
A New Action Meta-model and Grammar
for a DEMO Based Low-Code Platform Rules

Processing Engine

David Aveiro1,2,3(B) and Vítor Freitas1,3(B)

1 Technology and Innovation, ARDITI - Regional Agency for the Development of Research,
9020-105 Funchal, Portugal

daveiro@uma.pt, vitor.freitas@arditi.pt
2 NOVA-LINCS, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica,

Portugal
3 Faculty of Exact Sciences and Engineering, University of Madeira, Caminho da Penteada,

9020-105 Funchal, Portugal

Abstract. We consider current Design and Engineering Methodology for Orga-
nizations (DEMO) Action Rules Specification to be unnecessarily complex and
ambiguous. Evenwhile using a “structured English” syntax similar to the one used
in Semantics of Business Vocabulary and Business Rules (SBVR), such specifi-
cations are: incomplete while not containing enough ontological information to
derive a functional implementation; and complex by containing mostly unneeded
specifications. We propose a new meta-model for DEMO’s Action Model in the
form of an Extended Backus–Naur Form (EBNF) syntax which is being imple-
mented in a prototype that directly executes DEMO models as an Information
and Workflow System. This prototype includes an action engine that runs DEMO
transactions and the enclosed actions specified in our approach. We are currently
integrating Blockly in our solution to allow syntactically correct visual program-
ming of our proposed new Action Rule language that includes constructs to evalu-
ate logical conditions, update the state of internal or external information systems,
obtain input and provide output (formatted with a ‘What You See Is What You
Get’ (WYSIWYG) template editor) to users, among others.

Keywords: enterprise engineering · DEMO · meta model · action model · action
rules

1 Introduction

Numerous studies find that many software projects fall short of end customers’ initial
expectations. From [1], where certain case studies were conducted, a survey of 800 IT
managers [2, 3] revealed that 63% of software development projects failed, 49% went
over budget, 47% cost more to maintain than anticipated, and 41% fell short of meeting
user and business requirements.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Griffo et al. (Eds.): EEWC 2022, LNBIP 473, pp. 33–52, 2023.
https://doi.org/10.1007/978-3-031-34175-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34175-5_3&domain=pdf
http://orcid.org/0000-0001-6453-3648
http://orcid.org/0009-0002-0667-5749
https://doi.org/10.1007/978-3-031-34175-5_3

34 D. Aveiro and V. Freitas

Dalal et al. examined a number of project failure-related reports that have been
published and built a list of failure factors that are responsible for this high failure rate
[4]. Unrealistic project objectives, incomplete requirements, a lack of stakeholder and
user involvement, issues with project management and control, an inadequate budget,
changing requirements, inconsistent requirements and specifications, a lack of planning,
poor communication, and the use of new technologies for which software developers
lacked the necessary experience and expertise are common causes.

An enterprise engineering method called DEMO [5] is linked to a strong body of
theories which intend to address the challenges highlighted above. Despite how sound
DEMO is in theory, there are still many legitimate concerns regarding its utilization.
DEMO’s Action Model (AM), which is hardly ever employed in projects, is one of
the fundamental components and one of the theoretical foundations that is frequently
overlooked in current practice [6]. This occurs despite the fact that the methodology’s
creator himself regards the AM as the most significant model and where all model
information is contained in detail [5, 7]. It is regarded as the organization’s differentiator
model, or what makes it special. And from this model one can elicit all other three aspect
models of DEMO.

In this paper we propose a new Action Meta-Model and Grammar for a DEMO
based low-code platform rules processing engine by evolving the DEMO Action Model
with the proposal of a new meta-model in the form of a EBNF syntax which is currently
being implemented in our DEMObased low-code platform, DISME (Direct Information
Systems Modeller and Executer).

We claim that the way Action Rules are currently specified in DEMO, result in
incomplete specifications that maintain ambiguity and do not contain enough ontolog-
ical information for direct generation of information systems, as claimed by DEMO’s
propounder. With our proposal, we can describe, still on an ontological level, a wider
range of crucial details and information, enabling a nearly direct execution of models
as an information system. As a result, we help close the enormous gap between DEMO
models and the significant implementation issues that surface during the software devel-
opment process and which should be described right away along with ontological ele-
ments. Applying our proposal in a low code platform we are developing, by executing
models directly, we drastically shorten the time it takes to produce information systems.
And thanks to the use of DEMO as our core conceptual foundation, we have, as a starting
point, a more complete elicitation of requirements, one of the main reasons Informations
Systems projects fail. We demonstrate and validate our contribution using the EU-rent
case [8].

2 Research Method

According to Design Science Research byA. R. Hevner [9, 10], the Information Systems
Research paradigm used in this study should be viewed as a collection of three closely
related cycles of activities.

On Fig. 1, these activities are depicted. Hevner argues that these three activities
should not be used separately because only together do they provide a solid design
science research and can produce a reliable result. Our research, with regards to the

A New Action Meta-model and Grammar for a DEMO 35

Fig. 1. Design science research cycles [10]

first cycle, Relevance, which is depicted in Fig. 1, revealed a glaring issue of ambiguity
and a lack of concise and crucial information regarding the current syntax of DEMO
Action Rules. As a result, an opportunity to design a more comprehensive syntax was at
hand. We devised a new grammar for DEMO’s Action Rules with relation to the second
design cycle. This grammar was developed following numerous iterations of exhaustive
and thorough design, implementation, and evaluation of various language elements, as
well as testing them in the action executer engine in our prototype using both theEU-Rent
case and a real-world project being developed in a nearby private company. We propose
a new Action Meta Model for DEMO that, in our opinion, will allow the development
of Action Rule Specifications in a more thorough and complete manner. Finally, the
theoretical underpinnings of DEMO itself provide support for the studies about the final
third cycle, Rigor.

3 Background and Theoretical Foundations

DISME uses DEMO methodology as a solid foundation for the production of
collaborative-based organizational models and diagrams for the specification of its pro-
cesses, information flow, responsibilities of both human and software, proce-dures and
other kinds of organizational artifacts [11].

3.1 DEMO’S Operation, Transaction and Distinction Axioms

According to the operation axiom of the �-theory [12], on which DEMO is founded,
subjects in organizations execute two different types of acts: production acts that have an
impact on the P-world, or production world, and coordination acts that have an impact
on the C-world, or coordination world. Subjects are actors performing an actor role
responsible for the execution of these acts.These worlds are always in a particular state
indicated by the C-facts and P-facts that have transpired up to that point in time.

When active, actors consider the status of the P-world and the C-world. Actors con-
tinually strive to fulfill the agenda provided by C-facts. In other words, actors engage
in interaction through the creation and management of C-facts. Figure 2 depicts this
connection between the actors and the worlds. It illustrates the guiding principle of
organizations whose members are dedicated to effectively accomplishing their agenda.

36 D. Aveiro and V. Freitas

Fig. 2. Interaction of the Actor with the Production and Coordination Worlds [13]

The coordination actions are the means by which actors enter into and uphold commit-
ments towards reaching a given production fact, whereas the production acts contribute
to the organization’s objectives by bringing about or delivering products and/or services
to the organization’s environment [14].

The coordinating acts follow a certain path along a generic universal pattern called
transaction, in accordance with the transaction axiom of the �-theory [12].

Three phasesmake up the transaction pattern: (1) the order phase, where the initiating
actor role of the transaction expresses hiswishes in the formof a request and the executing
actor role promises to produce the desired result; (2) the execution phase, where the
executing actor role actually produces the desired result; and (3) the result phase, where
the executing actor role states the produced result and the initiating actor role accepts
that result, effectively closing the transaction.

This succession, which is referred to as the “basic transaction pattern”, only takes
into account the “happy case”, in which everything proceeds as predicted. To realize a
new production fact, all five of these steps are essential. The universal transaction pattern
that takes into account many more coordination acts, such as revocations and rejections
that may occur at any point along the “happy path”, is found in [14].

All transactions go through the four social commitment coordination acts of request,
promise, state, and accept; however, these steps might be taken tacitly, that is, without
any kind of explicit communication taking place. This could occur as a result of the
adage “no news is good news” or just plain forgetfulness, both of which can seriously
damage a business. Therefore, it’s crucial to always take the complete transaction pat-
tern into account while designing organizations. Two distinct actor roles are in charge
of transaction steps. The request and accept phases are the responsibility of the initiat-
ing actor role, and the promise, execution, and state steps are the responsibility of the
executing actor role. The responsible actor may not carry out these steps because the
relevant subjects may delegate one or more of the transaction steps that fall under their
purview to another subject, even if they are still ultimately liable for such acts [14].

3.2 DEMO Action Rules

DEMOAction Rules are the guidelines for managing events to which actors must react,
or business rules. The Action Model of DEMO is not comprised by this set of rules
alone, but also containswork instructions regarding the execution of production acts both
represented in the Action Rules Specification (ARS) [7]. The Action Rule Specification
(ARS) standard has evolved through time, starting with a pseudo-algorithmic language
and culminating, in DEMO’s specification language 4.5, in a definition which adheres

A New Action Meta-model and Grammar for a DEMO 37

to the Extended Backus-Naur Form (EBNF), the international standard syntactic meta
language, defined in ISO/IEC 14977 [15].

The general form to represent an action rule is < event part > < assess part >

< response part >. What event (or collection of concurrent events) is reacted to is
specified by the event part. An action rule’s assess portion is divided into three sections
that correspond to the three validity claims: the claims to rightness, sincerity, and truth.
The final section, the response, is broken down into an if clause that outlines what must
be done if the actor believes that complying with the event is justifiable and, potentially,
what must be done if it is not. This method of developing action rules enables the
performer to stray from the “rule” if they believe it is acceptable while also being held
accountable for it [7].

We consider this way ofActionRules Specification to be ambiguous because, despite
using a structured English syntax akin to that found in Semantics of Business Vocabulary
and Rules [8], it does so in an imprecise manner that lacks some necessary ontological
details to be used as the basis for the implementation of an information system. For
instance, as we will discuss in more depth in Sect. 4, it lacks a method to deal with sets
of actions or operators. Additionally, the current standard brings unneeded complexity
since it includes a lot of extraneous details about three different forms of evaluation:
fairness, sincerity, and truth. The following section, in which we go into more detail
about our proposal will develop these claims.

4 Direct Information Systems Modeller and Executer

Three main components primarily make up DISME: 1) a Diagram Editor to create the
higher level DEMO models in a graphical way 2) the System Manager to precisely
detail and parametrize all DEMOModels, with a special attention to the Action Model,
so that a complete information system can be specified according to an organization’s
demands; and 3) The System Executer to directly run the modeled information system
in production mode.

In the System Manager, one or more users assume the administrator role and have
the ability to modify each organizational process by creating and editing transactions,
their relations, action rules and input forms that are associated with these transactions,
in specific transactions steps, as well as by specifying entity and property types, that
is, the main business objects and their attributes, or, in other words, the database of
the information system. Users who model the system just need a basic understanding
of enterprise engineering modeling, which is similar to the “language / representation”
used within businesses, rather than requiring specific programming skills.

Users who have been granted authorization to participate in transactions in the Sys-
tem Executor do so in accordance with their roles and following DEMO’s transaction
pattern. The System Executor can be broken down into two main components: 1) the
Dashboard, which serves as the user interface for users to interact with when performing
organizational tasks, and 2) the Execution Engine, which controls the information and
process flow in accordance with the full specification of the system.

The Dashboard interface can be seen in the following figures. In Fig. 3, it is shown
where the user can start new processes, depending on the process types existing in the

38 D. Aveiro and V. Freitas

system and the current user’s permissions. Here, it is also possible to see a section
responsible for counting the pending and performed tasks, as well as delegations made.

Fig. 3. Dashboard Interface - Start Process and Task Counting

Fig. 4. Dashboard Interface - Pending Tasks

A New Action Meta-model and Grammar for a DEMO 39

Figure 4 represents the Dashboard sections where users can look at their pending
organizational tasks’ data, such as creation date, the process it belongs to, the associated
transaction type and state. Also, this is where the Execution Engine is incorporated so
that the user can execute the tasks shown in the table rows.

The development of the database behind the prototype solution was heavily influ-
enced by the DEMO way of thinking, trying to capture the essence of an organization’s
workflow, but without abstracting from their infological and datalogical implementa-
tions. One of the goals was to keep the platform as flexible as possible in terms of the
editing possibilities available [16].

5 New Action Rule Syntax Specification and Implementation

In Table 1, we present, in EBNF1, the current result of our iterations of development
of a syntax and constructs specification of DEMO Action Rules which are runnable, in
relation to its previous version [11]. We next introduce how this grammar corresponds
to a set of requirements for the respective implementation of the DISME’s engine that
runs the action rules, and consequently, all the logic used for the implementation of their
visual programming. In this specification presented in the table below, new concepts are
highlighted in bold and updated ones are in italic.

An action rule occurs in the context of a transaction type, among those specified in
the system, in the activation of a particular transaction state. An action rule can lead to
the execution of one or more actions of a specific type. For example, an actionmay imply
a causal link - changing the state of any transaction - or it may simply assign a value to a
property in the system. We can have a sequence of one or more actions. For each action,
one needs to specify the action type that will imply what concrete operations/instructions
will be executed by the action engine and then define its parameters, specific to the
corresponding action type, required for its execution.

An action can be specified that will prompt the user for input through a form, that
is, for the user to input some data for a certain process instance. This form will be
designed in the form management component of DISME, shown in Fig. 5, according to
the properties associated with the respective action. It is also possible to specify, for each
property in the form, enabling conditions, validation conditions and form computing.
Enable conditions are used when we want that a property is “hidden/disabled” from
the form unless the specified condition is true, which in that case the property will be
shown. Validation conditions have to be satisfied/validated so that the user can submit
the form data, being that if the condition is not satisfied, a message is presented back
to him. Form computing enables us to define computations regarding data in the current
form for a specific field, with that property being filled automatically based on the given
expression instead of a manual fill by the user.

As opposed to the last action type mentioned, one can also define actions that will
output information to the user. Using a WYSIWYG editor to create a new template or
selecting an already saved template from the system’s database, we can output a custom
notification or dialog box directly to the user when the action rule is run. The possibility

1 https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

40 D. Aveiro and V. Freitas

Table 1. Action Model EBNF specification (column separation equals the EBNF symbol “ = ”)

when WHEN transaction_type IS|HAS-BEEN transaction_state {
action} -

transaction_type STRING

transaction_state REQUESTED | PROMISED | EXECUTED | DECLARED |
ACCEPTED | DECLINED | REJECTED |
REVOKE_REQUEST_REQUESTED (…2)

action causal_link | assign_expression | user_input |
edit_entity_instance | user_output | produce_doc | if |
API_CALL

user_output STRING

produce_doc static_template | form_template

static_template STRING

form_template STRING

assign_expression property “ =“ (term | property_value)

property STRING

causal_link transaction_type MUST BE transaction_state [min [max]]
[CANCEL_PROC] [CONTINUE_IF_SAME_USER]

min Integer

max Integer | *

user_input { form_property}-

edit_entity_instance {entity_detail} { form_property}-

form_property property [form_calculation] [enable_condition]
{validation_condition} [MANDATORY]

entity_detail property

form_calculation compute_expression

enable_condition ENABLE condition

validation_condition [NOT] validation_condition_type user_output

validation_condition_type REQUIRED | IS_NUMBER | IS_INTEGER | EQUAL_TO |
MAX_WORD_LENGTH | LESS_EQUAL | HIGHER_EQUAL |
HIGHER_THAN | LESS_THAN | MIN_LENGTH |
BELONG_SRANGE | MAX_LENGTH |
MIN_WORD_LENGTH | HAS_CHARACTER |
REG_EXPRESSION | HAS_WORD | IS_EMAIL | IS_URL |
CUSTOM_VALIDATION

compute_expression term {compute_operator term}-

(continued)

2 All other c-facts of the transaction pattern are here, but omitted for space reasons.

A New Action Meta-model and Grammar for a DEMO 41

Table 1. (continued)

when WHEN transaction_type IS|HAS-BEEN transaction_state {
action} -

compute_operator “ +” | “ -” | “*” | “/” | “^”

if IF condition
THEN { action} -
[ELSE { action} -]

condition (ISTRUE | NOT evaluated_expression | condition) |
(AND | OR { evaluated_expression | condition}-)

evaluated_expression comp_evaluated_expression | user_evaluated_expression

comp_evaluated_expression term logical_operator term | property_value

user_evaluated_expression STRING

logical_operator “ <“ | “ >“ | “ = =“ | “! =“

property_value STRING

term constant | value | property | query | compute_expression |
produce_doc

constant value_type STRING

value value_type STRING

value_type TEXT | INTEGER_NUMBER | REAL_NUMBER | BOOLEAN
| ENUM | DATE | TIME

query STRING { term}

while WHILE condition { action} -

foreach FOREACH set { action} -

set “set of elements”

to add properties to this editor, whose value is filled in the running of the action rule, thus
making this a dynamic template, isn’t yet implemented but is planned to be included in
a future iteration of the DISME.

It is also possible to specify ‘if then else’ flows, and in the condition one can spec-
ify complex conditions containing logical conditions evaluated automatically by the
executor engine or informal expressions evaluated by the human user responsible for the
transaction step as true or false, or a combination of both. While and For each kinds of
flows are not yet implemented in the prototype but are also planned to be included in a
future iteration.

The terminal symbols presented as string and set of elements are automatically parsed
and interpreted by the action engine of DISME. The set of elements can be a group/array
of elements that can be obtained from a customized query that returns a set of elements
from the internal and/or external information system.

An important innovation in the action rules syntax is the realization that one needs
to decompose a “normal” action rule into two action rules for each transaction state,

42 D. Aveiro and V. Freitas

Fig. 5. Form Editor

one regarding the act itself and another for the respective fact created. This duality is
achieved with the usage of the IS and HAS-BEEN terms when defining the root of the
action rule, as can be seen in the first row of the EBNF table. We came to this realization
while noticing that an actor, while executing a certain c-act or the p-act itself, will need
to create some original fact(s) (e.g. input in a form while executing a request); and
while dealing with a c-fact/p-fact having been executed, it might be needed to have
complex conditions evaluation and also new facts creation or computation. It is also
worth noting that the responsible role for the HAS_BEEN action rule is the opposite
from the one responsible for the IS action rule while in the same transaction state, that
is, if it is the initiating role of the transaction that is responsible for the IS action rule,
it will be the executing role that will be responsible for the HAS_BEEN action rule of
the same transaction state, and vice-versa. This allows an even more clear separation of
responsibilities in DEMO models.

Another relevant addition to this syntax is the inclusion of the new edit entity instance
action type. By carrying out demonstrations and trials of DISME’s usage on information
systems in a real scenario, it became apparent that an action for editing previously filled
data, more specifically entity instances, was needed, especially in a data intensive, and
not so process intensive, information system. With this action, the user can specify
Action Rules that comprise the modification of editable properties, that is, properties
that have the ‘editable’ flag active, belonging to entity instances created formerly in the
current process instance. Also, properties, or entity details, can be specified to be shown
in the entity selection modal’s select box that will appear on the execution of this action

A New Action Meta-model and Grammar for a DEMO 43

type, in order to give context and facilitate the selection. The transaction type ‘Edit Car
Information’ is an illustration of this. It allows one to change properties like a car’s rental
pricing and mileage. When creating a transaction instance of this type, the vehicle being
edited has to be chosen from a dropdown list. Here, the entity details are the chosen
characteristics that would be listed underneath each option, such as its color, to further
specify which Car it belongs to, allowing the user to choose the appropriate option, for
instance, if there were two identical cars.

Some flags were also added to the causal link action specification that handle how
the executor engine should behave when running this type of actions, namely the ‘cancel
process’ and the ‘continue if same user’ flags, that refer to whether the causal_link action
cancels the current process, for example on the passage of a transaction to the ‘quit’ state,
and whether the execution engine should take the user directly to the execution of the
transaction step specified in the causal link, when it reaches this action, in case the
current user in the engine’s thread is also responsible for that step. The latter flag could
be applied, for example, to the first causal link depicted on Fig. 6. In this scenario, due to
this causal link action, if the car was deemed to be damaged, the Execution Engine would
automatically execute the action rule related to the task “DamageHandling is Requested”
as soon as it was generated, instead of continuing the execution of this action rule with
the evaluation of the next ‘if’ statement’s condition. This is very important in terms of
usability, since the process can flow naturally between different transactions without the
user needing to go back to his main dashboard and search for the new action rule that
needs his or her input. In this type of action, minimum and maximum are optional and
by default come pre-filled as 1. They indicate how many transactions should result from
the current action, whereas if minimum doesn’t exist, by default is equalled to 1 and.if
maximum doesn’t exist, by default is equalled to minimum.

Fig. 6. Action rule to handle the transaction step ‘Car drop-off has been stated’.

44 D. Aveiro and V. Freitas

An example of an action rule definition, adapted to the last iteration of our Action
Rule’s Syntax, can be seen in Fig. 6.

After the first ‘if’ statement, an informal expression that needs to be evaluated by a
human user physically inspecting the car and comparing it to the damage sheet signed at
pickup can be found. In the event that there is freshly observed damage on the vehicle, a
boolean property in the rental instance gets the value truewritten to it before a transaction
to handle the issue is requested. This property serves as a flag in the rental entity and
can then later be used to make general queries about rentals with or without damage. We
then have a couple ‘if’ actions that automatically evaluate whether penalties should be
applied. In case penalties are to be applied, mathematical expressions can be specified to
calculate them automatically, by the engine, that take into consideration properties from
the current process. In determining whether there is a location penalty, one can see the
usefulness of having our “dual” specification of action rules for each transaction stat. In
this case we can be sure to have the organizational facts that originated from the ‘Car
drop-off IS stated’ transaction step which are then needed in this HAS-BEEN action
rule. More specifically the ‘Actual drop off branch’ property would be a fact produced
in the IS action rule and not in the HAS-BEEN rule. This need of having actions and
facts in both “parts” of a transaction state was “disguised” with the term “WITH” in the
current and limited ARS of DEMO. To conclude this action rule, we have another ‘if’
statement that starts a transaction to handle the penalty payment if needed.

6 DISME’S Components

Three componentswere implemented inDISME to enable the implementation of our new
action rule format: 1) Action Rules Management, 2) Templates management, 3) Forms
Management. Then, an Execution Engine was developed to automatically run action
rules defined in the former components and a Dashboard was created that integrates
its functionality and provides the interface with which users interact in organizational
tasks. Due to space limitations, focus will be given in this paper to the Action Rules
Management Component and to the Execution Engine.

6.1 Action Rules Management Component

In order to define a component that allowed the visual programming of these Action
Rules, the Blockly library was used. Blockly is a library that adds a visual code editor
to web and mobile applications. The Blockly editor uses interlocking, graphical blocks
to represent code concepts like variables, logical expressions, loops, and more. It allows
users to apply programming principles without having to worry about syntax or the
intimidation of a blinking cursor on the command line [17]. It thus allows, as is the goal
of this component in DISME, managers or individuals in a comparable position in orga-
nizations to develop Action Rules that are then saved and used in the execution engine
through the Dashboard component, even if they have little or no prior programming
experience. The choice of this library was also due to the fact that it is compatible with
all the main browsers, i.e. Chrome, Firefox, Safari, Opera, and IE and that it is highly
customizable and extensible [18].

A New Action Meta-model and Grammar for a DEMO 45

This component is responsible for the creation, editing and consequent storage of
action rules for a transaction type in a specific transaction state. Another important
feature available on this component is one that allows us to see all previously created
action rules and, if needed, load them onto the visual programming editor for editing.

Fig. 7. Design of an action rule using the visual programming component.

An example of the definition of an action rule using this component can be seen
in Fig. 7. This example represents the first transaction on a Rental process, that is, the
presentation of a welcoming text to the user and then the filling of a form containing the
main information from the rental and the renter.

6.2 Execution Engine

The Execution Engine has the function of executing action rules previously defined in
the action rules management component through visual programming. This component
had already been developed in a previous iteration of the DISME prototype, under the
name of ‘Expression Engine’, due to the fact that its development was more focused on
the evaluation of formal expressions. However, it was decided to restructure it due to the
expansion of the requirements, previously expressed in EBNF syntax, and, consequently,
of the system’s database, which significantly affected this component and made its
operationalization easier and more efficient.

The Execution Engine is called when a user wants to execute an organizational
task, i.e. a set of actions of a transaction in a specific transaction state, through the
Dashboard component that provides the interface with which users interact for executing
organizational tasks which they are responsible for. When called, the Execution Engine
checks if this is a task whose execution is currently starting, in which case it fetches the

46 D. Aveiro and V. Freitas

first action of the action rule associated to it, or if it is a task whose execution has already
started, in which case it fetches the action that was pending in the last execution or the
action next to the last one performed, according to the action log that is generated by
the DISME. Subsequently, it analyzes the type of action to be evaluated, and executes
operations accordingly.

Also worth mentioning is that it distinguishes between two major action types: 1)
Automatic Actions, which are executed automatically by the Execution Engine, and
comprise actions like those of type ‘assign expression’, ‘causal link’ and ‘if - evaluation
of logical conditions’; 2) Actions that necessarily require humN intervention, namely
‘user input’, ‘user output’, and ‘if - evaluation of informal expressions’. When the Exe-
cution Engine is interpreting an action rule, it will execute the corresponding actions
automatically until it encounters an action that requires user intervention. When it finds
one of these actions, execution flow is returned to the user for its intervention. After
doing so, the automatic execution resumes until it finds another action needing human
input or the action rule comes to its end.

We’ll now demonstrate and give an example of how the dashboard interface uses the
execution engine to run an action rule definition and manage its flow. We’ll apply the
action rule shown on Fig. 7 for this example.

When a user wishes to execute this ‘Rental Contracting IS requested’ organizational
task, that corresponds to the first transaction to be run on a ‘Rental’ process, it will
fetch the first action of this action rule. This corresponds to a ‘user output’ action, so the
Execution Engine gets the template associated with the action, in this case a dialog box
with a welcoming message, and displays it to the user. Then, when the user presses the
dialog box’s button, completing this action, the Execution Engine will proceed to the
execution of the next action of the action rule, which in this case is of the ‘user input’ type,
that is, the presentation of a form to the user for filling in the properties (purple blocks)
specified in Fig. 7. The structure of the form to be presented to the user is previously
defined in the respective forms management component, after the specification of the
action rule. An example of the result of the execution of an action of this type can be
seen in Fig. 8 below.

When a user successfully submits the form, the execution engine detects that this is
the final action listed in the action rule for that organizational task, marks it as finished,
and, following DEMO’s standard flow of a transaction, automatically follows a default
causal link which starts a new task corresponding to the next transaction state - “HAS-
BEEN requested”. In case this new task requires human intervention, it will appear in the
Dashboard of the users with the organizational role authorized to execute it. If not, the
engine proceeds with the automatic execution of the action rules, following the DEMO
flow, until it encounters an action that requires human intervention or the transaction
comes to an end.

A New Action Meta-model and Grammar for a DEMO 47

Fig. 8. Execution of a ‘user input’ action in the Dashboard.

7 Discussion

The specification of Action Rules is created according to the following structure in the
current official standard:< event part> < assess part> < response part>. Although it
is mentioned [7] that action rules established with the grammar of “structured English”
are incredibly simple, it is also stated that some board members appeared perplexed
when an action rule with this grammar was presented to them.

One of the grammar’s issues lies at the core of its specification. The formulation
of these action rules appears to be excessively formal and challenging to comprehend
for persons outside the scope of DEMO theory, as well as for new and inexperienced
DEMO users.

Comparing it to our approach, we may define a series of actions for an action rule,
each with a particular type that indicates what the system should execute/perform in
a simpler, literal, structured, and systematic manner, focused on implementation. We
contend that the concepts of claims to rightness, sincerity, and truth mentioned in the
< assess part > add unneeded ambiguity and complication. With our solution, one can
specify a group of structured actions inside an action rule that have an immediate impact
on the information system being developed by controlling the necessary process flows,

48 D. Aveiro and V. Freitas

and respective state changes and facts creation. This makes it easier and more effective
for collaborators, such as system analysts, who are not aware of the social side of DEMO
theory as articulated in the claims about rightness, truth, and sincerity, to comprehend
and develop action rules. These claims make it harder to understand and develop action
rules that can be fairly complex even with our grammar, as illustrated in Fig. 6.

Compared to the present standard, our grammar is more adaptable and includes a
wider range of options and functionalities. For instance, we can specify inputs and out-
puts to the user, such as prompting a form or displaying information, common actions
performed for an organizational process’s successful functioning. Our proposal elimi-
nates unnecessary details and complexities of official DEMO ARS, on the other hand it
adds complex details which are nevertheless essential for implementation, but thorough
visual specification of action rules which can be considered low-code. When pairing our
language’s straightforward constructions and visual programming component, collabo-
rators such as analysts can specify/design action flows without the need for deep DEMO
theory or technical programming knowledge, withDISME’s execution engine then inter-
preting and executing them automatically, thus making their information system fully
operational.

Ontology deals with the essence of reality and DEMO theories talk about ‘imple-
mentation models’ derived from higher level ontological models, but implementation
models are also ontological. Our extensions of the DEMO meta-model with concepts
such as documents, forms, value types, etc. are detailing essential aspects of implementa-
tion, but still agnostic of specific IT implementations (say, specific database, web server,
client-side language, etc.). We have our DISME platform, but the models stored in its
database could be perfectly run by another platform.

We will now go into greater depth about a few aspects of the two action rules’
grammar. An action rule presented in the ‘structured English grammar’ format may be
seen in Fig. 9. The < assess part > does not specify causal relationships in its numerous
criteria. Due to the fact that we assess and check properties that correspond to a certain
entity type connected to the current action being conducted in a straightforward manner,
this does not occur in our grammar.

Regarding the < truth > claim, there is no way to specify the outcomes that may
happen if each of the conditions is not met. Various actions may be executed in response
to various circumstances, and various values may need to be updated, as seen in our
example in Fig. 6. Figure 9 and Fig. 6 can be compared, and it is clear that syntax
and simplicity are not the strong points of the current DEMO Action Rules’ grammar.
Additionally, nowhere in the action rule is it stated what consequences may occur if the
“Actual drop-off branch” differs from the “Contracted pick-up branch”. This action rule,
defined in our grammar, as is described in Fig. 6, does not result in this uncertainty, as
depending on whether certain conditions are true or untrue, we can describe multiple
outcomes. In our case, we can call two different transactions in a way that is not allowed
using current DEMO’s syntax. Different action types can be specified in our grammar for
an action rules’ actions, but in this particular case, they are of type ‘assign expression’,
as shown in Fig. 6. In this scenario, if we end up inside the ELSE block, the rental’s
“location penalty” property will automatically have its value set to “true” whereas the
“location penalty charge” property will get its value from a mathematical expression,

A New Action Meta-model and Grammar for a DEMO 49

Fig. 9. EU-Rent Action Rule TEOO [7]

which can be an operation between several values, two or more different properties, or
a mix of the two.

In the < truth part > displayed in Fig. 9, when an action rule calls for other trans-
actions it is not immediately clear which specific condition initiates the call to those
transactions or how to manage information, inputs, and outputs. How to perform some-
thing of this sort in the TEOO [7] grammar is not at all clear. Many elements of the action
rule are redundant or ambiguous, particularly those that begin with the ‘with’ clause or
the rightness claim lines. The addressees and requested production time of a transaction,
for example, should not need to be specified as they are already included in the context
of the process instance that is carrying out these actions. These add unneeded complex-
ity to the action rule. Figure 6 illustrates how our grammar makes it much simpler to
understand what conditions and actions call for other transactions, such as the causal
link “Penalty payment [must be] requested”.

We also find that the use of the ‘some’ clause under the present standard brings
ambiguity. In the case being examined, the context/instance should explicitly define
the ‘drop-off branch’ at run time, negating the need for a distinct specification. DEMO
models are purportedly designed to be independent of implementation and/or infologi-
cal/datalogical considerations. In previous works we have been defending that DEMO
models allow us to abstract from reality and reduce complexity, but they cannot be
detached from reality/implementation, and action rules are the ideal place to recognize
this relationship.

The DEMO Construction Model is quite detached from implementation since it
provides a higher level and comprehensive view of a process as a tree of transac-
tions and actor roles. But when it comes to business rules and execution, which are
covered in DEMO’s Action Rules, a more methodical and simple connection to real-
ity/implementation is desperately needed. It is only natural that we “walk the last mile”
and allow the specification of implementation details in action rules specification to the
point of client output, database updates, and external calls to other systems, in a way

50 D. Aveiro and V. Freitas

that is independent of specific technology, as the current use of ‘with’ clauses is actu-
ally connecting to reality/implementation with clauses like ‘the requested production
time of penalty payment is Now’ and also dealing with infological/datalogical issues
with clauses like the one that defines the expression to calculate the penalty amount. So
affirming that DEMO models should not include implementation aspects seems to be
contradictory/illogical.

By carrying out demonstrations and trials of DISME’s usage on information systems
in real projects scenarios, our grammar also greatly improved, with the main enhance-
ment being the inclusion of a dual specification of action rules for each activated trans-
action state, with one regarding the act itself and another regarding the respective fact
created, achieved with the usage of the IS and HAS-BEEN terms when defining the root
of the action rule. With these demonstrations, it also became apparent that an action
type for editing previously filled data, more specifically entity instances, was needed,
especially when dealing with a data intensive, and not so process intensive, information
system.

According to the GSDPmindset connected with DEMO theories [5], we are actually
enabling a highly deep specification of the implementation model that, in a live system,
like our DISME prototype, can be run immediately (without any compilation stages).

8 Conclusions and Future Work

As was mentioned above, the Action Rule Syntax we suggest in this paper is more
thorough, flexible, and simpler to read, comprehend, implement, and run.

The ActionModel is the ideal link between the implementation model and the higher
level models (Construction Model and State Model), and is our DISME’s main focus.
Our approach is superior because it explicitly states what actions will be executed,
what inputs or outputs the system will produce, and what asynchronous calls to other
transactions or information systems must be made.

Thepractical engineering approachweare using allows that,withminimal trainingon
language constructs, specialized business analysts are able to scheme their organization’s
flow in away that effectively connects strategic high levelmodelswith low level details of
implementation. These business analysts can then design action rules while also dealing
with implementation issues like form design, user output, expression evaluation, and the
information system’s flow control.

Our current prototype has some outstanding issues, such as allowing the implemen-
tation of for/while flows, while making sure that infinite cycles are not met and the
incorporation of dynamic elements in templates. We also anticipate that the size and
complexity of our grammar will continue to evolve and grow as it has been since its
beginning. However, the philosophy that we adhere to and that was discussed in this
paper continues to appear to be a promising approach.

In the conference, the presentation of this paper generated lively questions and dis-
cussion regarding the needs of improvement in DEMO’s Action Meta-model. Most of
themwere a replication of points raised by the reviewers and our clarifications generated
consensus. We adapted the contents of the paper and the replies to the reviewers, taking
into account the discussions. One very interesting point raised for discussion was the

A New Action Meta-model and Grammar for a DEMO 51

imperative vs. declarative nature of the Action Rules and the different alternatives of
specifying complex branches of actions according to the evaluation of different inter-
connected (or not) logical conditions. It was presented to the authors the notion that it
is possible to specify different action rules for the same C-fact to comply with different
conditions, in order to avoid complex if-then-else trees. However, having important busi-
ness logic dispersed in more than one action rule, seems, in our view, to bring unneeded
complexity and possible combinatorial explosion [19] in case of need of changes.

Acknowledgments. This work was supported by the Regional Development European Fund
(INTERREG MAC), project Dynamic eGov MAC2/5.11a/359.

References

1. Dalal, S., Chhillar, D.R.S.: Case studies of most common and severe types of software system
failure. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 7 (2012)

2. Shull, F., et al.: What we have learned about fighting defects. In: Proceedings Eighth IEEE
Symposium on Software Metrics, pp. 249–258 (2002). https://doi.org/10.1109/METRIC.
2002.1011343

3. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE Trans.
Softw. Eng. 28, 183–200 (2002). https://doi.org/10.1109/32.988498

4. Ibraigheeth,M., Fadzli, S.A.: Core Factors for Software Projects Success. JOIV Int. J. Inform.
Vis. 3, 69–74 (2019). https://doi.org/10.30630/joiv.3.1.217

5. Dietz, J., Mulder, H.: Enterprise Ontology: A Human-Centric Approach to Understanding the
Essence of Organisation. (2020). https://doi.org/10.1007/978-3-030-38854-6

6. Dumay,M., Dietz, J., Mulder, H.: Evaluation of DEMO and the Language/Action Perspective
after 10 years of experience, 29 (2005)

7. Perinforma, A.P.C.: The Essence of Organisation An Introduction to Enterprise Engineering.
Sapio Enterprise Engineering. - References - Scientific Research Publishing, Presented at the
(2015)

8. Bollen, P.: SBVR: A Fact-Oriented OMG Standard. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2008. LNCS, vol. 5333, pp. 718–727. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-88875-8_96

9. Hevner, A., R, A., March, S., T, S., Park, Park, J., Ram, Sudha: Design science in information
systems Research. Manag. Inf. Syst. Q. 28, 75 (2004)

10. Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst. 19, (2007)
11. Andrade, M., Aveiro, D., Pinto, D.: Bridging Ontology and Implementation with a New

DEMO Action Meta-model and Engine. In: Aveiro, D., Guizzardi, G., Borbinha, J. (eds.)
EEWC 2019. LNBIP, vol. 374, pp. 66–82. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-37933-9_5

12. Dietz, J.L.G., Mulder, H.B.F.: The PSI Theory: Understanding the Operation of Organi-
sations. In: Dietz, J.L.G. and Mulder, H.B.F. (eds.) Enterprise Ontology: A Human-Centric
Approach to Understanding the Essence of Organisation, pp. 119–157. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-38854-6_8

13. Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer, Berlin Heidelberg (2006)
14. Dietz, J.L.G.: On the Nature of Business Rules. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.)

CIAO!/EOMAS -2008. LNBIP, vol. 10, pp. 1–15. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68644-6_1

https://doi.org/10.1109/METRIC.2002.1011343
https://doi.org/10.1109/32.988498
https://doi.org/10.30630/joiv.3.1.217
https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1007/978-3-540-88875-8_96
https://doi.org/10.1007/978-3-030-37933-9_5
https://doi.org/10.1007/978-3-030-38854-6_8
https://doi.org/10.1007/978-3-540-68644-6_1

52 D. Aveiro and V. Freitas

15. 14:00–17:00: ISO/IEC 14977:1996, https://www.iso.org/cms/render/live/en/sites/isoorg/con
tents/data/standard/02/61/26153.html, Last Accessed 2 Oct 2022

16. Andrade,M., Aveiro, D., Pinto, D.: DEMObased Dynamic Information SystemModeller and
Executer: In: Proceedings of the 10th International JointConference onKnowledgeDiscovery,
Knowledge Engineering andKnowledgeManagement. pp. 383–390. SCITEPRESS - Science
and Technology Publications, Seville, Spain (2018). https://doi.org/10.5220/000723000383
0390

17. Introduction to Blockly | Google Developers, https://developers.google.com/blockly/guides/
overview?hl=pt, Last Accessed 1 Jan 2022

18. Blockly | Google Developers, https://developers.google.com/blockly, last accessed
2022/10/01

19. Brocade Desktop: irua, https://repository.uantwerpen.be/desktop/irua, Last Accessed 19 Dec
2022

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/61/26153.html
https://doi.org/10.5220/0007230003830390
https://developers.google.com/blockly/guides/overview?hl=pt
https://developers.google.com/blockly
https://repository.uantwerpen.be/desktop/irua

	A New Action Meta-model and Grammar for a DEMO Based Low-Code Platform Rules Processing Engine
	1 Introduction
	2 Research Method
	3 Background and Theoretical Foundations
	3.1 DEMO’S Operation, Transaction and Distinction Axioms
	3.2 DEMO Action Rules

	4 Direct Information Systems Modeller and Executer
	5 New Action Rule Syntax Specification and Implementation
	6 DISME’S Components
	6.1 Action Rules Management Component
	6.2 Execution Engine

	7 Discussion
	8 Conclusions and Future Work
	References

