
Towards a DEMO Description
in Simplified Notation Script

Mark A. T. Mulder(B) , Rick Mulder , and Fiodor Bodnar

TEEC2, Hoevelaken, The Netherlands

markmulder@teec2.nl

Abstract. The core methodology of Enterprise Engineering (EE) is
Design and Engineering Methodology for Organisations (DEMO) and
has been the subject of modelling tools. This methodology can be split
into a method or process part and a notation part, describing the meta-
model and its visualisation. The way the notation of the methodology
has been described for these tools has been of different detail levels. This
paper describes the DEMO notation using the grammar of the Simplified
platform as an exercise towards a complete notation grammar that can
describe all existing and possibly future notations and also to complete
the DEMO notation specification. The grammar is part of the Simplified
platform, and the notation is the published definition of the notation
part of the DEMO methodology. We have chosen a practical approach
to developing the notation script and thinking out-of-the-box by not
creating a theoretical box a priori.

Keywords: enterprise engineering · DEMO · modelling tools

1 Introduction

The DEMO [1] method is a core method (based on a theoretically founded
methodology) within the discipline of EE [2]. The DEMO method focuses on
the creation of so-called essential models of organisations. The latter models
capture the organisational essence of an organisation primarily in terms of the
actor roles involved, as well as the business transactions [9] (and ultimately in
terms of speech acts [5]) between these actor roles. More specifically, an essential
model comprises the integrated whole of four aspect models: the Construction
Model (CM), the Action Model (AM), the Process Model (PM) and the Fact
Model (FM). Each of these models is expressed in one or more diagrams and one
or more cross-model tables. DEMO has strong methodological, and theoretical,
roots [1,2,9].

After we built the Plena tool for modelling DEMO in the PhD project of
Mulder [7], we continued our research to expand the modelling capability. This
research found that the modelling capability could not be expanded within the
existing Sparx Enterprise Architect (SEA) tool. We found many problems that

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Griffo et al. (Eds.): EEWC 2022, LNBIP 473, pp. 53–70, 2023.
https://doi.org/10.1007/978-3-031-34175-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34175-5_4&domain=pdf
http://orcid.org/0000-0002-1846-0238
http://orcid.org/0000-0002-9500-0702
http://orcid.org/0000-0001-6266-0985
https://doi.org/10.1007/978-3-031-34175-5_4

54 M. A. T. Mulder et al.

we could not solve within this environment, e.g. functionality support, visuali-
sation support, collaborative work support.

The problem we address in this paper is the complexity of the notations and the
visualisation of that notation that we want to use. The example that we describe
in this paper is about DEMO. DEMO is a method with complex diagrams that
are linked together by the main elements, transactions. The transaction has mul-
tiple visualisations, dependent on the context. This makes the visualisation of the
element non-trivial and demands variables for the visualisation. Furthermore, the
description of the diagrams in the DEMO Specification Language (DEMOSL) has
more requirements than the SEA tool can handle, e.g. the transactor and transac-
tion kind that reference the same model element, attributes that are always a part
of an entity and cannot be represented separately like ORM representation, and
multiple visualisations of the same element in the same diagram. Other notations
have similar issues (e.g. BPMN swim-lanes and visual attributes, IDEF0 layout
restrictions, ArchiMate double representations). We needed a modelling environ-
ment to address all these visualisation issues.

Therefore, we have introduced Simplified modelling platform [6] that can
create models according to specified notations (metamodels) in a web-based
environment and present the models to relevant stakeholders. In summary, the
Simplified modelling platform can contain any model that can be described
as element-connection model with attributes (e.g. data models, process mod-
els (blocks and arrows), architecture models). The models can be visualised in
table or diagram style where the representation is free to choose. Although this
paper describes the notationscript from a DEMO method perspective, we have
made notationscripts for more notations (e.g. ArchiMate, BPMN, Flowchart).

In this paper, we report on a study about the configuration effort within the
Simplified modelling platform to support the use of DEMO 3 and 4 in practice
answering the question on the minimal expressive power needed to describe these
notations on this platform. This description should satisfy the model expression
and the visualisation of the models. The flexibility in defining notations can help
to easily define new domain specific notations with new semantics for specific
problems.

Configuring the Simplified modelling platform support for DEMO requires an
elaborate formalisation of the DEMO metamodel, as described in DEMOSL [4],
and further specified to enable the automatic verification of models [7]. In order
to translate the formalised DEMO metamodels, rules and visual notations to the
notationscript we need the notation grammar that will support the definition of
all required concepts and all the related visualisations.

Note that we have described the notation of the methodology in this paper
while not describing any model. The visual and textual representations are part
of the notation description and are represented in the metamodel structure. Also,
we have chosen for a practical approach, thus not studying literature a priori.
This approach might result in a grammar that partially exists. In hindsight, if we
were able to use an available part of an existing notation grammar, then we would
have to combine different parts from these notation grammars, which makes

Towards a DEMO Description in Simplified Notation Script 55

this option less feasible from a maintenance point of view. Also, the different
points of view from different attempts make it very challenging to combine these
efforts. Summarising, we have chosen to use our own notation grammar to define
notations that will support the definition of required concepts and their related
visualisations as will be explained in Sect. 3 and Sect. 6, respectively.

For the visualisation part of the grammar we have looked at implementations
of SEA, ADOXX and draw.io. We used the convenient user interface concepts
of these implementations and made our own implementation without copying
anything.

Because DEMO version 3 and version 4 differ in the number of concepts,
metamodel and visualisations we have decided to cover both versions. We see
the new concepts of DEMO 4 as an extension on the concepts of DEMO 3
although the literature [3] leaves out options of the previous version [8], e.g. the
Organisation Construction Diagram (OCD).

The remainder of this paper is structured as follows. Section 2 describes the
research method utilised. Section 3 provides a overview of concepts that are cur-
rently supported by the proposed grammar for describing notations. In Sect. 4,
we show how how DEMOSL of DEMO version 3.7 has been defined in the nota-
tionscript for the CM, PM and the FM. Section 5 addresses the definition of
DEMOSL to the notationscript based on DEMO version 4.7.1. In Sect. 6 we
continue on the specifics for defining visualisations in a notationscript. Lastly,
before concluding, in Sect. 8 we discuss several challenges that future research
will have to address.

2 Research Question and Method

The research question was to find a notation to flexibly describe at run-time
the meta model of a model notation with the corresponding visualisations. The
creation of this notationscript is an iterative process to find a suitable grammar
that covers all meta model descriptions. This paper describes the creation of this
notationscript which can be seen as an artefact in the sense of design science. We
used Design Science Research (DSR) [10] to create the notation grammar and
script. This artefact is an object that solves a problem by interaction with the
context of that artefact. Thereafter the artefact must be implemented, validated,
and evaluated.

3 Notations

Within the Simplified context, a notation can be self-contained, extending or
replacing concepts from other notations. By extending other notations, one
can add own elements without redefining previous notations. With the replace-
ment functionality, one can restrict the use of a notation to a smaller subset of
attributes of the concepts.

We have defined the notation as the highest user meta-level in the Simplified
platform. At this level, we can define how models can be modelled and what

56 M. A. T. Mulder et al.

rules the models must adhere to. In order to verbalise this metamodel, we have
created a notation script language and corresponding grammar that can be used
to specify notations. The notation script language is described in a notation
grammar where the levels of abstraction are reflecting the functional components
in the platform, and the transformation between the levels is either interpretation
on run-time or compilation when parsing the notation script.

The current version of the notation script has a grammar for the following
list of notation concepts which will be explained using the DEMO notations in
Sects. 4 to 6.

element [extends <refname>] [replaces <refname>]

[comment "<comment>"]

(<name>

<typeRefName> | TEXT | URL | GUID | BOOL | INT | DATETIME

[<default>] [comment "<comment"] [,...])

Listing 3.1. Element Grammar

Element is the base concept often referred to as ‘block’ (from ‘blocks and
arrows’ in process modelling). In the notation script, the element concept sup-
ports the hereafter mentioned parameters. The elementName is the display name
of the element. The elementReferenceName is the unique identifier within the
notation. It can extend another element, taking the parameters of the extended
element in addition to its own. It is also possible to replace an element to remove
parameters that you do not want to use in your own notation. As in all descrip-
tive concepts there is an option of adding comments. Lastly, an element can have
any number of attributes defined, which we will explain later.

Connection is the base concept often referred to as ‘arrow’ (from ‘blocks and
arrows’). A connection has two extra parameters on top of the element param-
eters. The first parameter is sourceElementReferenceName, which defines the
element of the source element, where the parameter matches the elementRefer-
enceName of the referenced element. The second parameter is targetElementRe-
ferenceName, which defines the element of the target element just like the first
parameter.

Typedef is the concept to represent a data type of an attribute (that in turn
can be connected to an element or connection). The default supported types are
text, enumeration, boolean, date time, integer, URL, and UUID. Within these
types, restrictions on the types and the definition of the values of the enumeration
can be added.

Toolbox focuses on the available elements and connections for a specific per-
spective. Similarly to element, Toolbox has toolboxName, toolboxReferenceName,
and comments. The toolboxContentNames parameter allows the user to define
which element and connections should appear. In addition, the folder parameter
is used to create a categorisation in the toolbox.

Towards a DEMO Description in Simplified Notation Script 57

virtualElement: VirtualKeyword ElementKeyword elementName

elementReferenceName

ElementKeyword elementReferenceName

(ConnectionKeyword connectionReferenceName

ElementKeyword elementReferenceName)+

comment?

;

Listing 3.2. Virtual Element

Virtual Element is the concept of an element that starts to exist when a spe-
cific combination of elements and connections starts to exist and are connected.
It has the name and referenceName parameters. In order to define which element
and connection compose the virtual element, it has an elementReferenceName
parameter, followed by one or more connectionReferenceName and elementRefer-
enceName pairs. It contains the comments parameter like the previous concepts.

Rule is a way to check the restrictions of the model. By defining a logic query
on the model, one can generate messages showing rules that have been violated.
A rule is defined with a name, and an expression. This expression is a equivalent
of a first-order logic expression. It also contains two optional parameters, namely
a message can be added in case of rule violation, and comments.

Table is a visualisation of model information in a textual column-shaped
format. Tables can be defined to list information in the scope of a repository,
model, or a single diagram. Tables have name and Reference parameters. Their
content is determined by a selectExpression parameters, which is like first-order
logic, similar to rules. The display is handled by tableColumn definitions, which
describe the name, span, and reference of the column.

Visual defines the shape of a model element or a model connection that can be
displayed on a diagram. The parameters name and ReferenceName are present
here. Additionally it has a parameter where a list of diagrams this element
can appear on can be specified. The main focus of the visual definition is the
visualisationScript, which is further explained in Sect. 6. Optionally there can
be comments added.

Diagram is a special element that can hold other elements to visualise a spe-
cific perspective of the model. Diagram contains the name and ReferenceName
parameters. It has a parameter for elementNames, which specifies the element
that are meant to be on the diagram. This enables us to enforce a methodology,
or let the user know when they have extra non-standard elements.

Cube is the multi-dimensional textual representation of a part of a model.
Currently, a two-dimensional cube, matrix, is the only supported representation.

Behaviour defines the actions in the UI needed to realise the modelling pro-
cess described in the methodology accompanying the notation. Behaviour is
defined by specifying an action, such as adding an element to a diagram, or
double clicking something, and a reaction, something that needs to happen in
response to the action. It has contains the name parameter, and the behaviour
rules parameter. The behaviour rules parameter is build up with an action and

58 M. A. T. Mulder et al.

reference name, and a reaction and reference name. Optionally there is a final
action such as alignment

Attributes can be added to elements, connections, folders, diagrams and
virtual elements. The first parameter is the attributeName, which defines the
attribute name. This is followed by the attributeType which can be a base type
such as defined in typedef at the beginning of this list. In addition, it has the
following three optional parameters. AttributeRequired, which defines if this is
a mandatory attribute to fill, attributeDefault, which specifies the default value
of the attribute, and comments.

Together, we expect these concepts to cover all of DEMO notation visuali-
sations. When we are specifying DEMO 3 and 4 we will report on the current
level of success on the specification.

4 DEMO 3 Notation

The notation of DEMO version 3.7 is formalised in DEMOSL [4] and some
improvements were proposed in a PhD [7]. The formalisation of the DEMOSL
enabled the automated verification and exchange of DEMO models and it has
been implemented in the SEA add-on Plena. Whether the discussion on the rel-
evance or usefulness of these concepts of DEMO is a discussion that can be done
in another paper. We will focus on using the concepts and visualisation of these
concepts as described in the above mentioned literature. The notation script of
Simplified for DEMO 3 currently seems to contain all concepts of the aspect
models CM, PM, and FM and we will explain the translation from DEMOSL to
the notation script in this section. The DEMO 3 notation, as shown in listing
4.1, has been given the version number 3.7. This corresponds to the version of
DEMOSL but does include the work of the mentioned PhD.

ScriptVersion01

Notation for DEMO version 3.7

comment "This version of DEMO is described in EO, TEOO and DEMOSL 3.7"

Listing 4.1. Script

Within DEMO 3, three enumerated data types exist as shown in listing 4.2.
These data types describe all states of some attributes of the transaction kind,
attribute type, and step kind.

Towards a DEMO Description in Simplified Notation Script 59

typedef TRANSACTIONSORT ENUM (None, Original, Informational,

Documental)

comment "The transaction sort type describes all possible Transaction

sorts"

typedef ATTRIBUTEKIND ENUM (Original, Derived)

typedef STEPKIND ENUM (

Initial, Request, Requested, Promise, Promised, Execute, Executed,

State, Declare, Stated, Declared, Accept, Accepted,

Decline, Declined, Quit, Quited, Reject, Rejected, Stop, Stopped,

RevokeRequest, RevokedRequest, ...)

Listing 4.2. Type definitions

To prevent listing the whole notation in this paper we will summarise the
element section of the DEMO 3 notation. The notation contains all DEMO 3 the
elements, e.g. Actor, Entity Type, Attribute Type, Elementary Actor Role, Com-
posite Actor Role, Transaction Kind, Aggregate Transaction Kind, and Trans-
action Process Step Kind. Special attention is needed for the Actor element as
the DEMOSL does not specify this element. In the DEMO methodology the
Actor-Function-Matrix [8, p.94] lists Actors that are linked to the Transaction
Kinds. This Actor, as shown in listing 4.3, is not defined in the methodology but
needs to be present to complete the connection between those concepts.

element Actor Actor37

(Name TEXT)

element "Transaction Kind" TransactionKind37

(Name TEXT

, "Product Kind Name" TEXT

, "Product Kind Formulation" TEXT

, "Transaction Sort" TRANSACTIONSORT)

Listing 4.3. Elements

The connections within the model have been listed [7] and a summary of
those findings are shown in Sect. 4. All connections between elements can be
specified with the connection keyword, as shown in listing 4.4, and these have
been specified in the notation script file (Table 1).

60 M. A. T. Mulder et al.

To → ETK ATK EAR CAR ET AT CET TPSK AR

From ↓
ETK – c e ce – – – – –

ATK – – – – – – – – –

EAR ia a – c – – – – –

CAR ia a – c – – – – –

ET o – – – xsrg – – – –

AT o – – – p – – - –

CET o – – – – – – – –

TPSK c – – – – – - iy tlwh

AR – – – – W – – – –

Table 1. Element Property Types

Property Types

[c] contained in [o] concerns [i] initiator

[e] executor [a] access to bank [s] specialisation

[r] aggregation [g] generalisation [t] then

[l] else [w] while [h] when

[W] with [x] excludes [y] wait

[f] role of [p] attribute of

connection Initiator Initiator37e from ElementaryActorRole37 to

TransactionKind37

connection Initiator Initiator37c from CompositeActorRole37 to

TransactionKind37

connection "Attribute of Entity" AttributeOfEntity37 from

AttributeType37 to EntityType37

Listing 4.4. Connections

The representation of models can be done in several ways. The most common
notations involve diagrams and tables. To be able to verify the model we need to
know what elements can exist on a diagram. This restriction does not limit the
elements present on the diagram necessarily, but does give information about
the verification of a ’pure’ diagram. We have named the diagram according
to the methodology [1] and match the elements present on those diagrams as
shown in listing 4.5. We have chosen to have the connections allowed on the
diagram to be derived from the elements that are allowed on the diagram. We
could add them to the diagram as connection restrictions in a later stage but no
specific requirement was found that did not allow for more connection types on
a diagram.

Towards a DEMO Description in Simplified Notation Script 61

diagram "Organisation Construction Diagram"

OrganisationConstructionDiagram37

comment "OCD"

toolbox ToolboxOCD37

contains (ElementaryActorRole37, CompositeActorRole37,

TransactionKind37, AggregateTransactionKind37)

Listing 4.5. OCD diagram

Before we show the definition of tables, we first introduce rules of a model.
We have defined a grammar that mimics SQL and first order logic. Instead of
adopting a complex specification language for rules we have started in a simplistic
way to allow for the most common restrictions in a language. We have adopted
the mathematical expressions ‘for all’, ‘not exist’ and ‘exists’ together with the
logical ‘and’, ‘or’ and ‘not’. The notation uses the mathematical representations
of these terms (e.g. ∀, ∃, ∧, ∨, !) which will not show up in the presented listings.
When the logical rule collides with the given model, the message is presented to
the user as shown in listing 4.6.

rule "No Reverse Association" (A connection Association(x, y) => !E

connection Association(y, x))

Message "There can be no reverse association between two elements"

Listing 4.6. Rules

The same logical listing for rules is used in tables. This makes it possible to
describe the table representation of a repository, model or diagram in a tabular
format. This version has a one-dimensional representation where future versions
are likely to have multi-dimensional representations allowing for more complex
representation of model aspects like the Actor-Function-Table of DEMO.

table "Transaction Product Table" TransactionProductTable37

select (x."Identification",x."Name",x."Product Kind",x."Product Kind

Formulation")

(A element(x): x.Identification == "TransactionKind37")

column "transaction kind" span 2 data S0

column "tName" span 0 data S1

column "product kind" span 2 data S2

column "pName" span 0 data S3

Listing 4.7. TPT table

5 DEMO 4 Notation

The definition of the DEMO 4 notation has been derived from the notation of
DEMO 3 in Sect. 4. DEMO 4 has an extra diagram notation compared to DEMO
3. DEMO4 also has some new connections that were not present in DEMO 3.

62 M. A. T. Mulder et al.

We will skip the parts of the notation specification that are the same as the
DEMO 3 specification and show the DEMO 4 specific parts.

The elements of DEMO 4 are the same, but the names represent the DEMO
4 version, as shown in listing 5.1. The naming of some elements have changed
like Aggregate Transaction Kind becomes Multiple Transaction Kind.

element EntityType EntityType40

(Identification TEXT

, "Composite Entity" BOOL default "false")

Listing 5.1. Element

The most challenging element is the Transactor. The transactor is the con-
traction of the Transaction Kind (TK) and the Elementary Actor Role (EAR),
when these two elements are connected by an executor connection. In Fig. 1 we
show a part of the metamodel of DEMO4 from DEMOSL 4.6.1. Furthermore, in
the book [3], the diagram OCD is no longer discussed but the author has made it
clear that DEMO 3 is still a valid notation. Additionally, we can read in the text
on page 28 [3]: “Note that a transactor role is the combination of a transaction
kind and the actor role that has its executor role.”.

Fig. 1. DEMO 4 metamodel on transactor [3]

The Coordination Structure Diagram (CSD) has been introduced to empha-
sise the tree structures in the construction and to show the transactors that
form business processes together. That being said, we could be visualising a
demo model in a OCD and a CSD simultaneously. In the OCD, the TK - execu-
tor - EAR are represented by an element - connection - element. In the CSD
this construction is represented by a single element that has multiple parts. The
upper part of the visual notation is the TK and the lower part is the EAR.
But the element would be a single element on the diagram. To accomplish this
we have created a virtual element. A virtual element is the combination of n+1

Towards a DEMO Description in Simplified Notation Script 63

elements that are connected by n connections in a single line. On the one hand,
when this combination of elements and connections start to exist the virtual
element starts to exist. In addition, a virtual element that is created will create
the underlying components simultaneously. On the other hand, when one of the
components of the virtual element is removed from the model, the virtual ele-
ment will cease to exist. Similarly, removing a virtual element will remove all of
its components. In listing 5.2 the Transactor is defined for DEMO 4.

virtual element Transactor Transactor40

element TransactionKind40

connection Executor4e

element ElementaryActorRole40

Listing 5.2. Virtual element

We could have solved this notation behaviour of a CSD with the behaviour
statement of Sect. 6, but this virtual element concept can have some benefits for
other notations in the future.

The TPT in DEMO4, as shown in listing 5.3, has a different meaning because
the first letter is taken from the Transactor. Therefore, this table has a new
definition in the notation.

table "Transactor Product Table" TransactionProductTable40

select (x."Name",x."Identification",x."Product Kind",x."Product Kind

Formulation",z."Identification",z."Name")

(A element(x): x.elementname == "TransactionKind40"

=> E connection(y): y.Source == x.Id AND y.connectionName == "

Executor"

=> E element(z): y.Target == z.Id AND z.refname == "

ElementaryActorRole40"

)

column "transaction kind" span 2 data S0

column "tName" span 0 data S1

column "product kind" span 2 data S2

column "pName" span 0 data S3

column "executor role" span 2 data S4

column "eName" span 0 data S5

Listing 5.3. TPT table

6 Notation Visualisation

Visualisation of models is a broader problem. In this paper we will keep the scope
to the representation of model elements within a diagram representation of the
model concepts. After defining the model concepts, we can define visualisations
for these concepts. This visualisation is done by using a visual script which
can contain a number of statements as described below. A visual script starts

64 M. A. T. Mulder et al.

with an initialSizeStatement, specifying how large the objects should appear
on the screen. Next, there are two possibilities. The first possibility is specifying
penWidth, penColor, fillColor, and lineStyle, and subsequently defining a shape.
The second possibility is using a groupStatement, which bundles together shapes
defined within it. There are two types of groups, scaling, and non scaling. Scaling
groups scale when the object would be scaled. Non-scaling groups do not scale
and can be made by adding the noscale keyword, which is useful in certain
cases such as text. Groups can contain other groups, but only if they are the
same type, e.g. scale or noscale. Next, it is possible to define the shape that
should be visualised. There are several basic shapes, and a free shape. We have
a limited set of basic shapes, e.g. line, arc, polygon, rectangle and ellipse. The
free shape can receive basic shapes, and will connect those to form one single
closed shape. For these shapes, it is possible to define a minimum size using
a minimumSizeStatement. Additionally, it is possible to display text, which is
achieved using a printStatement.

Furthermore, there is the possibility of conditional visualisation using switch.
The if statement can be accomplished by using a switch with a single case, since
the default case is not required.

A certain concept can have multiple visualisations for multiple diagrams. This
enables the modeller to define separate visuals for concepts such as a transaction
kind, which has a different visualisation on an OCD compared to a Process
Structure Diagram (PSD). Is is possible for an element to be visualised the
same on all diagrams by substituting the diagramName by a star (*). In the
model layer the visualisation of an element can occur multiple times on the
same diagram.

In Simplified, the canvas has the positive x-axis to the right, and the positive
y-axis down. Each grid square is 50× 50 by default.

To accommodate the combination of the diagram and the elements and con-
nections that can be on that diagram, the notation script can define the related
elements and connections. The toolbox then can be presented to the user at
the right moment while modelling. Though the toolbox shows the most likely
options, other elements can be used in a notation when the diagram does not
have to be pure for the methodology.

toolbox "OCD" ToolboxOCD37

comment "Toolbox with all elements for the OCD diagram"

(

element TransactionKind37, element AggregateTransactionKind37,

element ElementaryActorRole37, element CompositeActorRole37,

connection Initiator37e, connection Initiator37c,

connection Executor37e, connection Executor37c,

connection Information37e, connection Information37c

)

Listing 6.1. Toolbox

Towards a DEMO Description in Simplified Notation Script 65

In earlier versions of DEMO [1] the fact model has been modelled in a differ-
ent notation. This former notation was closer to Object Role Modelling (ORM)
and allowed for the attributes of entities to be modelled as elements in the fact
model. The advantage of modelling attributes of entities as separate elements
is the ability to reason about them. Connections to separated attributes can be
made not only to the entity by the connection type ‘attribute of entity’ but also
to other concepts. In order to model both earlier and current versions of DEMO,
attributes can be visually modelled both as attributes of entities and as elements
themselves while still using the same notation for the non-visual model.

The Action Rules Specification (ARS) is a concept that needs further research
in itself. The complexity of action rules is bigger than a simple representation can
visualise. Therefore, within this scope we just stick to the structure and a simple
representation. For the ARS the ‘with’ specification [7] refers to attributes of
entities. The connection from the ‘when‘, ‘then’ and ‘else’ proposition to all rel-
evant attributes can now be visually modelled and translated to a verbalisation
and vise-versa. The visual challenge is to create a behaviour of the attribute ele-
ment when it ‘belongs’ graphically to the entity. We have created the behaviour
syntax to be able to define just that behaviour. This behaviour is of the same
kind as the placing of activities on a swim-lane in a Business Process Model and
Notation (BPMN) diagram.

behaviour "Attribute on Entity" on drop AttributeType37 on

EntityType37

do link AttributeType37 to EntityType37

option align left,centre

Listing 6.2. Behaviour

Drawing all shapes of DEMO requires just a few mathematical basic shapes.
The behaviour of these shapes, thought not all explicitly defined in DEMOSL
4.6.1, is quite challenging. We have decided to start with the basic set of fig-
ures and text that allows for defining the required shapes. The resizing of the
transaction kind shape on a PSD is not yet optimised but will do the job in this
first version. The conditional statements allow for changing the colour based on
properties of the diagram or the element.

66 M. A. T. Mulder et al.

visualscript: initialSizeStatement vscrStatement* ;

visualScriptSettingStatements: vscrSStatement* ;

vscrSStatement:

penWidthStatement | penColorStatement

| fillColorStatement | lineStyleStatement

;

vscrStatement:

minimumSizeStatement | penWidthStatement

| penColorStatement | fillColorStatement

| lineStatement | arcStatement

| anchorStatement | polygonStatement

| rectangleStatement | ellipseStatement

| printStatement | groupStatement

| switchStatement | lineStyleStatement

| letStatement | shapeStatement

;

Listing 6.3. Visual Grammar

The listing listing 6.4 is an example of the response link on a PSD. It will
start with a circle and follows a solid line to the end of the connection with a
rectangle at the end. All connection visualisations can have a line, begin, centre
and end part as shown in Fig. 2 and Fig. 3.

Fig. 2. Response link Simplified Fig. 3. Response link [3]

Towards a DEMO Description in Simplified Notation Script 67

visual ResponseLinkPsd37 of ResponseLink37

on (ProcessStructureDiagram37)

line {

penwidth(2) / linestyle(solid)

pencolor(0,0,0)

}

begin{

initialsize(5,5) / fillcolor(255, 255, 255)

ellipse(0, 0, 8, 8, 0)

}

end {

initialsize(5,5) / fillcolor(0,0,0)

polygon(0,0,3,10,90)

fillcolor(255, 255, 255) / linestyle(solid)

rectangle(10, -8, 15, 15, 0, 0)

}

Listing 6.4. Visual Response link

For the preclusion connection, as shown in listing 6.5, a centre and end figure
are used as shown in Fig. 4 and Fig. 5.

Fig. 4. Preclusion link Simplified Fig. 5. Exclusion link [3]

visual PreclusionOfd37 of Preclusion37 on (ObjectFactDiagram37)

line { penwidth(2)

pencolor(0,0,0) / linestyle(dash) }

centre { initialsize(5,5) / linestyle(solid)

ellipse(0,0,10,10,0)

line(-6,-6,6,6,0) / line(-6,6,6,-6,0) }

end { initialsize(5,5) / penwidth(2)

pencolor(0,0,0) / linestyle(solid)

line(0, 0, -10, 5, 0) / line(0, 0, -10, -5, 0) }

Listing 6.5. Visual Preclusion

68 M. A. T. Mulder et al.

Elements also need a visualisation and the simplest visualisation is that of
an EAR shown in listing 6.6. This is a square with the text in the square and
some text beneath the square. As can be seen the graphical shapes will scale
and the text will not scale along.

visual ElementaryActorRoleAll37 of ElementaryActorRole37 on (*)

{

initialSize(50,50)

group (0,0) scale {

penWidth(2) / penColor(0,0,0)

fillcolor(255,255,255) / rectangle(0,0,50,50,0,0)

}

group (0,0) noscale {

print(10, 20, 40, 25, "{element.identification}", 0)

print(-25, 60,100, 25, "{element.name}", 0)

}

}

Listing 6.6. Visual EAR

All these visualisation concepts cover most of the CM, PM, FM but do not
cover the AM fully yet.

7 Conclusion and Discussion

Creating a complete DEMO description in the Simplified Notation Script is on its
way. Several aspects of the DEMO notation are not yet defined in the grammar
of the notation script, but the main graphical representations are implementable
in the notation. The notation script, as developed now, has been proved to be
successful in the test model examples that we have created. Issues beyond the
notationscript are withholding the release of the platform as a whole and do
interfere with the public evaluation of the notationscript. Notwithstanding, this
evaluation of the notationscript and its application shows that the first aspect
model of DEMO can be successfully be created and used for practical modelling.

The notation will be enhanced in the coming period to accommodate all
aspects of the DEMO notation. It is worth bearing in mind that the DEMO
methodology comprises more than only the notation, e.g. process information.
However, at this point in time we did not find a way to describe all this informa-
tion in the notation script grammar. Therefore, some parts of the methodology
support are still hard-coded until we have found a suitable way to describe the
translation and generation of certain notation aspects.

The notation scripts will be published on a Git1 to be used and improved by
the community. This direct communication loop with the community will also
benefit the specification of additional notations in Simplified in the future.

1 https://gitlab.com/teec2/simplified/notations.

https://gitlab.com/teec2/simplified/notations

Towards a DEMO Description in Simplified Notation Script 69

8 Future Research

During this attempt to describe DEMO in Simplified Notation Script we have
come across several shortcomings that prevented us to be fully capable of mod-
elling DEMO. First of all, the ARS grammar that was defined [7] is not included
in the implementation yet and the visualisation of the ARS in an ARD is also
not implemented yet either. Visualisation of the ARS is a subject that we will
research further, parallel to the creation of the notation. Secondly, both the
DEMO methodology and the aspect models with their specific visualisations
make it quite challenging to make a solid definition to capture all concepts.
Meaning that it will most likely be improved upon in the coming time. Lastly,
compared to the hard-coded version of the DEMO modelling tool as an extension
to SEA we still have to implement the generation options for the following dia-
grams: CSD, Transaction Pattern Diagram (TPD), Action Rules Process (ARP)
and PSD.

Opportunities for improvement include the addition of a delete option to the
notation script concepts as it currently supports only the definition, extension
and replacement of the concepts. This would allow for a better accommodation
of the language enhancements. Challenges of expanding the notation, and even
connecting the notation to other notations are subjects that need more research.

Furthermore, the connection concept can be expanded upon. Currently, the
grammar does not support multiple connections but the metamodel does support
already n-ary connection. Although DEMO does not require n-ary connections in
the current diagrams, we will have to extend the grammar to support this kind
of connection for the addition of other diagrams and notations in the future.
One of the concepts that needs the n-ary connections is the exclusion law in fact
diagrams where two relations can be mutual exclusive.

We have only listed the research subjects of our R&D that are directly adja-
cent to the topic notation script.

References

1. Dietz, J.L.G.: Enterprise Ontology - Theory and Methodology. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-33149-2

2. Dietz, J.L.G., et al.: The discipline of enterprise engineering. Int. J. Organ. Design
Eng. 3(1), 86–114 (2013)

3. Dietz, J.L.G., Mulder, J.B.F.: Enterprise Ontology - A Human-Centric Approach
to Understanding the Essence of Organisation. The Enterprise Engineering Series.
Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-38854-6

4. Dietz, J.L.G., Mulder, M.A.T.: Demo specification language 3.7 (2017)
5. Habermas, J.: The Theory for Communicative Action: Reason and Rationalization

of Society, vol. 1. Boston Beacon Press, Boston (1984)
6. Mulder, M.A., Mulder, R., Bodnar, F., van Kessel, M., Gomez Vicente, J., et al.:

The simplified platform, an overview. In: Modellierung 2022 Satellite Events (2022)
7. Mulder, M.: Enabling the automatic verification and exchange DEMO models.

Ph.D. thesis, Radboud University Netherlands (2022)

https://doi.org/10.1007/3-540-33149-2
https://doi.org/10.1007/978-3-030-38854-6

70 M. A. T. Mulder et al.

8. Perinforma, A.P.C.: The Essence of Organisation, 3rd edn. Sapio, The Netherlands
(2013)

9. van Reijswoud, V.E., Dietz, J.L.G.: DEMO Modelling Handbook, vol. 1, 2nd edn.
Delft University of Technology (1999)

10. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

	Towards a DEMO Description in Simplified Notation Script
	1 Introduction
	2 Research Question and Method
	3 Notations
	4 DEMO 3 Notation
	5 DEMO 4 Notation
	6 Notation Visualisation
	7 Conclusion and Discussion
	8 Future Research
	References

