methods: the entire input sequence is processed in order to calculate
the Wout weights and thus obtain the output [10]. Offline regression methods



370 J. R. Rodríguez-Ossorio et al.

comprise ridge regression or Moore-Penrose pseudo-inverse, among others,
where ridge regression is the most recommended option, as it requires less
computational load, and is therefore the offline method used in this paper.

– Online methods: the weights of the output matrix are constantly adjusted,
allowing adaptation to changes in system dynamics over time [16]. Online
training methods include the Least Mean Squares (LMS) algorithm, and also
the Recursive Least Squares (RLS) algorithm, among others. Of these meth-
ods, LMS converges very slowly, but RLS works quite well and it is, therefore,
the online option used in this paper.

In RLS method, the output weights are recursively adapted in order to con-
verge to the desired output signal [8], as shown in the following equations:

P(0) =
1
α
I (3)

e(k) = Wout(k − 1)x(k) − yteach(k) (4)

P(k) =
P(k − 1)

λ
− P(k − 1)x(k)xT (k)P(k − 1)

λ(λ + xT (k)P(k − 1)x(k))
(5)

Wout(k) = Wout(k − 1) − e(k)P(k)x(k) (6)

where P(k) is usually referred to as covariance matrix, I is the identity matrix,
e(k) is the error between current ESN output (Wout(k − 1)x(k)) and desired
output yteach(k), α represents how much is initially known about the system,
and λ is the forgetting factor that models the weight of most recent data samples
compared with previous ones.

When constructing an ESN model, there are several hyperparameters that
can be adjusted, among which the most relevant are: the reservoir internal units
(the number of states within the reservoir), the spectral radius, ρ, of matrix
Wres (maximum absolute eigenvalue of the reservoir matrix), the leaking rate
(lower or higher recall of previous states), the Wres connectivity (density of
reservoir internal matrix, defined as the proportion of non-zero values within
the matrix) and the Win connectivity (density of the input matrix). A more
detailed explanation of the different ESN hyperparameters and their selection
can be found at [10].

There are many use cases for Echo State Networks in the field of industrial
engineering. As examples, in [2] are used for the identification of harmonics
in power supply systems, in [13] the health of rechargeable vehicle batteries
is monitored, in [12] ESN are used for motor control and monitoring, and in
[1] are dedicated to the detection of pressure downholes in oil wells. ESNs are
also implemented with online adaptation in instances such as in [16], where
monitoring of wide areas of power systems is developed, or in [8], where the
control of an oil production platform is addressed.
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3 Methodology

3.1 Quadruple-Tank Process

Fig. 1. Industrial plant and its diagram

For the experiments presented in this paper, two pilot plants with real indus-
trial instrumentation were used, which were designed at the Remote Laboratory
of Automatic Control of the University of León [3], based on the well-known four-
tank process proposed by Karl Henrik Johansson [7]. The design is composed of
four water tanks that are positioned vertically in pairs so that the drains from
the upper tanks eventually reach the lower ones. In addition, the plant has two
twin pumps that deliver water to the tanks from a supply tank at the bottom.
These pumps have the possibility to regulate their power by means of a variable
speed drive.

The water flow supplied by the pumps is distributed between the tanks with
two three-way valves, crossing the flows so that the left pump supplies its flow to
lower left and upper right tanks, while the right pump supplies its flow to lower
right and upper left tanks. This peculiar flow distribution makes the system
more interesting in terms of control, since the level of each of the lower tanks
will be influenced by the set points of both the adjacent pump and valve and
the opposite pump and valve, each one with different dynamics.

To measure the level of the tanks, each tank is equipped with a pressure
sensor at the base, which allows the height of the water to be calculated. These
sensors are used to perform experiments controlling the level of the tanks with
the pumps and valves as actuators. Finally, each of the tanks also has a solenoid
valve at the base, which makes it possible to introduce disturbances in the flow of
water that each of the tanks discharges. Figure 1 shows an image of the industrial
plant implemented at University of León, and also its schematic representation,
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where υj is the ratio of pump j, γj is the ratio of the valve j, qP,j is the total
flow of pump j, and hi is water level in tank i.

The four-tank process is mathematically defined in a simple way with the
combination of Bernoulli’s and mass balance laws, obtaining the corresponding
differential equations for the level of each tank. In addition, the system can also
be easily described with a state space model, as it is usual in the field of control
engineering. The possibility of representing the system in a state-space design is
extremely interesting for relating it to the model developed by means of Echo
State Networks, allowing a subsequent analysis of the model obtained based on
knowledge from the world of control engineering.

However, it should also be borne in mind that, when working with a real
industrial system such as this pilot plant, the theoretic mathematical model will
not be as faithful as expected, since the industrial instrumentation introduces
new technical challenges: the noise generated by sensors in the measurements,
the non-linear characteristic curves of the pumps, the non-symmetrical response
of the valves or the small ratio between the area of the tanks and their drains.
These peculiarities of real industrial systems make their modelling complex, so
that ideal theoretical approaches do not fit adequately and it is necessary to
resort to more advanced techniques, such as those using machine learning.

With the design proposed by the University of León, two plants were built: the
one created for the University of León itself, and the one built for its usage at the
Polytechnic School of Engineering in Gijón (University of Oviedo), adopting the
original instrumentation, dimensions and configuration. Of the two plants, the
one at the University of León has been used extensively, its current state is known
in detail and several previous experiments have been carried out on it. However,
the plant in Gijón is known in less detail, less data is available from previous
experiments and its current status is not well determined. Although the two
plants were designed in the same layout, they have had different operating hours,
different degradation, different maintenance, and a series of other circumstances
that mean that their operation is not identical in both instances. Therefore, the
system in León can be considered as the reference system, the one that works
under normal conditions, and the system in Gijón as the one with differences
with respect to the original, in which the adaptation of the model is evaluated.

3.2 Adaptive Model

In order to develop an adaptive model of the industrial plant, it is proposed to
work with the upper tank 3, using tank level as model output and setpoint of
pump 2 and valve 2 as model inputs. The input signals as well as the output signal
are percentage scaled with values ranging from 0 to 100. The representation of
the ESN model and its connection with industrial plant variables is shown in
Fig. 1b. The modelling would be analogous for the prediction of tank 4 level,
using the setpoints of pump 1 and valve 1 as inputs in this situation.

Data from the system needed to develop the model were obtained by conduct-
ing an experiment in a closed loop, with a proportional controller to regulate the
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Fig. 2. Proposed methodology

tank level, as this is a more realistic situation with respect to the typical oper-
ation of an industrial plant. This experiment consists of different phases lasting
60 s, in which at least the regulator setpoint, the valve opening, or both vari-
ables simultaneously, are changed. It is decided that the aforementioned phases
of the experiment will be 60 s, as it is enough time to reach a steady state in the
level of the tank. Data used have been obtained with an application developed
in Python, with a sampling rate of 100 milliseconds, and then resampled to 1 s
and filtered. Out of the captured data, 70% was used for training and validation,
and the remaining 30% was left for testing.

The programming, setup and training of the ESN model has been developed
with the Python programming language, using the ReservoirPy library [15], a
modular library that allows working with different elements of the ESN model as
independently parameterizable nodes that are subsequently joined together. The
search and optimization of the hyperparameters for the developed ESN model
was carried out with the hyperopt library, integrated in ReservoirPy, which allows
a random search for the best hyperparameters within a defined range of values,
selecting the ones that produce the lowest error in the model output.

The experiment described above was conducted at both León and Gijón
plants, with the same equipment and data acquisition configurations. The
methodology followed to develop an adaptive model of the tank level is shown
in Fig. 2, and consists of steps described below:

1. First, a search for hyperparameters, initialization, training and validation of
the offline model with data from León is performed.

2. Next, the offline model is tested with the plant in León, to evaluate its per-
formance in estimating the tank level.
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3. Finally, the previously developed offline model, with Win, Wres and Wout

matrices, is copied to generate the online model. Then, this online model with
RLS adaptive readout is applied to data from the plant in Gijón, evaluating
its adaptation to another instance of the same system.

4 Results

Table 1. Tested and best hyperparameter values

Hyperparameter Tested values Best value

Internal units 100, 250, 500, 750, 1000 1000
Spectral radius 0.01–1.5 0.6708
Leaking rate 0.1–0.25 0.1090
Wres connectivity 0.05–0.15 0.1361
Win connectivity 0.05–0.15 0.1064

For the ESN model parameterisation, 200 random sets of hyperparameters
have been generated, performing 3 trials with each of these sets. Table 1 shows
the hyperparameter ranges tested, as well as the best ones obtained after the
search. Once the best hyperparameters have been found after training and val-
idation, the model is run with test data from both León and Gijón plants. To
analyse and visualise the performance of the developed model with the industrial
plant, the residuals are calculated, defined as the absolute value of the differ-
ence between the system’s real output (real tank level) and the model estimated
output (estimated level). These residuals are shown in a colour map, assigning a
colour to the residual in each sample according to its magnitude. In addition, for
a more quantitative assessment of model performance, the Root Mean Square
Error (RMSE) has been calculated, defined as:

RMSE =

√
√
√
√

n∑

i=1

(ŷi − yi)2

n
(7)

where n is the number of samples used, ŷi is the estimated output at sample i
and yi is the real output at sample i. Both outputs are scaled to the range of
values used for the tank level, from 0% to 100%. RMSE values obtained for each
of the presented scenarios are shown in Table 2.

In first scenario, the model with the offline readout (ridge regression) is
applied to the test data from León plant, obtaining the results shown in Fig. 3a.
Analysing these results, it can be seen that there is not much difference between
the real level of the tank and the estimated one, as is also reflected in the resid-
uals map. In this instance, an RMSE of 3.3489 is obtained, as shown in Table 2.
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Fig. 3. Results obtained with ESN model

Table 2. RMSE values obtained

Scenario RMSE

Ridge with León plant 3.3489
Ridge with Gijón plant 18.1924
RLS with Gijón plant 7.8649
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Next, the same model with the offline readout is applied to the test data
from the Gijón plant, in order to check the performance of the model against
system changes. The result is shown in Fig. 3b, where it can be seen that the
offline model, which is not adaptive, estimates the output of the system worse
and, therefore, more residuals appear in the visualisation. More specifically, this
time the RMSE increases significantly, as it can be seen in Table 2.

Finally, the model with online readout (RLS), which does have the capacity
to adapt, is tested with the same anomalous data from the plant in Gijón. By
observing the results obtained on this instance, shown in Fig. 3c, a reduction in
the magnitude of the residuals and a better estimation of the level can be seen,
despite the changes in the physical system. With the application of the RLS
model, the RMSE is considerably reduced, as shown in Table 2.

In the latter case, as the readout of the model is adapted, it is decided to
visualise the change in the output matrix Wout, since the fitting in the online
model involves the adjustment of the weights within this matrix. In order to track
these changes, the differences between the current states of the Wout matrix and
its initial states are calculated, and the results are displayed in a colour map
similar to the one previously used for the residuals. The result obtained can be
seen in Fig. 4, where the horizontal axis shows the time samples, and the vertical
axis corresponds to numbers of weights associated with each of the neurons in
the reservoir. In this colour map, an increase in the magnitude of the differences
with the initial weights can be observed, showing that, due to changes modelled
system, the weights have been adapted with respect to those initially obtained
for the original system.

Fig. 4. Adaptation of the Wout matrix with RLS method applied to Gijón plant
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5 Conclusions

This paper has presented the use of Echo State Networks (ESN) for modelling
real industrial systems, such as tank plants with circulating fluids, adapting the
model to other identically designed systems. This modelling is particularly chal-
lenging, as real systems have certain characteristics that make their modelling
highly complex: non-linearities, lack of symmetry, sensor noise, among other sin-
gularities. In addition, when a model is applied to a system identical to that for
which the model was designed, although it is expected to work correctly, errors
are observed to occur and the model needs to be adapted in real time.

The use of ESNs for the modelling of this kind of systems is of great interest,
due to their easy training, only for readout, as well as including online train-
ing possibilities for real-time adaptation to changes in system dynamics. ESNs
are also of interest because of their similarity to state-space models, which are
commonly used in the field of control engineering, making it easier to establish
a relationship with this field.

More specifically, in this paper it has been tested the performance of ESNs
for modelling tank water level in an industrial pilot plant, and also the online
adaptation of the model to another identically designed plant. To analyse the
performance of the models in the different case studies, RMSE errors have been
calculated and the absolute value of the errors has been visualised through colour
maps.

Based on the results, it can be concluded that the offline model works cor-
rectly with the system used for training and validation but the error increases
considerably when applied to another identical system. On the other hand, the
online model is able to adapt to the identical system and reduce the error in the
output estimation.

As future work, it is still pending to improve the adjustments of the online
model with the RLS method, regulating the weight of short-term and long-term
memory with forgetting factor, in order to achieve adequate adaptation times.
On the other hand, the use and evaluation of online adaptive models for the
detection of anomalies in the modelled systems is also an ongoing task.
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Abstract. The implementation of differentiated Deep Neural Networks
(DNNs), within a gradient-based optimization method in fluid mechan-
ics, for predicting the objective function values and its gradient, is
demonstrated and assessed. In the proposed method, DNNs, after being
trained on a set of patterns for which the objective function values are
available, are used to replace both the code simulating the fluid flow
and its adjoint solver computing gradients in problems governed by par-
tial differential equations. The derivatives of the responses of the trained
DNNs with respect to its inputs (which are the design variables of the
optimization problem) are computed using automatic differentiation in
reverse accumulation mode. Prior to successfully and efficiently support-
ing the optimization loop, gradients are verified against finite differences
as well as the adjoint method. The proposed, DNN-driven shape opti-
mization method is used to design an isolated airfoil (inviscid flow) and
an S-bend duct (laminar flow); its efficiency is compared with an adjoint-
based optimization.

Keywords: Deep Neural Networks · Computational Fluid Dynamics ·
Gradient-based Shape Optimization · Aerodynamics

1 Introduction

Nowadays, Computational Fluid Dynamics (CFD) tools and optimization meth-
ods are very attractive in various engineering fields involving fluid dynam-
ics. CFD-based optimization tools for large scale applications usually rely on
gradient-based techniques supported by the adjoint method, [5,6]. The latter
computes the gradient of the objective function with respect to (w.r.t.) the design
variables at a cost which is independent of their number N .

At the same time, DNNs and their integration within simulations (CFD-
based, in our case) are gaining ground due to their ability to handle large volumes
of complex data at low computational cost and resources. Trained DNNs may
accelerate the simulation process by replacing part of or the entire CFD tool.
For instance, [14] uses conditional variational autoencoders and an integrated
generative network for the inverse design of supercritical airfoils. [4] presents a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 379–390, 2023.
https://doi.org/10.1007/978-3-031-34204-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_32&domain=pdf
http://orcid.org/0000-0002-7056-830X
http://orcid.org/0000-0002-7917-1536
http://orcid.org/0000-0002-3619-7947
https://doi.org/10.1007/978-3-031-34204-2_32


380 K. G. Kovani et al.

solver based on Machine Learning (ML) models that predict the required numer-
ical fluxes, in compressible fluid flows, based on high-resolution runs; the solver
was fully differentiated using automatic differentiation (AD). A toolkit based
on complex-step finite differences for the numerical differentiation of neural net-
works was proposed in [12], making it computationally lightweight by overcoming
the high-order chain rule. In [7], the authors of this paper proposed a DNN-based
surrogate for the turbulence closure of the Reynolds-Averaged Navier Stokes
(RANS) equations; the role of the DNN is to replace the numerical solution
of the turbulence and transition models. The DNN-assisted RANS solver was
combined with an evolutionary algorithm to optimize the shape of a transonic
turbine blade and a car model. ML surrogates were used in aerodynamic shape
optimization of transonic airfoils, in [11].

The cost of the aerodynamic shape optimization is highly affected by the
dimensionality of the design space and the cost of the aerodynamic analysis. In
[8], the performance of ML models used in aerodynamic shape optimization is
reviewed, and the efficiency of more advanced models using appropriate geom-
etry parameterization so as to reduce the dimensionality of the design space,
is presented. In [9], a numerical methodology based on modal decomposition
coupled with the regression analysis for creating reduced-order models of fluid
flows is demonstrated. In [15], the efficiency of the adjoint-based optimization is
accelerated using DNNs to predict the mapping between the adjoint vector and
the local flow variables.

In this work, DNNs are used to assist gradient-based shape optimization
problems in fluid mechanics, by undertaking the computation of both the objec-
tive function and its gradients. The DNNs use the values of the design variables
determining the shape to be designed (according to the selected parameteriza-
tion) as inputs and are trained to compute the objective and constraint (if any)
functions of the optimization. Once trained, these are also differentiated to addi-
tionally provide the gradient of their response(s) w.r.t. the design variables to
drive the optimization. The proposed method is compared with a (continuous)
adjoint-based optimization in terms of effectiveness and cost, since the latter is
widely used in industrial applications. A parametric study on the DNN activa-
tion functions, regarding the accuracy of the computed gradients is included.

2 Methods and Tools

This section describes the constituents of the proposed gradient-based optimiza-
tion method that makes use of differentiated DNNs. Initially, the CFD code
used to simulate the flow problems is briefly described; this software runs on
Graphics Processing Units (GPUs). Then, topics related to the DNNs and their
implementation in the gradient-based shape optimization loop are discussed.

2.1 CFD and Shape Parameterization Tools

All flow simulations are performed using the in-house GPU-accelerated CFD
solver PUMA, [2,13] which numerically solves the Navier-Stokes equations for
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compressible and incompressible fluids; herein the compressible flow variant
is used. The flow and their (continuous) adjoint equations are discretized on
unstructured/hybrid grids, using the vertex-centered finite volume technique.
The viscous flow equations for compressible fluids are written in the form

Rn =
∂f inv

nk

∂xk
− ∂fvis

nk

∂xk
= 0 (1)

where f inv
k =[ρvk ρvkv1+pδ1k ρvkv2+pδ2k ρvkv3+pδ3k ρvkht]

T are the invis-
cid and fvis

k = [0 τ1k τ2k τ3k v�τ�k + qk]
T the viscous fluxes. ρ, p, vk and ht

stand for the fluid’s density, pressure, velocity components, total enthalpy and
δkm is the Kronecker symbol, respectively. The viscous stress tensor is given by
τkm =μ

(
∂vk

∂xm
+ ∂vm

∂xk
− 2

3δkm
∂v�

∂x�

)
where μ is the bulk viscosity and qk the heat

flux. All computations are made with second-order accuracy.
The adjoint method (which is used to compare with) is based on the definition

of a Lagrangian function; this is formed by adding the objective function to
be minimized to the integral (over the flow domain) of the residuals of the
flow equations multiplied by the adjoint variables (or Lagrange multipliers).
It is evident that objective and Lagrangian functions take on the same value
as the flow equations are always satisfied and, thus, their residuals are zero.
Therefore, the gradient of the Lagrangian, rather than the objective function,
can be computed. This is differentiated w.r.t. to the design variables and terms
multiplying the derivatives of flow variables w.r.t. to the design variables are
set to zero, leading to the adjoint equations. PUMA implements the continuous
adjoint approach in which the adjoint equations are derived in the form of partial
differential equations which are, then, discretized and numerically solved [13].

In both the flow and adjoint solvers of PUMA, high parallel efficiency is
achieved by the use of Mixed Precision Arithmetics (MPA), [2]. MPA reduces
the memory footprint of the code and the memory transactions of the GPU
threads with the device memory, without affecting code’s accuracy. In partic-
ular, the memory demanding computations of the coefficient matrices of the
linearized systems is performed with double, though these are stored in single,
precision accuracy. The residuals of the equations, determining the accuracy of
the simulation, are always computed and stored in double precision.

In addition to the flow and adjoint solvers, PUMA contains a set of shape
and mesh morphing and parameterization techniques based on volumetric Non-
Uniform Rational B-Splines (NURBS), [10]. The geometry to be optimized and
(part of) the grid are encapsulated within a NURBS lattice. A knot vector and
a degree must be defined for each parametric direction. Each time the NURBS
lattice points (a.k.a. control points) are displaced, the geometry changes and the
CFD grid is adapted to it.

2.2 DNNs - Training and Differentiation

Working with DNNs, the first step is to collect the necessary training data and
create the database (to be referred to DBDNN ) which the DNN will be trained



382 K. G. Kovani et al.

on. Herein, the DBDNN is formed by sampling the design space using the Latin
Hypercube Sampling (LHS) technique, generating the corresponding geometries
and evaluating them on the CFD solver. The LHS is effective in case the number
of samples must be kept small, and it is widely used in DNNs. In this paper,
reducing the size of the DBDNN is important as all of its entries should be
evaluated on the costly CFD code.

To increase the prediction accuracy of the DNN, its hyperparameters must
carefully be determined. The number of layers and neurons per layer as well as
the most appropriate activation function(s) must be selected, see Sect. 3. In all
problems, fully connected networks are used. Given that the DNN output practi-
cally results from operations involving the networks’s weights and the activation
functions, the derivatives of the DNN can be obtained through automatic differ-
entiation in reverse mode [3]. Setup, training and differentiation of the DNNs is
carried out in the TensorFlow framework (v2.6.0), [1], using Python.

2.3 The Proposed DNN-Driven Gradient-Based Algorithm

In CFD-based optimization based on the adjoint method, each cycle comprises
the numerical solution of the Navier-Stokes equations, that of the adjoint equa-
tions and the computation of the gradient of sensitivity derivatives (SDs) used
to update the design variables vector. Without loss of generality, in this work,
all updates are computed by steepest descent.

Alternatively, this work proposes to replace the flow and the adjoint equations
solvers with the trained DNN which predicts both the objective function value
(used to monitor the progress of the optimization) and the SDs. Once the initial
DBDNN resulting from the LHS is available (see Sect. 2.2), each round (this
term is used to distinguish this loop and the gradient-based descent loop of step
2, in which optimization cycles are performed by updating the design vector and
the gradient) of the proposed algorithm comprises the following steps:

1. Train the DNN using the data available in DBDNN .
2. Iteratively optimize (till convergence) by applying gradient-based descent

using, exclusively, the DNN-based sensitivities. A number of entries selected
from the DBDNN can be used as starting points (starting designs) and per-
form as many runs as the number of starting points.

3. Re-evaluate (all or part of) the “optimized” solution(s) on the CFD tool; the
use of quotes (“optimized”) makes clear that this is the best solution according
to the DNN.

4. Update the DBDNN with all the recently evaluated solutions, if necessary,
and repeat all four steps starting from step 1. The termination criterion is
related to the DNN prediction accuracy.

In step 1, the DNN is configured differently in each problem. Experience has
shown that, the use of a single DNN in all problems is not a viable solution, in
CFD-based analysis. Regarding the paper, one may notice that the two problems
involve different physics (the one is an inviscid whereas the other is a viscous flow
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problem) and it is reasonable to have different DNN configurations. An optimiza-
tion algorithm could have been used to find the optimal set of hyperparameters,
as in [7]. However, since in this work emphasis is laid on the computation and use
of the DNN gradient, it was decided to perform parametric studies and discuss
their outcome rather than optimizing the network hyperparameters and, then,
just using the optimal configuration to get results.

3 Applications in Aerodynamic Shape Optimization

Two aerodynamic shape optimization problems are selected to demonstrate the
capabilities of the proposed algorithm. These are related to the shape optimiza-
tion of an isolated airfoil and that of an S-bend duct. The first problem assumes
an inviscid fluid flow (so, the flow solver is faster than the second one since the
part of the flow solver dealing with the viscous terms is omitted and, also, the
CFD grid is coarser). In all problems, the gradient (computed by the trained
DNN) is verified against the outcome of Finite Differences (FDs) and the con-
tinuous adjoint of PUMA.

Since the potential of the proposed method should mainly be assessed in
terms of computational cost, one time unit (TU) is set equal to the cost of
numerically solving the flow equations. Also, the absolutely realistic assumption
that the solution of the adjoint equations has practically the cost of solving
the flow equations is made. Thus, one adjoint-based optimization cycle costs 2
TUs. Apart from the cost of forming the DBDNN (as many TUs as the number
of its entries), the cost of a DNN-driven optimization should also include the
re-evaluation of some of the “optimized” solutions on the CFD tool.

3.1 Problem I: Inviscid Flow Around an Airfoil

The first problem performs an optimization starting from the NACA0012 iso-
lated airfoil. The flow is inviscid with free-stream Mach number and flow angle
equal to M∞ = 0.50 and α∞ = 2◦, respectively. An unstructured grid with
∼ 7.8K nodes is used; the farfield boundaries of the computational domain
are located about 10 chords away from the airfoil. The optimization aims at
designing a new airfoil with a user-defined lift coefficient value (CL,target). The
objective function (to be minimized) is

F =
1
2
(CL − CL,target)

2 (2)

where CL is the lift force (L) exerted by the flow on the airfoil normalized by
the dynamic pressure coefficient multiplied by the airfoil’s chord (c), as CL =
L/( 12ρU2

∞c), where U∞ is the farfield velocity. In this problem, CL,target is set
twice as high as the CL of the baseline profile. The 10×7 NURBS lattice of Fig. 1
controls both the airfoil shape and part of the surrounding grid. 16 out of the 70
control points are allowed to be displaced in the normal-to-the chord (vertical)
direction, resulting in N = 16 design variables (and, thus, 16 are the inputs to
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the DNN), in total. The design variables (b ∈ RN ) are allowed to change within
the ±0.05c around their initial values, so as to avoid the overlapping of the
lattice lines. The LHS technique was used to generate 20 different combinations
of the design variables, corresponding to 20 different airfoil shapes. Each sampled
geometry was evaluated on the CFD solver and CL was computed. Thus, the
DNN model’s input was a [20 × 16] tensor with the sampled coordinates of the
lattice control points, with the [20× 1] tensor of the corresponding CL values as
output.

Fig. 1. Problem I: NURBS control lattice parameterizing the airfoil contour. Control
points in blue are fixed; red ones can be displaced in the normal-to-the-chord direction.
(Color figure online)

The DNN’s configuration was derived after a parametric study/trial-and-
error procedure for the model’s hyperparameters, focusing mainly on the number
of the hidden layers, the number of neurons per layer and the activation func-
tions. For this first problem, the selected configuration has four hidden layers,
with 32, 32, 64 and 32 neurons, respectively. This DNN architecture was assessed
in terms of accuracy (of both CL and its gradient) by combining different activa-
tion functions. Four DNNs using the ReLU, the GELU, the sigmoid and the tanh
activation functions in all hidden layers are trained and compared. The results
are summarized in Fig. 2. The DNN-based SDs for the baseline geometry using
GELU are in good agreement with FDs. Small discrepancies are observed in the
derivatives w.r.t. some design variables, preserving though the sign of the SDs,
in contrast to other activation functions that yield even wrongly signed SDs.

The shape optimization follows. Two runs were carried out; the first run relied
exclusively on the DNN using the GELU activation function (as concluded after
the previously presented parametric study), while the second one on PUMA
and its adjoint solver. Once the DNN-based optimization run converged, the
“optimized” solution was re-evaluated on PUMA. This was then added to the
DBDNN , the DNN was re-trained, and the optimization was repeated. Three
rounds (each of them including re-evaluations of one “optimized” solution per
cycle and DNN re-training) were sufficient to reach the optimal solution with
a deviation in the CL values (w.r.t. to the CL,target) less than 1%. Given that
the cost of a DNN-based optimization as well as that of the DNN training is
practically negligible (w.r.t. the cost of a CFD run, even if the less costly inviscid
flow model is used), the optimization turnaround time was 23 TUs. This includes
the cost to form the DBDNN (20 TUs) and the three CFD based re-evaluations.
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Fig. 2. Problem I: SDs of CL (w.r.t. the design variables) for the baseline geometry
computed with FDs (black) and derived from the DNN’s differentiation for the different
activation functions: ReLU (red), GELU (blue), sigmoid (green), tanh (orange). The
SDs computed by the adjoint method of PUMA are omitted as these are practically
identical to those computed by FDs. (Color figure online)

On the other hand, the adjoint-based run (with cost of 2 TUs per cycle) needs
32 TUs for reaching the target CL,target value. The convergence histories of the
optimization runs are presented in Fig. 3. Overall, the DNN-based optimization
is by ∼31% less expensive than the adjoint-based run.

The optimized airfoil shapes resulted from both optimization runs and the
Mach number fields around them are compared with the baseline airfoil in Fig.
4; overall, the flow speed increased (pressure decreased) over the suction side of
the optimized airfoils in order to match CL,target.

3.2 Problem II: Laminar Flow Within an S-Bend Duct

The second problem is dealing with the re-design of an S-bend duct for min.
mass-averaged total pressure losses between the inlet (I) and the outlet (O).
The objective to minimize is

F =

∫
SI

ptρvndS +
∫

SO

ptρvndS

∫
SI

ρvndS
(3)

where pt, vn are the total pressure and the normal velocity pointing outwards
to the CFD domain (this is why in the numerator of Eq. 3, the sum, rather
than the difference of two integrals appears). F stands for the losses occurring
in the flow due to the viscous effects. The flow is laminar with Re = 1.84 · 104
(Reynolds number based on the duct width) and inlet velocity U = 20 m/s; a
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Fig. 3. Problem I: Top: Convergence history of the optimization runs based on the
adjoint method (red) and the differentiated DNN (black). Solutions of the DNN-based
optimization which are re-evaluated on the CFD tool are shown in filled blue circles.
Bottom: Close-up view of the previous curve between TU 19 and 25, in order to make
a clear comparison between the adjoint curve and the three solutions “optimized” by
the DNN-driven run and re-evaluated on the CFD. (Color figure online)

structured grid of ∼90K nodes was generated. The duct shape is parameterized
using a 8×9 NURBS lattice, Fig. 5. 20, (out of the 72) control points are allowed
to move in the y direction, yielding N = 20 design variables (20 inputs to the
DNN).

A DBDNN consisting of 50 duct geometries was used to train the DNN. The
DNN gets the [50 × 20] tensor of the y coordinates of the control points of all
samples as input and computes the [50× 1] tensor of the F values (Eq. 3). As in
Problem I, the model’s configuration was decided after comparing various hyper-
parameter combinations, and is made of 7 layers with 32, 64, 128, 256, 128, 64, 32
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Fig. 4. Problem I: Top: Shape of the baseline (black) and optimized airfoils based on
the adjoint method (blue) and the differentiated DNN (red). Bottom: Mach number
field for the baseline (left) and optimized airfoil resulted from the adjoint method
(center) and the differentiated DNN (right). (Color figure online)

Fig. 5. Problem II: Control points of the volumetric NURBS control lattice, parame-
terizing the S-bend duct. Blue points are kept fixed, whereas red ones can be displaced
in the y direction. (Color figure online)

neurons; the GELU activation function was used for all hidden layers and the
sigmoid for the output one.

Since the descent phase of the DNN-driven optimization algorithm is of negli-
gible cost, it was decided to perform optimization runs starting from all sampled
geometries forming the DBDNN , i.e. 50 runs in total. Though this is not what
this paper generally proposes, such a decision was made since it allows an exhaus-
tive exploitation of the design space and showcases the appearance of many local
minima in this kind of problems. Upon completion of the 50 optimization runs,
the designer may decide which of the “optimized” solutions should undergo a
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CFD-based re-evaluation, at the additional cost of one TU each. Herein, it was
decided to re-evaluate 10% of the 50 “optimized” solutions, i.e. the top 5 of them.
These were added to the DBDNN , the DNN was re-trained and a second opti-
mization round started. The outcomes of the 5 DNN-based runs, each of which
based on an updated (re-trained) DNN, resulted in new “optimized” solutions
that were re-evaluated on the CFD tool and appended to the DBDNN . Two re-
trainings of the DNN proved sufficient to obtain a DNN prediction accuracy less
than 0.5%. At the end of this round, only the best among the five “optimized”
solutions was re-evaluated, resulting in a reduction in F by 4.6% compared to
the baseline geometry. The overall cost of the DNN-based optimization was 61
TUs, consisting of: 50 TUs to generate the DBDNN , 10 TUs (=2×5) to evaluate
the 5 top “optimized” solutions at the end of each cycle and, finally, 1 TU for
the evaluation of the final “optimized” geometry on the CFD code.

For comparison, an adjoint-based optimization was also performed. The opti-
mization loop resulted in a reduction in F by 4.6%, compared to the baseline
geometry and required 30 cycles till convergence, at the cost of 60 TUs. The duct
shapes optimized using adjoint and the DNN-assisted method are compared with
the baseline geometry in Fig. 6. The total pressure losses for the baseline, and
the optimized ducts by the two methods are presented in Fig. 7. It is clear that
the optimization changed the upper side of the duct in order to avoid a small
(incipient) separation, shown as a red spot in the baseline geometry. This red
spot develops as a narrow red path that reaches the domain exit.

Fig. 6. Problem II: Shape of the baseline (black), the adjoint-based (red) and the DNN-
based (blue) optimized ducts. Axes not in scale (x : y = 1 : 2). (Color figure online)
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Fig. 7. Problem II: Total pressure losses for the baseline (top) , the optimized by the
adjoint method (center) and the optimized by the proposed DNN-driven method (bot-
tom) geometries.

4 Conclusions

A gradient-based optimization framework for CFD problems relying exclusively
on differentiated DNNs was presented and tested. The DNN was trained to pre-
dict the objective function value and, then, differentiated based on reverse mode
AD; the optimization loop was exclusively driven by derivatives provided by
the differentiated DNN. This was demonstrated in the shape optimization of
an isolated airfoil (inviscid flow) and an S-bend duct (laminar flow). Since the
objective function values and their derivatives resulting from CFD simulations
can vary significantly w.r.t the flow properties and the geometric parameteriza-
tion of the design space, different DNN configurations were tested, depending on
the case. A parametric study on the models hyperparameters designated that,
for the examined problems, the GELU activation function is the most appropri-
ate for achieving high accuracy of both the objective function and its gradient.
The performance of the DNN-assisted optimizations were compared with those
based on the (continuous) adjoint method in terms of computational cost and
solution quality. In the first flow problem, the DNN-driven optimization achieved
a solution of the same quality as the adjoint-based one, at ∼70% of the compu-
tational cost of the latter. Similar conclusions were drawn in the second problem
too. Here, in addition, the developed software was asked to perform more than
one (concurrent) DNN-driven optimizations, given their negligible costs. Over-
all, the obtained results sound very encouraging; on-going work focuses on the
extension of this method to many-objective and/or constrained optimization,
even for turbulent flow problems.
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Abstract. Electricity demand forecasting describes the challenging task
of predicting the electricity demand by employing historical load data.
In this paper, we propose a novel method, named RESidual Error Learn-
ing for Forecasting (RESELF) for improving the performance of a deep
learning model towards the electricity demand forecasting task. The pro-
posed method proposes to train a model with the actual load values and
compute the residual errors. Subsequently, RESELF proposes to train
a second model using as targets the computed residual errors. Finally,
the prediction of the proposed methodology is defined as the sum of the
first model’s and second model’s predictions. We argue that if the errors
are systematic, the proposed method will provide improved results. The
experimental evaluation on four datasets validates the effectiveness of
the proposed method in improving the forecasting performance.

Keywords: Residual Error Learning · Electricity Demand
Forecasting · Greek Energy Market · Deep Learning

1 Introduction

Electricity demand forecasting (also known as electric load demand forecasting)
describes the task of predicting the electricity demand by utilizing historical load
data, as well as exogenous variables like temperature. Based on the time-scale, it
can be discriminated into three categories: short-term load forecast with a time
frame of a few hours up to one-day ahead or a week ahead, mid-term load forecast
with a time frame of a week to one year ahead, and the long-term forecast with
a time frame of up to several years ahead. In this work, we mainly deal with
a short-term forecasting task, and particularly the one-day-ahead forecasting
(i.e., 24 h of the next day). Additionally, we perform experiments considering
also a similar problem, that is we also apply the proposed method for improving
the personalized energy consumption prediction considering the one-year-ahead
task.

Generally, electricity demand forecasting has been a vivid research area in
recent years [11], since it is linked with many critical applications ranging from
power system operation and planning to energy trading [8], allowing power com-
panies to accomplish an efficient balance between demand and supply, avoiding
excess reserve of power generation or power interruptions due to load shedding.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 391–402, 2023.
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In this paper, we mainly deal with short-term electricity demand forecasting
focusing attention to the Greek Energy Market. We propose a novel residual error
learning methodology for improving the forecasting performance of deep learning
models, named RESidual Error Learning for Forecasting (RESELF). Generally,
the residuals are a useful tool in traditional time-series analysis for analyzing
the properties of a forecasting model. In this paper, we introduce residual error
learning in deep learning models in a novel way. More specifically, we propose to
train a model with the actual load values, considering the electricity demand task
and then compute the residual errors from the actual load values. Subsequently,
we propose to train a second model using as targets the computed residual errors.
Then, the final predictions of the proposed methodology are defined as the sum of
the first model’s prediction and the second model’s prediction. We argue that, if
the errors are systematic, then the proposed methodology will provide improved
performance. This is experimentally validated through extensive experiments.

The remainder of the manuscript is structured as follows.Section 2 presents
previous relevant works. Section 3 presents in detail the proposed residual error
learning methodology for electricity demand forecasting. Subsequently, in Sect. 4
the experimental evaluation of the proposed method is provided. Finally, the
conclusions are drawn in Sect. 5.

2 Relevant Work

The problem of electricity demand forecasting has been extensively studied since
the past decades. Earlier works for tackling the problem include statistical mod-
els [10,16] and machine learning models [4,13]. Subsequently, motivated by the
outstanding results of DL models in a wide variety of problems, ranging from
image classification and retrieval [18] to financial time-series forecasting [14], they
have been proposed so as to address the electricity demand problem [1,2,6,7]
accomplishing notable performance.

Surveying the existing literature, we come across several works addressing
the electricity demand forecasting problem on the Greek Energy Market [5].
For instance, a fuzzy-based ensemble that uses hybrid DL networks is proposed
for load demand prediction of the next week in [15]. More specifically, initially,
a fuzzy clustering technique creates an ensemble prediction and after that a
pipeline of radial basis function neural network transforms the data in order to
be fitted in a convolutional neural network. Furthermore, the effect of dimension-
ality reduction methods in the day-ahead forecasting performance of neural net-
works is investigated in [12]. Additionally, a method that assists the exploitation
of the statistical properties of each time series with main focus the optimization
of CNN’s hyper-parameters is proposed in [3].

Subsequently, in a recent work, a realistic approach for the electricity demand
forecasting considering the Greek Energy Market is developed in [9]. More specif-
ically, the vast majority of the existing methods make two assumptions. Firstly,
it is assumed that any past load data before the day whose load demand we
want to predict are available and can be used. Secondly, real weather informa-
tion (i.e., temperature) of the aforementioned day is also considered available.



Residual Error Learning for Electricity Demand Forecasting 393

On the contrary, in [9], a more realistic setup is followed, considering an informa-
tion gap between the prediction day and the past load data, retaining however
the assumption regarding the weather information, and a strategy for filling the
information gap is proposed, along with a novel loss function.

Next, in [19], an evaluation study regarding the optimal input features and
an effective model architecture considering the electricity demand forecasting
task is performed, and then using the optimal features and model, a novel reg-
ularization method is proposed, improving the baseline forecasting. Finally, a
novel online self-distillation method considering electricity demand forecasting
tasks is proposed in [17].

In this paper, we propose a novel method for improving the forecasting per-
formance of DL models towards the electricity demand task, using the residual
errors of the model. It should be emphasized that the proposed methodology
can also be combined with several methods for electricity demand forecasting,
further improving their performance.

3 Proposed Method

In this paper, we deal with electricity demand forecasting. Our goal is to improve
the forecasting performance of a DL model towards this task. To achieve this goal
we utilize the concept of residuals, and propose a methodology named RESidual
Error Learning for Forecasting (RESELF). More specifically, as illustrated in
Fig. 1, we first train a model to predict the actual load values (ground truth).
Then we compute the residual errors from the actual load values. In the second
stage, we use the computed residual errors as targets to train a second model.
That is, the second model is trained to predict the residual errors. Finally, the
prediction of the proposed method is formulated as the sum of the first model’s
prediction and the second model’s prediction. We argue that if the errors have
any underlying structure, and hence are systematic, then the proposed method-
ology will provide enhanced performance.

More specifically, we consider the input data {xi,yi}Ni=1, where xi ∈ �D is
an input vector and D its dimensionality (as it is presented in the subsequent
Section, D=171 for the main problem of electricity demand forecasting), while
yi ∈ �d corresponds to its d-dimensional ground truth vector (d=24 for one-
day-ahead problem in an hourly basis). Thus, we fist train the first model, using
a common loss function considering forecasting tasks, that is, Mean Absolute
Percentage Error (MAPE) loss:

MAPE =
1
N

N∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣, (1)

where yi is the ground truth and ŷi is the model’s prediction.
Then, the we compute the residual errors for each sample i between its pre-

dicted values ŷi and its actual values yi as follows:

ei = yi − ŷi. (2)
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Fig. 1. Proposed Method

Subsequently, we use the computed residual errors of Eq. (2) in order to train
the second model, using the same input features. Note, that any loss function
considering regression tasks can be used for training both the models. In a pre-
liminary investigation we noticed that marginally better results can be obtained
using Mean Absolute Error (MAE) loss for training the second model.

After the convergence of the second model, we can acquire the final pre-
diction, PrRESELF by summing the prediction of the initial model ŷ and the
prediction of the second model ê, and evaluate the performance of the proposed
method. That is, for a sample i the final prediction is computed as follows:

PriRESELF = êi + ŷi. (3)

Finally, it should be emphasized that the two models of the proposed pipeline
can be of different architecture. As it will be presented in the Experimental
Evaluation, we can use a more lightweight model to train with the residual errors,
achieving further improvements, while limiting at the same time the additional
computational cost of the proposed pipeline.

4 Experimental Evaluation

In this Section, we present the experiments conducted in order to evaluate the
proposed RESELF method for time-series forecasting. First the descriptions of
the utilized datasets are provided followed by the description of the utilized
models. Subsequently, the experimental setup and the implementation details
are presented and finally the experimental results are provided and discussed.

4.1 Datasets

In this paper, we use four different datasets to evaluate the proposed RESELF
method. More specifically, we use three datasets considering the main task of
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this paper, that is the one-day-ahead electricity demand prediction problem. We
use data from the Greek energy market, and also electricity data from Spain1

and New England2. Furthermore, we perform indicative experiments considering
a similar task, that is the personalized electricity consumption forecasting, con-
sidering MV and HV costumers. The descriptions of the datasets follow bellow.

Greek Energy Market. The dataset of Greek energy market consists of his-
torical load data, provided by the Greek Public Power Corporation (these data
are not publicly available), as well as weather information (i.e., temperature),
derived from OpenWeather3. Seven years of data are used in total. Specifically,
load and temperature data from years 2012–2016 are used for training, the cor-
responding data from year 2017 are used for validation, while data from year
2018 are used for testing.

Spain. The dataset of Spain energy data contains historical load data, provided
by ENTSO-E Transparency Platform, and weather information (i.e., tempera-
ture), obtained from OpenWeather. Data from four years are used. Data from
years 2015–2017 are used for training, data from year 2017 are used for valida-
tion, and finally data from year 2018 are used for testing.

ISO-NE. ISO-NE consists of historical load and weather data from totally eight
years. Data from years 2007–2012 are used for training, data from year 2013 are
used for validation, and finally data from year 2018 are used for testing.

MV/HV Personalized Consumption. The MV/HV Personalized Consump-
tion dataset consists of historical load data, provided by the Greek Public Power
Corporation, and is based on MV and HV individual customer load data, as
well as weather information (i.e., temperature), derived from OpenWeather. Five
years of data in period 2016–2021 are used in total. For the MV customers prob-
lem data from the years 2016–2019 are used for training, while 2020 and 2021
are used for validation and training respectively. For the HV customers problem
the 2015–2018 years are used for training while the 2019 year year is used for
testing. We note that in this case, we deal with the problem of the one-year-
ahead prediction (12 values, each for the 12 months of the year ahead), and thus
the data are in a monthly basis.

4.2 Models

In our experiments, we use two different model architectures. That is, in the first
case we use a certain model architecture for both the models of our pipeline,
1 https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-

prices-and-weather.
2 https://github.com/yalickj/load-forecasting-resnet.
3 https://openweathermap.org/.

https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://github.com/yalickj/load-forecasting-resnet
https://openweathermap.org/
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and in the second case we use a more lightweight model for training with the
residual errors. The first, relatively more heavyweight model consists of three
hidden layers each with 64 neurons. This model contains 20,824 parameters.
The second, more lightweight model consists of two hidden layers, each with 32
neurons. This model contains 7,320 parameters. In the main focus of this paper,
which concerns the one-day-ahead forecasting task, the outputs of the models
are 24 neurons, for each hour of the next day. The input features are described in
the Table 1. Finally, considering the one-year-ahead forecasting of personalized
consumption, the outputs of the models are 12 neurons for each of the 12 months
of the year ahead. The input features for this case are described in Table 2.

Table 1. Description of Input Features - One-day-ahead Forecasting Task.

Abbreviation Dim Description

Ld 24 Load of the day that is 1 day before Target Day (TD)
Lw 24 Load of the day that is 7 days before TD
Lm 24 Load of the day that is 28 days before TD
Td 24 Corresponding temperature for Ld

Tw 24 Corresponding temperature for Lw

Tm 24 Corresponding temperature for Lm

T 24 Corresponding temperature for TD
D 1 Indicator of which day of the week is the TD
W 1 Indicator of TD being weekend
H 1 Indicator of TD being holiday

Table 2. Description of Input Features - One-year-ahead Forecasting Task.

Abbreviation Dim Description

Lm 12 Consumption of 12 months before TD
Tm 12 Corresponding temperature for Lm

Hum 12 Corresponding humidity for Lm

Sm 12 Corresponding season indicator for Lm

Hm 12 Corresponding holiday indicator for Lm

Mm 12 Corresponding month indicator for Lm

Ym 12 Corresponding year indicator for Lm

DYm 12 Corresponding day of year indicator for Lm

Avg 1 Average Consumption of 12 months before TD
Std 1 Standard Deviation of Consumption of 12 months before TD
Min 1 Minimum consumption of 12 months before TD
Max 1 Maximum consumption of 12 months before TD
Skew 1 Skewness of consumption of 12 months before TD
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4.3 Evaluation Metrics

MAPE, as defined in Eq. (1) is utilized as evaluation metric, since it is the most
common evaluation metric considering time-series forecasting tasks. Experiments
are repeated ten times, and we report the mean value and standard deviation.

4.4 Experimental Setup

In order to validate the effectiveness of the proposed RESELF method we per-
form three sets of experiments. In the first set of experiments, we deal with
one-day-ahead electricity demand task and we use the same architecture for the
two models of the proposed pipeline. In this case, we evaluate the performance
of the method against baseline, which concerns the evaluation of the same model
architecture trained with the actual load values (this is the case of training only
the first model of the pipeline).

In the second set of experiments, we explore different model architectures for
the two models of the proposed pipeline, considering the one-day-ahead electric-
ity demand task. More specifically, we use a more lightweight model for training
with the residual errors. In this case, we perform comparisons with both archi-
tectures trained using the actual load targets, denoted as baseline 1 and baseline
2 in the experimental results.

Finally, in the third set of experiments, we perform indicative experiments
considering the second problem of personalized one-year-ahead forecasting task,
using a more lightweight second model.

4.5 Implementation Details

Both models are trained with Adam optimizer with initial learning rate of 0.001
for the first model and 0.005 for the second model respectively, with a learn-
ing decay factor of 0.5 every 500 epochs. Mini-batch size is set to 32 samples.
Input features are normalized using max scaler. Each model was trained for
2,000 epochs. We have implemented the proposed method using the Pytorch
framework.

4.6 Experimental Results

In this Section we provide the experimental results for the proposed method. In
Table 3we provide the experimental results considering the first set of experiments.
As it is demonstrated the proposed RESELF method remarkably improves the
baseline performance on the three utilized datasets. Subsequently, the correspond-
ing results for each of the three datasets are provided in Figs. 2, 3 and 4 where the
steadily better performance of the proposed method is illustrated.

Next, in Table 4, the corresponding results considering the second set of
experiments, where the second model for training with the residual errors is
more lightweight, are provided. As it can be observed this practice provides fur-
ther improvements. That is, apart from the fact that it achieves lower errors as
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compared to the baselines, it also achieves reduced errors as compared to the
first approach, where the second model is identical to the first one, that is more
heavyweight. The same remarks can be drawn with the corresponding Figs. 5, 6
and 7.

Table 3. Test MAPE (%) for the proposed method against baseline, where the two
models are of identical architectures.

Method Greek Energy Market Spain ISO-NE

Baseline 3.36 ± 0.08 5.62 ± 0.07 2.56 ± 0.15
RESELF 2.63 ± 0.15 4.66 ± 0.14 2.15 ± 0.06

Fig. 2. Greek Energy Market: Test MAPE throughout training epochs for the proposed
method against baseline, where the two models are of identical architectures.

Finally, in Table 5 the experimental results considering the one-year-ahead
forecasting task for one MV and one HV costumer are provided. We can observe
that the proposed RESELF method improves the forecasting performance on
this task too.
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Fig. 3. Spain: Test MAPE throughout training epochs for the proposed method against
baseline, where the two models are of identical architectures.

Fig. 4. ISO-NET: Test MAPE throughout training epochs for the proposed method
against baseline, where the two models are of identical architectures.

Table 4. Test MAPE (%) for the proposed method against baseline, where the second
model is lightweight.

Method Greek Energy Market Spain ISO-NE

Baseline 1 (Heavyweight) 3.36 ± 0.08 5.62 ± 0.07 2.56 ± 0.15
Baseline 2 (Lightweight) 3.39 ± 0.100 6.05 ± 0.06 3.43 ± 0.300
RESELF 2.52 ± 0.08 4.50 ± 0.05 1.91 ± 0.01
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Fig. 5. Greek Energy Market: Test MAPE throughout training epochs using various
architectures.

Fig. 6. Spain: Test MAPE throughout training epochs using various architectures.

Table 5. Test MAPE (%) for the proposed method against baseline for two MV and
HV consumers, considering the one-year-ahead prediction task.

Method MV HV

Baseline 8.27 1.66
RESELF 6.19 1.60
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Fig. 7. ISO-NET: Test MAPE throughout training epochs using various architectures.

5 Conclusions

In this work, we proposed a novel methodology for improving the forecasting
performance, focusing on the one-day-ahead electricity demand forecasting task.
More specifically, the proposed RESELF method proposes to train a model with
the actual load targets, compute then the residual errors, and train a second
model for predicting these errors. Finally, the prediction of the proposed pipeline
is computed by summing the two models’ predictions. As it is also experimen-
tally validated through extensive experiments on four datasets, if the errors are
systematic, then this approach provides improved forecasting performance.
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Abstract. Lately, there is an increasing demand for resilient infrastructure assets.
To support the documentation of resilience, Structural Health Monitoring (SHM)
data is a necessity, as well as traffic loads. Those diagnosis and function data
can be the basis for the prognosis of future prediction for the performance of the
assets. In this research, the authors present an approach based on nineteen (19)
Machine Learning (ML) techniques for the prediction of the future strain values
in a Dutch Highway Bridge depending on previous measurements of the strain.
For the evaluation of the algorithms the indices Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and R square (R2) were chosen and Fast Fourier
Transform (FFT) and Averaged Standardized Values were chosen for the time
series pre-processing. The results are extremely promising, with almost every
algorithm to predict the fluctuations of strain values and the indexes are quite
satisfactory. The results ensure that those who are responsible for the maintenance
of the bridge or for its repairs, could use these models to determine which time
that should take action.

Keywords: Machine Learning · ARIMA · Univariate · Autoregression · Strain ·
Bridge · Infrastructure

1 Introduction

Structures, including bridges, buildings, dams, pipelines, aircraft, ships, among others,
are complex engineered systems that ensure society’s economic and industrial prosperity.
To design structures that are safe for public use, standardized building codes and design
methodologies have been created [18, 19]. Critical Transport Infrastructures (CTIs) such
as highwayReinforcedConcrete bridges (RC) have a crucial socio-economic impact [47,
48]. The ageing RC bridges are deteriorated by diverse stressors, e.g. increased traffic
load, corrosion and multiple hazards, e.g. extreme temperatures, seismic events, floods
[47, 48]. Therefore, maintenance and retrofitting measures are necessary to ensure the
asset’s safety [49]. Though, according to the European Union (EU) Road Federation,
the maintenance of damaged CTIs due to natural hazards is significantly expensive and
reaches approximately e20 billion per year [50], accompanied with bridges’ disruption
and further economic losses [48, 50].
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L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 403–419, 2023.
https://doi.org/10.1007/978-3-031-34204-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_34&domain=pdf
http://orcid.org/0000-0003-3779-6754
http://orcid.org/0000-0002-6404-1528
http://orcid.org/0000-0002-0545-7638
https://doi.org/10.1007/978-3-031-34204-2_34


404 A. P. Psathas et al.

The adaptation of the decaying highway RC bridges to the ever-changing environ-
ment and increased traffic demands are incorporated into the concept of the forthcoming
EU Adaptation Strategies [51]. In particular, the main goal of the new strategies is to
guarantee the resilience of CTIs, especially to climate change [51, 52].

With the development of detection and data processing techniques, monitoring of
physical systems with a network of sensor network is possible for many fields [1]. The
modern Structural Health Monitoring and Functionality systems (SHM and SHFM)
provide useful data, e.g. early warnings of damages, damage location, deformations,
deflections and information about the structural integrity, functionality or traffic level of
the CTIs over time [48, 49]. This is a challenging and critical problem that can positively
affect the manner how a public infrastructure is being managed and maintained [16]. A
typical SHM implementation requires the infrastructure to be equipped with a network
of sensors, continuouslymeasuring and collecting various structural and climate features
such as vibration, strain andweather conditions [3, 4]. This continuousmeasuringprocess
generates a massive amount of streaming data which can be further analyzed in order
to deduce knowledge about the asset’s lifetime and maintenance demand. In a real-time
SHM systems, catching long-term informative data helps to diagnose health problems
under different conditions. In most studies, laboratory tests of simple structural systems
are considered, rather than real structures in their operating environment [10]. Although
some studieswork on real structures, they just consider a short period of data, and assume
that various environmental conditions remain the same during this period [11].

Today, with the 4th technological evolution the sensors’ cost is decreased and a new
era of emerging digital technologies has been introduced, e.g. Artificial Intelligence
(AI), Machine Learning (ML), Finite Element (FE), Internet of Things (IoT) [53, 54].
As a result, there are numerous sophisticated methods to collect and combine diverse
data [54, 55].

In this paper, the authors use a public dataset which derived from InfraWatch project,
a large monitoring project in the Netherlands [9]. The data was obtained from a sensor
network installed on a highway bridge. The sensor network was installed on this bridge
during a renovation launched in 2007, to monitor the condition of the bridge. There are
three kinds of sensors (145 in total) involved in the sensor network: temperature, vertical
movement (vibration) and horizontal stress (strain) [5]. Furthermore, there is a weather
station and a video-camera to measure the weather and the actual traffic on the bridge.
The aim of this research effort is the prediction of the future strain values of a specific
sensor on the aforementioned Bridge. Thus, the deployment of autoregressive models
using the well-known forecasting method Autoregressive Integrated Moving Average
(ARIMA) andMachine Learning (ML) techniques. The dataset consists of a times series
acquired from the strain sensor. To the best of our knowledge this is the first time that the
development of autoregressive models is attempted in this dataset and to such an extent
using ARIMA and ML algorithms.

The rest of the paper is organized as follows. Section 2 describes the area of research
and pinpoints some notable research efforts. Section 3 describes the dataset, its features
and the pre-processing process. Section 4 provides the architecture of the proposed
models. Section 5 presents the experimental results and the evaluation of the model.
Finally, Sect. 6 concludes the research.
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2 Area of Research

The proposed research approach was implemented for a case study bridge in the Nether-
lands, named theHollandseBrug. This bridge is located between the provinces Flevoland
and Noord-Holland in the Netherlands, which is where the Gooimeer joins the IJmeer
(see Fig. 1a) [57]. The bridgewas opened in June 1969, and since then is used by national
Road A6. There is also a connection for rail parallel to the highway bridge, as well as
a lane for cyclists on the west side of the car bridge [56]. In 1980, the development
of Almere’s city led to an increase in the traffic load and the bridge was considered
overloaded [57]. Thus, in 1993 and 1999 it was widened to the south and the north
respectively. Though, eight years later (2007), the Hollandse Brug was inspected by the
Dutch Organisation for Applied Scientific Research and was considered unsafe to carry
traffic loads over 12 tons [57, 58]. Therefore, heavy loads were prohibited to pass the
bridge causing significant economic losses [58]. In April 2007 it was announced that
measurements would have shown that the bridge did not meet the quality and security
requirements. Therefore, the bridge was closed in both directions to freight traffic on
April 27, 2007. The repairs were launched in August 2007 and a consortium of com-
panies, Strukton, RWS and Reef has installed a monitoring configuration underneath
the first south span of the Hollandse Brug with the intent of obtaining a SHM system
(Fig. 1b) [9]. However, the continuous increase of the traffic load resulted from 2011 to
2014 in further actions and finally in the reconstruction of the bridge and the building
of a second one as it is represented in Fig. 1a.

Fig. 1. HollandseBrug bridge a) in 2015whereA is the old bridge andB is the new,b) photograph
of part of the sensor’s network and c) representation of the 1st bridge span with sensors [57]



406 A. P. Psathas et al.

The monitoring system that was established during Hollandse Brug bridge’s renova-
tion comprises 145 sensors that measure different aspects of the condition of the bridge,
at several locations on the bridge (Fig. 1c). The following types of sensors are employed:

• 34 geo-phones (vibration sensors) that measure the vertical movement of the bottom
of the road-deck as well as the supporting columns.

• 16 strain-gauges embedded in the concrete, measuring horizontal longitudinal strain,
and an additional 34 gauges attached to the outside.

• 28 strain-gauges embedded in the concrete, measuring horizontal strain perpendicular
to the first 16 strain-gauges, and an additional 13 gauges attached to the outside.

• 10 thermometers embedded in the concrete, and 10 attached on the outside.

Furthermore, there is a weather station and a video-camera, which provides a
continuous video stream of the actual traffic on the bridge [20].

The 145 sensor network collects data at a frequency of 100 Hz from the bridge,
which not only contains vehicles with various weights, lengths, speeds, and directions,
but also includes environmental factors such as wind, temperature, rain and so on. They
produce around 56 kB of data per second. This amounts to about 5 GB per day, and
over 1.7 TB on a yearly basis. The video camera produces a data stream in a similar
range, with 46 kB/s of compressed video, for a typical daytime situation. The current
data available for analysis consists of short snapshots of strain and video data, which is
being manually transported from the site to the monitoring location (typically an office
environment or Leiden University) [15].

In 2014, Miao et al. [5], present a baseline correction method to deal with the base-
line of the strain signals collected from a sensor network installed on Hollandse Brug.
In 2012, Vespier et al. [8], propose a combination of the Minimum Description Length
(MDL) principle, feature selection strategies, and convolution techniques for decom-
position of a time series on artificial data and the aforementioned Bridge. In 2010,
Koopman et al. [17], describe a method for pattern selection in collections of patterns
discovered in time series of Hollandse Brug. The method presented selects a subset of
equations, while optimizing the relevance of variables within the equations, and captures
the dependencies between the different time-series well, while minimizing redundancy.
In 2022, Psathas et al. [59], presented a research effort based on Deep Learning Models
for the prediction of future strain values in Hollandse Brug, achieving promising results.
In 2022, Achillopoulou et al. [57], develops a new methodology that uses real moni-
toring data and Artificial Intelligence (AI) algorithms to quantify the resilience based
on future traffic load predictions of functionality. Resilience is derived as a function of
both functional and structural parameters throughout the lifecycle. The quantification
is supported by sustainability indices and key performance indicators representing the
traffic flow, the structural integrity and the sustainability level of the asset. Furthermore
attempts for analyzing the Hollandse Brug time series were performed in [6, 7, 13, 14].

3 Dataset

As it was mentioned before the dataset used in this research on the measurements of a
strain sensor attached on the Hollandse Brug, a Dutch Highway Bridge. This specific
sensor collects data at 10 Hz. The dataset deals with finite sequences of numerical



Strain Prediction of a Bridge Deploying Autoregressive Models 407

measurements (samples), collected by observing some property of a systemwith a sensor
and represented as time series [6]. A time series of length n is an ordered sequence of
values x = x[1],…, x[n] of finite precision. A subsequence x[a: b] of x is defined as
follows

x[a : b] = (x[a], x[a + 1], . . . , x[b]), 1 ≤ a < b ≤ n (1)

More specifically, the dataset comprises of 10,280,939 strain measurements over a
period of 12 days, from Saturday 2008/11/15 toWednesday 2008/11/26. The time series
is presented in Fig. 2.

Fig. 2. The 10,280,939 Strain Values from 2008/11/15 to 2008/11/26

The dataset is publicly available and can be found at the following website: https://
infrawatch.liacs.nl/

3.1 Dataset Preprocessing

As it is already mentioned, the sensor collects data at frequency of 10 Hz. This means
that there are 10 values for 1 s. The measurements are very dense and in Infrastructures it
does not make much sense to predict the value for the next second. The forecast usually
refers to specific times of the day when conditions are harsher, such as traffic jams,
or very high and very low temperature conditions. The variable data segmentation was
performed by using Fast Fourier Transform (FFT).

Fourier analysis converts a signal from its original domain (often time or space) to a
representation in the frequency domain and vice versa. FFT is a specific implementation
that computes the Discrete Fourier Transform (DFT) of a sequence. It is an extremely
powerful mathematical tool that allows to observe the obtained signals in a different
domain, inside which several difficult problems become very simple to analyse [21].

https://infrawatch.liacs.nl/
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The DFT is obtained by decomposing a sequence of values into components of
different frequencies. Any periodic function g(x) integrable in the domain D = [−π, π]
can be written as an infinite sum of sine and cosine as follows:

g(x) =
∑∞

k=−∞ τke
jkx (2)

τk = 1

2π

∫

D
g(x)e−jkxdx (3)

where eιθ = cos(θ) + jsin(θ). The idea that a function can be broken down into its
constituent frequencies is a powerful one and forms the backboneof theFourier transform
[22].

An FFT rapidly computes such transformations by factorizing the DFTmatrix into a
product of sparse (mostly zero) factors.As a result, itmanages to reduce the complexity of
computing the DFT from O (N2), which arises if one simply applies the definition of
DFT, to O(N.logN), where N is the data size [23].

FFT was performed on the dataset as it is presented in Fig. 3 and the FFT time series
id presented in Fig. 4. The windows length is 1,800 s, i.e. 18,000 Hz, in contrast of
authors previous research effort in which a window length of 3,600 s was performed.
Thus, after applying FFT, the dataset comprises of a time series of 571 half an hour
measurements.

Fig. 3. Applying FFT for Window Length of 1,800 s (18,000 Hz)

As can be seen fromFig. 4, the processed dataset still captures the flowof strain values
without much deviation. Usually in such time series there is almost always seasonality
or trending that makes the time series non-stationary, i.e. it does not follow Normal
(Gaussian) Distribution N(μ, σ 2) [24]. In such cases one can use stationarity tests or
unit roots tests to check if a time series is stationary. There are two different approaches:

– Stationarity tests such as the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test [25]
that consider as null hypothesis H0 that the series is stationary

– Unit root tests, such as the Dickey-Fuller (ADF) test [26] and its augmented version,
the augmented Dickey-Fuller test (ADF) [27], or the Phillips-Perron test (PP) [28],
for which the null hypothesis H0 is that the series possesses a unit root and hence is
not stationary.

In this research effort, the authors use the 3 more used tests: ADF, KPSS and PP.
Their description is presented in Table 1.
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Fig. 4. Strain values after FFT is applied

Table 1. H0 is the null hypothesis, H1 is the alternative hypothesis, Description is how the test
works, and alpha is the significance value

Stationarity/Unit
Root Test

Ho H1 Description alpha

ADF There is a unit root
for the series

There is not unit
root for the series.
The series is
stationary

If p-value is lower
than the significance
level alpha = 0.05,
H0 is rejected and the
alternative is accepted

0.05

PP

KPSS The series is
stationary

The series is not
stationary

For the autoregression problem the authors test the time series for the range of lags
0–23. Table 2 presents the p-values of the times series for all lags.

Table 2. Stationarity tests p-values of the time series for 24 different lags

Lag 0 1 2 3 4 5 6 7 8 9 10 11

p-value ADF 0.001 0.009 0.029 0.041 0.035 0.003 0.001 0.001 0.001 0.001 0.002 0.003

p-value PP 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

p-value KPSS 0.01 0.01 0.01 0.01 0.018 0.033 0.052 0.081 0.1 0.1 0.1 0.1

Lag 12 13 14 15 16 17 18 19 20 21 22 23

p-value ADF 0.003 0.001 0.003 0.002 0.004 0.002 0.003 0.004 0.006 0.007 0.010 0.018

p-value PP 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

p-value KPSS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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From Table 2 it is clear that according to Table 1, all 3 tests agree that the times series
is stationary for 6 lags and above. Thus, our data followsNormal (Gaussian) distribution.

According to the literature review [29, 30], standardizing time series data usually
leads to better results. Standardization assumes that the observations fit a Gaussian
distribution (bell curve) with a well behaved mean and standard deviation (as already
proved above). Standardizing a dataset involves rescaling the distribution of values so
that the mean of observed values is 0 and the standard deviation is 1. Standardization
can be useful, and even required in some machine learning algorithms when your time
series data has input values with differing scales. This includes algorithms like Support
Vector Machines, Linear and Logistic Regression, and other algorithms that assume or
have improved performance with Gaussian data. For the standardization process Eq. 3
was used.

y = x − x̂

σ
(4)

where, x is the value of the FFT time series, x̂ is the mean value of all x, σ is the Standard
Deviation of the FFT time series and y is the value of the Standardized Dataset. Thus,
Fig. 5 presents the strain values after FFT and standardization was performed.

Fig. 5. Strain values after FFT and standardization is applied

Data handling was performed in Matlab with code written from scratch.

4 Algorithms and Evaluation Indices

Both standardized and non-standardized datasets will be used in this research. The data
sets consists of a time series of 571 values. The goal of this research effort is to predict
the future values of based on the previous ones. Predicting the trend of the strain values,
it would help to monitor when the bridge will receive more stress to be maintained by
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the by the responsible staff. Or even schedule any other action to ensure the longevity
and the safe operating conditions of the bridge. Forecasting the high strain values can
even help in better managing actions at that time.

Thus, for the purpose of this research the datasets were fed in 19 ML algorithms
named Linear Regression, Interactions Linear, Robust Linear, Stepwise Linear, Fine
Tree, Medium Tree, Coarse Tree, Linear Support Vector Regression (SVM), Quadratic
SVM, Cubic SVM, Fine Gaussian SVMMedium Gaussian SVM, Coarse Gaussian SVM,
Boosted trees, Bagged Trees, Squared Exponential Gaussian Process Regression (GPR),
Matern 5/2GPR,ExponentialGPR, RationalQuadraticGPR and thewell knowmethod-
ology for univariate forecasting Autoregressive Integrated Moving Average (ARIMA)
[31]. Due to the limited extent of themanuscript, a brief description of the algorithmswill
be provided. The detailed description and themathematical foundations of the algorithms
can be done by a simple internet search or by visiting the respective references.

4.1 Machine Learning Algorithms and ARIMA Description

Linear regression is an approach formodelling the relationship between a scalar response
(dependent variable) and one or more explanatory variables (independent variables).
This relationship is modeled using linear predictor functions whose unknown model
parameters are estimated from the data. In Interactions Linear apart from a constant
and linear terms, interaction parameters are used. In Robust Linear, a robust objective
function is used to make the model less sensitive to outliers. Stepwise linear regression
starts with an initial model and systematically adds and removes terms to the model
based on the explanatory power of these incrementally larger and smaller models [32].

Tree algorithms are widely used abstract data type that simulates a hierarchical tree
structure,with a root value and subtrees of childrenwith aparent node, represented as a set
of linked nodes. A tree data structure can be defined recursively as a collection of nodes,
where each node is a data structure consisting of a value and a list of references to nodes.
To predict a response of a regression tree, follow the tree from the root (beginning) node
down to a leaf node. The leaf node contains the value of the response. Fine, Medium
and Coarse Trees are subcategories of Tree algorithms, where there are Many small
leaves, medium-sized leaves and few large leaves respectively [33, 34]. Boosted Trees
and Bagged Trees are Ensemble models that combine results from many weak learners
into one high-quality ensemble model [41].

SVMModels for Regression (commonly known as Support Vector Regression-SVR)
use the same principle as the SVMs for Classification [35]. The basic idea behind SVR
is to find the best fit line. In SVR, the best fit line is the hyperplane that has the maximum
number of points. Unlike other Regressionmodels that try to minimize the error between
the real and predicted value, the SVR tries to fit the best line within a threshold value.
The threshold value is the distance between the hyperplane and boundary line. Linear,
Quadratic, Cubic and Gaussian SVMs are using the Linear, Quadratic, Cubic and Gaus-
sian of Radial Basis Function (RBF) respectively. The difference between Fine, Medium

and Coarse Gaussian SVM are the Kernel Scale is set to
√
p
4 ,

√
p and 4

√
p, where p is

the number of the predictors [36, 37].
GPRmodels are nonparametric kernel-based probabilisticmodels based onGaussian

Process (GP) [38] governed by prior covariance. Spatial inference, or estimation, of a
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quantity at an unobserved location is calculated froma linear combination of the observed
values and weights. The kernel function determines the correlation in the response as
a function of the distance between the predictor values. The Kernels chosen for this
attempt are Rational Quadratic, Squared Exponential, Matern 5/2 and Exponential [39,
40].

ARIMA model belongs to the one of the most used methodology approaches for
analyzing time series. This is mostly because of it offers great flexibility in analyzing
various time series and because of achieving accurate forecasts, too. Its other advantage
is that for analyzing single time series it uses its own historical data. This approach
analyzes univariate stochastic time series, i.e. error term of this time series. For this to
be possible, the analyzed time series must be stationary [31].

4.2 Evaluation of Deep Learning Algorithms.

For the evaluation of the aforementioned DL algorithms 3 evaluation indices were
use. The following Table 3 presents the validation indexes, their abbreviation and the
corresponding calculation manner.

Table 3. Calculated indices for the evaluation of the binary classification approach

Index Abbreviation Calculation

Root Mean Square Error RMSE
√∑N

i=1 (yi−ŷi)2

N

Mean Absolute Error MAE 1
N

∑N
i=1

∣∣yi − ŷi
∣∣

R Square R2
1 −

∑
i(yi−ŷi)2∑
i(yi−y)2

where yi is the actual value, ŷi is the predicted value, y is the mean value, and N is the
total number of the instances. R2 measures how much variability in dependent variable
can be explained by the model. R2 is valued in closed interval [0, 1] and a bigger value
indicates a better fit between prediction and actual value R Square is a good measure to
determine how well the model fits the dependent variables [42]. RMSE is an absolute
measure of the goodness for the fit. It gives an absolute number on how much your
predicted results deviate from the actual number. You cannot interpret many insights
from one single result but it gives you a real number to compare against other model
results and help you select the best regression model [43]. MAE is similar to RMSE.
Instead of the sum of square of error in RMSE, MAE is taking the sum of the absolute
value of error. MAE is a more direct representation of sum of error terms. RMSE gives
larger penalization to big prediction error by square it while MAE treats all errors the
same [43].
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5 Evaluation and Experimental Results

All algorithms, their evaluation and the training-testing process was made in Python and
Matlab. The Keras [44] and Tensorflow [45] libraries have been employed to build the
model’s architecture in Python. Both datasets were split in Train Data (80% of the data)
and Test Data (20% of the data). Training of all models was performed for 30 epochs.
The algorithms were trained for 16 lags, videlicet for the prediction of the next price, the
16 previous measurements are taken into account. The values of all hyperparameters for
each algorithm were chosen using the 10-fold cross validation method in Train Data
[46]. Figure 6 and 7 present the true values vs the predicted values for ARIMA and
the best ML algorithm (Medium Gaussian SVM in both cases) for non-standardized and
standardized Test Data respectively. Table 4 and 5 present the evaluation indices RMSE,
MAE and R2 for each algorithm on both Test Data.

(6a) (6b)

Fig. 6. True Strain vs Predicted Strain values for ARIMA (6a) and Medium Gaussian SVM (6b)
for the non-standardized dataset

(7a) (7b)

Fig. 7. True Strain vs Predicted Strain values for ARIMA (7a) and Medium Gaussian SVM (7b)
for the standardized dataset
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Table 4. Evaluation Indices of models on non-standardize dataset

Model RMSE MAE R2 Model RMSE MAE R2

Linear Regression 1.548 0.886 0.89 Fine Gaussian SVM 2.391 1.54 0.74

Interactions Linear 2.917 1.457 0.61 Medium Gaussian
SVM

1.508 0.878 0.9

Robust Linear 1.617 0.808 0.88 Coarse Gaussian
SVM

1.607 0.883 0.88

Stepwise Linear 1.573 0.891 0.89 Boosted Trees 1.588 0.909 0.89

Fine Tree 1.747 1.037 0.86 Bagged Tress 1.676 1.009 0.87

Medium Tree 1.764 1.067 0.86 Squared Exponential
GPR

1.539 0.891 0.89

Coarse Tree 1.808 1.076 0.85 Matern 5/2 GPR 1.533 0.89 0.89

Linear SVM 1.545 0.817 0.89 Exponential GPR 1.511 0.898 0.9

Quadratic SVM 1.553 0.863 0.89 Rational Quadratic
GPR

1.538 0.894 0.89

Cubic SVM 3.257 1.644 0.52 ARIMA 1.39 0.869 0.87

Table 5. Evaluation Indices of models on standardize dataset

Model RMSE MAE R2 Model RMSE MAE R2

Linear Regression 0.33 0.187 0.89 Fine Gaussian SVM 0.524 0.337 0.72

Interactions Linear 0.537 0.284 0.71 Medium Gaussian
SVM*

0.316 0.182 0.9

Robust Linear 0.342 0.171 0.88 Coarse Gaussian
SVM

0.34 0.187 0.88

Stepwise Linear 0.339 0.192 0.88 Boosted Trees 0.338 0.2 0.88

Fine Tree 0.381 0.227 0.85 Bagged Tress 0.375 0.222 0.86

Medium Tree 0.367 0.225 0.86 Squared Exponential
GPR

0.325 1.883 0.89

Coarse Tree 0.38 0.23 0.85 Matern 5/2 GPR 0.325 0.189 0.89

Linear SVM 0.327 0.173 0.89 Exponential GPR 0.322 0.191 0.9

Quadratic SVM 0.328 0.181 0.89 Rational Quadratic
GPR

0.326 0.19 0.89

Cubic SVM 0.533 0.294 0.71 ARIMA 0.427 0.228 0.716
* Best overall Model (c = 1.083, ε = 0.108, Kernel Scale = 4, Predictors = 16)

As Fig. 5 and 6 indicates, ARIMA and Medium Gaussian SVM, can predict the
fluctuations of the strain in both datasets, which is the main object of the research.
Essentially, the diagrams show that whatever model is used by those who are responsible
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for the maintenance of the bridge or for its repairs, it is clear which time there will be a
higher value of the strain and which one will be lower. Furthermore, this research effort
verifies the findings of the literature review. Indeed, all ML algorithms and ARIMA
performs better in the second standardized dataset. Both RMSE and MAE indices range
at noticeably better levels.

ARIMA seem to outperform the ML algorithms in the non-standardized dataset, but
lags behind in standardized dataset. This leads to the conclusion that APIMA obviously
recognizes the value pattern better in the standardize dataset, but can recognize the
fluctuation of the values in their normal form. Medium Gaussian SVM has in both
datasets the better performance of all ML Algorithms, and generally speaking the SVM
algorithms outperforms the other approaches. The Ensembles methods, Boosted Trees
and Bagged Trees, have excellent performance, but cannot take advantage of the many
learners and the majority vote to get better results. Finally, almost all algorithms could
be used for this task with few exceptions such as Interactions Linear, Cubic SVM, and
Fine Gaussian SVM for both datasets.

Table 6. Evaluation Indices for Deep Learning Algorithms in [59]

Model RMSE MAE R2 Model RMSE MAE R2

Vanilla LSTM 1.369 0.917 0.880 MLP 1.807 1.304 0.805

Bi-LSTM 1.413 0.864 0.871 CNN-LSTM 1568 1.003 0.842

Stacked LSTM 4.350 3.770 -0.749 DC-CNN 1.496 0.983 0.856

Stacked Bi-LSTM 3.380 2.701 0.570 SeriesNet 1.769 1.098 0.793

RNN 2.611 1.874 0.373 WaveNet 3.138 2.441 0.093

GRU 1.835 1.101 0.774

Table 6 presents the evaluation indices of the previous innovative research effort of
the authors for the bridge strain prediction. It is clear that ARIMA stands at the same
level as the Deep Learning Algorithms for the non-standardized data. However, after the
standardization of the dataset, ML Algorithms dominate the ARIMA method and the
Deep Learning Algorithms paving the way for more experiments and new approaches.

6 Conclusions and Future Work

In this paper, the authors deal with a univariate problem (auto regression problem).
They try to predict the future strain values of a Dutch Highway Bridge, the Hollandse
Brug, using the 16 previous strain values. Authors used FFT for the signal processing,
to create half-hour measurements. For the autoregression problem, authors recruited 19
ML algorithms and the well-known for autoregression problems method ARIMA. The
research effort shows promising results as all algorithms seem to be able to predict the
fluctuation of strain values. RMSE, MAE and R2 were chosen for evaluation indices.
The values of the aforementioned indices are adequate for the majority of the models,
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especially for Medium Gaussian SVM which respond better for the both datasets and
problem, according to the indexes and diagrams. Additionally, this paper verifies that
the standardized records on a dataset which follows Gaussian Distribution could lead to
better results. The predicted values of all models have a deviation from the actual values.
This may be because the strain values are not only depend to their previous values, but
also depend on other factors such as traffic jam and weather conditions according to
literature.

Although the results were very good, there is always room for improvement. There
are already plans for future expansion of this research. The first scenario is to find out if
there is a better number of time lags that increase the quality of the models. Additionally,
authors could use a different window length for applying FFT. Another scenario could
be to obtain more values from the same dataset in order to use more values for training
and testing of the models. Last but not least, authors could obtain more variates for
the specific time series (temperature conditions or traffic jam data), which will likely
increase the performance of the models. After all, no model is perfect, a model is good
when it is practically useful.
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Abstract. In the last few years, control engineers have started to use
artificial neural networks (NNs) embedded in advanced feedback control
algorithms. Its natural integration into existing controllers, such as pro-
grammable logic controllers (PLCs) or close to them, represents a chal-
lenge. Besides, the application of these algorithms in critical applications
still raises concerns among control engineers due to the lack of safety
guarantees. Building trustworthy NNs is still a challenge and their veri-
fication is attracting more attention nowadays. This paper discusses the
peculiarities of formal verification of NNs controllers running on PLCs.
It outlines a set of properties that should be satisfied by a NN that
is intended to be deployed in a critical high-availability installation at
CERN. It compares different methods to verify this NN and sketches our
future research directions to find a safe NN.

Keywords: Verification of neural networks · PLCs · Control system

1 Introduction

Programmable logic controllers (PLCs) are widely used in the process industry.
In critical industrial installations, where a failure in the control system could have
dramatic consequences, PLCs are used to control and protect industrial plants.
This is mainly due to their hardware robustness, communication capabilities,
their modularity, but also the simplicity of PLC programming compared with
other programmable devices, giving them a high-reliability characteristic.

Using neural networks (NNs) as controllers is not novel [34], but it has seen
exponential growth over the last years due to the increase in computation power
(e.g., [28]). NNs are fast, they can operate in non-linear domains, and there is no
need to know the dynamics of the systems as long as data are available. However,
control engineers are still reluctant to use them in critical industrial installations
due to the lack of safety, stability and robustness guarantees.
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Whereas it is possible to prove certain properties in classic controllers (like
efficiency, monotonicity, stability, robustness, etc.) and their behavior can be
explained, it is not yet the complete case for NN-based controllers.

The goal of this paper is to analyze and compare different approaches to
formally verify a NN for critical applications encoded in a PLC program. We
will specifically focus on PLC code running on Siemens SIMATIC S7 PLCs. This
paper makes special emphasis on the type of safety guarantees (verification prop-
erties) for this specific domain and the limitations of each verification method.
The approaches are tested in an ongoing work for a NN-based controller for a
cooling tower of the Large Hadron Collider (LHC) at CERN. The used NN is
not the final version to be deployed in production, but this verification work will
help us to find the appropriate one.

The main contributions of this paper can be summarized as follows:

– Provision of different properties that can be verified for a NN-based controller
that is implemented on a PLC.

– Verification of a NN-based controller directly on PLC code using PLCverif.
– Verification of the same NN-based controller using a state-of-the-art NN ver-

ifier, nnenum, and using a state-of-the-art SMT solver, Z3.
– Comparison of the different techniques.
– Application of the previous methods in a real case study of a safety-critical

system at CERN.

2 Background

2.1 Verification of NNs

Over the last years, the verification of NNs has raised its popularity due to
the increasing number of applications of NNs in critical systems1. Robustness,
especially against adversarial attacks, as well as reachability have been some of
the main topics that have been targeted. Overapproximation of the activation
functions and encoding the neural network as a mixed integer linear program
[6], symbolic interval propagation [32,33], and SMT encoding [9] are some of the
approaches to verify this type of properties.

Since neural networks can be used as feedback controllers, different reacha-
bility properties shall be checked. A wide variety of approaches exists, such as
using a MILP encoding [2], modeling the systems with a neural network [8], and
including perturbations [1].

The Verification of Neural Networks COMpetition (VNN-COMP) [23], shows
the existance of many efficient tools like nnenum [3], VeriNet [16] or α,β-CROWN
[35]. Normally, these tools are not very flexible, i.e., they only accept one type of
activation function, one predefined architecture type, and a specific data type.

If during the NN verification, one finds a problem, it is necessary to repair it.
For example, in [5] they re-train the neural network guided by the counterexam-
ples until reaching a safe network. Other approaches do not reuse the training
1 For a complete overview of this topic, please see [18].
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data [17]. However, this is an open research topic and there is no clear way to
repair neural networks. Besides, when an engineer finds a counterexample, it
helps them to better understand the behavior of the system [12].

2.2 PLCverif

PLCverif2 is a plugin-oriented tool that allows the formal verification of PLC
programs [7,22,31]. It has been used to verify various safety-critical programs
[10–12]. In PLCverif, different requirement specification methods can be used.
Moreover, different formal verification tools can be integrated. The PLCverif
verification workflow consists of five main steps, as shown in Fig. 1:

PLC program
parser

Requirement
representation

CFA
reductions

Model
checkers

Reporting
PLC program

User requirement

Verification
report(s)

Fig. 1. Formal verification workflow of PLCverif
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end
main  call

call  end
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[false] in1 := nondet of bool
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Fig. 2. CFA–Main PLC cycle.
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CALL: MAX(
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RET  VAL)

[! (j   = frst  lyr  neurons - 1)]

...... l40

[i   = scnd  lyr  neurons - 1]

Fig. 3. CFA–Part of a NN.

1. PLC program parser. The PLC program is parsed and translated into
a control flow-based representation, producing a so-called Control Flow
Automata (CFA) [4]. Figure 2 shows a PLC cycle represented as a CFA, which
calls its main function in every cycle (Fig. 3). This main function expresses
as a CFA a part of a feedforward NN with ReLU functions (listing 1.1).

2 PLCverif is publicly available under https://gitlab.com/plcverif-oss.

https://gitlab.com/plcverif-oss
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2. Requirement representation. The PLCverif user describes precisely the
requirement to be checked in a natural manner. Thanks to the CFA repre-
sentation, different types of properties can be included.

3. CFA reductions. The CFA is reduced to speed up the verification process.
4. Model checkers. A state-of-the-art model checker is executed.
5. Reporting. The results are given to the user in a human-readable manner.

1 scnd_lyr_neurons := 8;

2 FOR i := 0 TO scnd_lyr_neurons - 1 DO

3 FOR j := 0 TO frst_lyr_neurons - 1 DO

4 temp := temp + frst_lyr_out[j] * scnd_lyr_weights.Data[j, i];

5 END_FOR;

6 scnd_lyr_out[i]:=MAX(IN1:=0,IN2:=(temp+scnd_lyr_bias.Data[i])); temp:=0;

7 END_FOR;

Listing 1.1. First hidden layer processing of the NN for the LHC cooling tower.

3 Case Study: The LHC Cooling Towers Controls

At CERN, large-scale chilled water cooling facilities are installed at various loca-
tions along the LHC site to meet the cooling requirements of different clients
(e.g chillers, cryogenics, air handling units, etc.). Among various components of
a large-scale cooling facility, induced draft cooling towers (IDCTs) are employed
to cool the incoming hot water by rejecting the excess heat into the atmosphere.
The typical arrangement of an IDCT involves the water entering the IDCT from
the top and the ambient air enters from the bottom. The main components of an
IDCT includes a fan, distribution system, spray nozzles, fill (packing), and col-
lection basin. The cooled water is collected in the shared water collection basin
before being supplied to different clients. Figure 4 shows multiple IDCTs with a
shared water collection basin [15].

⋯⋯⋯
Bypass valve

Ventilation and
showering valve

Tct1
out

Incoming 
hot water

Tout Tout

Tout

cb cb

ctn

Fig. 4. Multiple induced draft cooling towers with a shared water collection basin.

The working principle of an IDCT is mainly based on simultaneous heat and
mass transfer taking place between the hot water and the (cool) ambient air.
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Depending on the cooling requirement and ambient air temperature, an IDCT
can be operated in different operational modes namely: ventilation, showering,
and bypass. In the ventilation and showering mode, the bypass valve remains off
and the hot water is sprayed downwards through spray nozzles. In the showering
mode, the fan remains off and the cooling of the hot water takes place through
a natural draft. The mathematical model of the outlet water temperature under
different operational modes is proposed in [19] [29]. Moreover, a switched sys-
tem representation is presented in [14] to compactly represent the dynamics in
different operational modes of the IDCT.

3.1 Control Design for the Cooling Towers

The primary objective of the cooling tower control design is to keep the out-
let water temperature within strict limits ensuring the requirements of the
downstream clients while utilizing the minimum amount of energy. The energy-
optimal operation of the cooling towers requires the simultaneous determination
of the best operational mode and optimal fan speed which poses a challenging
control design problem.

The MPC (model predictive control) framework provides a structured way
of designing the energy optimal control for the cooling towers. The main idea
behind MPC is to utilize the model of the system to predict future process behavior
and minimize a given cost index subject to different physical and operational
constraints. It is based on solving a finite horizon-constrained optimal control
problem at each sampling instant, resulting in the so-called receding horizon
control [30]. Despite the advantages provided in terms of performance and energy
optimization, the memory and computational resources required restrict their
applicability to resource-constrained embedded hardware.

3.2 Approximate MPC Using Neural Networks

In order to overcome the memory and computational requirements, approximate
MPC is becoming a popular choice [27]. The approximate MPC requires lower
memory and computational resources while preserving the performance of the
controller. The idea of using a neural network to approximate the solution of a
MPC has its origins in [25]. However, the efficacy of such techniques has been
recently demonstrated for controlling nonlinear multiple-input multiple-output
(MIMO) systems [13,26]. Depending on the size of the neural networks, the
neural network controller can significantly reduce the computational times and
memory requirement to traditional techniques and can be effectively deployed on
resource-constrained embedded hardware, such as a PLC. However, the behavior
of such controllers must be thoroughly investigated in terms of safety, stability,
and robustness to be deployed in the production environment.

The preliminary version of the NN consists of 4 hidden layers with 8 neurons
per layer. It combines a classification problem for the mode selection and a
regression problem for the fan speed calculation. This is an initial version of the
NN and will be improved in subsequent work.
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4 Verification of a NN-Based Controller on a PLC

Different properties with respect to the previously mentioned NN that approxi-
mates a MPC will be verified using different methods.

4.1 Properties to Verify

1. Operational modes reachability. Is there a combination of inputs (mea-
surements from sensors) that reach mode Mi? This property is analyzed for
the three previously introduced modes. Each of the counterexamples gives
a combination of inputs that leads to each mode. If there would not be a
counterexample for a certain mode, it would mean that mode is never going
to be selected by the system, which is possibly an error in the design.

2. Fan speed reachability. Is there a combination of inputs that reach a
certain range of the fan speed [vmin, vmax]? Different ranges are analyzed:
[0, 20), [20, 60), [60, 80), and [80, 100]. A counterexample gives a combination
of inputs that leads to a fan speed in those ranges.

3. Fan speed constraint satisfaction. In ventilation mode, the fan should
always operate within the desired range [60% - 100%], which can be verified.
That is, is there a combination of inputs that leads to a fan speed lower
than 60% or bigger than 100% when the mode is ventilation? If there is a
counterexample, this could mean there is a problem in the network since the
behavior is different than expected.

4. Monotonicity. If the mode is ventilation and all the temperatures increase,
is the mode changing? It is expected that if all the temperatures increase, the
mode remains at ventilation. A counterexample would show a case in which
the temperatures increase and the mode is not ventilation.

5. Softmax overflow. Is there a combination of inputs that leads to a negative
value of any of the outputs of the softmax layer of the modes? By definition of
the softmax, since the exponential functions are always positive, the output
of all the softmax layers should be always positive. If it is negative, it means
there was an overflow in one of the components of the softmax formula.

6. Robustness. If the inputs are slightly changed, does the selected mode
change? The counterexamples given by this property show the borders
between the selection of the different modes. This could help the control
engineer better understand if the controller is behaving as expected.

4.2 Verification of a NN with PLCverif

In order to tell PLCverif which variables should be non-deterministic so that
the model checker explores all their possible values, we need to include those
as input variables (VAR INPUT) as shown in Listing 1.2. Instead of following the
approach from [21], input variables are defined as integers but divided by 10 so
that the input to the neural network has one decimal place.
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1 VAR_INPUT

2 in_lyr_0, in_lyr_1, in_lyr_2 : Int; // non−deterministic
3 END_VAR

4 BEGIN // one decimal place

5 in_lyr[0]:=in_lyr_0/10; in_lyr[1]:=in_lyr_1/10; in_lyr[2]:=in_lyr_2/10;

Listing 1.2. PLC code for the input variables.

Since the input variables have a limited possible range (temperatures), we
can tell CBMC not to explore all the possible values and assume they are in a
given range as shown in Listing 1.3. This is done for all the inputs.

1 i n s t a n c e . i n p u t l a y e r 0 = non d e t i n t 1 6 t ( ) ;

2 CPROVER assume ( i n s t a n c e . i n p u t l a y e r 0 >=200 &&

3 i n s t a n c e . i n p u t l a y e r 0 <=250) ;

Listing 1.3. C code for CBMC to limit the range of the input variables.

Listing 1.4 shows how the previous properties can be encoded in PLC code
so that they can be verified with PLCverif. Notice that property 6. has included
the variable max mode prev cycle from the previous cycle, which is defined as
a temporary variable. This value is retained at the end of the cycle by adding
an extra assignment after the assertions.

1 //#ASSERT NOT max_mode=0 : modesReachability0; // same for the other modes
2 //#ASSERT NOT (speed_layer_output[0]>=0 AND speed_layer_output[0]<20):

fan_speed_reachability_0_20; // same for the other ranges

3 //#ASSERT max_mode=0 AND (speed_layer_output[0]>1 OR speed_layer_output

[0]<0.6): fan_speed_constraint_satisfaction;

4 //#ASSERT NOT (in0>23.6 AND in1>23.0 AND in2>14.1 AND max_mode!=2) :

monotonicity;

5 //#ASSERT NOT (modes_nn[0]<0 OR modes_nn[1]<0 OR modes_nn[2]<0):overflow;

6 //#ASSERT NOT (max_mode_prev_cycle!=max_mode) : robustness;

Listing 1.4. Translation of the properties into assertions.

Listing 1.5 shows the command to unwind the loops of the neural network 9
times (the maximum number of layers and of neurons in a layer is 8), and the
global loop of the PLC cycle 2 times. The unwinding of 2 times of this loop is
necessary to verify properties across 2 consecutive cycles.

1 cbmc neuralNetwork prop7.c −−unwind 9 −−unwindset VerificationLoop.0:2

Listing 1.5. Command to execute CBMC unwinding the loops of the neural network
9 times, and the loop of the PLC cycle 2 times.

4.3 Verification of a NN Using Other Methods

NN Verifier. It was decided to use nnenum [3] since it is the best fully open-
source neural network verifier according to the VNN-COMP (Report) [23] and
due to its simplicity. It was needed to manually translate the NN weights given
in the PLC code to the .nnet format in order to finally transform it to ONNX.
Since the original NN had softmax functions in the output layers, they had to

https://arxiv.org/pdf/2212.10376.pdf
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be ignored as nnenum cannot handle them. Furthermore, the original NN had
to be split into two according to the different outputs (mode and fan speed)
since nnenum only accepts NNs with one output. This led to the impossibility
of verifying the properties in which both outputs are involved. In addition to
nnenum, VeriNet [16] and α, β-CROWN [35] were tested without success due to
compatibility and reproducibility issues.

SMT Solver. Due to the numeric nature of the NN, an SMT solver (Z3 [24]) was
used. According to the SMTcompetition, Z3 is one of the best and is open-source.
All the loops were unwinded and the Python API for Z3 was used.

Exhaustive Testing. Another possibility is to test every single combination of
the inputs. Since we are limiting the number of possible input values by using
integers and the number of inputs is small, this option was feasible.

5 Empirical Results

All the previously presented properties were verified using the described different
methods. Table 1 shows the results from these experiments. Since the first two
properties are composed of more than one property, the mean and the standard
deviation from those cases are shown. Clearly, nnenum is the fastest one since it
is designed to work with NNs. PLCverif is the one with the lowest performance
but it is the only one in which we can express all properties. Z3 is in the middle
way between PLCverif and nnenum. A more detailed comparison of the different
methods is presented in the next Subsect. 5.1.

Table 1. Results with the three approaches. Mean and standard deviation when dif-
ferent properties were checked. “-” means that it is not possible to verify that property
with that method.

time (s)

property PLCverif Z3 nnenum cex. found

modes reachability 4932± 5908 454± 88 < 1 yes

fan speed reachability 6162± 5909 1741± 1588 < 1 yes

fan speed constraint satisfaction 2469 1049 – yes

monotonicity 144 727 < 1 yes

softmax overflow 11 – – no

robustness 3517 2820 – yes

The code to run these experiments can be found in [20], as well as the results
of their executions with the counterexamples. The experiments were done using
CBMC 5.10, the Docker image of nnenum as of commit cf7c0e7, and the Python

https://smt-comp.github.io/2022/results.html
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API of Z3 version 4.12.1.0. They were run on an AMD Ryzen 7 2700X at 4 GHz
with 48 GB RAM memory, running Ubuntu 20.4.

The results from exhaustive testing are not presented in the table since all the
properties were checked simultaneously. We built our own testing infrastructure
in Python, and the execution time for 51·41·131 = 273921 tests (all combinations
of the inputs) was 288 s.

The counterexamples given by PLCverif have been tested in the original
PLC code to make sure the counterexamples were not spurious. This has been
done using the integrated simulator S7-PLCSIM Advanced in the TIA portal
PLC programming environment. As an example, the counterexample given by
nnenum for property 3 is shown in Fig. 5. The three inputs corresponding to the
three temperatures are forced to the values given by the counterexample and the
expected output values for the fan speed and the operation modes (ventilation,
showering, and bypass) are checked. The simulation shows that the counterex-
ample is real and the problem exists in the NN.

Fig. 5. Fan speed constraint satisfaction: Counterexample tested in S7-PLCSIM
Advanced.

5.1 Comparison of the Different Approaches

Table 2 compares the different methods that were used. By using PLCverif, one
can express more complex properties, such as the ones over time cycles. There
is also no restriction on the architecture of the NN and the verification is done
on the final model that will be deployed. Besides, there is no need to translate
the NN to run a verification case. However, performance is low since it was not
designed for this purpose. Nevertheless, since it is plug-in based, integrating an
SMT solver such as Z3 without using a model checker could improve this issue.

Table 2. Comparison of different methods to verify a NN.

performance scalability expressiveness same types? plug-and-play?

PLCverif low low high yes yes

nnenum very high high low no no

Z3 medium medium low no no

Testing higha very low medium no no
a For this particular example due to the limited number of inputs and their values.



Verification of Neural Networks Meets PLC Code 429

On the other hand, nnenum is the opposite of PLCverif. That is, its perfor-
mance was the best but it is not flexible, the type of properties that can be
expressed is limited, the data types differ from the ones of a PLC, and a manual
translation from the PLC code to ONNX is needed.

The verification with Z3 is in the middle way, where the performance is better
than PLCverif, but worse than nnenum. As well, its expressiveness is worse than
with PLCverif but better than with nnenum. Finally, the performance of testing
was excellent in this particular example. It also gives all the counterexamples and
it is relatively flexible. However, it will become unfeasible after a small increase
in the number of variables or their possible values due to the exponential growth
of the search space. This is independent of the NN architecture. PLCverif and
Z3, on the contrary, suffer due to the NN architecture complexity.

6 Conclusions and Future Work

Different approaches to verify the ongoing work of a NN running on a PLC that
will approximate a MPC for a real installation at CERN have been analyzed.
Given the empirical results and the process to obtain them, the ideal approach
would be to verify as much as possible with PLCverif. Once it becomes unfeasible
due to performance issues, a NN verifier should be used. Finally, especially for the
NN verifier due to the discrepancy in data types, the results should be checked
using, for example, a simulator to avoid spurious counterexamples.

It is extremely important to verify a NN that will be deployed in a critical
system to be sure that it will behave as expected. Verification can help with this
endeavor and should be done together as part of the training of the NN until a
safe NN is reached. This process will also help the control engineers to better
understand the NN behavior as a feedback controller.

To the best of our knowledge, this is the first attempt to verify a neural
network controller encoded on a PLC program. This initial study will help us to
find a NN that satisfies the properties shown in this paper and new ones. Other
future research directions include the analysis of how counterexamples can help
improve the NN and the verification of closed-loop system properties.
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Abstract. The digitalization process has emerged strongly in the indus-
try, causing an increase of connected sensors and IIoT devices, which
produce a great amount of varied data. However, some industrial vari-
ables are hard to measure because of its high cost, complex installa-
tion mechanisms or non-stop production requirements. These variables
could be indirectly estimated based on other related variables available
in the process. Data-driven methods would be appropriate for this pur-
pose, modelling real and potentially complex industrial processes. In this
paper, a methodology to develop a virtual flow meter for industrial pro-
cesses is presented. It assumes the impossibility of installing a flow meter
in the process, so a non-invasive flow meter is used punctually to mea-
sure and capture data for training data-driven methods. Three different
methods have been trained to obtain the model function: multiple lin-
ear regression (MLR), multilayer perceptron (MLP) and long-short term
memory (LSTM). The developed virtual flow meter has been tested on
a pilot plant built with real industrial equipment. LSTM method yields
the best performance in the flow estimation, providing the lowest MAE
and RMSE errors. It is able to consider temporal dependencies, besides
modelling the nonlinear nature of industrial processes.

Keywords: Data-driven models · Digitalization · Industry 4.0 ·
Virtual sensor · Deep learning

1 Introduction

In the last years, a digitalization process has emerged strongly in the industry.
This process introduces cutting-edge advances in industrial automation, com-
bined with a deeper application of information technologies (IT) [19]. In this
context, the increasing number of connected sensors and IIoT devices plays an
important role, generally producing a large volume of non-centralised data [20],
which is significant for process control and monitoring or virtual representation
of the process using digital twins [16].
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Therefore, this digitalization process entails the measurement and storage of
huge amounts of varied data. However, some industrial variables are hard-to-
measure because of its high cost, complex installation mechanisms or non-stop
production requirements [10]. Portable sensors could be used in order to address
this issue. Nevertheless, it might be unaffordable for small companies. On the
contrary, these hard-to-measure variables could also be estimated based on other
related variables available in the process [2]. This indirect approach to measure-
ment can be carried out by using physical principles and equations. However,
adverse conditions in the industrial environments could influence the process.
Data-driven models would be more appropriate for this purpose when applied to
real and potentially complex industrial processes, due to the difficulty to model
from first principles all the nonlinearities that are introduced by industrial ele-
ments such as pumps, variable frequency drives or valves [17].

Measuring flow is challenging since its regime can be turbulent due to rough
conditions in the processes, and nonlinearities can be introduced by propelling
elements such as pumps. The theological properties of the fluids also influence
the flow measurements [3]. On the other hand, flow meters are scarcely installed
in the industry due to budget constraints or space limitations [13]. Moreover,
their installation usually requires stopping the process.

For these reasons, a methodology is proposed in this paper to develop a
virtual flow meter for industrial environments, which should be able to provide
flow observations based on other process variables. For that purpose, it relies
on a data-driven model built using stored data from the industrial process. The
paper is structured as follows: a literature review of virtual sensors in industry
and alternatives to implement them is presented in Sect. 2. In Sect. 3, the problem
and the methodology adopted to develop a virtual flow meter are described. In
Sect. 4, the experiment and the results are explained and discussed. Finally,
conclusions are drawn and future work is discussed in Sect. 5.

2 Literature Review

Virtual or soft sensors are software applications based on inferential models that
use available process variables to indirectly estimate other unavailable variables
[9]. Thus, virtual sensors can be used when the corresponding real sensor is
expensive, inaccurate or out of service. They are not invasive and do not require
a physical modification of the system where are deployed [13]. Furthermore,
virtual sensors can be easily changed and reconfigured anytime whereas real
sensors usually require stopping the process when they are installed [11].

Soft sensors can be classified into model-driven and data-driven categories
[21]. The first group comprises soft sensors built from first-principle and mathe-
matical models [12], whereas the second group contains those models built with
data-based methods, ranging from linear regression methods to more sophisti-
cated deep learning methods [8]. A multivariable statistical analysis where there
is some statistical characteristics are constant can be used [1]. Finally, machine
learning methods, especially deep learning ones with different architectures such
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Fig. 1. Methodology

as dense neural networks, recurrent networks or convolutional networks, are an
interesting approach to learn models from real data [14].

Virtual sensors have been applied to several fields in the industry. For
instance, different solutions have been proposed to measure flow of non New-
tonian fluids [3], pH [18], or volatile fatty acids concentrations [15]. In building
automation systems, they have also been used to improve monitoring, diagnosis
and efficiency [9]. In this paper, we propose to develop a virtual flow meter using
three data-driven methods: a multi-linear regression, and multilayer perceptron
and a long-short term memory.
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3 Methodology

In this section, the methodology to develop a virtual flow meter for industrial
environments is presented. Three different data-driven methods are proposed
with the aim of obtaining the model function that relates the current and past
observations of available process variables with the desired estimated flow: a
linear regression, a traditional neural network and a recurrent network. The
function should be able to contemplate potential nonlinearities implicit in the
industrial processes, discover deep relations among process variables and cap-
ture temporal patterns in sequence data. Figure 1 summarizes graphically the
methodology adopted.

First, the pilot plant built with industrial equipment used to assess the pro-
posed approach is described in detail. The portable flow meter used to measure
true flow observations and its installation are also described. Furthermore, the
data acquisition from the PLC controlling the pilot plant is explained.

3.1 The Industrial System: A Pilot Plant

A pilot plant, shown in Fig. 2, is used as a representative industrial process to
apply the proposed approach. This industrial plant was designed for research and
teaching purposes [4]. It is composed of three circuits: a main process circuit, a
heating circuit and a cooling circuit.

The main circuit has been designed to control four process variables: flow
(FT21), level (LT21), temperature (TT22) and pressure (PT21). A fluid circu-
lates between the main tank and the storage tank, located at different height.
For that purpose, the liquid is pumped by a centrifugal pump (P02) driven by
a variable frequency drive. The flow is also regulated by means of a pneumatic
process valve (FV21). In addition, disturbances can be introduced through an
electro-pneumatic valve (FV02). Two utility circuits are available for tempera-
ture control. The heating circuit has electric resistors (JZ21), to heat the liquid,
and a high-performance heat exchanger, to transfer this heat to the process liq-
uid. The hot water flow that transfers the heat to the process is controlled by
a three-way valve (TV21). The cooling circuit makes use of an external cooling
unit to cool the process liquid. The cool transfer is carried out by means of an
exchanger similar to the one in the heating circuit. Recirculation of chilled water
is again controlled by a three-way valve (TV22).

The pilot plant has a flexible architecture, so that several controllers from
different manufacturers can be used. In this case, the control strategy was pro-
grammed on a Schneider Electric Modicon M340 PLC (Programmable Logic
Controller), with I/O interfaces connected to the transmitters and actuators of
the pilot plant. This PLC communicates through the Modbus TCP standard.

The variables corresponding to sensors and actuators of the pilot plant are
wired to the I/O cards. Additionally, an ultrasonic sensor (UltS) has been con-
nected in order to measure the flow of the main process circuit. All variables
wired to the PLC I/O interfaces are listed in Table 1.
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Fig. 2. Pilot plant, built with industrial equipment

3.2 Measurement of Flow and Data Acquisition

A flow meter is not usually available in industrial processes, being difficult to
install them quickly. To replicate this scenario, a portable ultrasonic meter has
been used, a FLUXUS F601 by Flexim (see Fig. 3). This meter makes use of
external transducers that are capable of measuring the flow through ultrasonic
signals, so it is non-invasive. It has been installed on the pipe surface in the
main process circuit. This flow meter allows us to measure flow rates between
0.01 and 25m/s in pipes whose size can range from 6mm to 6500mm mm. The
measurement configuration is not trivial due to the need of specifying multiple
parameters such as: pipe roughness and pipe wall thickness (highly suscepti-
ble to perturbations caused by dirt and usage); sound velocity and kinematic
viscosity of the medium (processes working with poorly known fluids or with
mixes of fluids and/or solids make it hard to define these parameters); as well
as parameters related to the used transducers, such as sound paths (the number
of bounces that the ultrasonic beam does). This meter gives a typical 4-20mA
analog signal, which can be directly connected to the PLC I/O interfaces.

Among the sensors and actuators of the pilot plant, five variables are selected
to build the dataset needed by the proposed data-driven methods: ultrasonic sen-
sor (UltS), main process pressure (PT21), level of the main tank (LT21), main
process valve (FV21) and pump setpoint (P02). These data are requested to
the Modicon M340 PLC of the pilot plant by means of a multithreaded acqui-
sition application that has been programmed in Python. This application offers
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Table 1. Pilot plant variables

Type TAGs Variables Unit

Digital Input LSH21 High Level Tank D02

LSL21 Low Level Tank D02

LSH22 High Level Tank D04

LSL22 Low Level Tank D04

TSH21 High Temperature Tank D01

ES24 ACK Pump 1

ES25 ACK Pump 2

ES26 ACK Heat Resistors

Digital Output FY21 On/Off Pump 1

FY22 Electrovalve

FY23 On/Off Pump 2

FY24 On/Off Heat Resistors

Analog Input TT21 Heating Circuit Temperature ◦C

TT22 Main Process Temperature ◦C

TT23 Cooling Circuit Temperature ◦C

LT21 Tank Level D03 %

FT21 Main Process Flow l/min

PT21 Main Process Pressure bar

UltS Ultrasonic Sensor l/min

Analog Output JZ21 Heat Resistors Setpoint %

TV21 Heating Circuit Valve %

TV22 Cooling Circuit Valve %

FV21 Main Process Valve %

P02 Pump 2 Setpoint %

multiprotocol support (Modbus TCP is used in this case), allowing unified read-
ing and preprocessing of data, regardless of the manufacturer and nature of the
equipment involved in the experiments. A thread requests the specified data from
the equipment at the sampling time previously set through a web user interface
of the application. The requested datasets will be temporally stored in memory,
until their later storage in a specific database.

3.3 Developing a Virtual Flow Meter

The industrial process should be analyzed in detail in order to proceed with the
development of a virtual flow meter. This virtual meter should be able to provide
current flow observations based on values from those process variables that influ-
ence on flow. Both current and past observations from these process variables
are considered in order to model temporal patterns [2]. Therefore, developing a
virtual flow meter could be understood as a regression problem (see Eq. 1), where
the estimated flow observations ŷt are a function of current and past observations
from related process variables Xt,Xt−1, . . . ,Xt−w, being X = [x1, x2, . . . , xn]
the process variables and w the temporal window.

ŷt = f
(
Xt,Xt−1, . . . ,Xt−w

)
(1)

The challenge is to achieve the model function f indicated in Eq. 1, which
relates the output ŷt to process variables X = [x1, x2, . . . , xn]. Note that the
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true flow observations needed to train the models are captured by the portable
flow meter.

Three different methods have been selected in order to obtain function f .
The aim is to assess different methods, observing advantages and drawbacks of
each of them. First, a multiple linear regression (MLR) [5] is chosen as the
baseline method. MLR assumes a linear relationship between each of the inputs
(explanatory variables) and the output (flow in this case). For that reason, it
might be unsuitable to model the nonlinearities usually present in industrial
processes. However, it is still interesting as a baseline model.

Second, a multilayer perceptron (MLP) [6], a shallow neural network
with a single hidden layer is chosen due to its higher suitability to accurately
model those nonlinearities. MLPs achieve this goal through nonlinear activa-
tion functions. In order to obtain a faster computational performance, a shallow
structure is tested. The MLP is composed of input and output layers, a flatten
layer, together with a single hidden layer. Finally, a long-short term memory
(LSTM) [7] is selected because of its ability to processing sequences of data. This
is possible thanks to the recurrent or feedback connections that let the network
use their internal state as a memory. Unlike regular recurrent neural networks,
LSTMs have a larger memory capacity, making them a more robust alternative
for modelling dynamic behaviour. However, they become difficult to train as the
number of parameters is large and so they could present convergence problems,
in spite of handling the vanishing/exploding gradient problems.

The desired virtual meter is in charge of estimating the flow of the main
process circuit in the pilot plant. In this case, flow depends on pressure (PT21),
level in the main tank (LT21), the setpoint of the main process pump (P02) and
the process valve opening (FV21). Since a window with w previous observations
is used to take into account the dynamic of the system, the dimension of the
input data is n× w, where n = 4: pressure, level, pump and valve. The settling
times of the system are considered to appropriately establish the window size w.

4 Experimental Results and Discussion

Three experiments, with a length of one hour, have been performed to collect
the data. In them, step changes of 5% in the process valve opening (FV21)
combined with pseudorandom pump setpoints (P02) have been introduced to
the pilot plant. This way, a dataset with a variety of situations that consider the
inertia associated with filling the main tank is built.

The input to the virtual flow meter is given by:

X =
[
PT21, LT21, P02, FV 21

]
.

And the output of the proposed approach will be the predicted flow:

ŷ = ̂UltS.
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Fig. 3. Portable ultrasonic flow meter

Table 2. Hyperparameter tuning

Hyperparameters Range Value

MLP Neurons 5,10,20,40,80,160 20
LSTM Neurons 5,10,20,40,80,160 80

The size of the sliding window used to capture the system dynamics is a
model parameter. To select it appropriately, the time constants of the system
have been empirically computed. Since the maximum settling time obtained was
5 s and the sampling time is 100ms, the dimension of the input vector was set
50.

The dataset was divided in 2 subsets: training (66%) and testing dataset
(34%). For MLP and LSTM training, 10 epochs were used, introducing data
in batches of 32 samples. A grid search over a range of hyperparameters (the
number of units in the neural networks) was performed using a 10-fold cross-
validation on the training dataset. Table 2 shows the range and the optimal value
of these hyperparameters. Among values of 5, 10, 20, 40, 80, and 160, the optimal
number of neurons in the MLP hidden layer was set to 20 neurons, whereas it
was set to 80 in the LSTM network.

The MAE (Mean Absolute Error), RMSE (Root Mean Square Error) and
R2 (coefficient of determination) have been chosen as evaluation metrics. These
errors have been computed using test dataset. In Table 3, it can be seen that
LSTM method had the lowest MAE and RMSE errors since it is able to consider
temporal dependencies, besides capturing the nonlinear nature of the industrial
process. MAE and RMSE errors using MLP regression are only slightly higher
than those obtained by LSTM, showing the strength of nonlinear functions to
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Fig. 4. Comparison between the real ultrasonic and the MLR virtual flow meter.

model complex relations. As expected, the virtual flow meter based on linear
method (MLR) provided the worst results, roughly doubling the MLP errors.
These results revealing its poorer suitability for modelling behaviours in indus-
trial processes. Also, R-squared is in agreement with the results obtained, observ-
ing that the closest to 1 is the LSTM, slightly below is the MLP and with a poor
result is the MLR.

Additionally, the performance of the virtual flow meter developed with each
method (MLR, MLP and LSTM) is assessed through the comparison of its esti-
mations with real data from the ultrasonic flow meter, as shown in Figs. 4, 5 and
6, respectively. In Fig. 4, it can be seen how the sensor response with the linear
method did not follow well with the actual flow, producing significant differences
between the steady state of predicted and real flows. The comparison with the
MLP method shown in Fig. 5, shows more similar responses where the greatest
differences are found for flow values that are close to zero. Last, Fig. 6 shows
that the flow estimated by the LSTM provides a better fit than the others, and
shows a behaviour that is more insensitive to the disturbances associated with
the real ultrasonic meter. This results in the ability of the virtual flow meter
to extract the trend of the real flow without being influenced by measurement
noise.

These results are consistent with the hypothesis that linear modelling leads
to unacceptable errors in industrial processes due to existing non-linear charac-
teristics in their elements. And so, nonlinear methods are needed to match the
dynamic behaviour of the systems. Both nonlinear methods allowed modelling
accurately the dynamic behaviour of the flow variable, although the shallow neu-
ral network was more sensitive to noise and disturbances. The use of recurrent
networks is proven to be a more robust and capable solution for predicting com-
plex dynamic behaviours, since it learns deep relations and temporal patterns.
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Fig. 5. Comparison between the real ultrasonic and the MLP virtual flow meter.

Table 3. Results on the test dataset

Método MAE RMSE R2

MLR 1.16 1.67 0.9284
MLP 0.61 0.56 0.9830
LSTM 0.45 0.33 0.9970

Fig. 6. Comparison between the real ultrasonic and the LSTM virtual flow meter.

5 Conclusions

In this paper, a methodology to develop a virtual flow meter for industrial pro-
cesses is presented. It relies on indirect measurements of related process variables.
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Furthermore, it assumes the impossibility of installing a flow meter in the pro-
cess, so a non-invasive flow meter should be used punctually to measure and
capture data for training data-driven methods. Three different methods have
been used to obtain a model function: multiple linear regression (MLR), multi-
layer perceptron (MLP) and long-short term memory (LSTM) network.

The developed virtual flow meter has been tested on a pilot plant built with
real industrial equipment. The LSTM network yielded the best performance
in the flow estimation, i.e., it gave the lowest MAE and RMSE errors and the
highest R-squared. Furthermore, it proved to be the most robust implementation
against noise and disturbances. MLP method had problems dealing with noise
and disturbances in comparison with LSTM and linear regressions (MLR) should
be dismissed because its assumptions of linearity make it unsuitable for real
industrial environments.

Future research will focus on the deployment of the developed virtual flow
meter on a low-cost hardware and its integration in the pilot plant, so that it
could actually replace the real flow sensor when its measurement is nonexistent.
This way, it could be used as redundant sensor in a flow control loop, avoiding
the control degradation. The methodology could also be extended to the devel-
opment of a data-driven model of the whole pilot plant in the context of a digital
twin of the complete system.
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Abstract. In recent years, electricity generated from renewable energy
sources has become a significant contributor to power supply systems
over the world. Wind is one of the most important renewable energy
sources, thus accurate wind energy prediction is a vital component of
the management and operation of electric grids. This paper proposes a
novel method for wind energy forecasting, which relies on a novel variant
of the scaled-dot product attention mechanism, for exploring relations
between the generated energy and a set of multiple-location weather
forecasts/measurements. The conducted experimental evaluation on a
dataset consisting of the hourly generated wind energy in Greece along
with hourly weather forecasts for 18 different locations, demonstrated
that the proposed approach outperforms competitive methods.

Keywords: Wind energy prediction · Renewable energy · Scaled-dot
product attention

1 Introduction

Electricity generated from renewable energy sources, has been proven an effec-
tive solution against the energy shortage and the environmental pollution caused
by conventional (e.g. fossil fuels) energy production methods. Wind energy is
one of the most important renewable energy sources. However, wind energy is a
highly fluctuating resource, mainly due to the respective unpredictable nature of
weather conditions, mainly wind speed and direction. Accurate wind energy pre-
diction is vital for lowering the impact of uncertainty, thus achieving a smoother
integration of the respective energy sources (wind farms/parks) into the grid.

Most approaches for wind energy generation prediction can be classified based
on either the applied methodology or the time horizon of the prediction [4]. Based
on the predictive horizon, the methods are usually classified into the following
four categories:

– Very short-term (up to 30min) forecasting
– Short-term (30min to 6 h) forecasting
– Medium-term (6 h to 1 day) forecasting
– Long-term (1 day to a month) forecasting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 445–457, 2023.
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Regarding the applied methodology, wind energy prediction methods are
categorized as physical or statistical. The first, explore the physical relations
between the wind speed, climate conditions, topological information and the
energy generated from the corresponding wind power plant. Usually, physical
models [2,19] rely on numerical weather prediction models (NWP) that simulate
atmospheric physics by utilizing boundary conditions and physical laws, in order
to determine wind speed. The predicted wind speed is then used along with the
related wind turbine power curve, usually provided by the turbine manufacturer,
in order to predict the generated wind energy. Physical models are generally
suitable for long-term wind energy forecasting, but their short-term precision
remains low.

Statistical models/approaches [6,18] are more appropriate for short-term
wind energy prediction compared to physical models. Their aim is not to describe
the physical steps involved in the wind power conversion process, but to directly
obtain wind energy predictions, by exploring statistical relations between his-
torical wind energy data and other relevant input data. A sub-class of statistical
models are Deep Learning (DL) based methods. In recent years, several DL-based
methods, including approaches utilizing convolutional neural networks (CNNs)
[17,20], autoencoders [16], recurrent neural networks (RNNs) [10] and spatio-
temporal attention-based networks [11], have been proposed as suitable solutions
for wind energy forecasting.

In [17], the authors mapped data collected from wind turbines into a grid
space, which they called scene. The scene time series is a multi-channel image,
which represents the spatio-temporal characteristics of wind in a certain area and
time. Therefore, they developed a DL model based on CNN to extract features
from these images, in order to predict the generated energy. The results showed
that the proposed model achieves better accuracy than other existing methods.
The authors in [11] proposed a sequence-to-sequence model for multi-step-ahead
wind power forecasting, namely prediction of multiple future wind power values.
The model architecture consists of two groups of Gated Recurrent Units (GRU)
blocks, which work as encoder and decoder. The authors proposed the Attention-
based GRU (AGRU) for embedding the task of correlating different forecasting
steps by hidden activations of GRU blocks. The AGRU model achieved top per-
formance against other competitive wind energy forecasting methods. In [13], the
authors modified the N-BEATS [12] model towards making it suitable for the f
wind energy forecasting task and proposed a loss function capable to confront
the issue of forecast bias. The method, mostly evaluated on very-short term wind
energy prediction datasets, was able to compete against other state-of-the-art
approaches and even outperform them in terms of accuracy in most cases. In [20],
the authors proposed a DL-based architecture, based on Temporal Convolutional
Networks (TCNs) for short-term wind energy prediction. An experimental evalu-
ation of the method on a dataset consisting of 5000 hourly wind power and mete-
orological data samples collected from a single wind energy power plant, showed
promising results against the competitive methods. In [16] the authors proposed
an architecture named SIRAE (Staked Independently Recurrent Auto-Encoder),
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suitable for ultra-short wind energy forecasting. According to the authors, this
approach can accommodate a large volume of data in an efficient manner while
also overcoming the effects of random changes in the natural environment. To
verify the effectiveness and stability of SIRAE, two comparative experiments,
in which it outperformed several popular models, were conducted. In [10], the
authors proposed DWT_LSTM, a short-term wind energy forecasting method
based on Discrete Wavelet Transform (DWT) and Long Short-Term Memory
(LSTM) networks. The method adopts a divide and conquer strategy, in which
DWT is used to decompose original wind power data into sub-signals, while sev-
eral independent LSTMs are employed to approximate the temporal dynamic
behaviors of these sub-signals. The proposed method achieved top prediction
accuracy rates against other state-of-the-art methods.

(a) Scaled Dot-Product
Attention

(b) Multi-kernel convolutional scaled dot-product
attention.

Fig. 1. (a): Scaled Dot-Product Attention, (b): the novel Multi-kernel convolutional
scaled dot-product attention. ci denotes the i-th convolutional kernel size, employed in
the temporal domain whereas N denotes the number of convolutional kernels.

The method proposed in this paper relies on the scaled dot-product atten-
tion mechanism, initially proposed in [15]. Several methods [9] in the relevant
literature have applied this mechanism in time-series forecasting for exploring
temporal dependencies. More recently, spatio-temporal attention networks [3]
have been introduced to wind energy forecasting, aiming to predict the gener-
ated energy of multiple, spatially neighboring, wind farms. Compared to methods
in the relevant literature, our approach provides the following contributions:

– Utilizes past and future wind-related weather measurements/forecasts from
multiple locations, aiming to explore temporal patterns between the time
instances in the past and prediction windows. In addition, the method is able to
explore pseudo-spatial relations between the energy generation location/region
and the multiple locations of the weather measurements/forecasts, aiming to
findhow theweather in each of the locations forwhichweather data are available
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affects the energy generation prediction in the region under study. To achieve
this, the method doesn’t rely on any spatial information (e.g., geographic coor-
dinates, or geographic distances) as input.

– Proposes a variant of scaled dot-product attention, which employs causal
convolutions of multiple kernel sizes, for exploring context-based similarities,
instead of point-based similarities, as proposed in [15]. To the best of our
knowledge, this approach is novel. Indeed, although a similar approach has
been proposed in [8], the corresponding authors employed Causal Convolu-
tions with single sized kernels.

– Achieves top results, compared to SoA time-series forecasting methods, on a
dataset suitable for wind energy generation prediction in Greece at hour-level
resolution.

2 Proposed Method

2.1 Problem Statement and Notations

The problem of wind energy forecasting that is addressed in this paper can be
formulated as:

Êf = g(Eh,Wh,Wf ) (1)

In this equation Eh ∈ R
1×H×1 corresponds to the past/history (h: history) wind

energy measurements of a single region or power plant, H being the size of the
past time window. Moreover, Wh ∈ R

B×H×D
wh corresponds to past weather

measurements which are provided for B distinct locations or regions and Dwh

is the number of input weather variables, for the past. Also, Wf ∈ R
B×F×D

wf

corresponds to weather forecasts (predictions in the future), where F is the size
of the future time window and Dwf is the number of input weather variables,
for the future. Finally, Ê

f ∈ R
1×F×1 corresponds to the wind energy predictions

that are generated by the method for the region of interest.
In short, given past energy measurements for a region or location and wind-

related weather data from B distinct locations, our aim is to find how the energy
generation is related to the weather on each of the B locations. Once those
pseudo-spatial relations are estimated, wind energy predictions can be obtained
by exploring temporal patterns between the past weather measurements and
weather forecasts.

Adopting the typical attention mechanism [14], the single-time step predic-
tion êf , namely one of the elements of Ê

f
= [êf1 , ..., êfF ] can be defined as:

êf = CT
H∑

j=1

αje
h,r
j

where
H∑

j=0

αj = 1

(2)
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Fig. 2. The architecture of the proposed wind energy prediction method.

In the above formulas, ααα ∈ R
1×H corresponds to the attention weights,

eh,rj ∈ R
1×D

eh,r corresponds to the hidden representations (r: representations) of
past energy measurements at the jth time instance in the past. Deh,r corresponds
to size each hidden representation. Moreover, C ∈ R

D
eh,r×1 are learnable param-

eters of a linear operator. In this formulation, wind energy is predicted based on
the temporal patterns imposed by attention weights ααα, between the time step
being predicted and past energy measurements (more specifically their internal
representations) within the respective temporal window. It shall be noted that
a multi-time step prediction formulation would involve a matrix A ∈ R

1×F×H

rather than ααα. Our objective is to explore, the previously described, pseudo-
spatial and temporal relations between Eh, Wh and Wf in order to efficiently
approximate A.

2.2 Multi-Kernel Convolutional Scaled Dot-Product Attention

The Scaled Dot-Product Attention, was presented in [15] and formulated as
follows:

Attention(Q,K,V) = MV, (3)

where

where M = softmax(
QKT

√
DK

) (4)

Q ∈ R
NQ×DQ , K ∈ R

NK×DQ and V ∈ R
NK×DV are the queries, keys and

values respectively. Queries and keys have a dimension of DK , while values have
a dimension of DV . NQ is the number of queries while NK is the number of
keys and values. An illustration of the mechanism is depicted in Fig. 1a. Multi-
head attention was also proposed in [15], allowing various attention mechanisms,
including scaled dot-product attention, to run in parallel. To this end, instead
of performing a single attention computation on queries, keys, and values of size
DL, the authors proposed their transformation with N independently learned
linear projections. The attention computation is then performed, in parallel, on
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Fig. 3. The architecture of the core attention-based energy prediction module.

those N projected queries, keys, and values. More specifically, the multi-head
attention module can be formulated as:

Multihead(Q,K,V) = [p1, ...,pN ]SO, (5)

pi = Attention(QSQ
i ,KSK

i ,VSV
i ). (6)

In this formulation, SQ
i ∈ R

DL×DK , SK
i ∈ R

DL×DK , SV
i ∈ R

DL×DV , SO
i ∈

R
NDV ×DL are projection parameter matrices, N is the number of heads, DK =

DV = DL

N , and the operator [...] implies concatenation.
On the original formulation, the scaled dot-product attention was designed to

explore point-wise similarities between queries and keys. However, in most time-
series analysis tasks, information regarding the surrounding context of observed
points is vital for exploring patterns among the series. The authors in [8], were
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Fig. 4. The temporal attention mechanism captures correlations in weather forecasts
between the time instances in the prediction window and the history (past) window.
In this example, the number of weather forecasts/measurements B is set to 3.

able to employ causal convolutions of kernel size c to transform inputs into
queries and keys. Thus, local context was exploited in the query-key matching,
improving the way temporal patterns among the corresponding time series are
explored. The authors experimented with various values of c in order to find
the optimal one. To avoid selecting a specific kernel size, as well as for allowing
the method to detect patterns in various kernel sizes, we propose the multi-
kernel convolutional scaled dot-product attention. In our formulation, causal
convolutions with N different kernel sizes are applied on Q, K and V, resulting
in N heads. The scaled dot-product attention is computed separately for each
head. Layer normalization is then applied to the output of each head. Finally, the
outputs are concatenated and projected, resulting in the final values, as depicted
in Fig. 1b.

2.3 Model Architecture

The overall architecture of our proposed method is depicted on Fig. 2. The
method receives as input Eh, EF and Wf , and process those modalities through
linear layers with the Rectified Linear Unit (ReLU) as activation function. Then,
the hidden representations of all modality are fed into the Attention-based
Energy Prediction module. Its architecture is depicted on Fig. 3. The module
is motivated by the typical attention mechanism, defined in Eq. 2, utilizing the
multi-kernel convolutional scaled dot-product attention, previously described in
Sect. 2.2. Its aim is to generate future energy representations, based on (i) tem-
poral relations within past and future weather predictions, (ii) pseudo-spatial
relations between the region of wind energy prediction and the locations of the
weather forecasts. The temporal relations are imposed by Atmp ∈ R

N×B×F×H .
The formulation of Atmp involves a query-key matching of Wf,r and Wh,r.
An illustration of the described temporal attention mechanism is depicted on
Fig. 4. The pseudo-spatial relations are imposed by Asp ∈ R

N×F×1×B and in the
query-key matching Eh,r and Wh,r are involved. Illustrations of the described
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Fig. 5. The pseudo-spatial attention mechanism captures correlations between the gen-
erated energy and the multiple-location weather forecasts in the history window. In
this example, the number B of locations for which weather forecasts/measurements
are available is set to 3.

pseudo-spatial relations are depicted on Fig. 5. The final attention weights A
can be defined as:

A = u(Asp ⊗ u(Atmp)) (7)
where A ∈ R

N×1×F×H and u(.) denotes a tensor reshaping function. In partic-
ular, element an,1,j,l of A is computed as:

an,1,l,j =
B∑

i=1

αsp
n,l,1,i · αtmp

n,i,l,j

where
B∑

i=1

αsp
n,l,1,i = 1,

H∑

j=1

αtmp
n,i,l,j = 1, 1 ≤ l ≤ F , 1 ≤ j ≤ H, 1 ≤ n ≤ N

(8)

The output of the attention-based module are the hidden representations of
the wind energy values Ê

f,r
. Finally, a lineal layer is applied for generating the

wind energy predictions.

3 Experimental Evaluation

3.1 Dataset Description

The dataset employed in the experimental evaluation was initially proposed in
[7]. It consists of (i) hourly wind energy generation data for Greece (the entire
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country), collected by the European Network of Transmission System Operators
for Electricity1, and (ii) hourly wind-related weather data, which correspond to
18 separate locations in Greece, retrieved by the Storm Glass weather API2. The
weather data consist of forecasts regarding the wind speed, wind direction and
gust. The dataset spans the period 2017–2020. The training set contains data
for the period 2017–2019, while the data from the final year form the test set.

The provided wind energy generation values are not normalized/standardized
and no information is provided for wind energy generation bounds within regular
time intervals (e.g. per annum). Table 1 depicts the large differences between var-
ious statistics of the generated energy at annual level. This is indeed a common
real-world issue, since the number of wind stations/turbines of a region changes
over time (usually increases due to the installation of new ones, as is obviously
the case for Greece) and no information regarding this number is provided at
country level in regular intervals. A method employed to predict power genera-
tion under these circumstances must have a high generalization ability, and be
able to overcome such significant data distribution shifts. Being fair to the cor-
responding dataset split, wind energy data used as input were scaled explicitly
based on the minimum and maximum energy values of the training set. However,
the metrics used in the evaluation were computed on output data (predictions)
that were re-scaled on the min/max values of the overall dataset.

Table 1. Statistics derived from wind energy generation data (in MW) for Greece in
the period 2017–2020.

Year Mean Std. Median Max.

2017 482.312 336.052 369.0 1702.0
2018 554.554 384.459 466.0 1695.0
2019 662.747 457.254 545.0 2107.0
2020 849.010 595.726 696.0 2630.0

Based on this dataset, two evaluation/benchmarking scenarios were formed.
The first scenario assumes a forecast horizon of one hour and historic (past)
data availability of up to 120 h. Weather data are available for both input (past
measurements, 120 measurements) and target (future forecasts) windows. Past
energy production measurements for 72 h are provided as input, starting 48 h
prior to the target period. This 48-h gap in past energy data is due to the fact
that measurements are not released immediately by the transmission system
operators, i.e. it reflects the real situation. The second scenario assumes a 24-
h forecast horizon, in 1-h intervals and data availability of up to 384 h. In a
similar fashion to the first scenario, weather data are available for both input
(past measurements, 384 measurements) and target (future forecasts, 24 values)
1 https://transparency.entsoe.eu.
2 https://stormglass.io/.

https://transparency.entsoe.eu
https://stormglass.io/
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windows. Past energy production measurements for 336 h are provided as input,
starting 48 h prior to the target period (48-h gap).

3.2 Baseline Methods

Three SoA time series forecasting methods were trained and evaluated on each
of the described wind energy prediction scenarios. The first employed method is
N-BEATS [12], implemented by [5]. Compared to the original method, the imple-
mented model can receive as input both historic wind energy measurements, as
well as historic wind-related weather data for the corresponding time instances.
This is accomplished by flattening the model inputs to a 1-D series.

The performance of a deterministic implementation of DeepTCN [1] was also
evaluated in our scenaria. In addition to the historic wind energy measurements,
we provide as input the historical wind-related weather data, since the method
allows the use of past covariates. Finally, an implementations of TFT [9] was also
employed in our experimental evaluation. Information regarding the type of input
covariates of each method is provided in Table 2. In particular, TFT and our
method are the only ones incorporating future weather forecasts as input. Aiming
to achieve a fair comparison, the weather data from all 18 locations, as well
as weather data corresponding formed as an aggregated weather forecast from
those 18 locations, were fed as input covariates to the three baseline methods.
Furthermore, all four methods, including ours, were trained incorporating the 48-
h gap within the scenario specific prediction window (i.e., in the first scenario the
methods were trained using a 49 prediction window). However, the predictions
corresponding to the 48-h gap were excluded during the evaluation process.

All methods, including our proposed method, were trained of 8 epochs. The
learning rate was initially set to 5×10−4 and it was decreased twice by multiply-
ing it with 0.1 at epochs 4 and 6, respectively. Regarding our proposed method,
the number of kernels N in the multi-kernel convolutional scaled dot-product
attention was set to 6, using 1, 3, 5, 9, 13 and 17 sized kernels. In addition,
Deh,r , Dwh,r , Dwf,r and Def,r were set to 66.

Table 2. Covariates used as input for each of the compared methods.

Method Covariates
Past Weather Measurements Future Weather Forecasts

N-BEATS [12] �
DeepTCN [1] �
TFT [9] � �
Ours � �
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3.3 Experimental Results

This subsection presents the results of the forecasting experiments for each
method along with a commentary on the findings. To be consistent with the
literature [10,20], Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) were used to measure the performance of the models. Each experi-
ment was executed four times, and the mean value and standard deviation are
reported.

Table 3. MAE and RMSE values for the two evaluation scenarios.

Method Scenario 1 Scenario 2
MAE RMSE MAE RMSE

N-BEATS 0.201 ± 0.003 0.262 ± 0.006 0.202 ± 0.002 0.262 ± 0.003
DeepTCN 0.189 ± 0.008 0.243 ± 0.017 0.226 ± 0.027 0.301 ± 0.030
TFT 0.113 ± 0.008 0.154 ± 0.012 0.118 ± 0.008 0.159 ± 0.012
Ours 0.103 ± 0.002 0.139 ± 0.003 0.085 ± 0.001 0.112 ± 0.003

Table 3 shows the MAE and RMSE of all compared methods for the two wind
energy prediction scenarios. In both scenarios, methods which employ future
weather forecasts as input covariates, i.e. TFT and the proposed method, demon-
strate significant performance gains. In both scenarios our proposed method
achieved top results, compared to the three baseline methods. In particular,
more significant results were attained in the second scenario achieving mean
MAE and RMSE, among 4 experiments, of 0.085 and 0.112, respectively.

It is worth noting that the performance of our proposed method was better
in the second scenario, compared to the first, in all metrics. This behaviour is
exactly the opposite compared to the rest of the methods, where their perfor-
mances downgraded in the second scenario. The improved performance of the
proposed method, on a scenario in which data from a larger temporal window
were used as input, highlights that the implemented temporal attention-based
mechanism is able to effectively capture relations between distant samples within
the sequences. Future work will focus on conducting more experiments, in respect
to the size of input and prediction windows, as well as to extend the method,
aiming to process and predict wind energy time-series from multiple stations or
regions.

4 Conclusions

Energy generation from wind exhibits inherent uncertainties due to its inter-
mittent nature. The accurate wind energy prediction can assist its integration,
operation and management within the electric grids. This paper proposes a novel
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wind energy forecasting method, which relies on a novel variant of the scaled-
dot product attention mechanism, for exploring relations between the gener-
ated energy and a set of multiple-location weather forecasts/measurements. The
results of the conducted preliminary experimental evaluation against SoA time-
series forecasting methods on a dataset consisting of the hourly generated wind
energy in Greece, highlighted the potential of the proposed method.
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Abstract. Cybersecurity systems have become increasingly important as busi-
nesses and individuals rely more on technology. However, the increasing com-
plexity of these systems and the evolving nature of cyber threats require innova-
tive solutions to protect against cyber attacks. One promising approach is the idea
of autonomous self-learning and auto-training neural architectures. Autonomous
self-learning refers to the ability of the system to adapt to new threats and learn
from past experiences without human intervention. Auto-training, on the other
hand, refers to the ability of the system to improve its performance over time by
automatically adjusting its parameters and algorithms. This research proposes an
autonomous Self-Learning and Self-Adversarial Training (SLSAT) neural archi-
tecture for intelligent and resilient cyber security systems. It is an extension of
the next-generation Continuous-TimeReservoir Computing (CTRC) that was pro-
posed by the authors recently. TheCTRC is a time-series anomaly detection system
controlled by time-varying differential equations. It uses Reinforcement Learn-
ing (RL) to dynamically fine-tune the reservoir computing parameters in order to
identify the aberrant changes in the data. The proposed method in this research
improves the CTRC’s architecture by including a Conditional Tabular Genera-
tive Adversarial Network (CTGAN). Specifically, including CTGAN allows the
SLSAT architecture to generate synthetic data based on the identified abnormal-
ities to improve the model’s performance and adapt to new and evolving threats
without manual intervention. This, as proved experimentally, helps the model
identify aberrant changes in the data and fend off poison and zero-day attacks.
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1 Introduction

Cyber security is a constantly evolving field, and the threat landscape is constantly
changing. Attackers are becoming more sophisticated and are constantly developing
new techniques and strategies to bypass traditional security measures [1]. This means
the cybersecurity industry must continually innovate and develop more advanced and
proactive security solutions to stay ahead of attackers. One approach that is gaining pop-
ularity in the cybersecurity industry is using artificial intelligence and machine learning
[2]. Machine learning algorithms can be trained to detect anomalies in network traffic
and identify behavior patterns indicative of an attack. These algorithms can be trained
using large network traffic and attack data datasets and continuously updated to adapt
to new attack techniques. The cybersecurity industry needs to take a proactive security
approach rather than relying on reactive measures. By using advanced technologies such
as artificial intelligence and machine learning [3], sharing threat intelligence, and col-
laborating with other organizations, the industry can stay ahead of the evolving threat
landscape and better protect against cyber-attacks [4, 5].

The proposed approach is an extension of the next-generation Continuous-Time
Reservoir Computing (CTRC) thatwas proposed by the authors recently [6, 7]. Reservoir
computing is amachine learning algorithm that uses the dynamics of a high-dimensional,
randomly connected network to process and learn from input signals. It is an efficient
and powerful technique for solving complex machine-learning tasks, particularly those
involving time-series data. At the heart of the system is a reservoir, which is a randomly
connected network of nodes. The input signal is fed into the reservoir, and the state
vector is fed into a readout layer, which is trained using linear regression or another
simple learning algorithm. Next-generation automated RC is an emerging technology
that has the potential to enhance cyber defense greatly, using the basic principles of
RC to analyze network traffic and identify anomalies indicative of cyberattacks or other
security threats [8, 9].

The CTRC is an extension of the RC paradigm that operates in continuous rather than
discrete time. In a traditional discrete-time reservoir computing system, input signals
are fed into the reservoir at discrete intervals. In a CTRC system, the input signal drives
the reservoir dynamics, producing an output signal. The continuous-time nature of the
system enables the reservoir to process input signals in real-time without discretization,
which is particularly useful in applications where the input signal is a continuous data
stream. However, it can be more difficult to train and optimize than discrete-time RC
due to the complexity of the reservoir dynamics [8, 10]. The proposed CTRC’s system
parameters are optimized using the RL method to overcome these challenges.

This paper extends the above architecture and proposes an autonomous self-healing
neural architecture for cyber security that leverages advanced machine learning tech-
niques to detect, respond to, and mitigate cyber threats automatically. Specifically, the
proposed method enhances the architecture by adding a CTGAN [11] to the CTRC. It
creates a model that can withstand poison and zero-day attacks by enhancing the net-
work’s capacity for self-learning and self-training based on the identified abnormalities.
The STSAT refers to the system’s ability to detect and respond to security incidents with-
out human intervention. This is important in cyber security, where threats can emerge
and spread quickly, making it difficult for human operators to respond quickly.
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2 Methodology

The proposed CTRC system is modelled using continuous-time differential equations,
and the system parameters are optimized using the RL method and, specifically, the
Q-Learning approach. The CTRC system’s architecture comprises input, reservoir, and
output layers. In RC, the connection and input weights are assigned at random. The
Echo State Property (ESP) [12, 13], the condition in which the reservoir is an “echo”
of the complete input history, is ensured by scaling the reservoir weights in a fashion
that does just that. The input u(n) and output y(n) discrete layers of the CTRC follow
the problem’s definitions. The number of hidden layers is grouped in an RC zone [14,
15]. The amount to which the RC’s neurons, x(n), are coupled defines how sparse the
RC will be.

The CTRC system can record temporal and spatial patterns of the network’s data
thanks to differential equations dx1 and dx2, which control how state vectors x1(t) and
x2(t) behave as follows [16, 17]:

While x2(t) represents the state vector that captures the spatial patterns of the data,
x1(t) represents the state vector that captures the temporal patterns of the network traffic
data in equations dx1 and dx2, respectively. The state vectors x1(t) and x2(t) change
over time in response to the input signal u(t) and the reservoir’s current state, as shown
by the differential equations above. A depiction of the CTRC architecture is presented
in Fig. 1.

Fig. 1. CTRC architecture

In order to model the drift phenomenon, identify the abnormal changes in the data,
and adaptively stabilize the learning system, the weight matrices W1, W2, Win1, Win2,
and V are optimized using the Q-Learning algorithm [18, 19] to minimize the difference
between the predicted output of the system and the true labels in a training dataset. The
state space is defined in the first step of the Q-learning algorithm. The state space records
pertinent data about the cyber defense scenario’s current network traffic analysis. The
Q-learning algorithm’s action space is then based on the potential steps the agent could
take to counteract cyberattacks. The agent’s performance in the cyber defense task is
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then used as the basis for the reward function for the Q-learning algorithm. The reward
function motivates the agent to counter cyberattacks effectively and dissuades ineffec-
tive or harmful behavior. The Q-table is a lookup table associating expected rewards
with states and actions. The Q-table is updated using the Q-learning algorithm to choose
actions iteratively based on the current state and the values in the Q-table. The Bell-
man equation calculates the expected future reward from the present state and action
and is used to update the Q-table [20]. The Q-table modifies the weight matrices and
bias terms of the CTRC system. The Q-table estimates train the CTRC system to opti-
mize the expected future reward. A test dataset implements the trained CTRC system’s
performance evaluation process. Based on the evaluation outcomes, the parameters of
the CTRC algorithm are adjusted. This entails automatically modifying the group of
parameters that the Q-learning process optimized.

In order to increase the CTRC’s capacity for self-learning and self-training and cre-
ate a model that can thwart poison and zero-day attacks, the proposed method in this
research incorporates a CTGAN into the CTRC’s architecture. CTGAN is a Generative
Adversarial Network (GAN) for generating synthetic tabular data. GAN is a type of deep
learning algorithm used to generate new data by learning the patterns and features in a
given dataset. GANs are composed of twomain components: a generator and a discrimi-
nator. The generator inputs random noise and produces a fake sample that resembles the
original data. The discriminator, on the other hand, is trained to distinguish between real
and fake samples. The generator is trained to fool the discriminator by producing sam-
ples that are indistinguishable from the real ones. The discriminator, in turn, is trained
to identify whether a sample is real or fake correctly.

The training process involves alternating between training the generator to produce
better fake samples and training the discriminator to better distinguish between real and
fake samples. This process continues until the generator can produce samples that are
difficult to distinguish from the real ones. Its objective is to learn the underlying proba-
bility distribution of the input data and then generate new samples that closely resemble
the original data. The CTGAN consists of a generator and discriminator networks, sim-
ilar to GANs. However, CTGAN is conditioned on the values of a subset of the input
features. The generator network takes both a random noise vector and the conditioned
input features as input. The objective function of CTGAN can be expressed as follows
[11, 21]:

where,G is the generator network,D is the discriminator network, x is a real sample from
the input data distribution pdata, z is a noise vector sampled from a prior distribution
pnoise, c is a conditioned subset of the input features sampled from the conditioning
distribution pcondition, condition is a function that maps the input data x to the con-
ditioned subset of input features c, D(x|condition) is the discriminator’s probability of
assigning a real sample x a score of 1 (indicating that it is real) given the conditioning
features condition, G(z, c) is the generator’s output, which is a synthetic sample gener-
ated by the generator network, conditioned on the input features c and 1−D(G(z, c)|c)
is the discriminator’s probability of assigning a synthetic sample G(z, c) a score of 1
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(indicating that it is real), given the conditioning features c. The objective function is
optimized iteratively between the generator and discriminator networks until the gener-
ator produces synthetic samples that are indistinguishable from real samples according
to the discriminator [11, 22]. A depiction of the CTGAN architecture is presented in
Fig. 2.

Fig. 2. CTGAN architecture

Because there is no sufficient defence mechanism capable of fully protecting against
novel attacks, as these lie in the ingenuity of the attackers, this process extends the
so far techniques in a prototype way, protecting not only against zero-day but also
against poison attacks. Including CTGAN allows the SLSAT architecture to generate
synthetic data based on the identified abnormalities. Specifically, as the adversary wants
to find the least possible xadv that is closest to x to generate a contradictory sample,
the proposed mechanism pushes this xadv as far away from the legitimate sample as
possible. In particular, during the training of this particular neural architecture, it learns
to successfully recognize samples that belong to the distribution of the training data.
Still, it recognizes large changes in its outputs for samples at a short distance but outside
the specific distribution. By introducing to the training set patterns that are a linear
combination of the original patterns, the neural network learns to recognize contradictory
disturbances [23]. Specifically for λ ∈ [0, 1] and xi, xj two instances of the training set,
introducing the case xnew to the training set for which applies [22, 24, 25]:

Thus the training set acquires a more generalized distribution, with the result that the
network generalizes better and does not have large changes in points of the input space
outside the distribution of the original training set. The method improves the network’s
performance even on datasets where you expect the classification function to exhibit
significant non-linearities.

The defense method is based on the observation that the aggressive cases do not
belong to the distribution field to which the input data belongs. At the same time, they
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are closer to the subfield to which the cases of their true class belong. Considering that
the outputs of the last layers of the neural network are feature vectors that are entered as
inputs to the network, the distribution towhich the feature vectors that result as outputs of
the neural network belong, when real data is present as input, is calculated. Specifically,
suppose Yc is the set of training vectors belonging to class c. In that case, y is the vector
of input features, calculating f̂c(y), which is the estimate of the density of the distribution
of the real features of class c at point y as follows [26, 27]:

f̂c(y) = 1

|Yc|
∑

yi∈Yc
exp

(
−‖y − yi‖22

σ 2

)

where with |Yc| the number of elements of the set Yc.
According to this method, an aggressive input with real class c1, which is recog-

nized as class c2, will hold that f̂c1(x) > f̂c2(x). Extending this consideration, Bayesian
uncertainty can be extracted from a neural network, which has been trained using the
dropout method, so that an input x receives the outputs y1, y2, . . . , yT for T different
sets of parameters of the network. The uncertainty U (x) of the network at point x is
calculated from the equation [28, 29]:

U (x) = 1

T

T∑

i=1

yTi yi −
(
1

T

T∑

i=1

yi

)T(
1

T

T∑

i=1

yi

)

Given the assumption that aggressive inputs appear in regions of the network with
high uncertainty,U (x) is a usefulmetric for determiningwhether an input x is aggressive.
A depiction of the proposed architecture is presented in Fig. 3 (Appendix 1).

3 Dataset and Results

Factry.io and InfluxDB were used to provide a perfect simulation environment [30,
31]. Factry.io is a data collection and visualization platform that enables users to easily
collect, monitor, and analyze data from various sources, such as machines, sensors, and
devices. InfluxDB is a time-series database designed to handle high volumes of time-
stamped data. It supports various data types and formats, including numerical, string,
and Boolean data, and provides a SQL-like query language to access and manipulate
data. The goal was to gather data about the industrial environment using the open-source
OPC-UA collector protocol [32].

Data for one year was gathered from three sensors’ hourly quantifiable values within
a machine condition that runs continuously. There is a tank specifically for raw water
storage, and a valve opens when the sensor detects a level of less than or equal to 0.5
m. This research suggests a trustworthy heuristic approach of selection, based only on
assessment criteria, to identify an ideal threshold for binary class separation (normal
or abnormal). The proposed algorithm calculates the density around each data point to
identify the dynamic threshold. This is achieved by counting the number of points in a
user-defined neighborhood (Eps-Neighbourhood) with the definition of thresholds. The
extra data points are added to the center of the regions if they are densely accessible. The
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neighborhood area of a point p is defined as the set of points for which the Euclidean
distance between the points p, q is smaller than the parameter Eps [33, 34]:

NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}
provided that p = (p1, p2) and q = (q1, q2), the Euclidean distance is defined as:

√
(q1−p1)2 + (q2−p2)2

So, a point p is considered to be reachable from a point q based on a density
determined by the parameters Eps,MinPts if:

p ∈ NEps(q) andNEps (q) ≥ MinPts

Two plots to visualize the dynamic threshold calculation depicted in the following
Fig. 4.

Fig. 4. Dynamic threshold calculation

Samples (outliers) are considered abnormal when the anomaly score departs from
the expected behaviour by applying the dynamic threshold.

In order to easily make a comparison between the real and synthetic data, a visual
evaluation method is used to generate a plot that allows comparing the distributions of
the datasets visually. The plot consists of two panels, one for the real dataset and one for
the synthetic dataset. Each panel shows the dataset’s values distribution using a kernel
density estimate (KDE) plot [11]. The Fig. 5 shows a dataset’s absolute log mean and
standard deviation of each numeric column.

TheKDEplot shows the probability density function of the data,which represents the
relative frequency of values in each interval of the range of the variable. The x-axis of the
plot represents the values of the variable, and the y-axis represents the probability density
of those values. The more similar the distributions of the real and synthetic datasets are,
the more the two KDE plots will overlap. If the two datasets are very similar, the two
KDE plots will overlap significantly. If the two datasets have very different distributions,
the two KDE plots will not overlap much. By comparing the KDE plots for the real and
synthetic datasets, one can understand how similar the two datasets are in their statistical
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Fig. 5. Absolute Log Mean and STDs of real and fake data

properties. If the KDE plots are very similar, it suggests that the synthetic dataset has
been generated successfully and has similar statistical properties to the real dataset. If
the KDE plots are very different, it suggests that the synthetic dataset does not represent
the real dataset well may not be suitable for the intended use.

Specifically, the blue line in the left plot represents the absolute log of the mean for
each column. The mean is a measure of central tendency representing the average value
of the data in that column. Taking the absolute value of the log of the mean ensures
that we are looking at differences in magnitude rather than direction, making it easier
to compare the means of columns with different scales. The blue line in the right plot
represents the absolute log of the standard deviation for each column. The standard
deviation is a measure of variability that represents the spread out of the data in each
column. Taking the absolute value of the log of the standard deviation ensures that we are
looking at differences in magnitude rather than direction and makes it easier to compare
the standard deviations of columns with different scales. By looking at the plot, we
can quickly identify columns with significantly different means or standard deviations.
These columnsmay indicate outliers or other issues in the data that should be investigated
further. In addition, columns with very low or zero values may be problematic for some
types of analysis, as their logarithms can be undefined or very large negative numbers.
Overall, the plot provides a quick overview of the numeric columns in the dataset and
can help identify potential issues or areas for further investigation [35]. Figure 6 shows
the cumulative sum of a column over time from 8 features. The plot’s x-axis shows the
time of each value in the column, and the y-axis shows the cumulative sum of those
values up to that point.

The blue line (real data) represents the current cumulative sum values of the column,
and the orange line (fake data) represents the column’s expected feature cumulative sum
values. The expected features cumulative sum values are obtained by shifting the blue
line forward by a certain number of time periods. By comparing the blue and orange
lines, it is easy to see how the cumulative sum of the column is expected to change
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Fig. 6. Cumulative sums per feature (8 features)

over time. If the orange line is significantly higher than the blue line, it suggests that
the cumulative sum of the column is expected to increase rapidly in the future. If the
orange line is significantly lower than the blue line, it suggests that the cumulative sum
of the column is expected to decrease rapidly in the future. The plot provides a way to
visualize the trend of the data over time and how it is expected to change cumulatively
in the future. It can be useful for predicting future trends or identifying patterns in the
data that may be useful for making decisions [36]. Figure 7 shows the distribution per
future time period.

The x-axis of each histogram shows the value of the column, and the y-axis shows the
frequency of each value. The plot consists of multiple histograms, one for each feature
time period. Each histogram shows the distribution of values in the column for that time
period and provides a way to visualize how the distribution of values is expected to
change over time. By comparing the histograms for different time periods, it is easy to
see how the distribution of values in the column is expected to change over time. For
example, if the histograms shift to the right over time, it suggests that the values in the
column are expected to increase in the future. If the histograms shift to the left over time,
it suggests that the values in the column are expected to decrease in the future. If the
histograms remain relatively stable over time, it suggests that the values in the column
are expected to remain relatively constant. The plot provides a way to visualize how the
distribution of values in the column is expected to change over time, and can be useful
for predicting future trends or identifying patterns in the data that may be useful for
making decisions. It can also be used to identify potential outliers or other issues in the
data that may affect its analysis [37].
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Fig. 7. Distribution per feature (6 features)

Figure 8 shows the correlation matrices of real and fake data and the differences
between them.

Fig. 8. Correlation matrices of real data, fake data and the differences

This plot concatenates the real and synthetic datasets and computes their difference.
The x-axis and y-axis of each heatmap show the column names of the dataset, and each
cell in the heatmap represents the correlation between a pair of columns. The color of
each cell represents the strength and direction of the correlation, with blue indicating
a negative correlation and red indicating a positive correlation. White cells indicate no
correlation. The first heatmap shows the correlation matrix for the real data, allowing to
see the correlation between pairs of columns in the real data. The second heatmap shows
the correlation matrix for the synthetic data, allowing to see the correlation between
pairs of columns in the synthetic data. Finally, the third heatmap shows the difference
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in correlation matrices between the synthetic and real data, allowing to see where the
synthetic data’s correlation structure deviates from the real data’s correlation structure.
This can be useful for identifying areas where the synthetic data may not accurately
represent the real data [11].

Finally, Fig. 9 shows a scatter plot of the first two principal components of a dataset
using Principal Component Analysis (PCA).

Fig. 9. First two components of PCA

The left plot represents the first principal component (PC1), and the right plot repre-
sents the second principal component (PC2). Each data point in the plot represents a row
in the dataset, and its position on the plot represents its values in the first two principal
component directions. The position of each data point on the plot is determined by the
values of the data in the first two principal component directions, which are calculated
by the PCA algorithm [38, 39]. The plot can be useful for identifying patterns and trends
in the data, as well as for visualizing the similarity and differences between different
data points. Data points that are close together on the plot are similar to each other in
terms of their values in the first two principal component directions, while data points
that are far apart are dissimilar.

The plot can also be used to identify potential outliers or other issues in the data
that may affect its analysis. Outliers may appear as data points that are far away from
the main cluster of data points on the plot and may be worth investigating further to
determine if they represent genuine data points or errors in the data. In summary, the
plot provides a useful visualization of the main directions of variation in the data and
can be a useful tool for exploratory data analysis.

In order to perform analytical tests that will prove the value and capability of the
proposed scheme, three datasets were created. The initial one includes only the real data
where in this case, the last layer of the proposed architecture works, but it is not possible
to evaluate its capabilities in detecting poisoning-induced anomalies. The evaluation
performance metrics in all cases used to compare the anomaly detection algorithms are
Accuracy, RMSE, Precision, Recall (Sensitivity), F-Score, and AUC [35, 36]. Tables 1,
2 and 3 shows the classification accuracy and performance metrics in real, fake and mix
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datasets of six different classifiers: SLST, CTRC, One Class SVM, Long Short-Term
Memory (LSTM), Isolation Forest and k-NN.

Table 1. Classification Accuracy and Performance Metrics in real data

Classifier Accuracy RMSE Precision Recall F-Score AUC

SLSAT 97.95% 0.0819 0.980 0.985 0.984 0.9902

CTRC 97.89% 0.0821 0.980 0.980 0.978 0.9887

One Class SVM 93.66% 0.0912 0.937 0.936 0.937 0.9752

LSTM 93.17% 0.0932 0.932 0.933 0.933 0.9703

Isolation Forest 91.38% 0.1007 0.914 0.914 0.913 0.9588

k-NN 87.99% 0.1185 0.880 0.880 0.880 0.9502

From the results of the above Table 1, it is evident that, there is little difference
between the upgradedSLSATscheme and the previousCTRCmethod, as the architecture
remains the same. The slight increase in the classification accuracy of the proposed
model may be related to the increase in the predictive ability of the algorithm based on
the additional samples added to the dataset after finding some anomalies. In addition,
the training processes’ randomness which is used to calculate the density around each
data point to identify the dynamic threshold. This is achieved by counting the number
of points in a user-defined neighbourhood (Eps-Neighbourhood) with the definition of
thresholds. This means that if the algorithm is run multiple times on the same dataset, it
may produce slightly different accuracy scores due to this randomness.

Table 2. Classification Accuracy and Performance Metrics in fake data

Classifier Accuracy RMSE Precision Recall F-Score AUC

SLSAT 94.12% 0.0903 0.941 0.940 0.941 0.9689

CTRC 83.71% 0.1566 0.837 0.838 0.837 0.9124

One Class SVM 86.38% 0.1207 0.865 0.865 0.870 0.9341

LSTM 82.97% 0.1632 0.830 0.830 0.830 0.9108

Isolation Forest 80.26% 0.1981 0.801 0.805 0.805 0.8894

k-NN 81.58% 0.1873 0.816 0.816 0.816 0.8943

From the results of Table 2 above, it is evident that in this particular case, there is
a significant difference between the proposed algorithm and the other methods, which
mostly showed very low performance. This fact is obviously due to the inability of the
other models to cope with the inability to find unknown patterns which, although very
similar to the real ones, differ significantly. The fake data generated by CTGAN contain
noise or uncertainty does not present in the real data. This can be due to several factors,



An Autonomous Self-learning and Self-adversarial Training Neural Architecture 473

including the inherent stochasticity of the generative model, the use of random seeds,
or other sources of variability in the training process. This makes it more difficult for
the machine learning model to accurately distinguish between real and fake examples,
especially if the noise is correlated with the target variable. This can lead to lower
performance on the fake data than the real data. The proposed model uses self-learning
and self-adversarial training to address this issue. The SLSAT model is self-training in
order to distinguish between real and fake examples more accurately. This enhances the
model’s performance to recognize and handle the noise or uncertainty in the fake data
and improves its overall performance on real and fake examples, as proved by results.

Table 3. Classification Accuracy and Performance Metrics in mix data

Classifier Accuracy RMSE Precision Recall F-Score AUC

SLSAT 99.05% 0.0697 0.991 0.991 0.991 0.9938

CTRC 90.15% 0.1123 0.900 0.905 0.905 0.9416

One Class SVM 89.81% 0.1131 0.898 0.898 0.898 0.9409

LSTM 89.76% 0.1136 0.898 0.897 0.897 0.9397

Isolation Forest 90.04% 0.1127 0.905 0.905 0.905 0.9403

k-NN 84.12% 0.1513 0.841 0.841 0.841 0.9073

The enormous superiority of the proposed system is confirmed in the mixed dataset.
The table shows that the SLSAT classifier has the highest accuracy at 99.05% and the
highest AUC at 0.9938. It also has high precision, recall, and F-score. The CTRC, One
Class SVM, LSTM, and Isolation Forest classifiers have similar accuracies ranging from
89.76% to 90.15% and AUCs ranging from 0.9403 to 0.9416. The k-NN classifier has
the lowest accuracy at 84.12% but still has a decent AUC of 0.9073. The reasons for this
superiority could be attributed to the following:

1. Self-LearningCapability: SLSAT incorporates aCTGAN to enhance themodel’s self-
learning capability. By generating synthetic data that mimics real data, SLSAT can
improve its accuracy and generalization capabilities, which makes it better equipped
to identify abnormal behavior in the data.

2. Self-Adversarial Training: The self-adversarial training approach in SLSAT allows
the model to learn from attacks and adapt its defense strategy in real-time. This
capability enables the model to detect and fend off zero-day attacks, a significant
advantage in the current threat landscape.

3. Robustness to Poisoning Attacks: Poisoning attacks are a type of cyber-attack in
which an attacker manipulates the training data to introduce biases or cause the model
to make incorrect predictions. SLSAT’s self-learning and self-adversarial training
capabilities make it more robust to such attacks. By continuously learning from the
data and adapting its defense strategy, SLSAT can detect and mitigate the effects of
poisoning attacks.

4. Reinforcement Learning (RL): SLSAT employs RL to dynamically fine-tune the
parameters of the Continuous-Time Reservoir Computing (CTRC) algorithm. This
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allows SLSAT to optimize its performance continuously and adapt to changing
conditions in the data.

5. Robustness: SLSAT is designed to be robust to noise and other perturbations in
the data. By using CTRC, SLSAT can handle time-series data more effectively and
efficiently, making it more robust than other algorithms.

6. Capacity for Self-Learning: Including CTGAN in the SLSAT architecture allows it
to self-learn, meaning it can learn from data without supervision. This is particularly
useful in cyber security applications, where anomalies can be hard to define or may
change over time. SLSAT’s ability to learn without supervision gives it an advantage
over other algorithms that rely on labeled data.

7. Ability toDetect andHandleComplexPatterns: SLSAT’s architecture,which includes
CTRC and CTGAN, enables it to detect and handle complex patterns in the data.
This is important in cyber security applications where anomalies may not be easily
discernible or hidden within the noise of the data. SLSAT’s ability to handle complex
patterns gives it an advantage over other algorithms that may struggle to identify such
anomalies.

These features enable the model to learn continuously, adapt to new threats, and per-
form well in various conditions, making it an effective tool for detecting and mitigating
cyber threats.

4 Conclusion

The paper proposes an autonomous SLSAT neural architecture for intelligent and
resilient cyber security systems. The proposed architecture extends the CTRC algo-
rithm, incorporating a CTGAN to increase the network’s capacity for self-learning and
self-adversarial training. The proposed method allows for real-time adaptation to new
and evolving cyber threats. The SLSAT model, as proved experimentally, outperforms
other competitor algorithms in all performance metrics, including accuracy, RMSE, pre-
cision, recall, F-score, andAUC.Themodel’s self-learning and self-adversarial approach
enables it to detect and fend off zero-day and poison attacks, making it a valuable tool
for next-generation cyber security applications [40].

Furthermore, the SLSAT architecture’s capacity for self-learning and robustness to
poisoning attacks make it a powerful tool for handling complex patterns in the data,
which is crucial for detecting and mitigating advanced persistent cyber threats.

While the proposed SLSAT model has demonstrated superior performance in the
current research, further development could be made in several areas:

1. Scalability: The current research evaluates the SLSAT model on a specific dataset.
Future research could investigate the model’s scalability and performance on larger
datasets with a broader range of cyber threats.

2. Real-time Performance: The SLSAT model’s ability to adapt to new and evolving
threats in real time is a significant advantage. However, future research could further
explore optimizing the model in streaming data performance.

3. Robustness: While the SLSAT model is designed to be robust to noise and other
perturbations in the data, future research could further investigate ways to improve
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its robustness. For instance, they are exploring new adversarial training techniques or
enhancing the CTGAN’s capacity to generate synthetic data that mimics rare events
or evolving complex patterns in the data.

4. Explainability:While the SLSATmodel’s superior performance is clear, it is essential
to understand how it arrives at its conclusions. Future research could investigate ways
to make the model’s decision-making process more transparent and interpretable,
especially for regulatory compliance.

5. Deployment: The SLSAT model’s real-world deployment raises several challenges,
such as integrating itwith existing cyber security infrastructure,managing themodel’s
computational resources, and ensuring data privacy and security. Future research
could address these deployment challenges to make the model more practical and
useful in real-world applications.

6. The proposedSLSATmodel has demonstrated excellent performance in cybersecurity
applications. It is a significant contribution to the field of cyber defense, as it provides
an intelligent and resilient solution for detecting and mitigating cyber threats in real
time.

Appendix 1

Fig. 3. The autonomous self-learning and self-adversarial training neural architecture
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Abstract. This paper aims to evaluate the state-of-the-art object detection net-
work; YOLOv5s (You Only Look Once version 5 small) for the detection of
underwater marine debris using AUVs. The development of machine learning and
AUVs for detecting marine debris is reviewed. In the paper, the YOLOv5s model
is trained on a marine debris dataset using transfer learning. Several other object
detection models are also trained on the same dataset for comparison. The results
of the trained models are evaluated and the YOLOv5s model is deployed on an
Android device to determine its suitability for real-time marine debris detection
onboard AUVs. Overall, the YOLOv5s was able to achieve high accuracy scores
of up to 91.2% and fast detection speeds of up to 20FPS on a Poco X3 Pro.

Keywords: Autonomous Underwater Vehicles · YOLOv5s ·Marine Debris
Detection · Intelligent

1 Introduction

In recent years, the pollution of oceans through the form of marine debris has been
increasing at a rapid rate. Multiple efforts have been implemented to curb the global
marine debris situation. Trawlers are the primary mode of monitoring/removing marine
debris, but this method can be labor-intensive and expensive. Additionally, there are
regions in the sea where trawling cannot be done e.g., regions where explosives or
ammunition have been disposed [1]. Thus, there is an increasing trend to develop AUVs
(Autonomous Underwater Vehicles) for monitoring marine debris. Currently, the main
limitations of AUVmarine debris detection are the need for quantitative datasets and the
usage of an object detection model that is well-suited for real-time deployment onboard
AUVs. This paper will evaluate using the YOLOv5s object detection model for detect-
ing marine debris. At the same time, four other established object detection networks,
namely Tiny-YOLOv3 (You Only Look Once version 3), Tiny-YOLOv4 (You Only
Look Once version 4), RetinaNet, and Faster R-CNN (Faster Regional-Convolutional
Neural Network), will also be trained under the same image dataset for comparison.
The YOLOv5s will subsequently be deployed on an Android application and tested on a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 479–490, 2023.
https://doi.org/10.1007/978-3-031-34204-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_39&domain=pdf
https://doi.org/10.1007/978-3-031-34204-2_39


480 K. Y. Chia et al.

mobile device to determine its suitability to be deployed on an AUV for real-timemarine
debris detection. AUVs are deployed for various marine applications, such as survey-
ing seabed environments and monitoring marine life. Several works have been done in
recent years to develop ROVs/AUVs for underwater object detection. The FeelHippo
AUV developed [2] can perform underwater object detection for both optical camera
and FLS (Forward Looking Sonar) images using the Faster R-CNN and SSD (Single
Shot Multibox Detector) object detection networks. The Intel Neural Compute Stick 2
and the NVIDIA Jetson Nano GPU were used to process the networks.

A Proof-of-Concept was implemented by [3] for an object detection network
deployed on an ROV tethered to a surface vessel. The R-CNN (Regions with Convolu-
tional Neural Networks) object detection model was trained using MATLAB to locate
and detect lionfish in live underwater footage. The ROV camera captures the video sent
to the surface vessel for processing and detection. Researchers [4] also developed an
ROV to perform object detection underwater. The experiment was conducted in an in-
house aquarium, with a Raspberry Pi camera system placed in the ROV and tethered to a
computer for object detection. The experiment utilized both transfer learning and learn-
ing from scratch. Transfer learning achieved 4% higher accuracy overall than training
the model from scratch.

The ‘SAILFISH’AUVdeveloped in 2021 [5] uses a Side-scan Sonar (SSS) for object
detection. The SC-CNN (Self Cascaded Convolutional Neural Network) is proposed to
perform image segmentation of SSS images. The sonar sends the images to an Nvidia
Jetson TX2 GPU onboard the AUV for object detection and image segmentation. The
PENGUIN AUV [6], a modified version of a drone that is available on the market, was
developed in 2020. The prototype PENGUINAUV utilizes an augmented camera device
to perform real-time marine debris detection using deep learning training methods and
an optical sensor to detect the type of debris material.

The research and development ofmarine debris detection have been increasing lately.
To detect marine debris autonomously, machine learning is applied to train object detec-
tion networks for marine debris detection and mapping. Researchers [7] developed four
object detection models (YOLOv2, TinyYOLO, Faster R-CNN, SSD) for marine debris
detection using transfer learning on anNvidia Jetson TX2GPU. Themodelswere trained
based on images from the JAMSTEC J-EDI (E-Library of Deep-sea Images) database,
comprising videos and images of deep-sea environments captured by submersibles and
ROVs.

A CNN (Convolutional Neural Network) model was developed by [8] that could
detect marine debris in FLS (Forward-Looking Sonar) images based on the traditional
sliding window approach. The images were captured using an imaging sonar inside a
water tank. Another team of researchers [9] trained the EfficientDet, DETR (Detection
Transformer), and Mask R-CNN networks to perform object detection on multiple sur-
faces and underwater debris datasets such as the TACO (Trash Annotations in Context)
and Trashcan Dataset.

A custom ResNet50-YOLOv3 network was developed [10] for detecting submerged
marine debris based on an image dataset curated from the JAMSTECE-Library of Deep-
sea Images (J-EDI). Similarly, a YOLOv3 object detection network was trained by [11]
for detecting marine debris and animals using an image dataset collected by air and
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underwater drones. The YOLOv3 network in this case utilizes the default Darknet-53
CNN backbone.

Several works have been done to develop marine debris datasets for machine learn-
ing usage, such as the dataset gathered by [12], which consists of seabed litter images
captured using a TUC (Towed Underwater Camera). A Forward-Looking Sonar marine
debris dataset was done by [13], which was captured in a water tank using an imag-
ing sonar. The MARIDA (Marine Debris Archive), created by [14], consists of marine
debris images captured through satellite data. Also, a surface marine debris dataset was
developed by [15] from aerial surveys using a UAV (Unmanned Aerial Vehicle). It is
noted that artificial environments such as tanks may have differences compared to the
actual marine environments in terms of lighting and water opacity. Also, marine debris
datasets captured using satellites or UAVs are unsuitable for underwater (ROV or AUV)
deployment.

Numerous studies have been done to deploy object detection networks on mobile
devices/Raspberry Pi/Nvidia Jetson GPUs onboard ROVs/AUVs for other underwater
detection purposes, demonstrating the feasibility of using AUVs to detect marine debris.
There are limitations regarding the deployment of AUVs for marine debris detection.
This paper aims to address the current limits of marine debris detection using AUVs by
providing the following main contributions:

• To train the networks (YOLOv5s, Tiny-YOLOv4, Tiny-YOLOv3, RetinaNet, and
Faster R-CNN) for marine debris detection using a standard dataset through transfer
learning.

• To compare the trained networks using mA P0.5and mAP0.5:0.95 scores, inference
speed, and model size.

• To deploy theYOLOv5s on a POCOX3ProAndroid device that can be augmented on
an AUV. Subsequently, the performance of the deployed YOLOv5s will be evaluated
based on inference speed and application size.

2 Methodology

The training and testing of the object detection networks are done using Google Colab
(GoogleCollaboratory),which allows the running of programs usingGoogle’s resources.
It is best suited for machine learning applications, where Google provides GPUs (Graph-
ics Processing Units). A total of five object detection networks will be trained on
the marine debris dataset: YOLOv5s, Tiny-YOLOv4, Tiny-YOLOv3, RetinaNet, and
Faster R-CNN. The training parameters are kept constant as much as possible for a fair
comparison of the networks.

2.1 Image Dataset

The marine debris image dataset used for this paper was obtained from the open-source
Trashcan dataset . It contains images of marine debris ROVs and marine animals/plants
taken from videos in the JAMSTEC (Japan Agency of Marine-Earth Science and Tech-
nology) E-Library of Deep-sea Images (J-EDI) which were captured by ROVs. Each
image is annotated to label the ground truth of any objects within the image as shown
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in the image (see Fig.1). The annotations for the ground truth bounding boxes in this
dataset are annotated in the form: ‘Class’, ‘centre x-coordinate’, ‘centre y-coordinate’,
‘width’, and ‘height’. The Roboflow platform was used to pre-process the images into
input sizes of 416 × 416 pixels and export them to respective formats for training the
five networks.

Fig. 1. Ground truth bounding boxes

There are 16 classes of objects. The classes include marine animals, plants, trash,
and ROVs. The ‘Animal etc.’ and ‘Trash etc.’ classes refer to instances that are not
substantial enough to be labeled as a single class in the dataset e.g., partially buried
marine debris, unknown/deformed trash objects, and other animals such as crab, eel,
fish and etc. A total of 7212 images were split into a training set, validation set, and
test set in proportions of 70%, 20%, and 10%, respectively. The images in the test set
should not be from the images used in the training and validation sets. Also, the dataset
should contain a fair distribution of classes to ensure proper training and evaluation.
Transfer learning was applied to train the models using the same marine debris dataset.
The training and evaluation were also carried out with the same input size of 416× 416
pixels. Transfer learning is a branch of machine/deep learning where a pre-trained object
detection network is further trained to detect objects of a specific application. To perform
transfer learning, an established pre-trained object detection network is selected. The
network is usually trained on a large object detection dataset beforehand. The Microsoft
COCO (CommonObjects in Context) object detection dataset is an example. The COCO
dataset serves as a popular benchmark to evaluate the performance metrics of different
object detection networks. The YOLOv5 object detection model is a pre-trained model
that has been trained on the COCO dataset.

All five models (YOLOv5s, Tiny-YOLOv4, Tiny-YOLOv3, RetinaNet, Faster R-
CNN) were trained using the same dataset on Google Colab Pro with a single Nvidia
Tesla P100 GPU. Using the same GPU allows for a fair comparison of inference speeds
and performance. The main performance metric used to measure the accuracy of the



Deep Transfer Learning Application for Intelligent Marine Debris Detection 483

models is the mAP (Mean Average Precision). mAP is the mean of all AP (Average
Precision) scores across all classes. AP represents the area under the Precision-Recall
curve and is calculated based on two metrics: Precision and Recall.

The precision and recall metrics are calculated using an IoU (Intersection Over
Union) threshold. IoU is a metric that calculates the area of overlap between the model’s
prediction and the ground truth. For example, if the IoU for a certain prediction is 0.9, and
the specified IoU threshold is 0.5, the prediction would be classified as a True Positive.
On the other hand, if the IoU for a prediction is 0.4 with a specified IoU threshold of
0.5, then the prediction would be classified as a False Positive. The mA P0.5 metric is
primarily used to compare the accuracy of the networks in this paper, and it represents
the mAP score of a network, based on an IoU threshold of 0.5. Another metric used to
evaluate the training process is the loss function, which represents the difference between
the ground truth and the prediction made by the model. The lower the loss value, the
more accurate the model is.

3 Transfer Learning of Models

A typical object detection network consists of three main parts: a backbone, a neck, and
a head. The backbone is a CNN that serves as the primary feature extractor. The neck
is an additional model that can be used for feature fusion to improve communication
within the network. The feature maps generated by the backbone and neck are fed to the
head. As stated earlier, transfer learning takes a pre-trained network and trains it on a
new set of data, which is the method applied in this paper.

CNNs operate based on the same concept as neurons in a human brain, with the
main function being the convolutional layers. Convolutional layers are equipped with
kernels/filters, and a kernel is essentially a grid of discrete numbers/weights. At the
start of the CNN training process, the kernel consists of random numbers. These num-
bers/weights are then tuned as the input is processed during training, to extract features
from the input more effectively. The convolutional operation is performed by sliding the
kernel over the input. For example, a 2× 2 randomweight-initialized kernel is processed
over a 4 × 4 input image, the dot products between the kernel and input matrices are
calculated, and the resulting vector is then summed to generate a single scalar value.
The entire process is repeated until the kernel slides over the entire input.

There are several variants of ResNet (Residual Network), with a varying number of
layers. The more layers, the deeper and more accurate the network will be. However,
this also results in increased computational requirements. ResNet50 is one of the more
popular ResNet variants, consisting of 49 convolutional layers with a Fully-Connected
layer. The central concept behind ResNet is the usage of shortcut connections, also
known as residual links, to enhance connectivity between layers, which is obtained by
plotting the Resnet50 layers through MATLAB’s Deep Learning Toolbox and Deep
Learning Network Analyzer.

YOLOv5 is a family of state-of-the-art object detection networks, comprising
five different sizes; YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
YOLOv5s was selected due to its fast detection speeds and sufficiently high accuracy.
The model is compound scaled in a similar method as EfficientNet. The backbone of
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YOLOv5 features the utilization of the Cross Stage Partial (CSP) network. The key to
usingCSP is the ability to reduce computation costs by reducing the parameters involved.
This is done by partitioning the feature map outputs in the CNN into two parts using a
cross-stage hierarchy. An SPP (Spatial Pyramid Pooling) layer is placed at the end of
the CNN to allow input images of different sizes into the CNN. Furthermore, a PANet
(Path Aggregation Network) is implemented as the neck of YOLOv5. Data is fed in a
bottom-up path, followed by an additional top-down path from the backbone to combine
the features from each level. Finally, the head of the YOLOv5 network creates three
different-sized feature maps to predict objects of different sizes.

Firstly, the content required for YOLOv5s and Pytorch is installed in the coding
environment as the YOLOv5s model is developed on the Pytorch framework. Next, the
marine debris dataset is uploaded to Roboflow, and imported in Pytorch YOLOv5 format
to the Google Colab notebook. After the content has been installed and imported, the
training can be carried out. A batch size of 16, along with 150 epochs, was selected for
training. The batch size indicates the number of images in the training set fed into the
object detection network before updating the network weights. Completion of an epoch
suggests that the network has processed the entire training set for one pass. In this case,
a batch size of 16 would mean that the training dataset is split into batches of 16 images
each, while 150 epochs would imply that the network has to process all the images in
the training dataset for a total of 150 times. The COCO pre-trained YOLOv5s weights
are then specified to be used for training. The training took place on a Tesla P100 GPU,
as mentioned, achieving a mAP0.5 (Mean Average Precision) of 0.896 for the validation
set on the 150th epoch, which shows a steep rise in mAP at the start while gradually
stabilizing at the end as the learning rate decay starts to prevent overfitting.

After training, the Tensorboard toolkit was imported to plot training metrics such as
precision, recall, mAP, and loss graphs. The validation loss and mAP graphs are used to
evaluate the training process, and to determine if the model is overfitted or insufficiently
trained. The mAP and loss values started to plateau at a certain number of epochs,
and overfitting did not occur, which indicates an appropriate training duration. Upon
completion of training, the final weights at the 150th epoch were exported in Pytorch
format. Then, the trained YOLOv5s weights were evaluated based on the test dataset
with an example prediction as shown in the images (see Fig. 2). After evaluation, the
YOLOv5s achieved a test mA P0.5 score of 0.912 and inference speed of approximately
4.1ms per image for the test set.

Also, the AP0.5 (Average Precision at an IoU threshold of 0.5) scores for each class
were evaluated. It was observed that the YOLOv5s model attained high AP0.5 scores
for all classes, with the lowest AP0.5 of 0.726 and the highest AP0.5 of 0.992 as shown
in Table 1.

Overall, the trained YOLOv5s model was able to generate a high number of true
positive predictions across all classes. Among all the classes, the ‘rubber’ and ‘paper’
classes achieved nearly 100% true positive predictions as shown in the confusion matrix
inFig. 3.On the other hand, the ‘shells’ and ‘animal” class achieved the lowest percentage
of true positive predictions of 75% and 77% respectively. It can also be observed that the
‘thrash etc.’ class has the widest range of false positive and false negative predictions.
This would mean the ‘trash etc.’ class is easily confused by the YOLOv5s model with
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Fig. 2. YOLOv5s ground truth (left) and prediction (right)

Table 1. Top and Bottom Three AP0.5 Scores for Yolov5s

Class AP0.5

Shells 0.726

Starfish 0.826

Trash etc. and Animal etc 0.841

Fabric 0.938

Rubber 0.988

Paper 0.992

other classes during inference. This is expected as many possible objects can belong
to the ‘trash’ class and it is difficult to accurately train the model to predict all the
possibilities.

The YOLOv3 object detection network is a one-stage object detector developed
in 2018. The CNN backbone for the YOLOv3 is the Darknet-53 network, which has
53 convolutional layers. An FPN (Feature Pyramid Network) functions as the neck,
where information is fed in a top-down path from the backbone. The FPN combines the
output from the CNN with a top-down path, along with side-by-side connections. This
effectively forms a dense, multi-scale feature pyramid, and the pyramid can be used to
output feature maps of varying scales to the YOLOv3 detector head for classification
and prediction.

The YOLOv4 object detection network is a successor to the previous YOLO net-
works. It utilizes the CSP (Cross Stage Partial) network like YOLOv5, along with the
Darknet-53 CNN as the backbone. RetinaNet is a one-stage object detection model
developed based on a ResNet (Residual Neural Network) and FPN (Feature Pyramid
Network) backbone. The key feature introduced in RetinaNet is the usage of focal loss,
which targets to remove the imbalance between classes by reducing the weights for easy
detections and increasing weights for harder detections. As a result, this reduces the
total loss contribution from easy detections, and more emphasis is placed to correct the
harder detections. In contrast to the previous models, Faster R-CNN is a two-stage object
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Fig. 3. YOLOv5s confusion matrix

detection network that utilizes the technique of RPNs (Region Proposal Networks) to
perform detection. A region proposal network in the CNN processes an input image and
produces region proposals based on the likelihood that an object is in that region, also
known as an objectness score.

4 Comparison of Models

The accuracy metric used to compare the five models is the mA P0.5 Mean Average
Precision based on an IoU threshold of 0.5), as shown in Table 2. ThemAP0.5 values are
the mA P0.5scores achieved by the trained models when performing on the test dataset.
Table 2 shows that the YOLOv5s achieved the highest test mA P0.5 of 0.912, with the
Tiny-YOLOv4 coming second with a mA P0.5 of 0.874. The Faster R-CNN model has
a slightly lower mA P0.5 of 0.808 despite being a two-staged detection network. On
the other hand, the Tiny-YOLOv3 scored the lowest mAP0.5 of 0.700 out of the five
models. As the mA P0.5 metric is used to evaluate the accuracy of a model, with higher
mA P0.5 representing higher accuracy, it can be deduced that the YOLOv5s is the most
accurate out of all five models, when evaluated using an IoU threshold of 0.5.

As seen in Table 2, the Tiny-YOLOv4 and Tiny-YOLOv3 networks have the fastest
inference speeds of 3.1ms and 3.3ms, respectively. The YOLOv5s model has a slightly
longer inference time of 4.1ms.On the other hand, theRetinaNet and Faster R-CNNhave
significantly slower inference speeds of 53 ms and 54 ms, respectively. This indicates
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that the YOLO object detection networks (YOLOv5s, Tiny-YOLOv4, Tiny-YOLOv3)
are more suited for deployment on smaller devices due to their fast inference speeds.
To be suitable for real-time deployment onboard an AUV, the object detection network
must be fast, lightweight, and utilize minimal processing power simultaneously. Smaller
AUVs may only have space for smaller processing units with less storage space. After
training, the weights of the five trained networks are exported and downloaded. Table 2
shows the size of the model weights after export in MB (megabytes).

Based on the comparisons made in the previous sections, it is evident that the
YOLOv5s and Tiny-YOLOv5 networks excel in accuracy, speed, and size. The
YOLOv5s weights have the smallest size of 14.1 MB, followed by the Tiny-YOLOv4,
with a size of 22.5 MB. On the other hand, the Faster R-CNN and RetinaNet models
have a significantly large size of 315MB and 278MB, respectively. Again, this indicates
that the YOLO networks are better suited for deployment on smaller processing units.
As such, a further comparison is made for the two networks using another accuracy
evaluation metric known as the mA P0.50.95, the average of Mean Average Precision
scores calculated over an IoU threshold range of 0.5 to 0.95, with a step size of 0.05.

Table 2. Comparison of all Metrics with Top Scores

Object Detection Model mAP 0.5 Inference Speed (ms) Size (MB)

YOLOv5s 0.912 4.1 14.1

Tiny-YOLOv4 0.874 3.1 22.5

Tiny-YOLOv3 0.700 3.3 34.7

RetinaNet 0.851 53 278

Faster R-CNN 0.808 54 315

YOLOv5s network generally performs better at higher IoU thresholds, indicating that
the YOLOv5s is more accurate at predicting the locations of the bounding boxes closer
to the ground truth. After evaluating the results, it was observed that all the models were
able to achieve high AP scores for most of the classes in the ‘trash’ category, with the
only exception being the ‘trash’ class, which appeared in the bottom three AP scores for
YOLOv5s, Tiny-YOLOv4, and RetinaNet. The ‘trash etc.’ class can be easily confused
with other classes, as proven by the YOLOv5s confusion matrix. Also, it was observed
that all the models scored lower AP scores for classes in the ‘animals’ category, with
the ‘shells’ class appearing in the bottom three AP scores for all five models. However,
this is not a huge concern as the primary aim of the models is to detect marine debris
accurately. Overall, it was observed that most of the one-stage detectors performed
better. Besides the Tiny-YOLOv3, all the one-stage detectors outperformed the Faster
R-CNN two-stage detector in terms of accuracy. YOLOv5s is the best performer in
accuracy with mA P0.5:0.95 of 0.663 compared to Tiny-YOLOv4 of 0.589. In terms
of processing speed, the YOLOv5s is slightly slower than the Tiny-YOLOv4, but it is
better at predicting the exact locations of the bounding boxes, as proven by its higher
mA P0.5:0.95 score, as well as a smaller model size.
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5 Deployment

Development of the application was done on Android Studio, along with Android SDK
(Software Development Kit), as shown in Fig. 4. Firstly, the YOLOv5s model was con-
verted to TFLite (Tensorflow Lite) FP16 (Half Precision Floating Point) format, which
allows for Android deployment using the Tensorflow Lite framework. The converted
YOLOv5s TFLite FP16 format has a size of 13.87 MB. The code for the Android appli-
cation was written on Android Studio and is based on the official Tensorflow Android
object detection example. The Android project file is based on Tensorflow, with amend-
ments made to the codes to support the trained YOLOv5s model. Firstly, the YOLOv5s
TFLite model was imported into the Android project. The final build is built through
Android wireless debugging. The Android application was tested on video footage from
the JAMSTEC JEDI dataset. Overall, the average inference time was about 50 to 80ms
on a POCO X3 Pro Android device with a Qualcomm Adreno 640 GPU. This speed
is approximately 12.5 to 20 FPS (Frames Per Second). The application’s performance
varies greatly across different devices, depending on the GPU of the device. There is
also an option to configure the application to run on CPU or GPU. However, running on
CPU results in much slower inference speeds of 360 to 400ms on the POCO X3 Pro,
which translates to approximately 2.5 to 2.7 FPS. The HYPER-DOLPHIN ROV used to
capture images and video footage for the JEDI dataset has a maximum forward speed
of 3knots (approximately 1.54m/s). Similarly, if an AUV moves across the seabed at an
average speed of 1.5 to 2 m/s in a straight-line path for surveying, this means that the
Android application would be able to process a range of between 8.33 to 10 frames per
meter of seabed based-on a detection speed range of 12.5 to 20FPS.

Fig. 4. Android Application real-time inference

6 Conclusion

This paper developed and evaluated the performance of five object detection networks
for marine debris detection onboard AUVs. Among the five models, it was concluded
that the YOLOv5s model was best suited for underwater marine debris detection due to
its high accuracy, speed, and size. The YOLOv5s model was successfully deployed on a
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POCOX3 Pro, demonstrating decent speeds of 12.5 to 20FPS, with high accuracy scores
of up to 91.2%. Object detection networks can also be trained to perform other functions,
such as hull inspection and ship navigation. The object detection software onboard the
AUV can be programmed to process images at a specific interval. Each processed image
is subsequently tagged with geolocation data. This information can then be evaluated
to identify locations with a higher concentration of marine debris so that removal can
be performed efficiently. Further work will allow the Android application to utilize
geotagging algorithms to assign latitude and longitude data to a predicted image.
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Abstract. The need for accurate time series forecasting has questioned
the potential of Federated Learning (FL) in solving regression problems
with privacy-preserving and collaborative prognosis requirements. While
recent Machine Learning (ML) studies have shown accurate predictions
in time series forecasting using functional principal component analysis,
the potential of integrating this approach with FL has not been previ-
ously evaluated. This paper depicts the potential of combining func-
tional time series regression with FL through the implementation of
a Functional Multilayer Perceptron (FMLP). Experimental results on
one of the most innovative industrial maintenance strategies, Predic-
tive Maintenance (PM), demonstrate that the integration of FMLP with
the well-known Federated Averaging (FedAvg) algorithm achieves accu-
rate time series forecasting while preserving data privacy. These results,
obtained using NASA C-MAPSS datasets, outperformed traditional ML
and Deep Learning (DL) approaches in estimating the Remaining Useful
Life (RUL) of aircraft components.

Keywords: Machine Learning · Federated Learning · Functional
Multilayer Perceptron · Predictive Maintenance · Remaining Useful Life

1 Introduction

Time series forecasting analyses time series data to predict future states within
a period or at a specific point in the future. Collecting this kind of data refers to
measuring a particular process by recording observations over an equally spaced
period [1]. The need for accurate forecasts has gained attention in decentralized
data scenarios where data collection and analysis are conducted in multiple iso-
lated silos [2]. This is particularly relevant in many industrial applications, where
data may be distributed across different machinery, and maintaining data pri-
vacy and security is crucial [3]. In such scenarios, the application of the privacy-
preserving and distributive Machine Learning (ML) named Federated Learning
(FL) offers a promising solution [4] (Table 1).

Federated Learning enables local training of ML models while aggregating
only their weights [5]. This ensures that sensitive data remains with its owners
while allowing for improved model performance. However, regression problems
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Table 1. Variables used to describe the FMLP model in Federated Learning

Functional Multilayer Perceptron

D Centralized dataset βk,m,p Learnable parameters
N Number of samples of D W Functional weight space
M Number of features Wk,m W for k neurons and m features
X Sample space of D P Meaningful curves
Y Label space of D PFV E FVE hyperparameter of PCA
T Size of the time window σ Activation function
Xi i−th input sample, s.t. i = 1, . . . , N μ Borel measurement ∈ R

T

Yi Label of Xi s.t. i = 1, . . . , N φm,p Eigenvectors
XT×M Shape of the i-th input sample λm,p Eigenvalues
b Learnable parameters ∈ R η Step-size of SGD algorithm
Federated Learning

J Number of parties κ κ-th global model computation
j j-th party wj

κ Weights of j at κ-th time
Dj Dataset of j w Weights of global AI model
N j Dataset size of the j w∗ Optimal weights of global model
Y j Label space of j F j

κ(wj) Loss function of j at κ-th time
E Number of local training epochs F (w) Global cost function
K Number of model aggregations

using FL approaches have been limited to adopting traditional ML and Deep
Learning (DL) approaches, whose final models often suffer notable performance
losses in distributed scenarios compared with a centralized data scenario [2,3].
This has raised doubts about the potential of FL in regression problems. As a
response, this paper adopts a time series forecasting approach that uses func-
tional data as inputs of a neural network and evaluates its potential in the context
of FL. Specifically, we draw on the promising results of functional data analysis
in discovering and learning important sources of pattern and variation among
data [7–9]. To evaluate this proposal, we implement a Functional Multilayer
Perceptron (FMLP) algorithm in conjunction with the well-known Federated
Averaging (FedAvg) algorithm [10].

The integration of FMLP with FL is evaluated through experiments on Pre-
dictive Maintenance (PM), one of the most innovative industrial maintenance
strategies. The experiments were conducted using NASA C-MAPSS datasets and
three popular metrics for Remaining Useful Life (RUL) estimation. The results
demonstrated the competitiveness of the proposed approach, outperforming pre-
vious estimations using traditional ML and DL approaches developed in a cen-
tralized data scenario. Additionally, the proposed approach improved the lifetime
predictions of an air fleet of aircraft engines collaboratively, thereby establishing
its potential for industrial applications.
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The contributions of this paper can be summarized as follows:

– The combination of functional time series forecasting using FMLP with
FL in a horizontal data partitioning setting that refers to multiple parties
analyzing the same input variables but different samples. The implementation
of the well-known FedAvg algorithm of FL, which uses Stochastic Gradient
Descent (SGD), is available in the following GitHub repository:
https://github.com/rhllasag/FunctionalMultilayerPerceptronInFederatedLearning.

– Performance improvements in RUL estimation of aircraft engines compared
with previous studies. These advances are achieved by conducting a hyperpa-
rameter grid search approach that includes the Fraction Variance Explained
(FVE) PFV E of Principal Component Analysis (PCA) as a variable.

2 Literature Review

2.1 Functional Time Series Forecasting

The time series data analysis begins by performing statistics in time domains
to find patterns and variations among stationary signals [12]. In the presence of
smooth non-stationary signals, functional versions of these elementary statistics
have been demonstrated to be a promising alternative, for example, functional
means, variations, correlation and covariance [13]. The Functional Time Series
(FTS) method is used to decompose smooth curves into a set of functional
principal components and associated scores via Functional Principal Component
Analysis (FPCA) [14].

At the beginning of the 21st century, studies have reached promising one-
step-ahead and multi-step-ahead forecasts of functional time series using FPCA
[7,8]. These studies have recently derived promising results in age-specific mor-
tality rate prediction using ML-based FTS forecasting [9,11]. Mortality rate
prediction data present features (e.g. geographic region or socioeconomic status)
that usually contain heterogeneity and deteriorate the forecast results. Since
decomposing functional time trends was helpful in this particular case to iden-
tify functional patterns, this research assumed that it is not the only case in
which FTS can be applied.

In [7], Functional Multilayer Perceptron (FMLP), an extension of the clas-
sic Multilayer Perceptron (MLP) to functional inputs, was designed to learn
the underlying structure of continuous and smooth curves by adding a func-
tional hidden layer before numerical hidden layers. Since it is not possible to use
directly functional data as input to a numerical MLP, mainly because evaluation
points depend on the function, functions of a finite number of observations and
variables are built [6]. While FMLP has shown promising results compared to
traditional and DL (e.g. MLP [3], Convolutional Neural Network (CNN) [15],
Long-Short Time Memory (LSTM) [16], and others) approaches by consider-
ing signal variability instead of directly mapping vectors, its potential in FL
scenarios has yet to be fully explored.

https://github.com/rhllasag/FunctionalMultilayerPerceptronInFederatedLearning
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2.2 Federated Learning

Federated Learning (FL) has emerged as a popular privacy-preserving and dis-
tributed Machine Learning (ML) technique for collaborative problem-solving in
scenarios where J parties face data scarcity issues [3,4]. This technique enables
the training of ML models locally, allowing data owners to maintain their data
privacy [2]. Furthermore, this approach improves the problem by repeatedly
training, sharing and aggregating local models through a central server’s inter-
vention.

There are several FL algorithms in the literature to perform these standard
loop steps until the problem convergence is achieved [5]. The adoption of a spe-
cific algorithm depends on various factors, such as the business topology (B2B,
B2C), the type of problem (classification, regression or clustering), the data dis-
tribution setting (horizontal, vertical or hybrid), and the FL challenges (e.g.
system heterogeneity). Given the importance of FL in horizontal data partition-
ing, this paper implements the FedAvg algorithm based on SGD [10].

3 Forecasting Functional Time Series Using Federated
Learning

The functional time series forecasting problem considers functional inputs (vec-
tors) from R

n to predict a target variable from R. Functional Multilayer Percep-
tron (FMLP) is an extension of the standard Multilayer Perceptron (MLP), a
model constructed by adding a functional hidden layer before hidden numerical
layers [7]. The functional layer receives vectors and applies basis functions to
extract relevant features. A visual representation of this process, along with the
FMLP architecture, is depicted in Fig. 1.

Multiple curves are obtained by monitoring a certain process through mul-
tiple variables (M features). To represent M curves as a finite set of values
functions, the i-th input sample of size R

T×M is assumed to be composed of
T-dimensional curves. Therefore, Xi can be written as [Xi,1(t); . . . ;Xi,M (t)] s.t.
t = 1, . . . , T . Considering a target variable Yi for this sample, this problem aims

Fig. 1. Functional Multi-Layer Perceptron architecture and input data
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to learn a mathematical mapping from Xi to Yi. This is essentially learning the
following mapping from continuous observations.

Yi = F (Xi). (1)

3.1 Functional Neurons

A classical MLP neuron maps an input x to the real output σ(wx+ b), where σ
is an activation function from R to R, w a vector from R

n, and b the bias term.
In this expression, wx is a linear expression in R

n space that restricts MLP to
finite-dimensional inputs [7]. If it is considered a general vectorial input space
X, a weight W from Xi can be used, for example, a set of continuous linear
forms on X.

Literature generalizes to this neuron mapping as σ(W (X)+b), where W (X) is
the generalization of wx to arbitrary vectorial space. Because this manipulating
linear forms on arbitrary vectorial space is simply impossible, the restriction to
use functional inputs was proposed in [6–8,14,17].

The most common way to work with weight functions is configuring B-splines
[7]. However, for the current experiments, μ is assumed a Borel measure ∈ R

T

and Xi a Lp(μ) space of measurable functions f from R
T to R s.t. ∈ |f |pδμ < ∞.

By assuming so, we can define a neuron that maps elements of Lp(μ) (where q
is the conjugate exponent of p) to R. In consequence, the real output of the
functional hidden layer H(Xi) composed of K neurons is given by:

H(Xi) =
K∑

k=1

σ(bk +
∫

WkXiδμ), (2)

where bk are real numbers and Wk are functions in Lq(μ).

3.2 Functional Multilayer Perceptron

Adding a hidden layer comprising K functional neurons and its correspond-
ing weight function H(Xi, β) involves optimizing learnable parameters β and
associated biases b. This computation can be performed by assuming an obser-
vation measure μ and M functional feature curves of the i-th sample denoted as
Xi = [Xi,1(t); . . . ;Xi,M (t)] s.t. t = 1, . . . , T .

H(Xi, β) =
K∑

k=1

σ

(
bi +

∫

t∈T

Wk,p(βk,m, t)Xi,m(t)δt
)

(3)

By conducting Functional Data Analysis (FDA), weight function Wk,p(βk,m, )
enables the weight function H to be easily computable by performing Principal
Component Analysis (PCA). Furthermore, this approach allows the restriction
of analysis to the P most relevant components by defining a maximum Frac-
tion Variance Explained (FVE) PFV E . In practice, this PFV E hyperparameter
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prioritizes using the functional components P that contain the most valuable
information.

Wk,p =
√

M

P∑

p=1

βk,mφm,p (4)

Considering a normalized input space Xi ∈ [0, 1], covariance function Covm(c, d)
is used to quantify the correlation between the m-th sensor measurements at any
two time points s and t within the period T . Then, eigenvectors φ and eigenvalues
λ are calculated by performing PCA using the corresponding covariance matrix:

Covm(s, t) =
1

T − 1

T∑

i=1

[
Xi,m(s) − X̄m(s)

] [
Xi,m(t) − X̄m(t)

]
, (5)

where X̄m(s) = 1
T

∑T
i=1 Xi,m(s). Then, eigenvalues are solutions from the fol-

lowing computation

λm,pφm,p(t) =
∫

Covm(s, t)φm,p(s)δs. (6)

Forward propagation step: before any learning step, lets recall that covari-
ance matrix Covm that quantifies the correlation between two time points from
Xi ∈ R

T×M is square. This enables estimating the integral term of Eq. 3 using
the approximator

1
M

M∑

m=1

Wk,p(βk,m, t)Xi(t). (7)

After all numerical hidden layers process the output of H, the output Ŷ and
the corresponding error can be computed using any statistics, for example, the
Root Mean Squared Error (RMSE).

RMSE =

√√√√ 1
N

N∑

i=1

(Yi − Ŷi)2 (8)

Backward propagation step: assumes that there is a δWk,m(βk,m,p,t)
δβk,m,p

exist
almost everywhere for t ∈ T . However, there is still a problem with directly
computing the second integral term of

δH(Xi, β)

δβk,p
=

K∑

k=1

σ′
(

bi +

∫

t∈T
Wk,p(βk,m, t)Xi(t)δt

) (∫

t∈T

δWk,m(δβk,m, t)

δβk,m
Xi(t)δt

)
.

(9)
One way to resolve this concern is by approximating it using the below-

mentioned expression.

δWk,p(βk,m, t)
δβk,m

=
P∑

p=1

φm,p(t) (10)
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3.3 Federated Averaging: FedAvg

The Federation of FMLP models assumes that a centralized dataset D, composed
of N samples and M features, can be distributed among J parties. Because
these experiments consider a horizontal data partition, parties share the same
features but differ in sample space. In other words, the j-th party’s dataset
Dj is composed of N j samples, s.t. N =

∑J
j=1 N j . This implies that every

party has its own input space Xj label map Y j and local weights wj. Because
the collaborative problem is solved by implementing the SDG-based algorithm
FedAvg, the central computational server generates initial weights w0 at zero
time and shares with parties. Federated Averaging (Algorithm 1) improves the
solution of the problem by performing the following key steps: model download
2, local training (Line 4), model uploading (Line 5), and computing of the global
model (Line 7). In this configuration, the local problem of party j at κ time refers
to minimizing the local cost function F j

κ(w
j) by measuring a loss function fi in

the local sample space

wj � argminF j
κ(w

j) =
1

N j

Nj∑

i=1

fi(wj). (11)

After computing the global model K times (Line 7), optimal weights w∗ are
obtained by solving the global cost function F (w), s.t.

w∗ � argminF (w). (12)

Algorithm 1. Federated Averaging at κ time
Input: Step-size η, Epochs E, Global weights wκ, Parties J , Local samples N j

Output: Global weights wκ+1 at time κ + 1.
1: for e = 1, 2, . . . E do
2: The server sends wk to parties .
3: for j = 1, 2, . . . J do
4: Using N j samples, j updates wk on F j

κ(wj) with η to obtain wj
κ+1.

5: Each party sends wj
κ+1 back to server .

6: end for
7: The server aggregates weights as wκ+1 =

∑J
j=1 Njwj

κ+1
N

. In the case of the
functional hidden layer, βj and bj are considered instead of wj.

8: end for

4 Experimental Setup

The proposed approach has been evaluated within the context of a novel indus-
trial maintenance strategy called Predictive Maintenance (PM), which relies on
Condition Monitoring (CM) data to predict the Remaining Useful Life (RUL) of
machinery. Accurate RUL prediction is essential to minimize unexpected mainte-
nance and prevent accidents. However, data-driven methods for RUL prediction
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have been limited by a need for sufficient degradation data [18]. To address
this gap, Federated Learning (FL) has emerged as a promising approach for
privately aggregating knowledge from multiple data owners. Using Turbofan
Engine Degradation Simulation datasets provided by NASA - Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) [19], the RUL estimation
accuracy of a centralized data scenario (Sect. 4.1) is compared with a horizontal
federated scenario with a different number of parties (Sect. 4.2).

4.1 Remaining Useful Life Estimation of Aircraft Engines

C-MAPSS datasets are composed by observing multiple engines identified by a
unique number id. Each engine is monitored by 21 sensors and three operat-
ing settings (Altitude, Mach number and Throttle Angle Resolver) along sev-
eral operating cycles (flight hours), composing a single run-to-failure trajectory.
Besides input sensor data, this group of four datasets provides values for the
target vector RUL. For FMLP learning purposes, curves of sensors data are
normalized as follows:

Curvem =
Curvem − minCurvem

maxCurvem − minCurvem
, (13)

limiting to σ process values within [0, 1]. This implies a short consideration when
computing the final estimation ˆRUL. Given a piece-wise degradation function
f(t) of two health degradation stages (imperceptible and abnormal)

f(t) =
{

Rc if 0 ≤ t ≤ tSoF

tEoL − t if tSoF ≤ tEoL
, (14)

ˆRUL = Ŷ × Rc and RUL = Y × Rc. This is because an initial constant RUL
value Rc is considered. After crossing a start to failure tSoF point, the RUL
linearly decreases until the tEoL last operational cycle. Considering that a single
run-to-failure trajectory can be reshaped to multiple samples of size Xi ∈ R

T×M ,
and hi = ˆRULi − RULi, the accuracy of FMLP can be evaluated by any cost
function, for example, Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Score.

MAE =
1
N

N∑

i=1

|hi| (15)

Score =

{∑Nj

i=1 (e
−hi
13 − 1) if hi < 0

∑Nj

i=1 (e
hi
10 − 1) if hi ≥ 0

(16)

4.2 Horizontal Data Partitioning

Federated Learning evaluations are conducted on four FD00x datasets. Each
dataset exhibits unique properties based on a combination (x, op, fm) of oper-
ating conditions oc and failure modes fm. The analysis of an array of multiple
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settings [(1, 1, 1), (2, 6, 1), (3, 1, 2), (4, 6, 2)] allows for more robust conclusions to
be drawn from the data. This analysis considers the differences among FD00x
datasets outlined in Table 2, which are related to the number of run-to-failure
trajectories available in the training and testing data sets. While the testing sets
are used to make maintenance decisions and evaluate the precision of the RUL
estimation, the training sets are used to train the FMLP model. In local training
and evaluation procedures, 85% and 15% of the available data of the training
set of each FD00x dataset are used.

The horizontal data partitioning is outlined in Table 2, where each FD00x
dataset is divided at J parties. Conducting a systematic sampling using the Jn
criterion, party j gets run-to-failure trajectories of D with a step of J starting
from the j-th and ending in n. Clearly, n refers to the number of trajectories
of training sets, while no systematic sampling refers to centralized data experi-
ments.

Table 2. Number of run-to-failure trajectories per party at each FD00x dataset.

Dataset J Systematic sampling FD001 FD002 FD003 FD004

Training 1 None 100 260 100 249
2 2n ≈50 ≈134 ≈50 ≈124
4 4n ≈25 ≈67 ≈25 ≈62
8 8n ≈12 ≈33 ≈12 ≈31

Testing 1 None 100 259 100 248

5 Results and Analysis

This section describes the results of experiments conducted on a computer with
AMD Ryzen 9 3900X 12-Core processor, 64 GB RAM, NVIDIA GeForce RTX
3080 GPU, Ubuntu 20.04 LTS 64-bit operating system and MATLAB R2021a.

5.1 Centralized Data Scenario

The development of accurate models for this scenario requires adjusting the time
window dimension T . This is because the last operating cycle tEoL of each run-to-
failure trajectory varies, and if T > tEoL is accomplished, there is the possibility
of losing valuable information. This risk was accepted by setting T = 31 at every
dataset.

Using all run-to-failure trajectories of each FD00x training set, 30 FMLPs
were developed using different initial weights w0 to define baseline comparisons
with standard deviation for FL scenarios. Particularly, those 30 models were
trained using the hyperparameters in the blue colour of Table 3. Those hyperpa-
rameters, combined with sigmoid activation functions and early stopping criteria
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Table 3. Hyperparameter tuning

Hyperparameter Search Range

Functional neurons 4, 8, 16, 20
Numerical layers 1, 2, 3
Neurons in the first numerical layer 2, 4, 8, 16
Neurons in the second numerical layer 2, 4, 8, 16
Step-size η 0.1, 0.01, 0.001, 0.0001
PFV E Fraction Variance Explained 80%, 85%, 90%

waiting for performance losses during eight epochs, were defined after conducting
a grid search method for a single FMLP construction.

Evaluating the RUL prediction on each FD00x testing set, RMSE values
15.68±0.75, 16.27±1.55, 12.93±0.67 and 14.63±0.97, and Scores 72.76±3.33,
207.94± 21.22, 72.12± 5.30 and 210.44± 17.99, partially outperformed previous
FMLP studies [6,7]. Indeed, those results, outlined in the centralized-data block
of Table 4, also outperform previous studies using CNN [15] and LSTM [16].

5.2 Federated Scenarios

Federated scenarios consider multiple parties. Therefore, FMLP models for these
scenarios, depending on the FD00x dataset adopted, were trained using the run-
to-failure trajectories outlined in Table 2, where J > 1. To ensure an accurate
evaluation, 30 global FMLPs were developed for each J and FD00x combination,
similar to the centralised data scenario. Blue values in Table 4 indicate that the
RUL estimation of the global FMLP outperformed the evaluation metric of the
centralized data scenario.

In our experiments, RUL estimation performance achieves the highest accu-
racy when PFV E = %90. Therefore, it is evident that parties find similar vari-
ation patterns by discarding a %10 of variance. This short variation percentage
may be associated with pure noise because averaging model weights using FedAvg
does not affect the RUL estimation accuracy of federated models. The non-blue
values of the right block of Table 4 indicate the cases in which global FMLP
models lost a bit of performance compared to centralized data scenarios. Given
the similar results presented in [6] for these cases, the integration of FMLP and
FL algorithms appears to be a promising approach.

Besides comparing models from centralized data and federated scenarios,
experiments on FL also considered comparing models trained using local data
of each party j with models developed in a federated scenario. Results of
these experiments, depicted in Table 5, show that parties presented performance
improvements in at least two evaluation metrics using the FedAvg algorithm. It
can be noticed by comparing the results of the left and right blocks of Table 5,
where four nodes trained and tested 30 models using run-to-failure trajectories
from training and testing sets of the FD004 dataset.



Forecasting Functional Time Series Using Federated Learning 501

Table 4. Performance of RUL prediction by training 30 FMLPs with different w0.

Parties J Centralized-data Federated Averaging

FD001 MAE RMSE Score MAE RMSE Score
2 10.98 ± 0.64 15.68 ± 0.75 72.76 ± 3.33 13.29 ± 1.11 18.22 ± 0.38 87.70 ± 3.87

4 12.31 ± 0.62 18.18 ± 0.48 82.30 ± 3.28

8 11.75 ± 0.59 18.12 ± 0.59 79.01 ± 3.57

FD002 MAE RMSE Score MAE RMSE Score
2 12.10 ± 1.61 16.27 ± 1.55 207.94 ± 21.22 11.83 ± 0.85 16.32 ± 1.07 202.40 ± 13.41

4 11.71 ± 0.67 16.30 ± 0.71 197.61 ± 8.76

8 11.63 ± 0.73 16.46 ± 0.69 196.44 ± 10.23

FD003 MAE RMSE Score MAE RMSE Score
2 8.00 ± 0.69 12.93 ± 0.67 72.12 ± 5.30 7.41 ± 0.35 13.89 ± 0.36 67.65 ± 2.42

4 7.21 ± 0.43 14.10 ± 0.48 66.59 ± 3.12

8 6.66 ± 0.25 14.02 ± 0.28 63.08 ± 1.79

FD004 MAE RMSE Score MAE RMSE Score
2 9.51 ± 1.02 14.63 ± 0.97 210.44 ± 17.99 13.52 ± 1.36 18.44 ± 0.74 89.03 ± 7.96

4 12.48 ± 0.59 18.28 ± 0.50 83.23 ± 2.99

8 11.69 ± 0.58 18.06 ± 0.39 79.18 ± 2.97

Table 5. Performance of FMLPs trained with local data Dj and using FedAvg.

Party j Local data Dj Federated Averaging

FD004 MAE RMSE Score MAE RMSE Score
1 9.33 ± 0.70 14.96 ± 0.73 211.31 ± 10.78 12.51 ± 0.60 18.28 ± 0.50 83.23 ± 3.02

2 12.22 ± 4.25 17.31 ± 3.30 266.33 ± 84.14

3 9.86 ± 2.39 15.77 ± 1.79 221.31 ± 41.86

4 12.58 ± 3.92 17.44 ± 3.15 271.65 ± 77.67

A visual representation of the potentiality of FMLPs in FL is depicted in
Fig. 2, where blue curves refer to the ground truth RUL, and oranges curves
refer to the estimated curve ˆRUL. In this figure, the most promising result
refers to the 25th trajectory of the FD004 data split because predictions are
close to the real RUL but allow to dispatch of early maintenance alerts.
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Fig. 2. RUL prediction using C-MAPSS dataset.

6 Conclusion and Future Works

Regardless of the Federated Learning (FL) context, functional time series fore-
casting has demonstrated superior performance to typical Machine Learning
and Deep Learning approaches. Therefore, a Functional Multilayer Perceptron
(FMLP) was implemented using Principal Component Data Analysis (PCA) and
a grid search approach, which includes the Fraction Variance Explained (FVE)
PFV E as a hyperparameter. The selection of PFV E has allowed prioritizing using
functional components P that contain the most valuable information, improving
the FMLP model accuracy.

Our experiments on Remaining Useful Life estimation demonstrate the com-
petitive performance of Functional Multilayer Perceptrons (FMLP) for time
series forecasting in Federated Learning (FL) using horizontal data partition-
ing. Given the promising results obtained, collaborative time series forecasting
using FMLP and FL seems promising in cases where features present contain
heterogeneity.

Given the implementation of Federated Averaging, a basic FL algorithm
based on Stochastic Gradient Descent (SGD) minimization, this research enables
researchers to explore more advanced and potentially more accurate solutions.
Despite our experiments being limited to a collaborative prognosis problem, inte-
grating FMLP with FL enables exploring multiple research areas, mainly when
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features of time series datasets present heterogeneity and can deteriorate the
forecast results.

Leveraging the capability of our approach in feature reduction and feature
selection (selection of most influential functional components), we propose to
evaluate the use of FMLP in FL scenarios in which datasets from multiple par-
ties may differ in feature space. Particularly in FL literature, data distribution
topologies considering parties varying in feature space are called vertical and
hybrid data partitioning settings.
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Abstract. Human Activity Recognition (HAR) plays a significant role
in recent years due to its applications in various fields including health
care and well-being. Traditional centralized methods reach very high
recognition rates, but they incur privacy and scalability issues. Fed-
erated learning (FL) is a leading distributed machine learning (ML)
paradigm, to train a global model collaboratively on distributed data in
a privacy-preserving manner. However, for HAR scenarios, the existing
action recognition system mainly focuses on a unified model, i.e. it does
not provide users with personalized recognition of activities. Further-
more, the heterogeneity of data across user devices can lead to degraded
performance of traditional FL models in the smart applications such as
personalized health care. To this end, we propose a novel federated learn-
ing model that tries to cope with a statistically heterogeneous federated
learning environment by introducing a group-personalized FL (GP-FL)
solution. The proposed GP-FL algorithm builds several global ML mod-
els, each one trained iteratively on a dynamic group of clients with homo-
geneous class probability estimations. The performance of the proposed
FL scheme is studied and evaluated on real-world HAR data. The evalu-
ation results demonstrate that our approach has advantages in terms of
model performance and convergence speed with respect to two baseline
FL algorithms used for comparison.

Keywords: Federated Learning · Clustering · Eccentricity Analysis ·
Non-IID data · HAR

1 Introduction

With the recent development of edge devices, such as mobile phones, wearables,
IoT devices etc., a massive amount of data can be generated. Such data can be
utilized by training-based intelligent applications for human activity recognition
(HAR). Traditional solutions require sending these data to a central server and
training there in a centralized way. However, this introduces huge communica-
tion overhead, consumes network resources, and brings privacy concerns [1]. To
solve this problem, Google proposes a decentralized approach called Federated
Learning (FL), where model parameters instead of data are transferred between
the central server and edge nodes (called workers hereafter) [2]. A central server
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periodically sends the global model to a set of workers. These workers train the
shared model without sharing their private data to generate updated local mod-
els, which are later submitted to the server [3]. Finally, the server aggregates the
local models and generates a new global model. This process is repeated until a
satisfactory global model is obtained. This approach is called naive FL, because
the workers involved in training are usually randomly selected at each round,
and the trained parameters are aggregated by averaging. This scheme works
well for IID (independently identically distribution) data but has unsatisfactory
performance for Non-IID data [2]. Practically, the assumption to consider that
the local data of each edge device is always IID does not hold, often impacting
overall model performance. However, compared with IID data, Non-IID datasets
have significant variability in data class distribution and size [4].

Fig. 1. Comparison of three different federated learning scenarios: (i) the left plot
presents a setup in which each model is trained on the worker’s private data; (ii) the
middle plot is a scenario where a global model is built from the locally trained workers’
models; (iii) the right plot illustrates a setting accounting for similarity among the
workers and building a global model from the local models of each group of similar
workers.

Figure 1 illustrates the different ways to model FL. The traditional FL set-
ting, presented in the middle plot, assumes a federation of distributed workers,
each with its own private data. These workers join the FL global training to
achieve a better model performance. As a result, the global model is generated
from local models with different characteristics, derived from different types of
data. Thus, these different characteristics captured by the local models’ parame-
ters will be later mitigated when global aggregation occurs [5]. Furthermore, the
traditional FL paradigm faces fundamental challenges, such as heterogeneous
data across workers and a lack of solution personalization. In contrast to the
traditional FL paradigm, Personalized Federated Learning (PFL) addresses the
mentioned two fundamental challenges. PFL takes a completely local approach.
In this context, each worker represents a different ML task with a different data
distribution, and a private model for each task will be trained and used to deal
with the specific nature of the data. Therefore, the output is a unique personal
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model for each worker, but no peer learning [6]. This scenario is illustrated in the
left plot of Fig. 1. However, even though the tasks among workers are different,
it is reasonable to assume that there is similarity across different tasks. On the
other hand, in the traditional FL scenario (the middle plot of Fig. 1), in case
of imbalanced data, where each worker only has one specific class of data, the
results of averaging of the model parameters for producing an aggregated global
model can lead in a significant accuracy decrease, e.g., up to 11% for MNIST
and 51% for CIFAR-10 datasets, respectively are reported in [4].

Our proposed approach tries to tackle the discussed challenges and find a
trade-off between the two extreme cases described above. Namely, we propose
grouping workers based on their empirical probabilities, reflecting their current
data class distribution. In particular, the workers with similar empirical prob-
ability vectors are placed in the same cluster. Later when updating the global
model, we average the parameters from the same group. In that way, only local
updates uploaded by the workers within the same group will be aggregated.
Then in the next round, the aggregated group global model is sent to the same
group to train, as it is illustrated in the right plot of Fig. 1. Evidently, our pro-
posed Group-Personalized FL (GP-FL) algorithm is capable of training simulta-
neously several global models, one per each group of workers with similar activity
patterns. At each training round, each worker’s empirical probability vector is
updated in order to reflect the information in its new data batch. In addition,
cluster eccentricity analysis [7] is applied to the workers’ current grouping. In
that way, at the next round, some workers may change their cluster or even new
singelton clusters may appear.

The GP-FL algorithm has been evaluated in a set of experiments, based
on a well-defined evaluation setup in the HAR domain. The HAR problem is
well suited to our FL scenarios, because various activities tend to have generic
patterns while being highly idiosyncratic [8,9]. The performance of our GP-
FL algorithm is benchmarked to that of two other FL algorithms, Federated
Averaging (FedAvg) [2] and Clustered Federated Learning (CFL) [10]. GP-FL
demonstrates its superiority over both algorithms in the conducted experiments
with respect to the achieved performance.

2 Related Work

Recently we have witnessed a lot of attention on personalization in FL. Our pro-
posed work is related to PFL in HAR and distributed multi-task learning. We
explore some existing approaches related to those topics. For example, in [11]
a random forest based personalized FL model is proposed for recognizing many
human activities. In this work, the authors use local sensitivity hashing for cal-
culating the similarity between different users. Based on this similarity, a subset
of the top-k most similar users is selected for training the federated forest model
iteratively. In [12] a novel hybrid approach is suggested for HAR that combines
semi-supervised and FL settings to build a global model for privacy awareness.
Yu et al. [13] have developed a method that relies on a semi-supervised gradi-
ent aggregation strategy for activity detection using sensor data for online HAR
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tasks. In [14], the authors have proposed the FedStack framework, which sup-
ports ensemble heterogeneous architectural client models for mobile health sensor
datasets. FedStack has been applied to mobile health sensor data to recognize
12 different activities. Presotto et al. [15] have proposed FedAR: a novel hybrid
approach to unify federated learning with semi-supervised learning for activity
recognition on mobile devices. It relies on active learning and label propaga-
tion to semi-automatically annotate the local streams of unlabeled sensor data.
Tashakori et al. introduce in [16] a novel personalized semi-supervised learning
(SemiPFL) approach focusing on edge intelligence. SemiPFL creates a person-
alized autoencoder to enable learning from user data representation. In [17],
the authors have presented FedCLAR: a novel federated clustering framework
according to the similarity of the local updates for HAR. FedCLAR combines
federated clustering with transfer learning methods to reduce the non-IID issue.
In [18], a method called SS-FedCLAR that combines federated clustering and
semi-supervised learning in FL settings is introduced to reduce the non-IID and
the data lack issues simultaneously. The authors in [19], have presented a fed-
erated transfer learning method for wearable healthcare to address security and
personalization challenges. Lu et al. have proposed AdaFed: a weighted federated
transfer learning framework to tackle domain shifts and to realize personalization
for local clients in healthcare [20]. Ma et al. [21] have focused on label concept
drift. They have presented a variational Bayes framework for PFL based on
hierarchical Bayesian inference.

Similarly to our work, Sattler et al. [10] propose a hierarchical clustering FL
scheme, forming client clusters, and those in the same cluster share the same
model for training. This algorithm, called Clustering Federated Learning (CFL),
is used as a baseline in the evaluation of our proposed GP-FL algorithm. Notice
that most of the above mentioned works are aimed at the personalized training of
deep learning models in a federated learning setup. Our work instead introduces
a lightweight model based on logistic regression that is more suitable for modern
resource-constrained wearable devices for HAR monitoring.

3 Preliminaries

In this section, we introduce the baseline FL algorithms used in the evaluation
of our GP-FL algorithm. We also provide with a formal description of the FL
setting, and motivate the methods and optimization procedures used in the
proposed GP-FL algorithm.

3.1 Baselines

To assess the performance of our proposed method, we compare the GP-FL
algorithm against two other FL methods, namely FedAvg [2] and CFL [10].

Federated Averaging (FedAvg): FedAvg is the predominant algorithm for
federated learning [2], following a server-client setup with two repeating phases
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(i) the clients train a shared global model locally on their data by making mul-
tiple local updates, and (ii) the server averages the locally updated models to
obtain a new global model. In contrast to FedAvg method, GP-FL builds sev-
eral global ML models, each one trained on a dynamic group of clients with
homogeneous class probability estimations.

Clustered Federated Learning (CFL): A clustering framework to deal with
federated multi-task learning have proposed in [10]. The CFL groups clients into
clusters of similar clients according to their local data distribution. Thus, the
goal is to train a single global model for each cluster. Similarly to the CFL
method, our proposed GP-FL algorithm trains a set of global models, one per
each cluster of workers. In our work, the workers are however, clustered into
groups according to their local data distribution with respect to the classes.
In that way, two workers are grouped together if they have similar local class
probability distributions, i.e. evidently different groups of workers have different
learning tasks. In addition, the clustering is adapted at each training round by
accounting the evolving nature of data distribution with respect to the classes.

3.2 Problem Setting

As we stated in Sect. 1, our aim is to show how the fundamental idea behind
our GP-FL approach can be exploited to design a group-personalized solution of
FL problem. To do so, let us briefly describe the GP-FL setting. Given a set of
workers in contrast to the traditional supervised federated learning setting, the
goal in our GP-FL framework is not finding a global model that performs well
for all the workers, but training a set of global-personalized models, one per a
group of workers. Therefore in our GP-FL solution, we initially segment workers
into groups based on the similarity of their class probability estimations.

We consider a typical setting of FL with a model M that is learned iteratively
by using a randomly selected subset, denoted by Wt (Wt ⊂ W ), of the set W of
all available workers. The workers in Wt participate at each round and compute
the gradient of the loss over all the data held by them. Each worker w ∈ Wt at
round t has its own row of data Dw

t and a local model Mw
t . At each round t,

each worker trains its local model by iterating the local update multiple times of
Stochastic Gradient Descent (SGD) before sending the next local model Mw

t+1

to the server which holds the global model. The server, after collecting all the
local models computed at round t, performs a synchronous update of the global
model Mt+1. The global model update can be computed using different criteria.
In this paper, we assume it is calculated by means of federated averaging, that is
the local model Mw

t , w ∈ Wt and global model Mt are updated by the following
equations: [22]:

Mw
t+1 = Mw

t − ηgwt ; (1)

Mt+1 =
∑

w∈Wt

nw

n
Mw

t+1, (2)
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where Mw
t+1 is the local update, gwt are the updated weights on its local data in

the current model Mw
t , Mt+1 is the global model, η is a learning rate calculated

by each worker, Wt is the set of workers which participate in the training, n is
the total number of all data points and nw is the number of local data points of
the worker w ∈ Wt.

In our GP-FL setup we compute a group global model for each cluster of
workers (Ctj ⊂ Wt), then Eq. 2 is changed to

MCtj

t+1 =
∑

w∈Ctj

nw

n
Mw

t+1, (3)

where MCtj

t+1 is the group global model built for each cluster Ctj at round t. The
server then distributes the group global model MCtj

t+1 to its updated group of
workers, i.e. for each wi ∈ Ct+1j , where Ct+1j is the updated version of Ctj , to
perform another iteration of local training and model update.

3.3 Data Smoothing

In our proposed GP-FL solution each worker is modeled by its class probability
estimations, i.e. an empirical probability vector, where each value represents the
relative frequency of the corresponding class among the all training examples. For
example, if we have a set D of labelled examples, and the number of examples
in D of class Ci is ni (i = 1, 2, . . . , k), then the empirical probability vector
associated with D is given by p̂(D) = (n1/|D|, . . . , nk/|D|). Such empirical
probability vector is initially calculated for each worker in our FL model and
then update at each following round according to the current data batch at this
worker.

In order to avoid issues with extreme values, such as 0 or 1, each empirical
probability vector p̂ = (p̂1, p̂2, . . . , p̂k) can be smoothed by applying Laplace
correlation which is expressed as:

p̂i(D) =
ni + 1

| D | +k
, (4)

where D is set of labelled examples, ni is the number of examples in class Ci,
and k (the number of classes) is added to ensure that the posterior probabilities
are never zero [23].

3.4 Markov Clustering Algorithm

Markov Cluster algorithm (MCL) is an unsupervised pattern recognition algo-
rithm based on finding the optimal cluster of a connected graph, without any
a priori knowledge of the cluster sizes. It is used to cluster sequence similar-
ity or simple networks [24]. MCL can efficiently utilize 2000 compute nodes
and cluster a network of about 70 million nodes with about 68 billion edges in
approximately 2.4 h [25]. What really distinguishes MCL from other clustering
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techniques is that it does not require any input to form clusters, unlike k-means
algorithm and other partitioning algorithms. This makes this algorithm crucial
in network data, social network data, or even similarity detection.

3.5 Wasserstein Distance

The Wasserstein distance, which is a metric used to measure the distance between
probability distributions, is induced by the optimal transport problems [26].
Methods based on the advantages of Wasserstein distance have been used suc-
cessfully in several research areas, including statistics, machine learning, natural
language processing, and computer vision [27]. In such applications, the distance
is measured by comparing one probability distribution with another, which arises
from the theory of optimal transport problems [26]. In the implemented version
of our proposed FL model, we use Wasserstein distance to measure the similar-
ity between class probability estimations of each pair of workers. In this way,
the individuals who have similar activity patterns will be grouped together by
applying the MCL algorithm discussed above.

3.6 Eccentricity Analysis

New eccentricity-based anomaly detection analysis principles have been intro-
duced in [7]. An algorithm, called AutoCloud, based on the introduced principles
is proposed in [28]. Similarly to the idea in AutoCloud, we use eccentricity anal-
ysis in our proposed FL solution to maintain a dynamic grouping of the workers.
In this context, the eccentricity ξj of a worker wi in relation to a cluster of
workers Cj can be calculated as [28]:

ξj(wi) =
1
nj

+
(μj

i − p̂i)T (μ
j
i − p̂i)

σj
i nj

, (5)

where nj is the size of Cj , p̂i is empirical probability vector associated with the
worker wi, and μj

i and σj
i are the mean and variance, respectively, supposing

wi ∈ Cj .
Equation 6 presents how eccentricity can be applied to determine whether a

worker belongs to a given cluster. Furthermore, the Chebyshev inequality has
been utilized to apply a threshold to check whether a worker still belongs to an
existing cluster [29]. A particular worker wi is considered to belong to a cluster
Cj if the following condition is satisfied

ξj(wi) ≤ υj and υj = (m2 + 1)/2nj , (6)

where m (m > 0) is a user-defined parameter that directly affects the evaluation
of clustering, and υj is the threshold associated with cluster Cj . Although it can
be defined using multiple criteria, m = 3 is largely used as a standard value
and leads to satisfactory results for different data sets and different configura-
tions [30].
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4 Proposed Approach

In this section, we formally present our proposed algorithm, namely group-
personalized FL (GP-FL) to build a set of group global FL models. We propose
to group the available workers according to their empirical class probability dis-
tributions. The workers with similar empirical probabilities are grouped together
into the same cluster based on their similarity measured by Wasserstein distance.
In addition, the built grouping is not static, but it is dynamically updated at
each training round by applying cluster eccentricity analysis. This approach
allows a global model at the cluster level to be built, overcoming the issue of
personalization in traditional FL techniques.

The GP-FL algorithm foresees two distinctive phases: initialization and iter-
ation. These phases are described in what follows. Let W = {w1, w2, . . . , wn}
be the set of all available workers, and Wt is a subset of W that contains the
workers selected at round t.

Initialization Phase:

1. At time t = 0, the Server initializes the inputs for the GP-FL algorithm.
These are model Mt, set of workers Wt, and a number of iterations T .

2. The Server transmits the initial global model Mt to the set of workers Wt

(Wt ⊂ W ).
3. Each worker wi ∈ Wt receives the global model Mt and optimizes its param-

eters locally, i.e. the Mi
t initial update is produced alongside with a vector

p̂t(wi) that represents the empirical probabilities of the classes distribution
and sent back to the Server.

4. The Server performs the following operations:
(a) Laplace smoothing is applied to each vector p̂t(wi) of each worker wi ∈

Wt.
(b) The smoothed vectors p̂t(wi), for wi ∈ Wt, are used to create a distance

matrix. This matrix is then passed as an input parameter to the predicted
function of a Markov clustering. As a result, groups of workers with similar
empirical probability vectors are produced, i.e. an initial clustering Ct =
{Ct1, Ct2, . . . , Ctk} of the workers is created.

(c) For each cluster Ctj ∈ Ct, (j = 1, 2, . . . , k), a global group model Mj
t , is

built by averaging over the model parameters of the workers assigned to
Ctj , i.e. a set of initial global group models is produced {Mj

t | Ctj ∈ Ct}.
(d) For each cluster Ctj ∈ Ct mean data vector μj

i and aggregated variance
σj
i are calculated.

5. The Server aggregates the parameters {Mi
t | wi ∈ Wt} uploaded by the

selected workers Wt to update the global model Mt through the FedAvg
algorithm (Eq. 2).

Iteration Phase:

1. The Server sends each group global model Mj
t , (j = 1, 2, . . . , k) to its group

of workers Ctj .
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2. Each worker wi ∈ Ctj receives the group global model Mj
t and optimizes

its parameters locally, i.e. Mi
t+1 local update and the empirical probability

vector p̂t+1(wi) are produced.
3. The Server updates the existing empirical probability vector p̂t+1(wi) by tak-

ing the average of it with the information provided by the previous data
batch, i.e. p̂t(wi).

4. The Server applies Laplace smoothing to each vector p̂t+1(wi), for i =
1, 2, . . . , | Wt |.

5. The Server adapts the workers’ grouping Ct to the current empirical prob-
ability vectors p̂t+1(wi), for i = 1, 2, . . . , | Wt |, by invoking eccentricity
score ξj(wi) (see Eq. 5), (j = 1, 2, . . . , k) which assesses whether each worker
wi ∈ Ctj is still adequately tight with its current cluster, the one it was
assigned at the previous round (t).
(a) If ξj(wi) is below the threshold υj(t) (see Eq. 6) the worker does not

change its cluster Ctj .
(b) If ξj(wi) > υj(t) then we calculate ξl(wi) for the other clusters, i.e. for

each Ctl ∈ Ct \ Ctj , and will assign the worker wi to the cluster for each
ξl(wi) < υl(t). In case this is true for more than one cluster we will assign
the worker to the cluster for which the score is lowest.

(c) If ξl(wi) > υl(t) for each cluster Ctl ∈ Ct \ Ctj then this worker wi will
give the start of a new singleton cluster, which means that this worker wi

cannot be assigned to any existing cluster in Ct. Note that k(t+1) ≥ kt,
where k(t+1) =| Ct+1 |, since new singleton clusters may appear due to
the updating operation.

6. For each cluster Ct+1j ∈ Ct+1, mean data vector μj
i and aggregated variance

σj
i are calculated, considering the current grouping of the workers and also

using the current empirical probability vectors p̂t+1(wi), for i = 1, 2, . . . , |
Wt+1 |. These values of μj

i and σj
i will be needed at the next round to calculate

the workers’ eccentricity scores w.r.t. the current clusters.
7. The updated clustering Ct+1 is produced, and the clusters in Ct+1 may con-

tain different workers from the clusters in Ct.

Steps 1–7 of the iteration phase are repeated until a certain number of training
rounds T is reached.

5 Experimental Design

5.1 HAR Datasets

Despite the UCI dataset [31] has been widely used as a benchmark in the HAR
domain, this dataset is not realistic, since it is acquired in-lab following strict
scenarios [8]. In our study, the experiments are conducted on two realistic, and
publicly available datasets: REALWORLD, a large, diverse device positioning
dataset [32], and HHAR, a HAR dataset [33].

Each dataset has its own set of activities, as shown in Table 1 with only
some overlapping. These datasets deal with various activities: Sit (ST), Stand
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Table 1. A summary of datasets’ properties

Dataset Workers No of data points Activity No of classes

REALWORLD 15 356,427 (ST,SD,W,U,D,J,L,R) 8
HHAR 51 85,567 (ST,SD,W,U,D,BK) 6

(SD), Walk (W), Upstairs (U), Downstairs (D), Bike (BK), Jump (J), Lay (L),
Run (R). The partitioning of the data has been performed as follows. For each
dataset, 20% is left for testing at the central server, while the remaining 80% is
used for training.

Note that the initial clustering of workers (individuals) has been produced
by using the MCL algorithm, with parameters inflation 1.7 and threshold 2. The
MCL algorithm is implemented in the MCL package in Python.

5.2 Evaluation Strategy

As previously explained, the aim of FL over classical learning is the ability to
merge several worker models into a global one in order to improve model general-
ization without degrading specialization. To study and evaluate the performance
of the proposed GP-FL algorithm, we have computed and compared three dif-
ferent evaluations calculated for each experiment for each worker’s data:

– Personal performance: This is evaluated by computing the accuracy or F1
score achieved by the client’s local model using its local data.

– Global performance: This is evaluated by calculating the accuracy or F1
score produced by the overall global model (aggregating all the clients’ mod-
els) on each worker’s local data.

– Group performance: This calculates the accuracy or F1 score achieved by
each group global model on the local data of each worker from its group.

For each worker, the dataset is partitioned into a training set and a test set.
The test set is used for the local evaluation of each worker’s performance. These
evaluation results are then aggregated to give the personal performance eval-
uation of each worker. The global model runs individually on each worker test
set and then aggregates the obtained F1 scores, which is used to evaluate the
global performance. Each group global model executes individually on the test
set of each worker in the group associated with it to evaluate the group per-
formance. In this way, three different models are evaluated on each worker test
data, namely the worker locally trained model, the overall global model averag-
ing over the parameters of all workers’ local models and the group-personalized
model based only on the local models of the workers having similar activity
patterns, i.e. ones that are grouped together.

6 Experimental Results

We have initially compared the performance of workers’ personal (local) models
with that of both the traditionally built federated learning (global) model and
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global group models trained by our GP-FL algorithm. For each experiment, three
evaluations have been performed. Namely, the three models (local, global, and
group) associated with each worker are run on its test data at each round. The
performance of each run is evaluated with respect to accuracy.

In order to illustrate the properties of the clustering scheme proposed in this
study, we show in Table 2 the clustering updates in the first 10 global commu-
nication rounds of the GP-FL algorithm applied to the REALWORLD dataset.
The performance in terms of accuracy of the three models (local (L), global (G),
and group (Gr)) associated with each worker are compared in the table. As one
can notice in the first round, the 15 workers have been clustered into 5 groups.
Namely, “pink” cluster has two workers (1 and 12), “green” cluster has four work-
ers (2, 3, 5, and 15), and the remaining three clusters (i.e. “yellow”, “orange” and
“blue”) each one has three workers. It is interesting to notice that in round 10,
worker 1 has moved to the “green” cluster, due to its eccentricity score being
higher than the threshold of the “pink” cluster. Therefore, the eccentricity score
of this worker has been calculated with respect to each one of the other clusters
and as a result, it has been assigned to the “green” cluster.

(a) ”green” cluster workers’ activity
profiles at round 1

(b) ”green” cluster workers’ activity
profiles at round 10

Fig. 2. Comparison of the workers’ activity profiles (empirical probability vectors)
distributed in the “green” cluster in the first and tenth rounds, respectively.

The workers’ empirical probability vectors distributed in the “green” cluster
in the first and tenth rounds, respectively are compared in Fig. 2. As one can
see the worker 1 activity pattern in the tenth round is very similar to the other
individuals distributed in this cluster, i.e. this is the reason to be moved to
the “green” group. We can also observe that worker 8 has similar behavior of
changing its cluster from “blue” to “orange”. Notice that the clusters presented
in Table 2 will continue to be optimized in the same fashion, discussed above,
for the upcoming communication rounds. Overall, the group global models built
by the GP-FL algorithm have produced accuracy scores that are higher or at
least comparable with those generated by the global model as it can be noticed
in the tenth round results in Table 2. The results generated on the experimental
dataset of HHAR are similar.
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Table 2. Comparison of the accuracy scores produced by the local (L), global (G), and
group global (Gr) models on each worker’s data for the conducted training rounds (only
the results from the first two and the last two rounds are depicted) using REALWORLD
dataset.

Workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

L 0.80 0.86 0.90 0.80 0.81 0.83 0.85 0.80 0.91 0.85 0.86 0.88 0.84 0.85 0.84

G 0.78 0.82 0.87 0.77 0.78 0.80 0.82 0.78 0.88 0.81 0.82 0.84 0.81 0.80 0.81

Gr 0.79 0.84 0.88 0.79 0.80 0.81 0.82 0.79 0.89 0.81 0.83 0.81 0.81 0.82 0.80

2

L 0.86 0.85 0.83 0.86 0.88 0.86 0.85 0.85 0.88 0.87 0.87 0.85 0.86 0.85 0.86

G 0.84 0.82 0.80 0.80 0.84 0.83 0.80 0.81 0.83 0.83 0.84 0.81 0.81 0.82 0.83

Gr 0.84 0.84 0.82 0.85 0.85 0.84 0.81 0.82 0.85 0.82 0.84 0.81 0.82 0.83 0.83

.

.

.

9

L 0.90 0.92 0.94 0.88 0.90 0.91 0.90 0.90 0.90 0.92 0.94 0.93 0.90 0.89 0.90

G 0.89 0.88 0.90 0.84 0.86 0.87 0.88 0.85 0.84 0.89 0.90 0.90 0.85 0.86 0.85

Gr 0.91 0.89 0.90 0.86 0.88 0.90 0.91 0.89 0.86 0.91 0.92 0.93 0.88 0.89 0.85

10

L 0.93 0.93 0.94 0.93 0.90 0.95 0.93 0.93 0.89 0.95 0.93 0.94 0.96 0.90 0.91

G 0.90 0.88 0.90 0.89 0.86 0.90 0.87 0.85 0.82 0.91 0.89 0.89 0.92 0.86 0.90

Gr 0.91 0.90 0.91 0.90 0.88 0.92 0.89 0.88 0.86 0.93 0.90 0.92 0.94 0.87 0.94

We also compare the performance of our GP-FL algorithm with that of
FedAvg and CFL algorithms. The performance of the three compared algo-
rithms has been evaluated by running 3-fold cross-validation on each experi-
mental dataset of REALWORLD and HHAR for 20 communication rounds for
Non-IID label skew data (30%). In Fig. 3a, we compare the F1-scores of the
three FL approaches in case of the Non-IID data distribution scenario of REAL-
WORLD data. Within 10 communication rounds, CFL and FedAvg reach 88%,
and 87% F1-scores, respectively, while our GP-FL algorithm achieves an F1-
score of 90% with the same number of communication rounds. Similar to the
REALWORLD dataset, we can see in the case of HHAR Non-IID data (Fig. 3b),
the GP-FL algorithm has obtained F1-score of 96% in 12 communication rounds,
while CFL and FedAvg have reached 95% and 94%, respectively.
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(a) REALWORLD, Non-IID (30%) (b) HHAR, Non-IID (30%)

Fig. 3. Comparison of the achieved F1 scores versus the number of communication
rounds for Non-IID data (30%) of the three FL algorithms: FedAvg, CFL, and GP-FL.

7 Conclusion

In this paper, we have proposed a new approach for building a set of group
personalized models in case of Non-IID data in federated learning framework.
Initially, Markov clustering algorithm is applied to divide the workers into groups
according to the similarity between their empirical probability vectors reflect-
ing the distribution of their training examples among the classes. This allows
for building a private global model for each cluster of workers. The built global
models, each one trained on a group of clients with homogeneous class probabil-
ity estimations, are adapted at each training round with respect to the new data
batches. The performance of the proposed GP-FL algorithm has been studied
and evaluated on public HAR data. The obtained results have shown that the
global models trained by the GP-FL algorithm can achieve better performance
compared with that of the trained overall global model. The algorithm perfor-
mance is also compared with that of two other baseline FL algorithms, namely
FedAvg and CFL. The GP-FL has outperformed both algorithms in the con-
ducted experiments with respect to the achieved performance and convergence
speed.

Our future plans include the evaluation and further study of the properties
and performance of the proposed GP-FL algorithm in other applied FL scenarios.
In addition, we plan to research scenarios in which the recently arrived data
batches have a higher importance on the trained group global models than the
previous ones.
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Abstract. An modeling other agents (MOA) constructs a model of other
agents in every agent. It enables the agents to predict the actions of other
agents and achieve coordinated and effective interactions in multi-agent
systems. However, the relationship between the executed and predicted
actions of agents is vague and diverse. To clarify the relationship, we
proposed a method by which an agent through communications con-
structs its MOA using the historical data of other agents and asymmet-
rically treats itself and its MOA in a non-cooperative game to obtain
Stackelberg equilibrium (SE). Subsequently, the SE are used to choose
actions. We experimentally demonstrated that, in a partially observ-
able and mixed cooperative-competitive environment, agents using our
method with reinforcement learning could establish better coordination
and engage in behaviors that are more appropriate compared to conven-
tional methods. We then analyzed the coordinated interaction structure
generated in the trained network to clarify the relationship between indi-
vidual agents.

Keywords: game theory · multi-agent reinforcement learning ·
modeling other agents

1 Introduction

Many real-world interaction problems such as vehicle movements on highways, can
be considered as coordination problems between self-interested agents. However,
achieving coordination between the agents is usually challenging owing to partial
observation and limited information exchange [21]. Recent developments in deep
learning have facilitated the investigation on using multi-agent deep reinforcement
learning (MADRL) with deep neural networks (DNNs) [11] to generate effective
coordinated behaviors. For example, a multiagent bidirectionally-coordinated net
(BiCNet) [14] employs a bidirectional recurrent neural networks (RNN) [17] to pro-
cess hidden states that contain the historical data of the agents to determine their
actions. A deep reinforcement opponent network (DRON) [4] has a specific module
formodeling other agents (MOA) to help the agents make decisions. However, these
approaches remain open questions because a holistic analysis of their efficiencies is
hindered by uninterpretable outputs from DNNs. Thus, there is a lack of sufficient
insights into mutual modeling and the coordination/cooperative structure.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 520–531, 2023.
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Identifying the complex relationships between agents is crucial for understand-
ing interaction structures and establishing multi-agent coordination and competi-
tion in practical problems [7]. Game theory can be applied to derive solution con-
cepts that describe the strategies that agents should adopt [24], such as the Nash
equilibrium (NE) for non-cooperative settings [6] and the Stackelberg equilibrium
(SE) [25], which provides potentially better solutions than NE. With MADRL
networks, techniques such as centralized training with decentralized execution [13]
and DNN-based function approximations can be employed to solve game-theoretic
problems that model large-scale real-world problems. In identical-interest settings
such as a team game [18], the Qmix algorithm [15] can be employed to learn Q-
function factorization to enable agents to collaborate for their shared or non-
conflicting goals. In StarCraft [23], a well-studied two-player zero-sum game, self-
playing generates a sequence of strong opponents [10] that train an agent to reach
the top level. However, in general, an agent’s objectives may not remain consistent
and vary within a broad spectrum between cooperative and competitive relation-
ships. Moremore, considering the actions of other agents in the complex interac-
tion structure entails the issues of combinatorial complexity, partial observabil-
ity, and non-stationarity [21], leading the MADRL approach to rely on impracti-
cal assumptions such as perfect observation, including that on other agents’ deci-
sions [25].

To clarify an agents’ action-generation process by considering the coordina-
tion structure between the agents’ actions, we propose the method, modeling oth-
ers as a player (MOP), which enables an agent to build through communications
an MOA using the historical data of other agents. We assume that each agent
treats itself and its MOA asymmetrically in a non-cooperative game to obtain its
SEs. The SEs so obtained are fed to another network of the agent to choose the
agent’s actions. We evaluated the effectiveness of the proposed method in a par-
tially observable and mixed cooperative-competitive environment [13]. We set a
scenario involving non-cooperative but partially cooperative objectives between
agents and their MOAs and investigated whether MOP could identify their rela-
tionships and mitigate non-stationarity to achieve better-coordinated behaviors.
We also introduced a few reward schemes that reflected the internal coordination
between the agent and its associated MOA. Our experimental results show that
MOP outperforms state-of-the-art methods, namely single-agent reinforcement
learning (RL) method, proximal policy optimization (PPO) [16] with/without
communications and the most relevant MOA method influential communica-
tion (IC) [8]. Moreover, MOP can select more appropriate behaviors than those
selected by the above methods. This provides us with a better insight into the
estimated coordination structure and the executed actions.

2 Related Work

Many studies have attempted to mitigate the non-stationarity issue by enabling
agents to learn in fully or partially observable environments through commu-
nication. For example, Sukhbaatar et al. [20] proposed a model based on full
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observations, the communication neural net (CommNet), consisting of agent net-
works that exchange messages to learn the way agents communicate to perform
cooperative tasks. Some studies reported that exchanging the hidden states of an
RNN [17] that contained an agents’ historical information was effective for gen-
erating appropriate coordinated/competitive activities. For example, Jaques et
al. [8] proposed a model based on social influence, in which every agent received
messages from all other agents and fed the messages into a local RNN to gener-
ate subsequent messages. BiCNet [14] builds a communication channel using the
hidden layer of a bi-directional RNN for taking appropriate decisions. However,
their works assumed a centralized control wherein all agents must participate in
shared communications to learn policies. This makes it difficult to sufficiently
analyze a large amount of shared information and identify inter-agent relation-
ships. To tackle such a scalability problem, we have designed MOP that processes
historical information only from a limited number of agents.

MOA appears to be the primary means by which agents can predict the
behaviors of other agents via models [1]. He et al. [4] proposed a new module,
DRON, consisting of multiple networks for inferring the possible actions of other
agents. Hong et al. proposed the deep policy inference Q-network [5] to learn
suitable Q-functions using the feature representation of other agents’ actions.
These approaches require full observability because the actions of other agents
must be inferred by observing the agents; therefore, the approaches cannot fully
be employed in a partially observable environment. Albrecht et al. surveyed
policy reconstruction [1] methods that leveraged machine learning techniques to
compensate for missing information using the interaction of historical data. In
our method, a part of the historical data only from the closest or surrounding
agents is leveraged to construct an MOA in a partially observable environment.

MOA and the associated learning and communicating methods rely on the
representational power of a DNN; however, the coordination and cooperative
structures lack interpretability. Recently, game theory has provided solution
concepts [24] for MADRL-based models and has yielded promising results in
two-player zero-sum games or identical-interest games. In a study, policy-space
response oracles [10] were leveraged to solve the zero-sum game StarCraft [23].
In an identical-interest setting, Rashid et al. [15] proposed an algorithm based on
Qmix to learn Q-function factorization to solve team games. In contrast, general-
sum games that partly contain cooperative and competitive relationships require
strong assumptions. For example, Nash-Q learning [6] requires unique NEs in
each stage of a stochastic game (SG). Using recently developed DNNs, some
studies adopted the SE [22] as the solution concept and leveraged the use of
leader-follower relationships. Zhang et al. proposed a MADRL-based bi-level-
actor-critic [25] method and showed that an SE was likely to be Pareto superior
to NE in general-sum games. However, their methods require treating homo-
geneous agents in different ways and allowing asynchronous decisions based on
observations shared with all agents. In this study, we introduce an asymmetric
SE-based leader-follower relationship between the agent and its internal MOA.
SE is then used to decide the final actions in the game processes. We set different
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objectives to the agents and their MOAs to describe their various relationships
and provide effective information for their decisions.

3 Background

3.1 Markov Game and MARL

An N -player Markov game (also known as an SG) [12] is a dynamic game played
by N (> 0) players (agents) in a finite set A = {1, 2, . . . , N}. The game involves
multiple states traversed in discrete-time t ≥ 0. It can be described by tuple
〈A, A, S, P,R, γ〉, where A = A1 ×· · ·×AN is the joint action space consisting of
Ai, the set of actions of i ∈ A. S is the possible state space shared by all agents.
P : S × A → S is a deterministic transition function in S, and ri : S × A → R

is i’s reward function. We focus on MADRL in the game, in which the objective
of the N agents is to find a joint policy π = π1 × · · · × πN that maximizes
their individual discounted cumulative reward,

∑
t=0 γtri(st, at). Here, πi : S →

DP(Ai) and DP(X) is the probability distribution space over discrete set X.

3.2 Bi-level Actor-Critic

A bi-level actor-critic [25] algorithm assumes that two agents, the leader (L) and
follower (F ) in a two-player Markov game, are asymmetric. That is, although
they share the same observations ot ∈ O at t, F observes the actions of L, aL

t ,
to determine its actions, aF

t , as the response to aL
t . However, L must predict the

action aF
t using the learned policy πF of F as follows.

aL
t ← arg max

a∈AL

QL(ot, (a, af |∼πF (ot,a))) and aF
t ∼ πF (ot, a

L
t ), (1)

where af |∼πF (ot,a) indicates the sampled action af that is selected according
to πF (ot, a

L
t ) ∈ DP(AF ), and AF and AL are the sets of actions of F and L,

respectively. The action of L, aL
t ∈ AL, is a part of states for policy function πF

of F , while the leader L is a Q-learner of the action-value function QL over O×A
(where A = AL × AF ) and updated by a method such as soft Q-learning [3].
QL evaluates the cumulative reward ri,L : S × A → R by taking the joint action
(a, af |∼πF (ot,a)) according to the observation ot. Subsequently, L chooses an
action aL

t ∈ AL whose QL is the highest. Next, aF
f is sampled using πF (ot, a

L
t ).

The bi-level actor-critic method was proposed to solve the bi-level optimization
problem [19] in a Markov game, which is also known as a Stackelberg game.
The upper-level and lower-level optimizers are the leader and follower agents,
respectively, and its solution is an SE. This SE is the joint action (aL

t , aF
t ), where

F samples action aF
t according to L’s action aL

t and observation ot.

3.3 Two-Player Non-cooperative Game with MOA

Although agents may have inconsistent objectives in a non-cooperative game,
they attempt to maximize their own rewards independently without forming
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coalitions to make collective decisions [24]. Agent ∀i ∈ A uses the MOA to predict
the actions of other agents in A \ {i}. We regard an N -player non-cooperative
game as a two-player non-cooperative game between i and i’s MOA. Among
the various solution concepts available for MADRL-based non-cooperative two-
player games, such as NE, we adopted SE as our solution concept. SE considers
an asymmetric relationship between a leader and follower by setting i as the
leader and i’s MOA as the follower as described in Sect. 4.2. SE often exhibits
a better performance than NE in terms of Pareto superiority. Moreover, while
multiple NEs often exist, SE is usually unique except under rare conditions [25].

4 Proposed Method

4.1 MOA with Historical Information

We describe the proposed method, which can be used in a partially observable
environment for analyzing a non-cooperative game. Each agent has a leader and
a follower networks. During an asymmetric game, its follower network generates
the representative action of other agents according to the MOA. The action is
then fed to its leader network to output the action. Jiang et al. claimed that
information from various agents differ in importance and that the information
from nearby agents was more useful in decision-making [9]. Therefore, in our
proposed method, agent i ∈ A requests and receives the historical information
of the closest agent j ∈ A. We assume that the historical information of an agent
is included in the hidden state of the RNN [17] of the agent and can be processed
by all agents. The received historical information helps in constructing the MOA
and thus deciding the next actions. In MOP, i’s follower network processes the
hidden state of j’s leader network and then updates the MOA.

Figure 1 shows the proposed network architecture consisting of the leader
and follower networks of agent i. At time t, i feeds the partial observation oi

t and
the hidden state hj,L

t−1 of j’s leader network at t − 1 to its follower network. The
leader and follower networks contain gated recurrent units (GRU) [2], which is a
type of RNN. The hidden state hj,L

t−1 represents j’s history information at t − 1
and is used to update the hidden state of i’s follower network, hi,F

t−1. This hidden
state indirectly includes the historical information of other (far-away) agents
interacting with i in the past, as well as i’s own information. Subsequently, i’s
follower network updates the hidden state hi,F

t according to hj,L
t−1 and hi,F

t−1 and
outputs the policy πF (oi

t, a
i
t) ∈ DP(AF ). Next, the action in AF is sampled using

πF (oi
t, a

i
t) and fed to i’s policy network.

This information-sharing pattern in which agents receive the information
only from the closest agent reduces the effort required to understand far-away
agents and can improve scalability and communication efficiency.

4.2 Markov Game with MOA

The agent and its MOA do not necessarily determine their actions simultaneously
in a game round because only actions from the leader network are actually
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Fig. 1. Leader (down) and follower
(up) networks in agent i.

Fig. 2. Information sharing within and
among agent models.

considered to interact with other agents; therefore, the MOA is an auxiliary
component for determining actions. In MOP, the follower network functions just
as a collector and provider of information about other agents, and the SE of the
game is treated as a high-dimensional input of the leader network. The follower
network must also be optimized using a reward function although it does not
proactively interact with other agents. Agents identify the relationships between
leaders and other agents and engage in proper interactions by setting reward
schemes for individual goals. The leader and follower networks process the reward
functions to learn non-cooperative games.

Following the conventions adopted for bi-level actor-critic networks
(Sect. 3.2), we denote the leader policy and follower policy of agent i as πi

L and
πi

F , respectively. πi
L is trained using the action-value inferred by the leader’s

action-value function Qi
L and πi

F is trained using the follower’s action-value
function Qi

F . The PPO [16], an actor-critic approach, is used to train stochastic
policies and action-value functions in the proposed method. The flow of infor-
mation within and among agent models is shown in Fig. 2; see also Fig. 1. The
process of deciding i’s action ai,L

t is described as follows.

ai,L
t ← arg max

ai
t∈AL

Qi
L(oi

t, (a
i
t, a

i,F
t |πF (oi

t,a
i
t)

)), ai,F
t ∼ πF (oi

t, a
i
t)

ai,F
t ∼ πi

F (oi
t, a

i,L
t ) and ai,L

t ∼ πi
L(oi

t, (a
i,L
t , ai,F

t )),

First, the partial observation oi
t, the hidden state of the closest agent j’s leader

network hj,L
t−1, and the leader’s action ∀ai

t ∈ AL are fed to the follower’s pol-
icy network at t, which outputs πF whose domain is DP(AF ). Next, using the
leader’s action-value function Qi

L and πi
F , i generates the SE, (ai,L

t , ai,F
t ), which

is the joint action corresponding to the highest value of Qi
L and the observa-

tion oi
t. The SE is then fed into the leader network. Finally, agent i takes the

action ai,L
t , which is sampled using πL(oi

t, (a
i,L
t , ai,F

t )) by assuming that it is the
probability distribution over AL.
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5 Experiments

5.1 Experimental Environment

We conducted experiments to assess the performance of MOP-based agents and
the influence of leader and follower reward schemes on the performance. For this
purpose, we adopted a predator-prey environment, which was used in a previous
study [13]. It is a two-dimensional environment R × R in continuous space and
discrete time. It consists of N + 1 agents (one prey and N predator agents) and
a few obstacles (see Fig. 4). The agents’ action space is discrete, and at each
time step, they decide to accelerate in one of the following directions: up, down,
left, and right, or null (no acceleration). The prey and predators have maximum
speeds of 1.3 and 1.0 unit distance per time step (d/s) and constant accelerations
of 4.0 and 3.0 d/s2, respectively. The combinations of these values mean that
the prey and predator always move with maximum speeds.

Let A assume the set of N predators (agents). Agents can make only partial
observations, including the relative positions of obstacles, the relative positions
and velocities of the closest three agents and then decide their actions syn-
chronously. If predator i ∈ A hits the prey at t, i receives reward of ri

t = 1,
whereas the prey is penalized with rprey

t = −1. Therefore, the predators have
a non-cooperative relationship because they may collide with each other and
impede their approach to the prey while competing to hit the prey first. How-
ever, they need to learn some degree of coordination to hit the prey, which is
faster than they are.

As the prey is faster and can escape to infinity, we introduced another reward
rdist
t ≥ 0 for every time step to the prey to restrain its movements to be near the

origin of the environment while avoiding being hit; hence, the closer the prey is to
the origin, the higher the rdist

t [13]. We defined rdist
t = −f(x)−f(y), where (x, y)

is the prey’s coordinates; f(a) = 0 if a ≤ 0.9 and f(a) = a − 0.9 if 0.9 ≤ a ≤ 1.
Otherwise, f(a) = min(0.1 × e2a−2, 1). We then verified that different numbers
of predators could exhibit coordinated behaviors in the environment using the
proposed method.

In the experiment, the prey learns the policy πprey using PPO [16], which is
a state-of-the-art RL algorithm. We compared the performances of the proposed
model with those of the baseline methods for the predators, (1) PPO wherein no
explicit communication existed between the predators and (2) influential com-
munication (IC) [8], which is based on MOA and a centralized communication
mechanism. To understand the effect of sharing historical information on the
performance of agents, we also examined the performance under a PPO method
that allowed communications, which is denoted by PPOwH. A predator i ∈ A
under PPOwH has no follower network and only a leader network πi

pred whose
architecture is identical to that shown in Fig. 1. In each time step, the predator
obtains the hidden state from the GRU of the closet predator and feeds it to the
leader network.

The leader network πi
L of predator ∀i ∈ A is trained using the reward ri

t,
as mentioned above. As described in Sect. 4.2, the relationship between the fol-
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lower (the MOA) and leader networks represents the internal relationship with
other predators. Therefore, we introduced three types of rewards for training
the follower networks to learn the policy πi

F under different relationships. The
rewards ri,Fn

t , ri,Ft

t , and ri,Fs

t are defined using equations Eqs. 2b, 2c, and 2d,
respectively.

advL
t = QL(ot, (a

i,L
t , ai,F

t )) − VL(ot), (2a)

ri,Fn

t = ri
t − advL

t , (2b)

ri,Ft

t =
N∑

i=1

ri
t, and (2c)

ri,Fs

t = ri
t (2d)

where advL
t is the advantage of i’s action aL

t inferred by i’s leader network for
πi

L; VL(ot) is the expected value of state when ot is observed; QL(ot, (aL
t , aF

t )) is
the leader’s value of action.

When the reward ri,Fn

t is used (hereafter denoted by MOP1), the follower
network needs to maximize its own reward ri

t and minimize the advantage of the
leader network πi

L to learn πi
F . We assume that the proposed method adopts

the rewards ri,Fn

t (MOP1) because of the balanced decisions between leader and
follower networks for their activities. When predators use the reward ri,Ft

t , which
is denoted by MOP2, the follower networks learn πi

F to maximize the sum of
rewards for all predator agents,

∑
i∈A ri

t, rather than considering only its own
reward. Reward ri,Fs

t (denoted by MOP3) is inspired by team games [24] per-
formed by cooperative agents. Hence, improving the individual rewards improves
the overall performance via shared reward functions. These rewards may lead to
competitive situations in our game setting.

We compared the performance under N = 3 and 6. The number of preys was
fixed at one. The following section describes the average results obtained from
14 experimental runs until 5000 episodes, where one episode length consisted of
150 time steps.

5.2 Experimental Results

Performance Analysis: We first show the performance of predators, i.e., the
total rewards that all predators received per episode, to understand the coordi-
nation capability. The results are plotted in Fig. 3a (N = 3) and Fig. 3b (N = 6).

As evident from the graphs, the predator agents using MOP1 outperform
those using the baseline methods and those using MOP under other reward
schemes (MOP2 and MOP3). In the simplest case (N = 3), agents using the
PPOwH scheme obtained a higher total reward than the agents using the baseline
methods (25 to 20 per episode). It implies that the historical data are important
for achieving some degree of coordinated behaviors. However, sharing historical
data alone cannot achieve excellent performance for the more complicated case
under N = 6; the model performance was nearly the same as that observed
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Fig. 3. Total reward per episode (N = 3, 6).

under PPO and IC because the volume of historical data increases rapidly with
the increase in the number of agents. Therefore, the scalability problem resulted
in ineffective learning.

Predator agents using MOP with the follower reward schemes MOP2 and
MOP3 also exhibit a poor performance, especially at N = 6, because these
reward schemes attempt to increase the own leader’s rewards, which results in
competitive situations that are partly inconsistent with the actual game struc-
ture. Figure 3a also shows that agents using the MOP3 scheme exhibit a better
performance than those using the baseline methods, IC and PPO; however, the
performance is poorer than that of agents using MOP2, probably due to more
competitive behavior. In contrast, predators using the MOP1 scheme can coor-
dinate behaviors by setting the reward to maximize its own reward ri

t while
preventing the leader network from being selfish and choosing actions that min-
imize the advantage of the leader networks of all agents.

Analysis of Behaviors: To understand why the performance of predator
agents using the MOP1, MOP2, and MOP3 schemes differed significantly, we
examined the predator movements. Figure 4 shows the representative formation
patterns of predators under the three reward schemes. First, as shown in Fig. 4a
and 4b, predators using the MOP1 scheme always make tacit coordinated move-
ments around the prey to respond to the prey’s speed and yet follow the prey’s
escape movements. These predators require some cooperation to hit the prey,
although the reward is exclusive. Figure 4a and 4b indicate that a balance of
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Fig. 4. Formation pattern of predators and prey in environment with obstacles.

cooperative and competitive behavior can be achieved using MOP under an
appropriate reward scheme (MOP1), which result in high performance.

In contrast, as shown in Fig. 4e and 4f, predators under the MOP3 scheme
exhibit insufficient learning because the predators cannot surround the prey
and adequately follow the prey’s faster movements. Figure 4c and 4d shows that
almost all predators using MOP2 can follow the prey but cannot establish coor-
dinated behaviors to surround the prey. Furthermore, Figs. 4d and 4f indicate
that some predators ignore the prey and always move far away from it. These
behaviors are learned because (1) predators using the MOP2 scheme can gain
rewards without moving if others hit the prey and (2) only few predators using
the MOP3 scheme can learn efficient behaviors and others do not have sufficient
learning opportunities.

Analysis of SE in MOP: To investigate the relationship between SE and the
chosen actions, and the performance with the trained MOP, we conducted 20
episodes for each of the two experiments after training and calculated the aver-
ages of the received rewards. Note that in the MOP method, SE, (ai,L

t , ai,F
t ) ∈ A,

is input to the leader network, which then outputs the action ai,L
t based on which

agents interact. Therefore, we compared the total rewards when predators took
ai,L

t with those when they took ai,L
t from the SE. We also examined the rate at

which action ai,L
t was taken (i.e., ai,L

t = ai,L
t ). The results are listed in Table 1.

As shown in Table 1, in all cases, the total rewards when predators take
the action ai,L

t are much smaller than that when they take the final output ai,L
t .

Therefore, the rate at which the predators take the SE action (ai,L
t = ai,L

t ) is very
small. Predators are awarded a higher reward when they take the SE action ai,L

t

under MOP1 compared to that observed under other reward schemes, indicating
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Table 1. Comparison between SE (ai,L
t ) and executed actions (ai,L

t ).

MOP1 MOP2 MOP3

N = 3 Total rewards (ai,L
t /ai,L

t ) 1.8/47.4 0.9/22.8 0.75/15.45

Number of cases of ai,L
t = ai,L

t 12.4% 15.1% 15.7%

N = 6 Total rewards (ai,L
t /ai,L

t ) 10.5/111.6 5.4/25.8 8.1/27.6

Number of cases of ai,L
t = ai,L

t 16.7% 17.7% 18.6%

that the follower network (MOA) with MOP1 depicts the relationship among
predator agents more closely than other models. Because the follower network
does not interact directly with other agents, the SE action ai,L

t is used only to
choose the better response ai,L

t as shown in Fig. 1; subsequently, i executes ai,L
t .

Therefore, the SE action ai,L
t cannot be used to interact directly with others

owing to the locally defined reward scheme but it carries useful information to
decide better actions.

6 Conclusion

In this paper, we proposed the method of MOP, which uses historical data only
from the closest agent and asymmetrically treats the owner agent as a leader
network and the MOA as a follower network for a non-cooperative game. We
conducted experiments in an environment with different number of agents. The
proposed method identified the interaction structure between agents and exhib-
ited a better performance than conventional methods with or without commu-
nications and the most relevant MOA method, IC. We also investigated the
difference between SE actions and executed actions. In our future work, we aim
to confirm the performance of our method in games of complicated structures.
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Abstract. This paper proposes and discusses a new procedure to esti-
mate the forecast distribution for nonlinear autoregressive time series.
The approach employs a feed-forward neural network estimated using
extreme learning machines (ELMs) to approximate the original nonlinear
process and the pair bootstrap as a resampling device. Compared with
conventional neural network algorithms, ELMs have substantial advan-
tages such as fast learning speed and ease of implementation. Moreover,
they are particularly useful in all cases which require real-time retrain-
ing of the network, significantly reducing the computational problems of
the bootstrap procedure. The proposed approach is instrumental in all
applications where time series should be longer to justify using complex
neural network models, such as LSTM or other deep learning approaches.
This is the case, for example, of economic time series, where it is rare
to find time series longer than a few hundred-time points. The results
of a Monte Carlo simulation experiment show that ELMs can signifi-
cantly reduce the computational burden of the overall procedure while
preserving the good accuracy of completely tuned neural networks.

Keywords: ELM · Bootstrap · Forecast densities · Nonlinear time
series

1 Introduction

Forecasts of the future values of time series are widely used in decision-making.
Recently, increasing emphasis has been given to estimating forecasting densities
[1], defined as an estimate of the probability distribution of future values, which
provides a complete description of the uncertainty associated with the point
forecast. When a closed form does not exist for the predictive distribution or
its parameters are a complex nonlinear function of the data, non-parametric
techniques must be implemented (see [2] and the references therein).

Recently, a new approach has been proposed in [3] where feed-forward neural
networks (NN), used to approximate the original nonlinear process and derive
valid point forecasts, are combined with a resampling technique to estimate the
forecast distribution. Neural network models show clear advantages over other
nonparametric techniques, usually based on local polynomial regressions. Firstly,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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they are global non-parametric estimators of the data-generating process, pro-
viding an accurate approximation to almost any unknown target function of
interest. Secondly, they show good forecasting performance with high accuracy.
Thirdly, they can handle the curse of dimensionality that affects other nonpara-
metric techniques. A standard neural network model should be preferred when
dealing with short time series (usually available in economics or banking and
insurance applications) where highly complex neural networks such as LSTM,
CNN or other deep structures cannot be easily justified due to lack of infor-
mation. Moreover, the forecasting distribution is estimated using a bootstrap
resampling scheme which is distribution-independent and accounts for model
estimation uncertainty. However, bootstrap requires thousands of replicates to
estimate accurately the forecast densities, which in turn requires thousand of
network training and meta parameters tuning, which makes the overall process
soon unfeasible when deep learning is involved. The overall procedure delivers
accurate and consistent results for pure autoregressive dependent structures. It is
model-free within a general class of nonlinear autoregression processes. It avoids
the specification of a finite-dimensional model for the data-generating process,
a challenging task when dealing with nonlinearities of the unknown form [3].
However, despite the optimal theoretical properties of the procedure, bootstrap-
ping NNs joins together two computer-intensive procedures. That leads to a
computational burden that is too heavy in many applications.

In this paper, to overcome these computational problems, we propose and
discuss the use of Extreme Learning Machines (for a survey on ELMs, see [4]
and the references therein) to get a fast and accurate estimate of the bootstrap
neural network forecast distributions. Unlike the other traditional learning algo-
rithms, e.g., backpropagation-based neural networks, the parameters of hidden
layers of the ELM are randomly generated and need not be tuned. Theoretically,
the single hidden layer feedforward networks with randomly generated hidden
neurons and the output weights tuned by regularised least square maintain its
universal approximation capability [5,6], even without updating the parameters
of hidden layers. In addition, solving the regularised least squares problem in
ELM is faster than that of the quadratic programming problem in standard gra-
dient methods in traditional back propagation-based NNs. Thus, ELM tends to
achieve faster and better generalisation performance than NNs [7,8], reducing
the computational burden of the overall procedure.

The paper is organised as follows. Section 2 briefly reviews NNs for approx-
imating bootstrap forecast distributions in the context of nonlinear autoregres-
sive time series. In Sect. 3, the extreme learning machine approach is presented
and discussed, highlighting the advantages of its use for the neural network
approach. In Sect. 4, a discussion of the advantages of using ELMs in terms of
computational burden and algorithm scalability is reported. In Sect. 5, a simula-
tion experiment is performed to evaluate the computational advantage of using
an ELM-based procedure and assess the overall procedure’s consistency based
on ELMs. Finally, some remarks close the paper.
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2 Bootstrap Forecast Densities with Neural Networks

Let {Yt, t ∈ Z} a real-valued stationary stochastic process modelled as a Nonlin-
ear Autoregressive process of order p,

Yt = g (xt−1) + εt. (1)

where x′
t−1 = (Yt−1, . . . , Yt−p) is a p dimensional vector of lagged values and

{εt} is an iid zero mean White Noise process with positive variance σ2 and
continuous positive everywhere density function. Moreover, we assume that εt is
independent from {Ys, s < t} for all t. The function g(·) is an unknown (possibly)
nonlinear regression function.

Given a time series {Y1, . . . , YT }, generated from the model NAR(p), as spec-
ified in Eq. (1), the aim is to determine the forecast distribution FT+1|T (·) of Y ,
at a given future time point T +1, conditioned on the set IT including the infor-
mation available up to time T . To solve this problem, we propose a strategy in
which the unknown function g(·) is approximated using a feed-forward neural
network estimator and the pair bootstrap approach is used to approximate the
unknown forecasting distribution.

The function g(·) can be approximated by using a single input, single layer
feedforward neural network model defined as

fm (xt−1; θ) =
m∑

k=1

ckψ (w′
kxt−1 + wk0) (2)

with θ′ = (c1, . . . , cm,w′
1, . . . ,w

′
m, w10, . . . , wm0), parameter vector of dimension

m(p + 2), where m is the hidden layer size, {wk, k = 1, . . . ,m} are the weight
vectors of the connections between the input layer and the hidden layer; {ck,
k = 1, . . . , m} are the weights of the link between the hidden layer and the
output neuron; {wk0, k = 1, . . . , m} are the bias terms of the hidden neurons;
ψ(·) is a proper chosen activation function for the hidden neurons. On the neural
network, it is assumed that the activation function ψ (·) is a continuous squashing
function with ψ (·) ∈ C2 (R) and that the hidden layer size is such that m =
m(T ) = O

(√
T/ log T

)
, with T the length of time series.

The problem is how to obtain the bootstrap distribution for the 1-step ahead
forecast F ∗

T+1|T (y) of the unknown forecast density FT+1|T (·). In this context,
we use the neural network model:

Yt = fm(xt−1;θ) + εt. (3)

whose parameter vector is estimated by using the set of tuples:

X ≡ (Yt,x′
t−1) = (Yt, Yt−1, . . . , Yt−p), t = p + 1, . . . , T. (4)

The overall procedure can be implemented as follows.
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1. Fix the hidden layer size m and the lag structure p. Estimate the weights of
the network as:

θ̂ = argmin
θ

T∑

t=p+1

L (Yt, fm (xt−1;θ)) (5)

where L is an appropriate loss function, such as the squared loss, and fm is
a neural network model with m neurons in the hidden layer used to predict
YT+1.
Generally, the stability of the network solution can be improved by consider-
ing a regularized version of the optimization problem 5:

argmin
θ

T∑

t=p+1

L (Yt, fm (xt−1;θ)) +
λ

2
‖θ‖2 (6)

where ‖·‖ is the L2-norm and λ is called regularization parameter or weight
decay as it forces the weights to decay towards zero. Larger weight values
of the ANN will be more penalized if the value of λ is large. Similarly, for
a smaller value of λ, the regularization effect is smaller. This parameter is
usually fixed by cross-validation.

2. Calculate the centered residuals from the estimated network (5) or (6) defined
as:

ε̃t = ε̂t − 1
T − p

T∑

t=p+1

ε̂t. (7)

where

ε̂t = Yt − fm

(
xt−1; θ̂

)
(8)

3. Resample {(Y ∗
t ,x′∗

t−1) = (Y ∗
t−1, . . . , Y

∗
t−p), t = p + 1, . . . , T}, as an iid sample

from the set of tuples X .
4. Get the bootstrap estimate of the neural network weights:

θ̂
∗
= argmin

θ

T∑

t=p+1

L (
Y ∗

t , fm

(
x∗

t−1;θ
))

. (9)

5. Compute

Ŷ ∗
T+1 = fm

(
YT , YT−1, . . . , YT−p; θ̂

∗)
+ ε∗

T+1 (10)

where ε∗
T+1 is a random sample from the centered residuals {ε̃t}.

6. The bootstrap forecast distribution F ∗
T+1|T is given by the law of Ŷ ∗

T+1 con-
ditioned on X .
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The proposed procedure uses the pair bootstrap proposed in [9] as a resam-
pling scheme which, when applied to autoregression models, delivers consistent
results [10] also in the time-dependent context. This fully nonparametric pro-
cedure is robust to the misspecification of the functional form and/or the error
distribution of the specified statistical model. That is particularly important
when the bootstrap is applied to NNs that are intrinsically misspecified models.

Under general assumptions, concerning essentially the stationarity, the ergod-
icity and mixing conditions on the data generating process, the proposed boot-
strap procedure is asymptotically justified for pure autoregressive dependent
structures [3].

As usual, the bootstrap distribution can be approximated by Monte Carlo
simulations. If steps 3–5 are repeated B times, the empirical cumulative distri-
bution function (ECDF) can be obtained as:

F̂ ∗
T+1|T = B−1

B∑

b=1

I

(
Ŷ b

T+1 ≤ y
)

where I(.) denotes the indicator function.
The introduced bootstrap can be also used to estimate the true distribution

of a predictive root, which helps compare forecast densities and construct con-
fidence intervals. Following [11], the 1-step ahead predictive root measures the
error in the 1-step ahead prediction and is defined as:

YT+1 − ŶT+1. (11)

where, as usual,

ŶT+1 = fm

(
YT , YT−1, . . . , YT−p; θ̂

)
(12)

is the predictor of YT+1 based on the data (Y1, Y2, . . . , YT ). Let GT+1|T be the
law of the forecasting error defined in (11).

Given a bootstrap pseudo series (Y ∗
1 , Y ∗

2 , . . . , Y ∗
T ), the bootstrap counterpart

of the prediction root is defined as:

Y ∗
T+1 − Ŷ ∗

T+1. (13)

where

Y ∗
T+1 = fm

(
YT , YT−1, . . . , YT−p; θ̂

)
+ ε∗

T+1 (14)

Ŷ ∗
T+1 = fm

(
YT , YT−1, . . . , YT−p; θ̂

∗)
. (15)

The law of the bootstrap forecasting error defined in (13), namely G∗
T+1|T ,

can be used to approximate the unknown distribution GT+1|T .
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3 Extreme Learning Machines

Despite their optimal theoretical properties, NNs deal with challenging issues
due to serious computational burdens related essentially to the possible com-
plex nonlinear generating processes. First, a proper model selection procedure
is needed to obtain a good approximation of the data-generating process. It
requires the identification of the input layer and the hidden layer and choosing
the activation function. Some proposals have been introduced in the specialised
literature (see, for example, [12]), but the difficulty of finding a proper method
capable of automatically identifying the optimal NN remains an open question.

Moreover, once a proper NN architecture has been identified, the parameter
estimation problem has to be addressed. In this context, many algorithms have
been proposed to improve the original backpropagation algorithm, which suf-
fers from slow convergence and local minimum problems. Unfortunately, again,
many of them still need help to guarantee global optimal solutions and fast
convergence.

Extreme learning machine is a method for training NNs that has been pro-
posed in the literature [13,14]) to overcome some problems other training tech-
niques face. In the ELM context, the weights of the hidden nodes are randomly
generated, and they do not need to be tuned. As a consequence, the algorithm
analytically determines the output weights of NNs.

The ELM algorithm can be structured in two steps. In the first one, the hid-
den layer size is randomly initialised to map the input data into a feature space
by some nonlinear functions such as the sigmoid or the hyperbolic functions.
The hidden node parameters {(wk, wk0), k = 1, . . . ,m} are randomly generated
according to any continuous probability distribution so that the matrix:

H =

⎡

⎢⎣
ψ(w′

1xp + w10) · · · ψ(w′
mxp + wm0)

...
. . .

...
ψ(w′

1xT−1 + w10) · · · ψ(w′
mxT−1 + wm0

⎤

⎥⎦ (16)

is completely known. In the second step, the output weights c are estimated by
solving the following minimization problem:

ĉ = argmin
c

‖Hc − y‖ (17)

where y = (Yp+1, . . . , YT ) is the training data target vector and ‖·‖ denotes the
L2-norm.

If H† denotes the Moore-Penrose generalized inverse of the matrix H, the
optimal solution to the previous optimization problem is:

ĉ = H†y (18)

The matrix H† can be calculated using one of the numerous methods
proposed in the literature, including orthogonal projection, orthogonalisation
method, iterative method and the single value decomposition, the last one being
the most general.
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Estimating the parameter vector c can also be obtained via regularised ELM
[5]. If H has more rows than columns (T − p > m), which is usually the case
when the number of training data is larger than the number of hidden neurons,
the following closed-form solution can be obtained:

ĉ =
(
H′H+

I
η

)−1

H′y (19)

where I is an identity matrix of dimension m and η is a proper chosen constant.
If the number of training data is less than the number of hidden neurons

(T − p < m), an estimate for c can be obtained as:

ĉ = H′
(
HH′ +

I
η

)−1

y

where I is an identity matrix of dimension T − p this time.
It can be shown that Eq. 19 actually aims at minimising:

ĉ = argmin
c

‖Hc − y‖ +
1
η

‖ c‖

Compared to standard ELM, in which the target is to minimise ‖Hc − y‖, an
extra penalty term 1

η ‖c‖ is added to the target of standard ELM. This is actually
consistent with the theory that smaller output weights c play an essential role
for ELM in achieving better generalisation ability.

The ELM approach has several advantages. It has good generalisation per-
formance since it reaches the small training error and, contemporaneously, the
smallest norm of output weights. Moreover, learning can be done without iter-
atively tuning the hidden nodes, independent of training data. Finally, ELMs,
like NNs, enjoy the property of being universal approximators [15,16].

In practice, being the hidden layer randomly generated, ELMs usually require
more hidden neurons than NNs to obtain a given performance. However, this is
a manageable problem due to the computational efficiency of ELMs. Moreover,
ELMs are well-suited for extensive data processing. Even if a model selection
process is implemented for optimal structure searching, the running time of
ELMs is always lower than other competing strategies.

4 Computational Burden and Algorithm Scalability

In this section, we discuss the results of a simulation experiment performed to
evaluate the computational advantage of ELMs with respect to NNs. A set of
5000 time series of different lengths, ranging from 250 to 1000, has been generated
from an EXPAR(2) model, defined as:

Yt = a1 (Yt−1)Yt−1 + a2 (Yt−1)Yt−2 + εt (20)

where a1(u) = 0.5 + 0.9 exp(−u2), a2(u) = −0.8 + 1.8 exp(−u2) and εt ∼ T6√
1.5

,
being T6 the Student T distribution with 6 degrees of freedom.
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For each time series, we have trained NNs and ELMs with input lags in the set
{1, 2, 4} and hidden layer size in the set {4, 8, 12, 16, 20} to consider models with
increasing complexity which requires increasing overall training time. Neural
network models have been trained using a very efficient algorithm based on
BFGS and implemented in the R package nnet in the language C. In contrast,
ELMs have been implemented entirely in R by the authors.

In Fig. 1 we reported the ratio between the NNETs and ELMs training time,
over 50 replicates. The results show a significant computational advantage in all
cases in using neural networks trained without iterative tuning for fully iterated
algorithms. Using backpropagation (a standard approach in neural computation)
would make the overall training procedure even slower. For the simplest model
(one input neuron and just two hidden neurons), training ELMs is about 20
times faster than training NNs. The computational advantage increases when
the model complexity increases. When we consider neural networks with four
input neurons and twenty hidden neurons, training ELMs is about 150 times
faster than training classical NNs.
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Fig. 1. Ratio mean training time for NNET and ELM for input neurons p ∈ {1, 2, 4}
and hidden neurons m ∈ {4, 8, 12, 16, 20}, with time series length T ∈ {250, 500, 1000}.

All neural networks have been estimated by restarting the training ten times
to avoid being trapped in local minima (which is unnecessary when using ELMs).
Also, note that the computational advantage can be further reduced when using
ELMs with the regularisation learning process. The regularisation parameter has
to be fixed on ad hoc choices, generally based on cross-validation. This makes
the computational burden heavy and, in many applications, impracticable.
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The computational problems of using NNs become even more considerable
when used in computer-intensive resampling techniques, such as bootstrap or
cross-validation, in which the training step must be repeated hundreds or thou-
sands of times. When using ELMs, the whole bootstrap forecast distribution can
be obtained at the same computational cost as training a single network.

5 Simulation Results

In this section, we present the results of a Monte Carlo experiment carried out to
analyse the finite sample behaviour of the proposed bootstrap estimates based on
ELMs of forecast densities for nonlinear processes. As data-generating processes,
we consider the following models:

(M1): Nonlinear Autoregressive (NLAR)

Yt =
0.7|Yt−1|
2 + |Yt−1| + εt

(M2) Smooth Transition Autoregressive (STAR)

Yt = 0.8Yt−1 − 0.8Yt−1

1 + exp(−10Yt−1)
+ εt

(M3): Exponential Autoregressive of order 1 (EXPAR(1))

Yt = (0.8 − 1.1 exp(−50Y 2
t−1))Yt−1 + εt

(M4): Exponential Autoregressive of order 1 (EXPAR(2))

Yt = (0.5 + 0.9 exp(−Y 2
t−1))Yt−1 + (−0.8 + 1.8 exp(−Y 2

t−1))Yt−2 + εt

(M5): Self-exciting Threshold Autoregressive of order 2 (SETAR(2))

Yt =

⎧
⎪⎪⎨

⎪⎪⎩

−0.015 − 1.076Yt−1 + 0.0062εt if (Yt−1 < 0) and (Yt−2 < Yt−1)
−0.006 + 0.630Yt−1 − 0.756Yt−2 + 0.0132εt if (Yt−2 ≤ 0) and (Yt−1 > Yt−2)
−0.006 + 0.438Yt−1 + 0.0094εt if (Yt−2 > 0) and (Yt−1 ≤ Yt−2)
−0.004 + 0.443Yt−1 + 0.0082εt if (Yt−2 > 0) and (Yt−1 > Yt−2)

Model M1 is a general Nonlinear Autoregressive (NLAR) model of order 1.
Model M2 is a Smooth Transition Autoregressive (STAR) model of order 1;
it is a natural extension of autoregressive models, allowing for a higher degree
of flexibility in model dynamics through a smooth transition. Models M3 and
M4 are Exponential Autoregressive (EXPAR) models of orders 1 and 2, respec-
tively. Model M4 is the same model defined in Eq. 20. This family of models
are particularly useful in explaining jump phenomena, amplitude-dependent fre-
quency shifts and perturbed limit cycles. Model M5 is a Self-exiting Threshold
Autoregressive (SETAR) model of order 2 in which flexibility in model dynamics
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is obtained through a regime-switching behaviour. These models have already
been used in several other Monte Carlo studies [17–21].

For the simulation design, we have considered three different specifications
for the error term: a standard Normal distribution, a standardised Student T
distribution with degrees of freedom equal to 6, to simulate the case of heavy tails
and a standard exponential distribution with a parameter equal to 1, to simulate
asymmetric error terms. That is: (E1) εt ∼ N(0, 1), (E2) εt ∼ T (6)/

√
1.5 and

(E3) εt ∼ Exp(1) − 1. All simulations are based on N = 500 Monte Carlo runs
with time series of length T with T ∈ {250, 500, 1000}. We have also considered
ELMs with different hidden layer sizes m ∈ {4, 8, 10, 12, 16, 20} to verify the
consistency of the implemented procedure and the stability of the results when
changing the hidden layer size. The bootstrap forecast distributions have been
estimated using B = 1, 000 bootstrap replicates.

For the resampling step in NN training, we have used a local bootstrap
scheme where, in each bootstrap, the network training is initialised by using the
estimated values of the weights on the original sample. This strategy allows a
more stable and efficient convergence to the solution in each bootstrap run.

The final experiment is based on design 270 points (five model specifications,
three error specifications, three different time series lengths, and six hidden layer
sizes for ELMs).

The Wasserstein distance of order one between the empirical cumulative dis-
tribution function (ECDF) of the true forecasting error distribution (G(y)) and
the ECDF of bootstrap forecasting error distribution computed using the ELM
(G∗(y)) defined as

W1(G,G∗) =
∫ ∞

−∞
|G(y) − G∗(y)|dy.

can be calculated as the area between the two ECDFs.
In Figs. 2 and 3 we have reported the kernel density estimation of the

true forecasting error distribution estimated with NNs and ELMs for mod-
els STAR(1), NLAR(1), EXPAR(2) and SETAR (2), with time series lengths
{250, 500, 1000} and error distributions E1, E2 and E3. The distributions have
been estimated with 10,000 Monte Carlo runs. In all cases, the estimated distri-
butions obtained via ELMs are almost identical to the ones obtained via NNs.
The same comments apply to the EXPAR(1), not reported here for space con-
straint.

Now, we focus on analysing the consistency of bootstrap forecast distribu-
tions estimated via ELMs. In Figs. 4 and 5 we have reported the Monte Carlo
distribution of the Wasserstein distance of order one between the true fore-
cast error distribution and the bootstrap forecasting error distribution for mod-
els STAR(1), NLAR(1), EXPAR(2) and SETAR (2), for different hidden layer
sizes, error term distributions and time series lengths. In all cases, as the sample
size increases, the distribution median tends towards zero, and its variability
decreases, showing, for finite sample size, the convergence of the procedure and
the good accuracy of the bootstrap distribution in approximating the true one.
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Fig. 2. Kernel density estimation of the true forecasting error distribution estimated
with NNs and ELMs for model model STAR(1) and NLAR(1) with different time series
lengths and error distributions. The distributions have been estimated with 10, 000 MC
runs.
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Fig. 3. Kernel density estimation of the true forecasting error distribution estimated
with NNs and ELMs for model model SETAR(2) and EXPAR(2) with different time
series lengths and error distributions. The distributions have been estimated with
10, 000 MC runs.
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Fig. 4. Monte Carlo distribution of the Wasserstein distance of order 1 between the
true forecasting error distribution and the bootstrap forecasting error distribution for
different hidden layer sizes, error term distributions and time series lengths. The true
distribution has been estimated with 10, 000 MC runs, and the bootstrap distributions
have been estimated with 1, 000 MC runs STAR (1) and NLAR(1) Models.
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Fig. 5. Monte Carlo distribution of the Wasserstein distance of order 1 between the
true forecasting error distribution and the bootstrap forecasting error distribution for
different hidden layer sizes, error term distributions and time series lengths. The true
distribution has been estimated with 10, 000 MC runs, and the bootstrap distributions
have been estimated with 1, 000 MC runs EXPAR(2) and SETAR(2) Models.
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Concerning the different error term distributions, as expected, the variability is
slightly higher than that of the Normal case in the case of asymmetric distribu-
tion or heavy tails. Furthermore, the results remain stable when changing the
hidden layer size m. Consequently, fixing m does not appear as critical as fixing
tuning parameters in other nonparametric approaches, as in the case of local ker-
nel regressions or splines. The same comments apply to model the EXPAR(1),
not reported here for space constraint.

6 Concluding Remarks

In this paper, a new bootstrap approach to estimate the forecast distribution for
nonlinear time series has been presented and discussed. The proposed approach
uses the pair bootstrap as a resampling device and employs extreme learning
machines to approximate the original nonlinear process.

The overall procedure has a nice nonparametric property of being model-
free within a general class of nonlinear processes, avoiding the specification of a
finite-dimensional model for the data-generating process. Concerning competing
conventional algorithms for single hidden layer feed-forward neural networks,
ELMs have some advantages. In this algorithm, the input weights and the hid-
den layer bias are randomly chosen; consequently, their use can dramatically
reduce the computational burden of the bootstrap procedure. Moreover, they do
not need any restrictive assumptions on the activation function and are not so
sensitive to the choice of the hidden layer size.

A simulation experiment has been carried out to verify the performance of
the proposed approach. First of all, the results have shown the effectiveness of
ELMs in reducing the computation time of the overall procedure. As expected,
the advantage of using ELMs increases as the complexity of the model increases.
The mean execution time for the learning process of a complete neural network
is about 150 times slower for the learning process of ELM with regularisation.

Summing up, using ELMs to approximate the original non-linear process
is advantageous in the implemented bootstrap procedure. It retains the good
properties of the classical NN approach in a wide range of different nonlinear
model specifications and error term distributions, considerably reducing com-
puting times, making the use of bootstrap feasible in many application contexts
where the complexity of the network is supposed to increase.

As a final remark, note that the proposed procedure can be extended to
deal with forecast horizons greater than one in which a direct multistep fore-
casting approach can be used. Moreover, since the pair bootstrap can deal with
heteroscedastic errors, a further extension in this direction might be straightfor-
ward. The suitability of ELMs in these contexts is still under investigation.
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Abstract. Artificial Intelligence has been widely used almost in every
aspect of our lives, and sports activity is no exception. In that field,
table tennis is a very demanding sport, in which predicting the winner
of a point or a match can be quite challenging. This paper explores the
application of several machine learning algorithms in subsampled table
tennis data. Especially, the Multilayer Perceptrons, Random Forests, and
Gradient Boosted Trees have been used in order to predict the result of
individual points and matches. The algorithms were trained on real data
from official First Division matches of the Hellenic Table Tennis Federa-
tion. The Gradient Boosted Trees achieved the highest level of accuracy
(98.36%) in the prediction of each individual point and (74.92%) in the
prediction of the winner of the match. The 98.36% accuracy is very high,
while the 74.92% is affordable, because the match winner could have
won even fewer points than its opponent. Also, Gradient Boosted Trees
achieved the less computational time, making it suitable for use in real-
time systems to assist tactical coaching in table tennis.

Keywords: Table Tennis · Random Forests · Gradient Boosted
Trees · Artificial Intelligence · Machine Learning

1 Introduction

Table tennis is a complex sport involving a wide variety of strokes. These strokes
when analysed can be useful inferences which in turn can lead to an improvement
in the performance of a player. The strokes executed by a player are clearly
visible to the opponent and hence, valuable inferences regarding the strokes can
be easily made from the front view of the player [1].

A table tennis player considers various characteristics when it comes to hit
the ball, such as their own and their opponent’s position around the table, the
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hitting technique of the ball, and the area of the table where the ball will bounce.
All these characteristics are being examined continuously and in parallel, playing
a significant role in the result of each single point. For instance, if a player wants
to win a match, they can adopt a strategy that involves the appliance of different
tactics in a sequence of a few hits [2]. In the past, there have been many attempts
to analyse sports games, primarily using historical data for statistical analysis.
Therefore, it is interesting to examine the correlation between the hits and their
success [3].

With the development of artificial intelligence, more and more smart tech-
nologies are being used in the sports industry, such as portable sensors, live
video capture, technical and tactical analysis systems. However, in table ten-
nis, the development of an intelligent real-time video capture system remains
elusive because of the prominent tracking difficulties and challenges caused by
the small size, light weight, fast speed and strong rotation of the table tennis
ball [4]. In professional table tennis training, the trainer will carefully analyse the
action features of the opponent before the video data. They also collect training,
fitness and competition data from athletes and adjust training strategies over
time based on attacking and defending weaknesses of opponents. For example,
smart sensors such as portable devices or videos are common in teaching and
training [5]. Researchers look at specific tactical details to see how each person
performs. By studying the aforementioned information, it can be figured out
how good an athlete is at their performance [6]. In bibliography, there are many
studies concerning the data analysis of the game with the use of multiple sensors
and cameras, especially during the services’ process [7]. Also, in [8], the net of the
table is monitored by force sensors and other electronic circuits. The ball’s spin
and speed can be monitored, using inertial sensors mounted on the racket [9], as
well as the estimation of the trajectory of the racket [10]. In other studies, the
detection of the stroke type [11] and the estimation of kinematic parameters [12]
have been examined. Building upon the previous work, additional studies have
been conducted to explore the application of Artificial Intelligence in predicting
various table tennis factors [13].

Table tennis is a very demanding and technically complex sport. Athletes
have to make quick decisions and plan tactics while under physical and emotional
fatigue. Statistical analysis of matches or entire tournaments can help athletes
and coaches learn a lot about their opponents and improve their skills [14].

The rest of this paper is organized as follows. After the description of the
dataset and the fundamentals of the used machine learning algorithms presented
in Sect. 2, Sect. 3 proposes our implemented model and depicts the experimental
results, while the conclusions and future work are drawn in Sect. 4.

2 Methodology

2.1 Dataset Representation

There were 33 male athletes in the first 34 positions of the official Hellenic Table
Tennis Federation male ranking. Furthermore, there were 18 female athletes in
the first 26 positions of the respective female ranking.
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These athletes competed in the men’s and women’s A1 league of the Hel-
lenic Championship, during the 2019-2020 season. A total of 64 matches were
recorded. In all of these matches 5.065 points were gained. The aforementioned
matches were divided in 34 men matches with 2905 points and 30 women matches
with 2160 points gained. Out of these men matches, twenty ended in a 3-0 sets,
eight in a 3-1 sets, and six in a 3-2 sets. In the women’s category, eighteen
matches ended with a 3-0 sets, eight ended with a 3-1 sets, and four ended in a
3-2 sets victory. All athletes had an offensive style of play. All these matches were
filmed by the official YouTube channel of the Hellenic Federation. The average
age for men and women was 29.4 and 28.9 years old, respectively.

Table 1. Dataset input variables

Variable Name Discrete options ID

Category
Man 1
Woman 2

Service rank player
High rank 1
Low rank 2

Receive rank player
High rank 1
Low rank 2

Serve position
Forehand 1
Middle 2
Backhand 3

Service grip Forehand Grip 1
Backhand Grip 2

Service area

Forehand Short 1
Middle Short 2
Backhand Short 3
Forehand Inside/Out 4
Middle Inside/Out 5
Backhand Inside/Out 6
Forehand Long 7
Middle Long 8
Backhand Long 9

Number of hits

Ace 1
2 Hits 2
3 Hits 3
4-5 Hits 4
6 Hits 6

Variable Name Discrete options ID

Shot used to receive

Forehand Push 1
Backhand Push 2
Forehand Flick 3
Backhand Flick 4
Forehand Topspin 5
Backhand Topspin 6
Forehand Drive 7
Backhand Drive 8
False Receive 0

Receive shot area

Forehand Short 1
Middle Short 2
Backhand Short 3
Forehand Inside/Out 4
Middle Inside/Out 5
Backhand Inside/Out 6
Forehand Long 7
Middle Long 8
Backhand Long 9
False Receive 0

Point analysis

Ace 1
Point won on 3rd ball 2
Point won after 3rd ball 3
Point lost after service 4
Point lost after 3rd ball 5

The input variables are presented in detail in Table 1. Furthermore, because
of the dataset generation method, there are no missing values.

The table tennis service area is divided in three zones. From the left side is
the backhand area, the middle of the table tennis table is the middle area and
the right side is the forehand area (right-handed player). The table tennis serve
is mainly done in two ways. The most common way is with Forehand Grip and
the other is with Backhand Grip. The service from the right hand of the body
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and from inside hand of the racket is the Forehand service, and the service from
the left hand of the body and from outside front of the racket is the Backhand
service (right-handed).

The high rank players are the athletes that are in the first twelve positions
on the official ranking list of Hellenic Table Tennis Federation and the low rank
players are in the rest of the positions.

The area of the serve, depends on the second bounce of the ball. The short
serve is the serve which the second bounce is near to the table net, the serve
which the second bounce is in the middle from the net to baseline it’s called
inside/out service and the long service is the serve which the second bounce is
near to the baseline. The serving area also it depends from the right or the left
side on the table. The right side is the forehand side and the left side is the
backhand side (right handed).

About the receive in table tennis, success receive is considered when the
receiving athlete simply returns the ball to the opponent’s area while fail receive
is when the receive athlete can’t return the ball into the opponent’s area. The
most used shot receive is the push, a not so aggressive shot with backspin and
without speed, the topspin a very aggressive and powerful shot with a lot of spin
and speed, the drive a “simple” shot with speed and without spin and the flick,
a shot with spin and speed. Also, the serving result is very important in table
tennis. When a serve player wins the point, that is called serve-won point. On
the other hand, when a serve player lose the point, it is called serve-lost point.

Also, about the analysis of the point, an ace occurs when the point is won
only by serving. When an athlete wins the point with a shot after the receive,
that is called “won the point on the 3rd shot”. Similarly, when an athlete wins
the point later, this is called in the current study “won the point after the 3rd
shot”. On the other hand, when the service athlete loses the point immediately
after the service this is called “lost the point after service”, whereas when the
athlete loses the point later that is called “lost the point after the 3rd shot”.

2.2 Dataset Analysis

The dataset included in total 10 categorical variables, used as input for our
prediction models. Indicatively, they included measurements such as the point
analysis, length of service area, playing category and service grip of a table tennis
player, as shown already in Table 1.

Analysing and combining the aforementioned variables allows us to capture
the entirety of the information available about the players in the dataset and
create a more robust model for predicting the winners of table tennis matches
and their individual points. Furthermore, the use of categorical variables can be
useful in modelling complex and non-linear relationships between input variables
and the output variable, which can be important in sports like table tennis where
specific factors can play a significant role in the outcome of a point or a match.
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2.3 Implemented Machine Learning Algorithms

Multilayer Perceptrons (MLP), Random Forests, Random Trees, and Gradient
Boosted Trees (GBT) are all different types of machine learning models that can
be applied for a wide range of tasks and challenges belonging in the artificial
intelligence sector. In order to make the most precise predictions, based on the
type and nature of the given dataset, we carried out discrete comparisons on the
aforementioned models.

A multilayer perceptron is a type of feed-forward artificial neural network
that is composed of finite multiple layers of connected nodes, used to process
and transform the input data by identifying the dominant characteristics and
relationships of the given input variables [15]. MLPs are supervised learning mod-
els, which can successfully handle both classification and regression challenges.
They are used in a wide range of sectors. Despite of that, they also deliver sig-
nificant results in other fields. Among others, one of its advantages is the ability
to model complex, non-linear relationships between inputs and outputs. There-
fore, this model structure is often considered as an option for supervised learning
tasks.

Random Forests and Random Trees are considered as extensions of the deci-
sion trees data structure, a predictive model that uses input feature values to
make predictions [16]. These methods both involve training multiple decision
trees on randomly selected subsets of data and either averaging or voting on
their predictions. The difference is that Random Trees deliver a prediction each,
while Random Forests average the aforementioned predictions from a variety
of trees. Both methods have a tendency to overfitting minimisation and deliver
efficient execution times, however Random Forests are generally considered to
be more robust.

GBT is a also widely used and highly powerful machine learning model used
for both classification and regression challenges and tasks, making it a versatile
model that can be utilised with various types of data [17]. This is a learning
method that combines predictions of multiple discrete models, such as the afore-
mentioned decision trees, to form a highly efficient and accurate model. The
algorithm trains decision trees on different subsets of data iteratively, combin-
ing their predictions and aiming to the overall prediction error reduction. GBT
begins by training a simple decision tree, and then additional trees are added to
the model, each of which tries to correct the mistakes made by previous trees,
similar to back propagation. GBT can model complex relationships between
discreet input features and the desired output variable, as it can combine the
individual decision tree predictions. GBT has several advantages, such as being
robust to possible outliers, missing values, and noise in data.

3 Implementation

3.1 Model Structures

The goal of the presented work was to make predictions about two differ-
ent outcomes from the dataset we analysed. The first output was the winner
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identification for each individual point, while the second was the prediction of
the overall match winner, based on the characteristics of each single point in
the match. We adjusted and evaluated different models, aiming to find the less
time and computation expensive way. In order to achieve this, we made use of
TensorFlow [18] and Keras [19], which are two commonly known open-source
libraries for machine learning. TensorFlow is a framework for custom defining
different prediction model architectures and neural networks, while Keras is a
high-level API which runs on top of the aforementioned framework and thus,
it simplifies and speeds up the process of building and training models with
TensorFlow. Together, these libraries provide a powerful toolset for our predic-
tion models. The dataset employed in this study includes both numerical and
categorical input variables.

First, we used 5-layer multilayer perceptrons (MLP) to predict if a player won
the point or not. The model structure consisted of an input layer, four hidden
layers, and an output layer. The input layer was designed to accept the numerical
and categorical input variables from the dataset. The four hidden layers were
used to extract and analyse complex patterns in the data, while the output
layer was used to produce the final predictions by using the sigmoid activation
function. However, the model training process took a significant amount of time
compared to the other models due to its formation complexity and the dataset
structure and size. To ensure optimal performance, we used techniques such as
rectified linear unit and sigmoid activation functions, and regularisation to fine-
tune the model. After thorough trials with different hyper-parameter values, we
concluded that the epochs equal to 100 and batch size equal to 32 delivered the
best results. In order to optimise the built model and its weights, we used the
Adaptive Moment Estimation (Adam) [20] optimisation algorithm.

In an effort to improve the efficiency and time consumption of our model, we
decided to try alternative models to the aforementioned model that we had pre-
viously used. One such model we explored was Random Forests. Random Forests
is an ensemble method that builds multiple decision trees and combines them
to produce a final prediction. The training time of this model was significantly
faster compared to the MLP model, which made it a more attractive option.
We observed the Random Forests model delivered higher accuracy and better
metrics compared to the MLP model. This suggests that the Random Forests
algorithm was able to capture the patterns and features of the dataset, making it
a suitable model for our problem. Therefore, we conclude that Random Forests
algorithm is a good alternative in terms of both performance and computation
time when compared to MLP.

After evaluating several models, we concluded that the best model for pre-
dicting the winner of table tennis matches was Gradient Boosted Trees (GBT).
To further improve the performance of the GBT model, we explored and tuned
its hyper-parameters using techniques such as random search with a number of
100 trials. After experiment executions, we concluded the best predictions were
delivered by the Classification and Regression Trees (CART) algorithm [21].
CART, a decision tree algorithm used for both classification and regression
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problems, stands for Classification and Regression Trees. It creates a binary
tree that recursively splits the data into smaller subsets based on the value of
the input features. The CART algorithm plays a significant role in creating deci-
sion trees, while it is easy to interpret the results. By using CART algorithm in
the GBT model, we were able to extract the complex patterns and features of
the data which improved the performance of the model. Overall, we found that
GBT is the best overall model for the given dataset.

3.2 Results Comparison

In our research, we assessed the efficiency of the aforementioned machine learn-
ing models by means of several metrics for the two outputs. The results of our
investigation provided us with insights into the relationship between the char-
acteristics of each discrete point and the overall outcome of a match. Upon
evaluating the results, we concluded that the model providing the most satisfac-
tory performance for both cases was the Gradient Boosted Trees (GBT). The
Random Forests model followed, while the Multi-layer Perceptron produced the
lowest accuracy outcomes.

The first output, which was the prediction of each single point, was directly
related to the input variables. As a result, the models were able to effectively
identify the relationships between the given inputs and the point outcome. On
the other hand, the second output was more complex as it required to predict
the match winner based on the characteristics of each single point. This required
a deeper understanding of the complex relationships present in the dataset and
therefore the accuracy expectancy was lower.

For all validation purposes, the 10-fold cross-validation technique was used.
That allowed us in the end of each model evaluation to determine their efficiency
in unseen data. K-fold cross-validation can help to prevent overfitting in our built
models by assessing their ability to generalise to new data and to fine-tune the
respective hyper-parameters related to each model.

For the first output, we used first the typical 80–20% train-test split for the
MLP. That allowed us to evaluate and micro-adjust the built MLP model. The
model was tested with different hyper-parameters, i.e. epochs and batch size. The
resulting point model metrics were a loss of 0.4119, accuracy of 0.5881, mean
squared error of 0.4119, and mean absolute error of 0.4119. It is obvious that
the delivered results were poor and therefore the model could not be considered
as notable. Continuing with our research, we concluded that Random Forests
and GBTs were the preferred ones, as they both demonstrated efficient time
execution and high accuracy. Out of the two, Gradient Boosted Trees slightly
outperformed in terms of overall accuracy. The Table 2 depicts the respective
metrics for the developed MLP, RF and GBT models. In the implementation
of the Gradient Boosted Trees (GBT) model, the selection of crucial hyper-
parameters played a significant role in achieving the aforementioned results. The
categorical algorithm utilised was ’CART’, while the growing strategy adopted
was ’LOCAL’. Additionally, the sparse oblique normalisation technique applied
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was Min-Max scaling. These hyper-parameter choices ultimately impacted the
performance of the GBT model.

Table 2. Indicative point metrics comparison between MLP, RF and GBT

Multilayer Perceptron Random Forest Gradient Boosted Tree

Accuracy 58.81% 98.27% 98.36%
MAE 0.4119 1.0688 1.0721
RMSE 0.4119 1.2656 1.2662

Respectively, the same models were compared and used for the second output.
That predicted the match winner based on the given characteristics of discrete
points. This prediction required identifying more complex relationships between
multiple inputs and points, and thus, we expected a lower accuracy compared to
the first prediction. Additionally, it is also possible that the match winner could
have won fewer points than their opponent, further complicating the prediction
model. The results of the MLP model showed efficiency similar to the first pre-
diction outcome, with a loss of 0.4983, accuracy of 0.5017, mean squared error of
0.4983, and mean absolute error of 0.4983. In contrast, the Random Forest and
GBT models delivered significant improvement, with a noticeable increase in
accuracy given the complexities and challenges associated with the second pre-
diction. After conducting extensive experiments, we arrived at the conclusion
that a slight modification of the hyper-parameters improved the performance of
the prediction model. To be specific, we incorporated the use of standard devia-
tion as a measure of the dispersion of data around its average, as a sparse oblique
normalisation method. An overview of the aforementioned metrics is presented
in Table 3.

Table 3. Indicative match metrics comparison between MLP, RF and GBT

Multilayer Perceptron Random Forest Gradient Boosted Tree

Accuracy 50.17% 73.93% 74.92%
MAE 0.4983 1.1617 1.1815
RMSE 0.4983 1.3199 1.3272

4 Conclusion

In table tennis there are many factors that affect the result of a point and the
result of the whole match. In this study, data from matches of the official Hellenic
Table Tennis Federation have been used, in order to predict the result of each



556 D. Simopoulos et al.

single point and the result of the match, during the game, with various machine
learning techniques. Gradient Boosted Trees achieved the best results, while it
was also the quicker of the used techniques. The accuracy in prediction of each
single point (98,36%) is very high, whereas the accuracy in prediction of the
winner of the match (74,92%) is better than any other in bibliography. This can
be affordable, because the match winner could have won even fewer or equal
points than its opponent.

In the future, we will develop a real time system, which will extract the
data from a camera and import them into a computational classification system
to produce the factors that are going to be used from more machine learning
techniques.
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Abstract. Since its introduction, the attention-based Transformer
architecture has become the de facto standard for building models
with state-of-the-art performance on many Natural Language Processing
tasks. However, it seems that the success of these models might have to
do with their exploitation of dataset artifacts, rendering them unable
to generalize to other data and vulnerable to adversarial attacks. On
the other hand, the attention mechanism present in all models based
on the Transformer, such as BERT-based ones, has been seen by many
as a potential way to explain these deep learning models: by visualizing
attention weights, it might be possible to gain insights on the reasons
behind these opaque models’ decisions. This paper introduces Attentive-
BERT, an interactive attention weights visualization tool for diagnosing
BERT-based models, focusing on explaining the occurrence of shortcut
learning. The distinctive feature of this tool is enabling the visual com-
parison of attention weights before and after a change to the model’s
input, in order to visually analyse adversarial attacks. Some illustrations
of this use case are explored in this paper.

Keywords: Attention visualization tool · BERT · Shortcut learning ·
Adversarial attacks

1 Introduction

Over the past few years, the field of Natural Language Processing (NLP) has
seen remarkable progress, with language representation models exhibiting ever-
increasing gains on existing benchmarks. In fact, since its introduction, the
Transformer architecture [37] has served as a base for many models that have
achieved state-of-the-art performance on many NLP tasks [1,7,35].

This apparent success raises the question: are these models making progress
towards being able to understand language like a human does? Unfortunately,
studies have shown that these models often exploit biases in the dataset, leverag-
ing spurious features in order to achieve the reported performances [12,14,27].

This research is supported by Calouste Gulbenkian Foundation and by Fundação para
a Ciência e a Tecnologia, through LIACC (UIDB/00027/2020).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 558–569, 2023.
https://doi.org/10.1007/978-3-031-34204-2_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_45&domain=pdf
https://doi.org/10.1007/978-3-031-34204-2_45


Towards Explaining Shortcut Learning Through Attention 559

This phenomenon, known as shortcut learning, undermines the models’ capa-
bility to generalize to data that does not present such spurious artifacts. This
reveals not only that the model is unable to actually grasp the meaning of its
inputs, but also that it is susceptible to unexpected failures, for example, in real
world applications [12]. Thus, being able to diagnose a model to determine the
occurrence of shortcut learning is desirable.

One way to assess whether the model is relying on undesired characteristics
in the data is by testing it against adversarial attacks: small perturbations made
to inputs intentionally designed to deceive a machine learning model into out-
putting an incorrect answer, without changing the semantics of the input [13].
If the model is changing its prediction based on differences that should be irrel-
evant to the meaning of the input and, by extension, the output result, then it
is likely that the model is not learning to perform well in the task for the right
reasons. In other words, successful adversarial attacks are a sign that shortcut
learning may be occurring.

However, when an adversarial attack succeeds, the reason for the model’s fail-
ure is not obvious. Deep learning algorithms are often labelled black box mod-
els [6,18,22] because their complexity and huge amount of parameters makes
them extremely hard to interpret by humans. Despite that, many efforts have
been made seeking to understand the language representation models’ inner
workings [8,15,19]. One topic of high interest for studying the explainability
of these models is the visualization and interpretation of the attention mech-
anism [16,33,40], one of the core components of the Transformer and of the
models that are based on it. As a high-level description, this mechanism consists
of assigning non-negative weights to each input token, according to its relevance,
and then doing the weighted sum of the tokens’ representations based on those
weights [10].

This paper presents AttentiveBERT1, an interactive visualization tool of
attention weights for diagnosing the Transformer-based model BERT [7] and
its variants, with a focus on the analysis of adversarial attacks. This tool enables
the visualization of attention weights for a single input, as well as comparing the
attention weights of two inputs. It is possible to try to generate an adversarial
attack for a given input or, for convenience, to include a pre-generated list of
adversarial attacks to visualize. Additionally, this tool includes informative and
didactic content to explain the main relevant concepts, such as the attention
mechanism, shortcut learning and adversarial attacks.

The rest of the paper is structured as follows. In Sect. 2 we review rele-
vant concepts for understanding the attention mechanism, shortcut learning, and
related work concerning attention weights visualization. In Sect. 3 we describe in
detail the AttentiveBERT tool, exposing several use cases. In Sect. 4 we show how
to generate adversarial attacks in the tool and how differences can be observed.
Section 5 concludes.

1 Available on Github: https://github.com/Goncalerta/AttentiveBERT.

https://github.com/Goncalerta/AttentiveBERT
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2 Background

2.1 Attention Mechanism

Just like humans don’t tend to process the entirety of information received by
their senses at once, the idea that machine learning models could focus their
attention selectively on parts of their inputs first came from computer vision [10,
25]. Soon after that, this concept was introduced in the context of NLP for
the task of machine translation [2], with the proposal of an encoder-decoder
architecture that employed an attention mechanism in its decoder to decide
which parts of the input state it should give more relevance to.

A prominent model largely based on attention mechanisms is the Trans-
former [37], an encoder-decoder architecture initially proposed for the task of
machine translation that dispenses recurrence and convolutions (as used in recur-
rent and convolutional neural networks, the prior state-of-the-art architectures).
Each encoder of the Transformer has six attention heads, which independently
calculate the self-attention from the output of the previous encoder (or the word
embeddings for the first encoder) so that the results are then combined. In short,
in the self-attention mechanism, each input token becomes a weighted mean of
all input tokens, where the weights given to each pair of tokens are known as
attention weights and are calculated by the model.

Many recent models that have achieved state-of-the-art performance in NLP
have been based on the Transformer architecture. One such example is the Bidi-
rectional Encoder Representations from Transformers, best known as BERT [7].
As the name implies, this architecture only uses the stack of encoders from
the Transformer architecture, discarding the decoders. BERT also adds special
tokens to its input: [CLS], whose corresponding output representation is to be
fed into a classifier for classification tasks, [SEP ], to mark the end of a sentence,
and [MASK], to mark that a word has been masked for tasks such as masked
language modeling.

2.2 Shortcut Learning

Given the impact shortcut learning may have on the usefulness of a model, it
is important to study this phenomenon. Previous work has tried to explain and
interpret the occurrence of shortcut learning in NLP.

Han et al. [15] develop a method to measure artifacts in the training data,
such as lexical overlap, based on influence functions. This method is based on
measuring how increasing the importance of a given training example would
affect the model’s prediction for the test input [18]. Intuitively, a positive influ-
ence score means that removing this training example would result in the model’s
confidence decreasing, while a negative influence means that it would result in
the confidence increasing. If the model is exploiting a given data artifact then
it is likely that it will be more influenced by training examples that also exhibit
that artifact. Han et al. conclude that influence functions are consistent with
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gradient-based saliency maps in the task of sentiment analysis, but not on natu-
ral language inference. Their analysis of influence functions on natural language
inference also revealed that their model might have relied on spurious artifacts
such as lexical overlap between the premise and the hypothesis.

Other analyses have shown that the performance of BERT-based models
for the natural language inference task could be explained by spurious artifacts
such as the presence of the words “not”, “do”, “is”, and bigrams such as “will
not” [8,14,27]. Other found artifacts in natural language inference have to do
with the sentence length, with shorter sentences being associated with entailment
and longer sentences with the neutral relation [14].

Branco et al. [5] performed experiments to study whether language repre-
sentation models are learning generalizable features in commonsense tasks, or
simply exploiting shortcuts. In one experiment, they remove relevant parts of
the input and retrain the task, finding that in some tasks the models retained
their performance, suggesting that they are solving the tasks using shortcuts.

2.3 Visualizing Attention Weights

Other than the performance gains on the models in which they are applied,
attention mechanisms also have the advantage of being an instrument to try to
interpret models that employ them. In fact, by visualizing attention weights,
studies have tried to explain these models’ decisions.

Kovaleva et al. [19] manually inspected self-attention heatmaps of BERT
models, identifying five types of patterns: Vertical, in which attention is given
mainly to special tokens [CLS] and [SEP ]; Diagonal in which attention is given
mainly to the previous or next token in the input; Vertical + Diagonal which is a
mix of the previous types; Block, in which the attention is mainly given to tokens
in the same sentence; and Heterogeneous which is highly variable depending on
the input, without a distinct structure. They noted that the first three types of
patterns are less likely to capture interpretable linguistic features, because they
only take into account adjacency of the tokens and special tokens.

Because of the potential that attention weights seem to offer to interpret
language models, past work has already introduced interactive tools to visual-
ize these weights. Lee et al. [21] introduced a tool to visualize and manipulate
(manually and automatically) beam search trees and attention weights of neu-
ral machine translation models. Strobelt et al. [34] presented a tool to visually
analyse each stage of the translation process of a trained sequence-to-sequence
model, one of which was the attention stage. Vig [38] introduced an open-source
visualization tool of Transformer-based models named BertViz. This tool pro-
vided three view modes: an attention head-view, to visualize a single attention
head in a bipartite graph; a model view, which presents bipartite graphs of every
head in every layer of the model in a tabular form; and a neuron view, which
shows how the query and key learned parameters produce the attention weights.
However, the tool only supports the visualization for a single input at a time,
while in the context of adversarial attacks it is desirable to compare the difference
in the attention patterns of two almost identical, yet different inputs.
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3 AttentiveBERT

In order to study the attention patterns in adversarial attacks, we have developed
a visualization tool named AttentiveBERT. This is an interactive tool designed
to visualize the attention weights of BERT-based models, both for a single input
and for comparing pairs of inputs. Although the tool is focused on the study of
adversarial attacks, it can also be used for visualizing attention weights in other
contexts.

3.1 Tasks

AttentiveBERT is designed to work with three different, but similar classification
tasks. All three tasks deal with pairs of sentences as input, classifying their
relation with one of three labels, depending on the relation between the sentences.

The first one is Natural Language Inference (NLI) [24], also known as Recog-
nizing Textual Entailment (RTE). It consists of, given a premise and an hypoth-
esis, determining whether the relation between them is of entailment, contradic-
tion or neutral.

The second task is Argumentative Relation Identification (ARI) [28,31]. This
is a subtask of Argument Mining that, given two Argumentative Discourse Units
(ADU), aims at classifying whether the first (known as source ADU) supports,
attacks or has no relation to the second (known as target ADU).

The third task is Fact Verification (FV), also known as Claim Verification
(CV). This is a subtask of Fact Extraction and VERification (FEVER) [36]. It
can be formulated as, given a claim and evidence, whether that evidence supports
or refutes the claim, or rather if there is not enough information to determine
the veracity of the claim [3,8].

3.2 Models and Configuration

The tool is designed to work with any BERT-based model available on Hug-
gingFace Transformers [41]. For that, a JSON configuration file for each model
must be included in the configuration folder before running the tool. This con-
figuration includes the source for the model, the task, an array of pre-generated
adversarial attacks, and optional metadata.

For illustration purposes, the tool includes by default the configuration for a
case-sensitive DistilBERT [32] model that was fine-tuned to the NLI task with
the Stanford Natural Language Inference (SNLI) dataset [4].2 This is the model
analysed in this paper.

3.3 Single Input Visualization

In AttentiveBERT, it is possible to select one of the available tasks and mod-
els and run the model for an inputted pair of sentences, observing the result.
2 https://huggingface.co/boychaboy/SNLI_distilbert-base-cased.

https://huggingface.co/boychaboy/SNLI_distilbert-base-cased
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The visualizer (see Fig. 1) is composed of three main components. The first is
a confidence bar on the top, showing the model’s predicted label and its confi-
dence for each label, in percentage. The second component is an attention weights
heatmap on the left, showing, for every pair of tokens in the input, how much
weight is being attributed to that pair. The higher the intensity of blue, the more
weight is being attributed, while the color white represents a weight of zero. The
third component is an attention head selector on the right. This is a matrix of
buttons to select the attention head to visualize. The x-axis exposes the heads
and the y-axis the model’s layers. Instead of visualizing a single head’s attention
weights, it is also possible to visualize average attention weights over multiple
heads or layers. For that, the axis label itself may be selected. If the average
attention weight over all heads and layers in the model is desired, the circular
button in the bottom left of this component may be selected.

Fig. 1. Visualization of the attention weights of the 7th head on the 5th layer of a model
for the premise “A man is playing guitar.” and hypothesis “A man playing music.”.

3.4 Compare Inputs Visualization

In order to compare the attention weights before and after an adversarial attack,
it is desirable to directly compare the attention weights of two inputs. For that,
the tool offers the possibility of running the model with two different inputs,
comparing the attention weights of both inputs in a single heatmap.

The resulting visualizer (see Fig. 2) is similar to the one described for single
inputs. On top of the matrix of buttons, two new radio buttons are shown, to
select the comparison mode. In “Compare heatmap” mode, each cell is divided
in two, presenting the weight for the first input on its left side and the weight
for the second input on its right side. In “Difference heatmap” mode, each cell
presents the subtraction of the weights, with a green color for positive values and
red for negative values, the intensity of the color denoting the absolute value.
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Fig. 2. Comparison of the attention weights for the premise “A man is playing guitar.”
and hypotheses “A man playing music.” and “A man playing football.”. On the left:
“Compare heatmap” mode on the 4th head on the 4th layer. On the right: “Difference
heatmap” mode for the average attention weights of the heads of the 6th layer.

The heatmap axes includes the tokens of both inputs, highlighting which
tokens were changed, inserted or removed. In order to determine the differences
between both inputs, an adaptation of the Wagner-Fischer dynamic program-
ming algorithm for the edit distance of two strings [39] was used. The algorithm
was adapted to look at tokens instead of individual characters and to disallow
changes to the special tokens [CLS] and [SEP ].

4 Generating Adversarial Attacks

AttentiveBERT can generate adversarial attacks for a given input using many
techniques proposed in the literature, namely TextFooler [17], BERT-attack [23],
BAE [11], the greedy algorithm proposed by Kuleshov et al. [20], PWWS [29],
InputReduction [9], and Checklist [30]. The respective implementations offered
by Textattack [26] were used. In the case of BERT-attack, the number of can-
didates was reduced to 8, given that the original value was unreasonably slow
without significant gains. It is also possible to compose a list of pre-generated
attacks, which AttentiveBERT can show in a tabular form.

By visually comparing the attention weights of the model given the input
before and after the adversarial attacks, it is possible to notice interesting pat-
terns.

For instance, in some cases where the model shifts prediction there is a shift
in the average attention given to a token in favor of other tokens. This is the
case with Fig. 3. On the left, a shift can be seen from the token “summer ”
to the token “##arel ” and the prediction goes from contradiction (94%) to
entailment (48%). Since the premise talks about a man in winter clothing, it
is possible that having less attention in “summer ” is responsible for the model
changing the prediction. However, it is important to note that the the word
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“apparel ” might not have appeared often in the training set, as suggested by its
fragmented tokenization. On the right, the model changes the prediction from
neutral (86.4%) to entailment (75%). A decrease in attention to the changed
token can be seen, which might explain the change in the prediction. In fact,
the tokens “selling”/“gathering” are the only ones in the hypothesis that are not
implied by the premise, so they are the relevant tokens to conclude that the
correct label is neutral.

Fig. 3. On the left: Average attention weights difference over all heads for an example
adversarial attack with premise “A person wearing a straw hat, standing outside working
a steel apparatus with a pile of coconuts on the ground.” and hypotheses “A person is
selling coconuts.” and “A person is gathering coconuts.”. On the right: Comparison
of the average attention weights difference over all heads for the pair of inputs with
premise “A person dressed in white and black winter clothing leaps a narrow, water-
filled ditch from one frost-covered field to another, where a female dressed in black coat
and pants awaits.” and hypotheses “The man is dressed in summer clothing.” and “The
man is dressed in summer apparel.”, respectively. (some irrelevant tokens were omitted
to reduce the size of the figure)

Another interesting finding is that, in this model, the 3rd head of the 2nd
layer seemed to be specialized in, for each token, paying attention to tokens that
appear later in the input and have a similar meaning. This may be relevant in
explaining some adversarial attacks, as shown in Fig. 4, where the difference in
predictions is, respectively: entailment (97.7%) to neutral (73.7%); entailment
(97.2%) to contradiction (48.4%); neutral (97.3%) to contradiction (80.7%). In
the first example, the words “playground ” and “play” don’t produce a strong
connection as would be expected. The same happens in the second example,
with the words “river ” and “wet”. In the third example, “cup” is much less
associated with “drinking”, “alcoholic” and “beverage” than “beverage” is. These
weaker associations may be the cause of the model’s wrong predictions.
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Fig. 4. Comparison of attention weights on the 3rd head of the 2nd layer of the model,
before and after small changes to the inputs. From left to right: “A little boy in a
gray and white striped sweater and tan pants is playing on a piece of playground/play
equipment. (Color figure online)” and “A boy is on a playground.”, “A land rover is
being driven across a river/wet.” and “A vehicle is crossing a river.”, “A girl holding
a beverage/cup points at a painting.” and “The girl is drinking an alcoholic beverage.”.
(some irrelevant tokens were omitted to reduce the size of the figure)

5 Conclusion

In this work, a new tool was developed to visually analyse the attention weights
of BERT-based models. This tool allows the visualization of those weights in
different attention heads and even averages of heads for a single input or to
compare the differences caused by changes in the input. This tool may prove
useful in future studies of BERT-based models for interpreting the model behav-
ior, particularly in the context of adversarial attacks. Some interesting use cases
of this tool were explored, exposing patterns that may be further analysed in
subsequent studies.

In future work, this tool may be extended to other NLP tasks and to other
Transformer-based models. Another possibility is to implement alternative ways
to visualize the weights, such as bipartite graphs or the total attention given to
each token by all the others.
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Abstract. With the advancement of Machine Learning, recommender
systems have emerged with the aim of improving the user experience in
a world where data and available alternatives are tremendously growing.
Employing Natural Language Processing with such systems can provide
them with a sense of empowerment, given that most of the users’ opin-
ions are reflected through reviews. Artificial Neural Networks, the core
of Deep Learning, have sparked a lot of interest in many research fields,
owing to the appealing property of learning feature representations out
of nowhere. To that end, this paper presents a novel hybrid recommender
system that is based on Natural Language Processing and Artificial Neu-
ral Networks. The proposed model is evaluated and compared with a
similar model, where the advantages of the proposed model are clearly
presented. The paper is concluded by highlighting research opportunities
that can be done in the future.

Keywords: Machine Learning · Recommender Systems · Natural
Language Processing · Deep Learning · Artificial Neural Networks ·
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1 Introduction

A recommender system is a class of Machine Learning that makes use of data
to predict, narrow down, and find what users are looking for among a growing
number of options. Personalization is an important strategy for improving user
experience, given the exponential growth of information available on the web
[30]. In general, recommendations are made based on item features and user
preferences. This paper presents a hybrid recommender system that is based on
Natural Language Processing (NLP) methods and Deep Learning models.

Recommender systems also make use of data related to previous user-item
interactions to predict future user-item interactions. These systems can be based
on demographic filtering, collaborative filtering, content-based filtering, or hybrid
approaches [21]. Demographic Recommendation Systems (DRSs) are based on
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the demographic profile information of the user like location, age, gender, edu-
cation, etc. Such recommender systems use clustering techniques to categorize
the target users based on their demographic profile information. Collaborative
Filtering Recommender Systems (CFRSs) are the mostly implemented recom-
mender systems. Such systems recommend items for a certain user based on the
preference information of other users; given the previous user-item interactions.
CFRSs are based on the fact that if two or more users have common prefer-
ences, they are likely to share similar preferences in the future. For example,
if two users have watched almost the same movies and the first user watched
a certain movie that hasn’t been watched by the second user, the second user
might watch this movie in the future, so the system recommends this movie to
the second user. Content-Based Recommender Systems (CBRSs) rely on item
features or attributes. Such systems learn the attributes of the items chosen by
a certain user and recommend similar items to the user. Hybrid recommender
systems follow an approach that combines filtering methods used in CFRSs and
CBRSs for the aim of improving the model accuracy.

NLP is a branch in Machine Learning that helps machines analyze and under-
stand the human language [14]. NLP have played a significant role in the advance-
ment of recommender systems, where users can express their opinions about a
certain item through reviews. With the help of NLP, recommender systems can
analyze user reviews [20]. NLP methods were used for building a customer loy-
alty improvement recommender system [23], and for developing an E-tourism
recommender system [1].

Deep Learning is currently enjoying a lot of attention. Over the last few
decades, this field has achieved tremendous success in many application domains
like speech recognition and computer vision [30]. Artificial Neural Networks
(ANNs), the core of Deep Learning, have the ability to model the non-linearity in
data using non-linear activation functions. This property enables the capturing
of intricate and complex user-item interaction patterns and therefore makes the
recommender system more accurate. Also, ANNs were used in many applications
like image recognition [9], pattern correction [8], and optimization of deformed
images [10]. ANNs were also used in hardware design applications [11,12].

The following is a breakdown of the paper’s structure. A literature survey
with an emphasis on the weaknesses of existing similar works, in addition to
the methodology of developing the proposed system, are presented in Sect. 2.
Section 3 explains how the recommender system is implemented. The results
and evaluation are discussed in Sect. 4. The paper is concluded and research
opportunities and further investigations that can be done are highlighted in
Sect. 5. A roadmap of the proposed model is presented in Fig. 1.

2 Related Work

To propose a novel recommender system, further investigations in the literature
are required to highlight unsolved issues. The work presented in [25] aimed for
developing a hybrid recommender system for movie recommendation with the use
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Fig. 1. Roadmap of the proposed model.

of an expert system. The system used the Singular Value Decomposition (SVD)
algorithm, in addition to the Term Frequency-Inverse Document Frequency (TF-
IDF) model and a linguistic Fuzzy logic controller. The system achieved better
results than traditional systems, but the precision was still low (almost 80%).

In addition, a hotel content-based recommender system was proposed in [24].
The system was based on the similarity between users. The system had a low
precision and a low accuracy [24].

Moreover, a content-based recommender system that uses Cosine Similarity
and K-Nearest Neighbors (K-NN) Classification to recommend movies to users
was presented in [22]. The model focused on minor features like the movie genre
and movie popularity [22].
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Furthermore, a collaborative filtering recommender system named RecGAN
was proposed in [3], inspired by the Recurrent Recommender Networks (RRNs)
and Information Retrieval Generative Adversarial Networks (IRGANs). RecGAN
aimed to model temporal dynamics of user and item latent features. The model
was evaluated using two datasets, MyFitnessPal, and Netflix [3]. The model out-
performed the traditional models, though the improvement was slight in terms
of performance. The model also didn’t handle auxiliary data like texts, reviews,
etc. [3].

Also, a collaborative filtering recommender system based on AutoEncoders
was presented in [26]. The model was not able to deal with the cold-start problem,
which occurs when the user or item has no history, so the system won’t be
able to do the recommendations [26]. Also, the authors suggested using a Deep
Neural Network (DNN) instead of the shallow neural network. Shallow neural
networks have limited ability to learn abstract features and model complex data
distributions [26].

Apart from this, a demographic recommender system based on Clustering
was proposed in [31]. The system was built based on a microblogging service
platform [31]. The system focused on demographic features, which is inaccurate,
given that demographic features are subject to change, and may cause popularity
bias [18].

Consequently, the recommender system type, used approaches for the rec-
ommendation, and system disadvantages of the aforementioned works are sum-
marized in Table 1. It can be noticed that there were no attempts to develop a
recommender system that is based on DNNs. Also, there were limited attempts
in the literature for making use of NLP methods in building a recommender
system.

Thus, a drug recommendation system that addresses the limitations is pro-
posed in this paper. The methodology for building the drug recommendation
system is as follows:

1. Loading and preprocessing: Prepare the dataset, preprocess it by applying
different NLP methods, and form different combinations of dataset features.

2. Model selection and training: Choose a DNN model for each combination and
train the models.

3. Recommendation score determination: Use the trained models to calculate
the recommendation score for each drug.

3 Designing the Recommender System

This section describes the steps of building our neural network based drug recom-
mender system. First, a dataset is loaded and preprocessed using NLP methods.
Second, different feature combinations were made and DNN models were trained.
Finally, the trained models were used to determine the recommendation score
for each drug.
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Table 1. Summary of related works.

Reference Type Used Approaches Disadvantages

[25], 2020 Hybrid – SVD algorithm
– TF-IDF model
– Linguistic Fuzzy Logic
Controller

Precision of the proposed
model is low

[24], 2020 Content-Based Similarity – The model achieved low
accuracy and precision
– No Machine Learning
model was used

[22], 2020 Content-Based – Cosine Similarity
– K-NN Classification

The model focused on minor
features

[3], 2018 Collaborative – Recurrent Neural Networks
– Generative Adversarial Net-
works
– Gated Recurrent Units

– The improvement over tra-
ditional models is slight
– The model didn’t handle
auxiliary data

[26], 2016 Collaborative AutoEncoders – The model couldn’t handle
the cold-start problem
– The used neural network is
shallow

[31], 2014 Demographic Clustering The model only depends on
demographic information

3.1 Loading and Preprocessing

The involved dataset is the drug review dataset [19]. The dataset was imported
from the UCI Machine Learning Repository. The set contains 215,063 records
and 7 features, the features are as follows:

1. UniqueID: The ID of the drug.
2. drugName: The name of the drug.
3. condition: The condition.
4. review: The patient review.
5. rating: A 10-point patient rating.
6. date: The date of review entry.
7. usefulCount: The number of users who found the review useful.

Records with missing features were discarded from the dataset, the number of
records became 212,098 records. Records were split into training sets and testing
sets.
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Creating the Target Feature. The model target feature was created using
the rating. For each record, the target feature value is 1 (positive rating) if its
corresponding rating is above 5, or 0 otherwise (negative rating).

Cleaning the Reviews. Cleaning textual data is important in preprocessing.
Such approach helps in the elimination of noises that are not used by machines
[29]. The reviews were cleaned by removing digits, extra spaces, and stopwords,
by stemming the words, and by converting the words to lowercase.

Applying NLP Methods. Various NLP methods were applied to the dataset
features, which resulted in the generation of more features. Sentiment Analysis
is an NLP approach that aims for analyzing the textual data and determining
whether the textual data is positive, negative, or neutral [4]. When applying
this approach, a numerical sentiment score is returned. The score is positive,
negative, or zero, when the text is positive, negative, or neutral, respectively.
The sentiment analysis approach was applied to the reviews and cleaned reviews.

Also, basic text features like word count, subjects count, objects count, etc.
were extracted for the cleaned reviews.

In addition, Named Entity Recognition (NER), topic modeling, Bag of Words
(BoW) model, TF-IDF model, and Word2Vec were applied to the cleaned
reviews. NER is an NLP method that detects mentions of rigid designators from
the text that belongs to predefined semantic types such as location, person,
organization, etc. [16]. Topic modeling is to discover the topics that occur in a
collection of documents [6]. The BoW model is an NLP approach that simplifies
the representation of a certain text by turning it into fixed-length vectors by
counting how many times each word appears [2]. It can be unigram, where the
appearance of one word is counted for each vector element, or n-gram, where
the appearance of n successive words is counted for each vector element. Both
unigram and n-gram BoW models were applied to the cleaned reviews. The TF-
IDF is a statistical value that intends to reflect the importance of a word in
a collection of documents. The equation of the TF-IDF of the word x within
document y is as follows:

TF − IDFx,y = tfx,y × log(
N

dfx
) (1)

where tfx,y is the term frequency of x in y, N is the total number of documents,
and dfx is the number of documents containing the word x.

Both unigram and n-gram TF-IDF models were applied to the cleaned
reviews. Word2Vec is a vectorization method that is used to extract semantic
relatedness, synonym detection, concept categorization, sectional preferences,
and analogy across words or products [7].
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As for the categorical features like condition and year, they were encoded
using Label Encoder. Label Encoder is an encoding approach that converts labels
to numbers so that they can be easily interpreted by machines [27].

Forming Different Dataset Feature Combinations. Different dataset fea-
ture combinations were made. Among the original features, features resulting
from basic text feature extraction, NER, and topic modeling, important fea-
tures were selected using the Random Forest Classifier. After that, combinations
between important features and other features resulting from NLP methods were
made. Five combinations were made. The feature combinations, in addition to
the number of features for each combination, can be found in Table 2.

Table 2. Dataset feature combinations with their corresponding number of features.

Set
No.

Features Number
of
features

1 Important features, sentiment scores, BoW model (unigram) 7,340
2 Important features, sentiment scores, TF-IDF model (unigram) 7,340
3 Important features, sentiment scores, BoW model (n-gram) 2,314
4 Important features, sentiment scores, TF-IDF model (n-gram) 2,314
5 Important features, sentiment scores, Word2Vec 331

3.2 Model Selection and Training

With a large number of features, Convolutional Neural Network (CNN) mod-
els can be used. CNNs are designed to flexibly learn spatial feature hierarchies
through backpropagation by utilizing multiple building blocks such as convolu-
tion layers, pooling layers, and fully connected layers [28].

For the first two sets, where the number of features is 7,340, AlexNet [15]
was adopted. AlexNet is a CNN that is made up of eight layers [15]. The first
five layers are convolutional layers, the remaining three are fully connected. The
used activation function is the ReLU, except for the output layer, it’s Sigmoid.
Convolutional layers are followed by Maxpooling layers [15]. The model outper-
formed existing models [15]. The kernel sizes of the convolutional layers are 96,
256, 384, 384, and 256. The two fully connected layers are made up of 4096
neurons, and the output layer is made up of one neuron.

As for sets 3 and 4, a feed–forward DNN with 13 hidden layers was used. On
the other hand, a feed–forward DNN with 7 hidden layers was used for set 5.
For both models, neurons of the hidden layers are activated with the ReLU, and
that of the output layer is activated with the Sigmoid.
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3.3 Recommendation Score Determination

To determine the recommendation score for each drug, the labels generated by
the trained models are summed up, and the sum is multiplied by the normalized
usefulCount for each drug. The equations of the normalized usefulcount and that
of the recommendation score for drug d are shown in Eqs. 2 and 3, respectively.

ud =
Ud −m

a−m
(2)

where Ud is the usefulCount of d, m is the minimum usefulCount, and a is the
maximum usefulCount.

Rscored =
5∑

i=1

pi × ud (3)

where pi is the value predicted by model i.

4 Results and Evaluation

The adopted models were trained. The number of epochs, in addition to the
training accuracy and testing accuracy for each model are shown in Table 3. The
models achieved an average training accuracy of 97.22% and an average testing
accuracy of 93.42%.

Table 3. Model training and testing accuracies for each set.

Set No. Model Number of
Epochs

Training
Accuracy

Testing
Accuracy

1 AlexNet 50 0.9939 0.9982
2 AlexNet 46 0.9931 0.9981
3 Feed–forward DNN 457 0.9506 0.9485
4 Feed–forward DNN 423 0.9400 0.9496
5 Feed–forward DNN 500 0.9837 0.7765

After training the models, the testing set was used to build the recommender
system. The models were used to predict whether the review of each drug is
positive or negative, then the recommendation score of each drug was calculated
using Eq. 3. A sample is shown in Table 4.

After that, the drug names were grouped by condition, and the recommen-
dation scores of drugs having the same condition for use were summed up. A
sample is shown in Table 5. The model is used in a simple program that asks the
user to enter a medical condition, the program uses the built model to return
the top five drugs based on the highest recommendation scores under the given
condition.
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Table 4. Samples of the results.

Drug Name Condition Useful
Count

Model
1

Model
2

Model
3

Model
4

Model
5

Recomm-
endation
Score

Prolia Osteoporosis 0.10767 0 0 0 0 0 0
Fluoxetine Obsessive Compulsive Disorder 0.09915 1 1 1 1 1 0.495739737
Remeron Depression 0.16421 1 1 1 1 1 0.821068939
Mirena Abnormal Uterine Bleeding 0.00852 1 1 1 1 1 0.042602634
Escitalopram Depression 0.01936 0 0 0 0 0 0

Table 5. Samples of the results after grouping by conditions.

Condition Drug Name Recommendation Score

Anemia Epoetin Alfa 0.003098373
Ferralet 90 0.02788536
Oxymetholone 0.00929512

Anexiety Alprazolam 26.21688613
Atarax 2.430673896
Bupropion 3.206041828
Clorazepate 1.402788536

Asthma Mepolizumab 0.050348567
Prednisone 1.7614252

4.1 Evaluation

The quality of a recommender system can be assessed using several metrics like
precision, recall, and F1-score [13]. Precision is the proportion of recommended
items that are actually applicable to the user, whereas recall is the proportion of
applicable items that are also included in the set of recommended items [13]. As
for the F1-score, it combines precision and recall by taking their harmonic means
[13]. The equations of the aforementioned metrics are shown in Eqs. 4 through 6.

Precision =
Correctly Recommended Items

Total Recommended Items
(4)

Recall =
Correctly Recommended Items

Total Useful Recommended Items
(5)

F1− Score = 2× Precision×Recall

Precision+Recall
(6)

The evaluation metrics were calculated for the recommender system. The
model achieved a precision of 94.65%, which means that 94.65% of the items
were correctly recommended. Also, the model achieved a recall of 95.56%, which
means that among the useful recommendations, 95.56% of them are correct.
In addition, the F1-score of the model is 95.103%, which means that the used
models were able to make a high number of correct predictions. Therefore, the
recommender system attains an excellent performance.
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4.2 Comparison with an Existing Model

A similar drug recommendation system was developed in [17]. The system was
based on the XGBOOST model. XGBOOST is a scalable gradient tree boosting
algorithm [5]. Gradient boosting is a supervised learning algorithm, which aims to
predict a target variable by combining the estimates of a set of simpler models [5].

The evaluation metrics of the existing model were determined. The values of
the precision, recall, and F1-score of the existing model, in addition to those of
the proposed model, are presented in Table 6. It can be noticed that the proposed
model outperforms the existing model in terms of performance.

Table 6. Evaluation metrics of the existing model and proposed model.

Evaluation Metric XGBOOST Model
[17]

Proposed
Neural-Network
Based Model

Precision 94.53% 94.65%
Recall 95.14% 95.56%
F1-Score 94.83% 95.103%

The proposed model uses methods that are not traditionally used in rec-
ommender systems like CNNs and deep feed–forward neural networks. Also, the
model solves the issues highlighted in the literature like the lack of using extensive
NLP methods, focusing on minor features, etc. when it comes to recommender
systems design.

5 Conclusion

This paper presents a hybrid recommender system that is based on CNNs
and feed-forward DNNs. The model addresses the limitations of existing rec-
ommender systems. To the best of our knowledge, there are no recommender
systems that utilize deep learning models with NLP methods in their recom-
mendations. However, the model shows a slight improvement in terms of per-
formance compared to an existing model. Future work can include using Long
Short-Term Memory (LSTM) models for text classifications and sentiment anal-
ysis to improve the model performance. Also, the model can be transformed into
a recurrent recommender system by allowing users to give their feedback upon
recommendation.
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Abstract. Clustering in Natural Language Processing (NLP) groups
similar text phrases or documents together based on their semantic mean-
ing or context into meaningful groups that can be useful in several infor-
mation extraction tasks, such as topic modeling, document retrieval and
text summarization. However, clustering documents in low-resource lan-
guages poses unique challenges due to limited linguistic resources and
lack of carefully curated data. These challenges extend to the language
modeling domain, where training Transformer-based Language Models
(LM) requires large amounts of data in order to generate meaningful
representations. To this end, we created two new corpora from Greek
media sources and present a Transformer-based contrastive learning app-
roach for document clustering tasks. We improve low-resource LMs using
in-domain second phase pre-training (domain-adaption) and learn docu-
ment representations by contrasting positive examples (i.e., similar docu-
ments) and negative examples (i.e., dissimilar documents). By maximiz-
ing the similarity between positive examples and minimizing the similar-
ity between negative examples, our proposed approach learns meaningful
representations that capture the underlying structure of the documents.
Additionally, we demonstrate how combining language models that are
optimized for different sequence lengths improve the performance and
compare this approach against an unsupervised graph-based summa-
rization method that generates concise and informative summaries for
longer documents. By learning effective document representations, our
proposed approach can significantly improve the accuracy of clustering
tasks such as topic extraction, leading to an improved performance in
downstream tasks.
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1 Introduction

Natural Language Processing (NLP) is a rapidly growing field of study that
focuses on developing techniques and algorithms to enable computers to under-
stand and interpret human language. With the increasing amount of unstruc-
tured data in the form of text, the ability to analyze and extract insights from
such data has become increasingly important. In this context, document repre-
sentation is a critical step in converting raw text data into numerical vectors
that can be used for various text analysis tasks, such as document clustering
[18]. This is especially important for low resource languages, where it becomes
more challenging to develop effective NLP models due to the lack of available
data and resources.

Document clustering aims to automatically organize documents into clusters
based on their similarity to documents in other clusters. This approach tradi-
tionally required the use of a feature matrix, such as a tf-idf matrix, to describe
the corpus, followed by a clustering algorithm applied to the matrix. However,
more recent approaches using neural word embeddings have gained popularity
due to their ability to yield dense semantic representations that significantly
improve the models’ performances [13].

Similarly, topic modeling is a document clustering-based task that involves
discovering patterns of word usage in documents using various methodologies,
where documents are modeled as a mixture of topics represented as a distribu-
tion of words. Similar to document clustering, it can be used for soft partition
clustering, assigning a probability distribution over a set of topics to each doc-
ument, and allowing for a probabilistic degree of affiliation with each cluster.
Furthermore, the topic representation contains the word distribution for each
topic, making it easier to interpret. [8].

While representation learning in English has become a very active study area
in recent years, there has been relatively little published work for low-resource
languages such as Greek [15]. Due to its rich morphological properties, written
Greek is a particularly difficult language for NLP in general and for document
clustering in particular (high inflection, stressing rules, etc.) This makes it chal-
lenging to create effective models for the various NLP tasks in Greek, and high-
lights the need for further research in this area to improve the accuracy and
reliability of such systems.

In this paper, we propose a Domain-Adapted Contrastive Learning approach
to Low Resource Language representations learning for document clustering
tasks for the Greek language. To facilitate this research we also introduce and
describe newly collected and manually annotated datasets for language model
second-phase pre-training and clustering tasks representation learning. We inves-
tigate the effectiveness of combining domain-adapted Greek BERT and Greek
Longformer models using contrastive learning with triplet-loss training across
three source domains for document clustering tasks. Finally, we highlight the
importance of adapting Language Models (LM) to specific domains and the
importance of further training for improved representation generation.

The main contributions of our work are:
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– A novel approach to representation learning using domain-adaption on pre-
trained language models.

– Document-level clustering using a combination of a BERT-based LM with a
Greek pre-trained Longformer LM.

– Release of the described datasets and the LMs to facilitate further research.
– A novel training approach that can be applied to other high and low resource

languages.

2 Related Work

Semantic representations for documents are crucial in natural language process-
ing (NLP). Recently, distributed document representations have gained impor-
tance due to their accuracy as semantic text representations. However, the con-
text of a document differs significantly between different domains [2]. Deep neural
networks are capable of learning transferable features, but recent research shows
that the transferability of features decreases significantly in higher task-specific
layers as the domain discrepancy increases. This means that the characteristics in
deeper layers of the networks largely depend on specific datasets and tasks, which
cannot be reliably transferred to new tasks [16]. To address this issue, adapta-
tion approaches have become popular, which aim to reduce domain discrepancy
via an adversarial objective with respect to a domain classifier. Ultimately, these
approaches aim to improve the model’s accuracy in different domains [17].

In some scenarios, learning tasks may vary across domains, requiring enough
target-labeled examples to fine-tune the source network to the target task. How-
ever, in real-world scenarios, labeled data is often limited, making it challenging
to apply the method directly to domain adaptation. To address this, Faralli et
al. [10] proposed a domain-driven word sense disambiguation (WSD) method
that constructs glossaries for multiple domains using a pattern-based bootstrap-
ping technique. Although their work does not aim to learn word representations
or their meanings in a domain, it highlights the importance of evaluating the
domain-specificity of text senses. Neelakantan et al. [19] proposed a method that
uses WSD and word embedding learning simultaneously, thereby learning sev-
eral embeddings for each word type. However, their proposed methodologies are
limited to a single domain and do not take into account how representations
differ between domains.

Transformers have significantly enhanced document representation learning,
achieving state-of-the-art results in various NLP tasks. This success can be
attributed, in part, to their self-attention mechanism, which enables the net-
work to capture contextual information throughout the entire sequence. Two
self-attention methods have been explored. The first is a left-to-right approach
that processes the sentence in left-to-right chunks that can be effective for autore-
gressive language modeling but is unsuitable for representation learning tasks
that require bidirectional context [1]. BPTransformer [26] investigated machine
translation (MT), but did not explore the pre-training and fine-tuning set-
ting. Meanwhile, a more general approach involves defining sparse attention
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patterns that avoid computing the entire quadratic attention matrix multiplica-
tion. Sparse Transformer [4] is a paradigm that generates sparse representations
using a dilated sliding window of blocks.

Since documents usually have a large body of text that contains thousands
of tokens, several task-specific strategies have been devised to work around the
512 tokens limitation of pre-trained LMs. One straightforward approach is to
abbreviate the documents [25]. Another option is to split the text into 512-
byte chunks, and process each chunk individually before combining the results
with a task-specific model [12]. For multi-hop and open domain QA tasks, a
two-stage architecture is a popular solution, in which the first stage retrieves
relevant documents that are then passed on to the second stage for response
extraction [5]. However, all of these methods suffer from information loss or
cascading errors, as a result of truncation or two-stage processing [3].

Recently, dense representation generation models have become more preva-
lent in document retrieval problems, outperforming traditional sparse vector
space models. These models typically use a Bi-encoder structure to achieve high
efficiency. For the document clustering task, recent approaches frequently uti-
lize Bidirectional Encoder Representations from Transformers (BERT) based
models [22]. Sentence BERT (SBERT) [20], which is a variation of the con-
ventional BERT network, generates semantically meaningful phrase embeddings
using siamese and triplet network architectures that can be compared using
cosine-similarity. In the Greek document clustering domain, implementations
rely on FastText, a Word2vec-like model, to create clusters from social media
texts [23].

3 Materials and Methods

In this section we present a detailed description of the datasets, the LM domain
adaption and the contrastive learning approach of our proposed methodology.
Specifically, we created three datasets for second phase pre-training, contrastive
representation learning and the clustering tasks, correspondingly and provide an
overview of the data collection and annotation process. Furthermore, we provide
an in-depth overview of our proposed approach to representation learning with
domain-adapted contrastive learning for clustering tasks.

3.1 Datasets

Due to the lack of necessary resources, including datasets and tools, the Greek
language is considered a Low Resource Language (LRL), emphasizing the neces-
sity for large amounts of training data. To capture target-specific and period-
specific characteristics in our representation learning approach, both unsuper-
vised and supervised learning phases are necessary, requiring both unlabeled
domain-specific data and labeled target-specific data. Our proposed approach
utilizes Transformer-based LMs for domain adaptation (second phase pre-train-
ing) in the unsupervised phase and extends the training with contrastive learning
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in the supervised phase. To allow potential generalizability, we focused on col-
lecting data from three distinct sources: Internet, Social Media, and Press. The
Internet data consists of a collection of articles from blog posts, news sites, and
news aggregators. The Social Media data is comprised of posts from Facebook,
Twitter, and Instagram, while the Press data includes text clips from published
newspapers and newsletters that are identical to the printed copies.

Language Model Domain-Adaption Dataset. The domain-adaption
dataset was created to aid in the second phase pre-training of the Greek BERT
model [14] and the pre-training of a randomly initialized Longformer [1] model.
Pre-training language models on domain-specific data has proven to be effective
in improving their performance on tasks within that domain, since even high-
parameters models can struggle to capture the complexity of a single domain
[11].

The dataset consists of sentence-level texts gathered from the aforementioned
online sources and domains, but the sentences come from different contexts and
are much larger in volume. In total, there are 1,590,409 instances, split into
25,118,855 sentences from all categories, with an average length of 24.2 tokens
and a high variance of ±28.5. Table 1 provides detailed information about the
source types and the instances in each category.

Table 1. Number of instances by category and domain in the LM Domain-Adaptation
dataset.

Domain Category Instances Ratio (%) Total

Internet Blogs 26,507 15.11 1,205,321
News sites/Aggregators 1,178,814 74.02

Social Media Facebook 144,813 19.38 308,141
Twitter 144,530 9.08
Instagram 18,798 1.18

Press Free press 5,212 3.85 76,947
Sports 1,930 0.12
Economics 38,656 2.43
Local 31,149 1.96

Contrastive Learning Dataset. We initially collected textual data using spe-
cific keywords (i.e. car brands, cosmetic brands, etc.) to create a pool with 13019
instances from internet sources, 12,391 instances from social media sources and
23,089 instances from press sources. The content was collected by randomly
selecting articles, posts, and text to ensure a uniform distribution among each
source, user, and topic. Additionally, the type of content such as ‘news article’,
‘editorial’, ‘comment’ and ‘post’ was automatically inferred and annotated. Non-
Greek content was excluded, and the focus was on achieving diversity of content
for each class.
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Our aim was to gather representative samples of articles, posts, and text clips
from each source, rather than selecting content based on any specific criteria.
Finally, three expert annotators manually annotated the examples to determine
whether the text was directly, indirectly or not related to the accompanying
keyword (focus) based on a set of predetermined guidelines that were adjusted
during the annotation process. The annotation was carried in batches and eval-
uated with Cohen’s Kappa [7] and achieved a score of 0.84, indicating a very
high agreement rate.

The contrastive learning dataset is comprised of sentence triplets, the anchor
(SA), a positive (S+) and a negative (S−) sentence, inspired by the approach
presented in [6]. Initially, a random sentence is selected as anchor. The positive
example is selected based on the same keyword as the anchor in addition to
having the same focus. Since the selection of the negative examples is crucial,
we also considered two sets of negatives for each anchor and positive pair. The
first negative instance is randomly chosen from the corpus but has a completely
different keyword (K), referred to as “easy negative (S−

E )”, while the second set,
is selected based on the same keyword but different focus (F ), referred to as
“hard negative (S−

H)”. Equations 1 and 2 describe the triplets selection process:

S−
E (SA, S+) = s|s /∈ {SA, S+} ∧ Ks �= KSA (1)

S−
H(SA, S+) = s|s /∈ {SA, S+} ∧ Ks = KSA ∧ Fs �= FSA (2)

where the symbols |, /∈ and ∧ mean “such that”, “not an element of” and “and”
respectively and s denotes the candidate sentence. For each anchor and positive
pair SA, SP we pick two S−

E and three S−
H instances.

The intuition behind using hard negatives is that the model should be able to
distinguish between directly related instances and unrelated instances sampled
randomly from the entire corpus when given a query sentence. However, ran-
domly selected negative examples may be too easy for the model to distinguish
from the positive examples.

The final datasets consists of 55,170 instances from internet sources, 99,875
instances from social media sources and 75,485 instances from press sources
resulting in a total of 230,530 instances from all the sources combined.

Clustering Dataset. Similar to the previous datasets, the clustering dataset
is comprised of texts from internet, social media and press sources collected
using a wide variety of keywords with a total of 283,052 instances. Each instance
has the related keyword, the text that can vary greatly in length and the title
where applicable as social media posts usually do not have one. Finally, the total
number of unique keywords used across all sources is 3,393 from multiple cate-
gories such as heavy industries, retail, government, contractors, pharmaceutics
and much more.
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3.2 Domain-Adapted Contrastive Representation Learning

Our proposed approach to contrastive representation learning utilizes two Trans-
former-based LMs, the BERT language model pre-trained on a large corpus of
Greek texts, called Greek-BERT [14] and the Longformer language model [1], as
the fundamental building blocks.

The Transformer architecture is composed of two main components: the
encoder and the decoder. The encoder processes the input sequence and pro-
duces a sequence of contextualized embeddings, while the decoder uses those
embeddings to generate an output sequence. In the case of BERT and Long-
former, they only use the encoder part of the transformer. By using multiple
stacked layers of the transformer encoder, both models can take advantage of
the self-attention mechanism [24], which allows the model to attend to differ-
ent parts of the input sequence and capture complex contextual relationships
between tokens.

One key difference between them is in their ability to handle long sequences
of text. BERT was designed to process relatively short input sequences of up
to 512 tokens, which can be a limitation when working with longer texts such
as long documents or articles, while Longformer is able to handle longer input
sequences of up to several thousands of tokens. Longformer achieves this by
introducing a new attention mechanism called “global attention”, which allows
the model to attend to tokens that are far apart in the input sequence without
losing context. This global attention mechanism is more computationally efficient
than attending to all input tokens, which is the approach used by BERT. Both
models utilize the Masked Language Modeling (MLM) pre-training objective
where random tokens in the input sequence are masked and the models are
trained to predict the masked tokens.

Domain-Adaption. Domain adaptation is the process of adapting a pre-
trained language model to a specific domain or topic by fine-tuning it on domain-
specific data. This can be especially useful for low-resource LMs that do not per-
form well on text that is related to a specific topic or domain, such as medical
texts, legal documents, or social media posts.

To perform the domain adaptation, also referred to as LM alignment, we
fine-tuned the pre-trained Greek BERT LM on the domain-adaption dataset
presented in Sect. 3.1 using the MLM training objective. This form of second
phase pre-training involves re-training the model on the new data, while keeping
the pre-trained weights from the original LM, effectively updating the model’s
parameters to better fit the new domain knowledge, allowing it to capture the
specific language patterns and structures. However, due to the lack of a Greek
pre-trained Longformer variant, we trained a randomly initialized model from
scratch using the same domain-adaption dataset.

Contrastive Learning. By implementing contrastive learning with the use
of triplet loss [21] as a type of contrastive loss function, we further train the
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LMs while leveraging the label information more effectively. The aim is to pull
instances that belong to the same class in the embedding space closer, while
simultaneously pushing instances from different classes further apart.

Document-level contrastive learning aims to learn representations of docu-
ments that capture semantic and contextual information, while also capturing
the differences between documents, effectively learning better representations
that can be used for clustering-based downstream tasks. The LMs are trained
to differentiate between the examples by maximizing the similarity between the
representations of positive examples and minimizing the similarity between the
representations of negative examples. By encoding the different documents and
output embeddings for each document, which can be compared using a con-
trastive loss function.

3.3 Generating Representations

The Greek BERT and the domain-adapted Greek BERT models take a maximum
input sequence of 512 tokens and generate word embeddings with a dimension
of 768. Similarly, the Greek Longformer model generates word embeddings with
the same dimension, with a maximum input sequence of 4,096 tokens. In order to
generate document-level embeddings, a mean pooling layer is applied, to pool all
the word embeddings into a single vector representation that is then normalized
with L2 normalization. The resulting output constitutes the domain-adapted
representations that include semantic information from contrastive learning.

4 Results and Discussion

This section describes the experimental setup and the experimental results of
our proposed approach to domain-adapted contrastive representation learning
for clustering tasks.

4.1 Experimental Setup

The Greek BERT domain-adaption is performed in a self-supervised manner
using the MLM training objective, following the same setup as described in
the published work where it was first presented [14]. The input sequences were
tokenized and padded or truncated to a maximum of 512 tokens and the model
was trained for a total of 3 epochs, achieving an accuracy of 76.16% on the
evaluation set. Similarly, the Greek Longformer pre-training was carried out with
randomly initialized weights (from scratch) using the same training objective and
the proposed setup, with the input sequences having a maximum length of 4,096
tokens and achieved a relatively low accuracy of 37.05% on the evaluation set.

We extended the training of the LMs with contrastive learning using the
triplet loss function and trained each pre-trained model on each source domain
separately and combined, resulting in 4 models per LM. The models are evalu-
ated using sentence triplets consisting of an anchor, a positive example, and a
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negative example. The evaluation considers the correct outcome to be when the
distance between the anchor and positive example is smaller than the distance
between the anchor and negative example. The distance metric can be either
Manhattan, Euclidean or Cosine and the accuracy of each metric is calculated
by dividing the correctly predicted triplets with the total number of triplets.

To handle large bodies of text in documents, we conducted experiments using
summarization techniques that are used in place of feeding the larger documents
to the Longformer-based models. Specifically, we explored the use of LexRank
[9], an unsupervised graph-based method for text summarization that ranks the
importance of sentences based on eigenvector centrality. This approach allows
us to condense the potentially useful information in a document into a shorter,
more manageable summary.

To evaluate the performance of our proposed approach, we conducted the
experiments on the clustering dataset presented in Sect. 3.1 and used the Silhou-
ette Coefficient (SC) as a goodness-of-fit metric, which measures the cohesion
and separation of a data point by calculating its similarity to its own cluster
compared to the other clusters, respectively. An SC of 1 indicates that the data
points are very well matched to their own cluster, while a value of -1 indicates
that they are more similar to points that belong to another cluster.

However, this metric can be sensitive to the choice of input parameters,
such as the number of clusters, and may not always provide a reliable measure
of model quality in cases where the number of clusters is not well-defined. To
alleviate this issue, we evaluate the within-cluster variation of the data points
for different numbers of clusters, and select the number of clusters that leads to
the lowest Sum of Squared Errors.

The Domain-Adapted Greek BERT (DAGB) and Greek Longformer (GLF)
training took approximately 11 and 4 d, respectively, on a computer with a 24-
core Intel CPU and two Nvidia RTX A6000 graphics cards with 48GB memory
each. The difference in training time can be attributed to the use of the more
efficient global attention mechanism in the Longformer architecture compared
to the attention mechanism used in the BERT-based models. The rest of the
experiments were conducted on a single computer using a 16-core Intel CPU
and a single Nvidia RTX 3090 graphics card.

4.2 Experimental Results

In Table 2, we present the training results of the contrastive training approach
for each pre-trained language model using the triplet-loss evaluation. All LMs
achieved high accuracy scores on each distance metric and dataset with our
Triplet-Loss Domain-Adapted Greek BERT (TL-DAGB) and Triplet-Loss Greek
Longformer (TL-GLF) outperforming the Triplet-Loss Greek BERT (TL-GB)
model in all datasets and metrics. In comparing two models, the TL-DAGB
model performed better than the Longformer-based model across all metrics.
This highlights the significance of the first-phase pre-training process, which the
DAGB model underwent by being initialized with Greek BERT weights. The
results of the comparison provide further evidence for the importance of this
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Table 2. Triple loss evaluation results of each LM trained using the contrastive learning
approach.

Model Training Steps (approx.) AccCos AccMan AccEuc

TL-GB
- internet 6k 90.78 90.76 90.77
- press 8k 88.93 88.93 88.94
- social 10k 91.48 91.94 91.74
- combined 22k 90.32 90.33 90.34
TL-DAGB
- internet 6k 97.87 97.86 97.93
- press 8k 92.39 92.39 92.44
- social 10k 98.44 98.49 98.47
- combined 22k 96.23 96.24 96.25
TL-GLF
- internet 21k 93.05 93.04 93.05
- press 56k 90.15 90.18 90.13
- social 19k 94.98 94.96 94.98
- combined 173k 92.30 92.31 92.29

initial pre-training step in developing high-performing language models since
our GLF model was pre-trained on a much smaller scale than Greek BERT.

To evaluate the effectiveness of our proposed approach and its impact on
clustering tasks, we tested the generated representations with two clustering
algorithms: Hierarchical Agglomerative Clustering (HAC) and K-means (KM).
HAC is a bottom-up approach that merges document representations based on
their similarity until a single cluster containing all the document representations
is formed. On the other hand, KM is a top-down approach that assigns each
document representation to the nearest centroid and updates the centroids until
convergence to create non-overlapping clusters.

We evaluated each model using four variants of each dataset, each with dif-
ferent preprocessing steps. The full preprocessing (Full PP) variant included
removal of users/links/email addresses, text cleanup, and lower-casing, while
the Normalized variant only removed non-ASCII characters and converted the
text to lowercase. The Raw variant refers to using the collected text without any
preprocessing steps applied to it, while the Summary variant used summarized
text instead of Longformer-based models to process longer sequences.

By testing each model with these different datasets and preprocessing steps,
we assess the effectiveness of preprocessing in combination with our proposed
approach on clustering tasks and present the results of each model on the text
from the internet, social and press source domains in Tables 3,4 and 5, respec-
tively.

The results indicate that the combined use of BERT and Longformer-based
models outperform the pure BERT-based variants in all three source domains
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Table 3. Per model goodness-of-fit results based on the Silhouette Coefficient on the
internet dataset.

Internet Raw Full PP Normalized Summary

Models HAC KM HAC KM HAC KM HAC KM
GB 0.33 0.31 0.33 0.34 0.34 0.31 0.33 0.33
TL-GB 0.33 0.30 0.32 0.35 0.33 0.31 0.01 0.01
TL-GB-C 0.33 0.31 0.30 0.31 0.33 0.33 0.01 0.01
DAGB 0.38 0.40 0.39 0.39 0.38 0.37 0.60 0.60
TL-DAGB 0.38 0.45 0.38 0.45 0.52 0.57 0.01 0.01
TL-DAGB-C 0.43 0.45 0.51 0.52 0.50 0.54 0.01 0.01
GLF 0.83 0.87 0.90 0.90 0.52 0.52 - -
TL-GLF 0.52 0.56 0.56 0.59 0.57 0.57 - -
TL-GLF-C 0.76 0.76 0.79 0.79 0.78 0.78 - -

Table 4. Per model goodness-of-fit results based on the Silhouette Coefficient on the
social dataset.

Social Raw Full PP Normalized Summary

Models HAC KM HAC KM HAC KM HAC KM
GB 0.34 0.12 0.36 0.38 0.32 0.34 0.11 0.13
TL-GB 0.33 0.34 0.35 0.36 0.34 0.31 0.01 0.01
TL-GB-C 0.36 0.37 0.38 0.38 0.36 0.35 0.01 0.01
DAGB 0.34 0.13 0.31 0.28 0.34 0.31 0.70 0.70
TL-DAGB 0.39 0.41 0.43 0.49 0.36 0.39 0.01 0.01
TL-DAGB-C 0.46 0.45 0.47 0.47 0.52 0.44 0.01 0.01
GLF 0.33 0.43 0.47 0.52 0.48 0.51 - -
TL-GLF 0.78 0.80 0.84 0.86 0.83 0.84 - -
TL-GLF-C 0.75 0.77 0.82 0.83 0.81 0.81 - -

in the document clustering task. Our approach leverages the representation gen-
eration capabilities of the domain-adapted Greek BERT and the Greek Long-
former by encoding the sequences that are up to 512 tokens with the former
and sequences greater than 512 tokens with the latter. The GLF, TL-GLF and
TL-GLF-C models are combined with the best performing DAGB-based models
on each domain, where at least one variant always outperforms the best Greek
BERT (GB) variant.

On the internet source dataset, the triplet-loss domain-adapted Greek BERT
trained on all datasets (TL-DAGB-C) as presented in Sect. 3.2 in combination
with the pre-trained Greek Longformer (GLF) on a fully preprocessed text,
achieved the best results with an SC of 0.90, indicating a close to perfect
goodness-of-fit. Similarly, on the social source dataset, the triplet-loss domain-
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Table 5. Per model goodness-of-fit results based on the Silhouette Coefficient on the
press dataset.

Press Raw Full PP Normalized Summary

Models HAC KM HAC KM HAC KM HAC KM
GB 0.34 0.13 0.42 0.44 0.39 0.42 0.34 0.13
TL-GB 0.33 0.31 0.34 0.34 0.33 0.34 0.01 0.01
TL-GB-C 0.33 0.31 0.40 0.40 0.38 0.40 0.01 0.01
DAGB 0.34 0.30 0.33 0.31 0.45 0.38 0.11 0.05
TL-DAGB 0.53 0.53 0.49 0.55 0.45 0.49 0.01 0.01
TL-DAGB-C 0.54 0.58 0.51 0.51 0.46 0.50 0.01 0.01
GLF 0.67 0.67 0.83 0.85 0.49 0.60 - -
TL-GLF 0.61 0.61 0.63 0.62 0.61 0.59 - -
TL-GLF-C 0.72 0.74 0.76 0.76 0.74 0.73 - -

adapted Greek BERT (TL-DAGB) in combination with the triplet-loss Greek
Longformer (TL-GLF), both trained on the domain-specific dataset, outper-
formed the rest with an SC of 0.86. A similar pattern can be observed in the
press source domain, where the TL-DAGB model in combination with the Greek
Longformer (GLF) model achieves the best score with an SC of 0.85.

The overall results show that both the domain-adaption as well as the con-
trastive learning approach to further train the Transformer-based language mod-
els improve the results over the representations gained from the models they are
based on. While the use of the Greek Longformer with a triplet-loss BERT-based
model performed better in two datasets, internet and press, the use of the triplet-
loss Greek Longformer performed significantly better compared to the rest on
the same social source dataset. This potentially can be attributed to the use
of non-formal language where the communication norms are often ignored, and
further training of the language model may be able to learn.

5 Conclusions

In this paper, we propose a Domain-Adapted Contrastive Learning approach
to Low Resource Language representations for document clustering tasks. Our
study investigated the effectiveness of combining domain-adapted Greek BERT
and Greek Longformer models using contrastive learning across three source
domains. Our findings demonstrated that both domain-adaptation and con-
trastive learning approaches using triplet-loss training improved the performance
of Transformer-based language models for document clustering tasks. Overall,
our study highlights the importance of adapting language models to specific
domains and further training them using contrastive learning to improve the
generated representations.
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Future studies could explore the effectiveness of combining other pre-trained
language models such as GPT-3 or RoBERTa and the impact of different prepro-
cessing techniques on the performance. Finally, considering the performance that
was achieved in our experimental setting, another direction for future work is to
pre-train the Longformer model using a larger and more complete and diverse
dataset.
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Abstract. Preparing toxicological analysis of chemical substances is a
time-consuming process that requires a safety advisor to search text doc-
uments from multiple sources for information on several properties and
experiments. There has been a growing interest in using Machine Learn-
ing (ML) approaches, specifically Natural Language Processing (NLP)
Techniques to improve Human-Machine integration in processes in differ-
ent areas. In this paper we explore this integration in toxicological anal-
ysis. To minimise the effort of preparing toxicological analysis of chemi-
cal substances, we explore several available neural network models tuned
for Extractive Question Answering (BERT, RoBERTa, BioBERT, Chem-
BERT) for retrieving toxicological properties from sections of the docu-
ment sources. This formulation of Information Extraction as a targeted
Question Answering task can be considered as a more flexible and scal-
able alternative to manually creating a set of (limited) extraction patterns
or even training a model for chemical relation extraction. The proposed
approach was tested for a set of eight properties, each containing multiple
fields, in a sample of 33 reports for which golden answers were provided
by a security advisor. Compared to the golden responses, the best model
tested achieved a BLEU score of 0.55. When responses from different mod-
els are combined, BLEU increases to 0.59. Our results suggest that while
this approach cannot yet be fully automated, it can be useful in supporting
security advisor’s decisions and reducing time and manual effort.

Keywords: Information Retrieval · Information Extraction · Question
Answering · Transformers

1 Introduction

With the increasing amount of information available, organisations need to
develop procedures for obtaining information that may be important to their
business. Unfortunately, much of this information is not in structured databases,
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but in unstructured or semi-structured texts. Humans are capable of performing
these processes of extracting and retrieving information from texts, but this can
take a lot of time [4].

In the toxicological analysis process the problem arose from the need to
optimise the time required to prepare a written report on a chemical substance.
The process currently consists of a person searching for information about the
chemical compound and preparing a report with all the relevant information. The
search draws on various types of databases, including structured, e.g., websites,
and unstructured, e.g., PDFs, articles. A chemical safety advisor is responsible for
researching, comparing, and labelling information about chemical compounds.
This process of “information extraction and retrieval” is done manually, and with
a large number of documents and data sources, the time required can take weeks.

The security advisor accesses multiple data sources with different formats,
e.g., websites, xlsx files, PDF files, all of which are relevant to the security
advisor, whether in terms of quantity or quality of information. The problem
for the security advisor is that the documents in these sources contain a lot of
information in an unstructured format, i.e., natural language. In addition, it is
often necessary to combine information from different sources for the preparation
of toxicological reports.

In this paper, we elaborate on the approach presented in [6], which was
developed to help the security advisor with the aforementioned challenges. The
main goal of the approach is to find toxicological information in contexts, i.e.,
text in PDF documents. We enter the desired contexts as input, and over a
set of keywords defined as questions, we find the information using Extractive
Question Answering(QA) models. Some advances and contributions since the
original presentation of this approach in [6] are the implementation of this app-
roach for the PDF documents of the Australian Industrial Chemicals Introduc-
tion Scheme (AICIS), the automatic Combination Process, and the extraction
of golden answers from a set of 33 documents using the expertise of the security
advisor. In the evaluation performed, we obtain a best BLEU score of 0.55 when
using single models and an increase to 0.59 when combining models.

The remainder of the paper is organised as follows: in Sect. 2, we briefly
present related work and inspirations that we used to propose our approach; in
Sect. 3, we detail the approach and the developments carried out; in Sect. 4, we
explain the experiments conducted, the acquisition of the golden answers, the
evaluation and results; Sect. 5 concludes the paper and presents future lines of
research.

2 Related Works

Since the introduction of transformers [13], several works have appeared with
similar approaches to Extractive Question Answering (QA) for Information
Extraction and Retrieval. For different domains, with different implementations
and different levels of complexity, some works have preferred extractive QA mod-
els over other traditional methods because of: (1) limited data for domain-specific
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documents where information needs to be retrieved from [11]; (2) features such
as shorter answers are harder to learn from other models [1], e.g., Named-entity
recognition (NER) models; and (3) generalization capability, as classification-
based approaches cannot be generalized to new event types or argument roles
without additional annotations [8]. In these different cases, the existing chal-
lenges for traditional approaches led to the application of Extractive QA models
for information retrieval and extraction.

Nguyen et al. [11] proposed the use of a pre-trained Bidirectional Encoder
Representations from Transformers (BERT) [5] model combined with a Convo-
lutional Neural Network (CNN) to learn the localization of the context of each
document. The proposed approach consists of three main components: the rep-
resentations of the input vectors of the tokens, BERT to learn hidden vectors for
each token from the input tag and document, a convolutional layer to capture the
local context, and a softmax layer to predict the value location. The Informa-
tion Extraction is reformulated as a QA task where the value is pulled from the
document by querying the tag, i.e., a list of required information is defined and
represented as tags, e.g., “Name of Institution” or “Deadline for Bidding” [11].

Arici et al. [1] used a QA approach to quantity extraction to solve a price-
per-unit (PPU) problem. They first predict the type of Unit of Measure (UoM),
e.g., volume, weight, or count, to formulate the desired questions, e.g., “What is
the total volume?”, and then use this question to find all relevant answers. The
approach divides event extraction into three sub-tasks: Trigger Identification,
Trigger Classification, and Argument Extraction. These sub-tasks are modeled
by a set of QA templates based on Machine Reading Comprehension (MRC) [2].

Li et al. [8] formulate event extraction as a multi-turn QA approach. Typi-
cally, event extraction can be divided into two sub-tasks: trigger extraction and
argument extraction. Event extraction approaches can be broadly classified into
two groups: (1) pipeline approaches, in which the extraction of triggers and
arguments is performed in separate steps, and (2) joint approaches, in which all
sub-tasks are performed simultaneously in a joint learning fashion. Trigger iden-
tification is transformed into an extractive MRC problem where trigger words
are identified from given sentences. Classification of triggers is formalized as a
YES /NO QA problem, where it is judged whether a possible trigger belongs
to a given event type or not. Argument extraction is also solved via extractive
MRC, where questions are constructed iteratively by a target event type and the
corresponding argument roles.

These approaches are also well suited for searching toxicological informa-
tion, as some of the challenges encountered in related work are also present in
the documents available for this task, such as, the presence of limited data for
domain-specific documents and the variance in the nature and extent of expected
responses.
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3 Question Answering for Information Extraction

Considering the challenges and advantages of extractive QA models and the
main goal of retrieving toxicological information in PDF documents, we propose
an approach based on three phases (see Fig. 1): (1) preprocessing phase, (2)
retrieval phase, and (3) verification phase [6].

Fig. 1. General architecture of the proposed approach.

The preprocessing phase consists of dividing the input document into sec-
tions, each containing information about a specific property of the chemical
substance. In this way we minimize the context given to the QA models and
eliminate noise, i.e., parts of the document that are not relevant to the indi-
vidual properties. We use regular expressions to get the section identifiers, i.e.,
section title and section number, in the documents of the Scientific Committee
on Consumer Safety (SCCS)1. For Australian Industrial Chemicals Introduc-
tion Scheme (AICIS)2 documents, we also use statistical methods to obtain the
section identifiers, i.e., the font size and font style of the mode.

In the retrieval phase, we use Extractive QA models to retrieve the values of
the required properties. To this end, we identify the questions associated with
each context and these properties. Together with the safety advisor, we identify
the fields required for each toxicological property, i.e., keywords, and we create a
set of questions using these keywords as input to the Extractive QA models (see
Table 1). QA models are fine-tuned in the Stanford Question Answering Dataset
(SQuAD) using the six W’s (Who, What, When, Where, Why, and How) in
formulating the questions. Hence, we create this type of questions for each piece
of information we want to extract. For example, in the sentence in one of the
PDF documents, “The eye irritation potential of shampoo in rabbit eyes was not
increased by the addition of ZPT” we want to know the species to which the

1 https://health.ec.europa.eu/scientific-committees/scientific-committee-consumer-
safety-sccs_en.

2 https://www.industrialchemicals.gov.au/.

https://health.ec.europa.eu/scientific-committees/scientific-committee-consumer-safety-sccs_en
https://health.ec.europa.eu/scientific-committees/scientific-committee-consumer-safety-sccs_en
https://www.industrialchemicals.gov.au/
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test applies, so we can formulate the question, “What is the species?”. Given the
sentence (as context) and the question, we hope to get the correct answer from
the Extractive QA models, in this case “rabbit”.

Table 1. Set of questions per property

Substance Property Questions

Repeated Dose Toxicity What is the NOAEL value? What is the guideline?; What is the study?
Acute Toxicity What is the guideline?; What is the study?; What is the species?

What is the LD50?; What is the LC50?
Irritation What is the guideline?; What is the study?; What is the species?;

What is the concentration?; What is the conclusion?
Mutagenicity What is the Guideline?; What is the study?; What is the conclusion?
Skin Sensitization What is the Guideline?; What is the study?; What is the conclusion?;

What is the concentration?
Carcinogenicity What is the species?; What is the Guideline?; What is the study?;

What is the conclusion?
Photo-induced Toxicity What is the Guideline?; What is the study?; What is the conclusion?;

What is the concentration?
Reproductive Toxicity What is the Guideline?; What is the study?;What is the species?;

What is the conclusion?

In the verification Phase, we post-process the retrieved information, i.e., we
remove duplicates and implement a Combination Process with the goal of cre-
ating a method that achieves a certain level of acceptable confidence in the
retrieved information. When comparing responses from different models, if the
same information is returned from more than one model, this implies more confi-
dence in the suitability of that response, which we could not otherwise guarantee
with only one model. To this end, the implemented Combination Process consists
of keeping the answers that are similar between the models used, i.e., multiple
fine-tuned models from the Hugging Face Hub3, using Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) [9] as a similarity metric with a defined
threshold. While ROUGE is not specifically designed as a similarity metric but
as an evaluation metric for the task of automatic text summarization, it can
also be used to evaluate the similarity between two texts, the candidate and
the reference. We defined a threshold of 0.8 because we wanted to provided a
high level of similarity between answers and we used ROUGE Unigram in the
Combination Process, where the overlap of 1-grams between the candidate and
reference answers are compared.

4 Experimentation and Results

4.1 Setup

Using the knowledge of the security advisor, we create a corpora of golden
responses from a set of 33 reports, 15 reports from SCCS and 18 reports from
3 https://huggingface.co/.

https://huggingface.co/
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AICIS. From each report, we capture multiple fields from eight different toxi-
cological properties. In total, we obtained a corpora of 1830 fields that we can
use to evaluate our approach by using different individual models and different
arrangements between them with the implemented Combination Process.

For the evaluation, we use the similarity metric ROUGE and the similar-
ity metric Bilingual Evaluation Understudy(BLEU) [12] to compare the gold
responses to the retrieved information. We chose to use both metrics because
they complement each other, i.e., BLEU measures precision and ROUGE mea-
sures recall. BLEU measures how many words occur in the retrieved information
in the reference and ROUGE measures how many words occur in the reference
in the retrieved information.

During our initial testing, we experimented with several models that were
available at the Hugging Face library, but ultimately we continued our implemen-
tation and testing with four models: BERT, BioBERT: a pre-trained biomedical
language representation model for biomedical text mining (BioBERT) [7], Chem-
BERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Predic-
tion (ChemBERTa) [3] and Robustly Optimized BERT Pretraining Approach
(RoBERTa) [10]. We proceeded with those four models because, from the small
experiments conducted, they were the models that achieved the best compro-
mised between results and computational resources. We evaluated the models
individually as well as the various combinations of them, excluding combina-
tions of two.

4.2 Results and Discussion

Several discussion points emerge from the results of the evaluation, which can
be found in Table 2. Compared to the individual models, RoBERTa provided
the best results in all metrics, both ROUGE and BLEU. Also, the BERT and
BioBERT models performed well compared to RoBERTa when comparing results
from BLEU and ROUGE, respectively, implying that BERT generally achieved
better precision and BioBERT better recall, but both fell short of the results
achieved by RoBERTa. Although we anticipated that ChemBERTa could achieve
good results, mainly due to the fact that the model was trained with texts closer
to the domain of documents used in our test, in fact results show us the contrary,
achieving the worst overall result in our evaluation.

Using the Combination Process and the different arrangements of the models,
we can see the same pattern, i.e., the combinations in which the ChemBERTa
is present have worse results than the combinations without the ChemBERTa.
Although better results were obtained when combining with all models, including
ChemBERTa, they do not approach the results of the combination of RoBERTa,
BioBERT, and BERT. This combination of RoBERTa, BioBERT, and BERT
achieved the best performance in all our experiments and slightly improved the
results of the individual RoBERTa models, especially in precision, i.e., BLEU
scores.

After evaluating the results, we should consider whether it is necessary to use
a Combination Process to employ multiple models in the future. Even though
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Table 2. Evaluation Results

ROUGE BLEU
Unigram LCS Unigram

BERT 0.57 0.56 0.52
BioBERT 0.59 0.58 0.51
ChemBERTa 0.41 0.41 0.39
RoBERTa 0.62 0.62 0.55
RoBERTa + BioBERT + BERT 0.63 0.63 0.59
RoBERTa + BioBERT + ChemBERTa 0.54 0.54 0.50
RoBERTa +ChemBERTa + BERT 0.55 0.55 0.51
BioBERT + ChemBERTa + BERT 0.52 0.51 0.47
RoBERTa + BioBERT + BERT + ChemBERTa 0.57 0.56 0.52

the RoBERTa model performed almost as well as the best combination, using
multiple models may consume more time and computational resources. Thus, we
must weigh the benefits and drawbacks of implementing a Combination Process
having into consideration the different use cases and objectives that we may
have. For example, a live service may prefer a faster processing time affording
a worst performance by the models, meaning that implementing a certain level
of acceptable confidence in the retrieved information may not be the highest
priority. On the other hand, other use cases can benefit to a higher level of
confidence, so such a implementation of a Combination Process is preferable.

5 Conclusion

This paper explores the use of Question Answering as an alternative to Infor-
mation Extraction for analyzing toxicological properties which reduces the time
and effort required in the early stages of the process. We tested this approach
with SCCS and AICIS documents, evaluating the effectiveness of using multiple
pre-trained Language Models for this task and demonstrating how they can be
combined to achieve even better results.

Our approach using Question Answering, in combination with multiple mod-
els, was able to achieve a high ROUGE score of 0.63 and a BLEU score of
0.59, demonstrating its potential for accurately analyzing toxicological proper-
ties. These results are promising for reducing the time and effort required, and
highlight the usefulness of machine learning in the field of toxicology.

The results demonstrated the effectiveness of the proposed approach, par-
ticularly in the early stages of the process, by reducing the time and effort
required by safety advisors. Moving forward, we aim to expand this method to
other sources of information on chemical substances beyond SCCS and AICIS.
Furthermore, we plan to train new models by incorporating documents rele-
vant to the target field during pre-training. Additionally, we hope to develop a
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more automated decision support system that includes online reinforcement to
enhance the usability of the tool.
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Abstract. Imperfections in land transport infrastructure can be made
up of various elements. As it will be seen in this report, these imper-
fections vary depending on the variables that make up their formation.
However, one of the most damaging elements to cars is made up of large,
deep blemishes also known as potholes, which present a constant threat
to the integrity of cars. One of the problems with the process of recog-
nizing potholes is that, in countries like Honduras, these routes are made
on foot, which implies a great amount of time, effort and resources for
those in charge of recognizing potholes. To solve this problem, a solution
was proposed that would speed up the recognition process. This solution
consists of an artificial intelligence model that was trained to recognize
potholes, using a database made up of pothole images taken from the
internet and pothole images captured in Tegucigalpa, which resulted in
a model with a maximum precision value of 86.251% and a maximum
sensitivity value of 80.035%. Along with this model, a VK-162 GPS mod-
ule was used, which oversaw extracting the geographical location of each
pothole after being detected. With these geographical points it was pos-
sible to map the coordinates corresponding to each pothole on a map
to represent a pothole recognition route more easily and efficiently and
thus creating a system that could identify and locating potholes in a
semi-automated manner.

Keywords: Computer Vision · Machine Learning · Pothole · Pothole
Detection

1 Introduction

The most frequent method of transportation in Honduras are vehicles, mainly
particular vehicles and buses. In the capital, Tegucigalpa, most of the streets are
paved with either asphalt pavement or hydraulic pavement. Asphalt pavement
has an inherent property which is the formation of potholes. These potholes
are formed mainly due to the weather conditions of the area and the amount
of weight to which the material is exposed. An alternative to the problem of
the formation of potholes that is not definitive, but if functional is the filling of
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potholes. Potholes generate discontent among the population in different ways,
which is why repairing or covering potholes is essential. However, on many occa-
sions there is a very slow response from the authorities due to the size of the city
and this is why throughout this report we will seek to create a tool that facili-
tates the process of identification and location of potholes. This tool will have
three fundamental stages; The first being the detection of potholes by means of
an artificial intelligence and deep learning model so that the system can distin-
guish what is a pothole and what is not. This will be achieved by training the
model fed with a database in which it will be shown what the potholes look like.
The second part is based on assigning a geographic coordinate to each pothole
that is detected, thus generating a list with all the potholes and their geographic
locations. The final part will be the mapping of these points so that the user is
able to see on a map where the potholes are located and then proceed to carry
out the repair work. In this report, an introduction about artificial intelligence,
computer vision, deep learning and how training and data capture work in an
artificial intelligence system will first be presented. We will also proceed to talk
about GPS systems and how you can obtain a coordinate through them. Finally,
the proposed solution will be exposed and as it is, it will integrate everything
previously proposed in order to carry out the detection and adequate mapping
of potholes in the main streets of the city.

1.1 Objective

The intent of this project is to design and implement a semi-automated pot-
hole detection and location system by means of artificial vision and geographic
information systems on the main boulevards and the Peripheral Ring road in
Tegucigalpa. To carry it out, it is necessary to separate the problem into differ-
ent stages. The first stage will seek to build a database with images of potholes to
be used as training for an artificial intelligence model. Artificial intelligence (AI)
refers to systems or machines that mimic human intelligence to perform tasks
and can iteratively improve based on the information they collect [6]. Once the
database is created, it will help develop a system capable of recognizing potholes
through video capture. This system will be in charge of making the detections
and will be programmed in Python. In addition to this program, another system
will be created capable of documenting the geographic coordinates correspond-
ing to the potholes detected. This with the purpose of being able to store the
coordinates to be able to use in the last stage which consists of using geographic
positioning applications to map the points obtained on a map. Thus, finally, a
map will be obtained in which the potholes in an area can be observed.
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1.2 State of Art

There have been multiple research studies regarding the detection of potholes.
These studies can be classified based on the technique used. According to [3],
techniques used for pothole detection include manual techniques, vibration meth-
ods, 2D vision methods, 3D scene reconstruction, and learning methods.

In 2D vision methods, several authors have analyzed datasets of images to
develop algorithms that can determine whether there is a pothole in the road.
For example, PotSpot [15] developed an Android app that uses a convolutional
neural network with an accuracy of 97.6% in detecting potholes. Other authors
used a different approach for their learning models. Koch and Brilakis [10] used
the geometric properties of a pothole in his implementation from 2011, analyzing
images using morphological thinning and elliptic regression to extract the poten-
tial geometrical shape. His implementation achieved an 86% accuracy. [1] used
image processing and spectral filtering and got an 81% accuracy. Ping Ping [16]
tested four learning models and found that the Yolo V3 model with an accuracy
of 82% worked best. [18] also used the Yolo V3 model and found that the Yolo
V3 SPP model with an 88.93% accuracy was more accurate.

In a research from 2021, [9] used a convolutional neural network and an
Inception V2 model were used to detect potholes with a mean average prediction
of 86.41%. compared the Resnet 50, Inception V2, and VGG19 models and found
that VGG19 delivered the best accuracy with 97% on highways and 98% on
muddy roads.

Some other research studies used vibrations to detect potholes. In a paper by
Mednis [12], an Android smartphone accelerometer was used, achieving a true
positive rate of 90%.

In a review made by [3], several techniques for detecting potholes using 3D
reconstruction were analyzed. For instance, [2,11] used 3D laser scanning, while
[17] used stereo vision, and Jouber [8]and Moazzam [13] used a Kinect sensor.

2 Methodology

In this section, we will describe the methodology used to develop our pothole
detection system, which consisted of three main components: an AI model capa-
ble of detecting potholes in real-time using a webcam, a GPS module to extract
geographic coordinates of potholes, and a program to map the coordinates on
the map. Additionally, we implemented a filtering program to eliminate false
detections and ensure the accuracy of our system. In the following sections, we
will provide a detailed description of each component and explain how they work
together to create an effective pothole detection system.

2.1 AI Model

Data Collection. The AI model that was used in this system, was created using
a dataset of 5,349 images. A portion of these images came from various datasets
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Fig. 1. System Divisions

Fig. 2. Screening Program Elements

found online. The other portion of these images was made up of pothole images
that the authors captured on the streets of Tegucigalpa. Augmentation means is
a series of techniques that are used to artificially increase the size of a dataset by
creating new information from the information that is already available [4], and
after applying the respective augmentations to these 5,349 images, the complete
database happened to contain a total of 12,823 images.

Training. For this section we mainly used two programs to design and train
the model: Roboflow and Google Colab as shown in Fig. 1. In this section we
wanted to be able to obtain an AI model capable of distinguishing between what
is and what is not a pothole (Fig. 2). These photos were separated into the three
main data sets: validation, training, and test sets. Where the training set is used
to train the model, the validation set is used to review or validate the training
results and the test set consists of images totally foreign to the model to test
the results of the training process [6]. Google Colab was then used to train our
AI model. The technique used to train our AI model was adapted from a similar
approach used in [7]. Here the images obtained from Roboflow were loaded along
with the code with which the AI is trained and the model was trained until it
reached a high confidence percentage. The AI model is evaluated according to
its accuracy, sensitivity and mean average precision.

2.2 Filtration Program

Since each false detection would mean a wrong point on the map, it was
considered necessary for the program to have a filtering system. In this way,
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an external user could be able to review each of the detections made by the sys-
tem and eliminate false detections. Finally, a last program was executed which
is responsible for generating the map with the filtered data.

2.3 Obtaining Geographical Coordinates

The aim of the second section of the project was to be able to obtain geographic
coordinates. For this section, a“VK-162 G-Mouse USB GPS” module was neces-
sary. This module connects via a USB cable to the computer. A code was used
in Visual Studio Code which can send and storing the coordinates from the GPS
periodically.

Fig. 3. Obtaining Geographical Coordinates

Physical Assembly of Components and GPS Error. The physical com-
ponents are made up of a video camera, the GPS module and a laptop that
would be where the data extracted by the previously mentioned instruments is
collected and stored. In this case, both the video camera and the GPS module
were placed on the hood of the car. This to provide the video camera with the
best viewing conditions, so the model would be able to work in the best way
possible. The GPS module was placed in front of the video camera, and the
laptop was transported inside the car to be monitored by one of the authors.

Due to the position of the system components, there is another aspect that
had to be considered. Due to the angle of the camera, it was possible to determine
that the detection point of the camera was close to 2.36m in front of the vehicle,
as can be seen in Fig. 4. This calculation was possible by means of the following
equation:

DetectionPoint =
1m

tan 23
= 2.36m (1)

This detection point would imply that at the time of detection the GPS
is not exactly above the pothole being detected, which would imply an error
value in the values extracted by the GPS. To corroborate the total error of the
GPS, some potholes were chosen and the exact position of each one of them was
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Fig. 4. Detection point calculation

confirmed. These potholes were selected for their easy identification and location.
Then these exact coordinates were compared with the coordinate stored by the
program, extracted by the GPS, and it was possible to determine that the total
error of the GPS was a value close to 7.5m.

2.4 Point Mapping

After analyzing all the options, it was concluded that a Python library would
be used to map the points. We proceeded to create a code that was capable of
mapping points on a city map to have a better view of the potholes using the
data from an Excel file.

3 Results and Analysis

3.1 AI Model

To evaluate the model, several metrics were implemented. First accuracy, refering
to the quality of the model’s positive predictions, that is, the total number of
true positives and true negatives divided by the total number of predictions [6].

Then, the mAP or mean average precision, takes the average of the precision
averages for all the classes and is capable of presenting a single performance
metric for the entire model [6]. The model was trained for a total of 200 epochs
(Fig. 5) and it was able to reach a maximum mAP value of 85.867%, a maximum
precision of 86.251% and a maximum sensitivity of 80.035%, below is the graph
corresponding to the precision, the sensitivity and mAP during the training
process.
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Fig. 5. Model metrics after 200 epochs

3.2 Data Generation

Images. After iterated testing, it was decided that the program should have
a method to verify system detections. For this, the extraction of images by
the system was implemented. The system was programmed so that the instant
the model could make a detection and the program could count this detection,
the program would take a snapshot and create an image of the object that
the system was capable of counting. These images, after the program has been
successfully executed, would be stored on the computer to be reviewed by the
user to determine exactly what the system detected. Next, in Fig. 6 it is possible
to appreciate the images captured at the time of detection.

Video. It was taken into account that it was necessary to take a video capture
of the complete route during the tests in order to make the necessary corrections
to the system. After the tests, it was decided to keep the video of the results
in order to take control of the performance of the system and thus be able to
analyze how the model behaved in real situations. This video, like the images,
provides the user with a means to verify what the system has detected and thus
confirm that the detections made are indeed potholes.
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Fig. 6. Example of a successful detection

Microsoft Excel Document. After various tests, it was possible to determine
that due to the way in which GPS works, it was not possible to run the detection
program and the coordinates program within the same instance, so it was decided
to separate them so that the program detection had more hardware freedom to
work more efficiently. In this way, it was possible to extract the coordinates
corresponding to each pothole detected and store them in an Excel document to
later map the points.

Limitations

1. GPS Operation: The operation of GPS depends on satellite devices around
the earth. In order to deliver an exact coordinate, GPS uses a term called
trilateration, which means that GPS modules work by measuring distances
[5]. It was possible to determine that the GPS module has a latency equal to
1 s, which is the time window in which the GPS requests its current position
and waits to receive this information. Due to this, the general program was
subject to this latency, which limited the detection process, so it was decided
to run the GPS program in a separate program and create a client-server type
connection to be able to extract the coordinates of the potholes.

2. Erroneous Detections: Although the performance of the model was accept-
able, it is not perfect. As noted in the model metrics, the accuracy value is not
equivalent to 100%, which implies that the model incurs erroneous detections.
One of the most common types of detections was the one corresponding to
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asphalt patches. These erroneous detections accumulated to a considerable
amount, which negatively affected the generated map, demonstrating erro-
neous information about the presence of potholes. Due to the repetition of
these detections, it was necessary to create a manual filtering program, which
eliminates the presence of patches on the map.

3. Hardware Limitations: The main hardware limitation found during the devel-
opment of this project concerns the GPU included in the laptop used. Even
though the laptop has a powerful enough GPU to run the program at an
acceptable FPS value, it was concluded that with a more powerful GPU the
model and the system as such could generate more detections and those of
better quality. Another hardware limitation corresponds to the video camera
to be used. Although the camera that was used is capable of recording at an
adequate quality, it was possible to notice that the FPS at which the camera
operates could limit the operation of the system.

3.3 Final Maps

The map was generated using a library included in Python called Folium. Fig-
ures 7 and 8 show the maps generated from the Los Hidalgos neighborhood to
the ENEE headquarters in Tegucigalpa and along Fuerzas Armadas boulevard
entering and exiting the peripherical ring road. This library allows the map to
be automatically generated from the points provided after they have been fil-
tered. It should be noted that the Excel document that is generated contains
all the coordinates of all the detections that were counted and these same coor-
dinates can be entered into other point mapping platforms, but in this case, it
was decided to generate the maps automatically within from the same program.
One of the most important aspects to highlight about the previous maps is the
value they carry.

Fig. 7. Map generated from Los Hidalgos to the ENEE headquarters to In Tegucigalpa
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As previously mentioned, there are other projects that have sought to develop
a project similar to this one, with the difference that these projects have not
been able to develop a map containing the position of these potholes. On this
occasion it was possible not only to train a model capable of detecting potholes
and making the respective count, but it was also possible to map each one of
the potholes detected. In this way, the generated maps provide the necessary
information to the authorities to make the appropriate decisions. In the same
way, it is important to emphasize that the individual coordinates of each of
the potholes are fully available for visualization within Excel for a deeper study
with the possibility of mapping the points in third-party applications if the user
wishes so.

Fig. 8. Map Generated along the Boulevard Fuerzas Armadas

4 Conclusions

It was possible to carry out and implement a system that works through the use
of artificial intelligence and deep learning which is capable of detecting nearby
potholes and obtaining a geographic coordinate corresponding to each detected
pothole so that unwanted data can be filtered later and generate a map where
a representative point of each pothole has been observed. In addition to this,
a database of 5,349 representative photos of potholes has been created, which
was used to carry out training using Google Colab and from which, after 200
training epochs, a maximum mAP value of 85.867% has been obtained, a pre-
cision maximum of 86.251% and a maximum sensitivity of 80.035%. A program
was developed which was able to read the training file in order to make real-
time detections of potholes using a 720p video camera. The system worked using
Python language, using Visual Studio Code as our compiler and Anaconda as
our library manager. Using a GPS module, the coordinates of different detec-
tions along the route were extracted. These have been stored in an Excel file
which has then been used as a basis for mapping the points. A special library
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has been used, called Folium, which works in Python language and allowed the
mapping of the points. In addition to its potential applications in road mainte-
nance and monitoring, this system could also be of great use in other contexts.
For example, it could be used to validate road quality for vehicles in dry ports
[19] or for mobile robots [14].
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