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Abstract. Thermal comfort models are mathematical representations
that simulate the thermal environment and predict human comfort based
on various factors such as air temperature, air velocity, relative humidity,
and radiation heat transfer. These models are used to design and eval-
uate heating, ventilation, and air conditioning systems, buildings, and
outdoor spaces. The main issue when exploiting predicted mean vote
(PMV) and predicted percentage of dissatisfied (PPD) and model for
thermal comfort estimation is how to estimate clothing insulation and
metabolic rate as accurately as possible. In this paper, a novel approach
for calculating thermal comfort is presented that combines algorithms
to enhance the precision of existing approaches. Experimental results
showcase the suggested method is more accurate than other approaches.

Keywords: Thermal comfort · Indoor environmental conditions ·
Personal factors

1 Introduction

Looking at people’s daily lives, their timeless connection with the residence they
have chosen to live in may be observed. One of the main factors influencing
this interaction’s quality is the thermal sensation inside the residence. In recent
years, the factors that influence the internal temperature of a building and how
they are taken into account to give us thermal comfort have been studied to a
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large extent [1]. The importance of thermal comfort is extended even in early
building stages like the design phase till further stages like renovation.

Thermal comfort, as defined by ISO standard 7730 [2], is the state of being
satisfied with one’s thermal environment. Thermal comfort models are math-
ematical representations that simulate the thermal environment and predict
human comfort based on various factors such as air temperature, air veloc-
ity, relative humidity, and radiation heat transfer. These models use different
methods and algorithms to estimate thermal comfort and are used to design
and evaluate heating, ventilation, and air conditioning (HVAC) systems, build-
ings, and outdoor spaces. Some common thermal comfort models include the
PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied),
the Adaptive model, and the Transfer Function model [3].

The research community is continually seeking the best thermal comfort
model for estimating the ideal living conditions in buildings. Fanger’s PMV
model (PredictedMeanV ote) is widely considered one of the most comprehen-
sive and accurate thermal comfort models available. There are several reasons
why the PMV model is considered better than other models [4]:

– Accounts for many factors that affect thermal comfort, such as air tempera-
ture, air velocity, relative humidity, and clothing insulation. This makes the
PMV model more accurate and relevant compared to models that consider
only a few factors.

– It is widely used and accepted in the residential sector and is established as
the standard for the prediction of thermal comfort under the International
ISO 7730 standard [2].

– It is relatively easy to use, with clear instructions for estimating the PMV
index and thermal comfort based on index values.

– Has been proven to reliably estimate human thermal comfort in a wide range
of situations, making it a dependable tool for evaluating and planning HVAC
systems, buildings, and outdoor spaces.

These elements combine to make PMV an effective and trustworthy tool for
forecasting thermal comfort, and these are some of the reasons why it is seen
to be superior to other models. Based on ASHRAE, a fast and high-accuracy
function has been developed that calculates the predicted mean vote (PMV )
and the predicted percentage of satisfied (PPD) [5,6].

The input variables of the model, such as dry bulb air temperature, mean
radiant temperature, average air speed, and relative humidity, can be measured
accurately through sensor installation. However, there are no standard real-time
methods to calculate the metabolic rate and clothing insulation of people habit-
ing inside the building. The temperature inside a building greatly affects the type
of clothing one wears [7]. Furthermore, the variation in clothing insulation values
is attributable to the fact that what we wear is influenced by factors other than
temperature, such as gender, age, and cold and heat tolerance [7]. In addition,
temperature plays an important role in the determination of metabolic rate [7].
The behavior of building occupants is difficult to predict, model, or calculate due
to the complexity of humans. Furthermore, the absence of established standards
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and protocols for data collection, as well as the precision of data, pose difficulties
in the field of building occupant research [8].

As a result, the main issue when exploiting the PMV and PPD model for
thermal comfort estimation is how to estimate clothing insulation and metabolic
rate as accurately as possible. Within this context, the aim of this paper is to
present a novel approach by fusing widely used methodologies [7], one for the
determination of clothing insulation and one for the determination of metabolic
rate. The main objective is to mitigate the error in estimating personal factors
by taking into account as many factors as possible, such as indoor and outdoor
conditions.

The remainder of this paper is organized as follows: In Sect. 2 the way the
thermal comfort is estimated is suggested, highlighting a novel approach for
estimating the personal factors. Section 3 presents the experiment set up along
with the results. Finally, in Sect. 4, conclusions are drawn.

2 Methodology

In this section, a novel approach for calculating thermal comfort is presented that
combines algorithms to enhance the precision of existing approaches. A tool that
would provide real-time, practical, and accurate thermal comfort estimation is
suggested.

2.1 Thermal Comfort Inference

As addressed in the Introduction, Fanger’s Predicted Mean Vote (PMV ) and
Predicted Percentage of Dissatisfied (PPD) model is widely used to estimate
thermal comfort. The models are specified through a set of equations that are
outlined below [9,10]:

PPD = 100− 95 · e−(0.03353·PMV 4+0.2179·PMV 2) (1)

PMV = (0.303 · e−0.036·M + 0.028) · L (2)

L = M − W (3)

M − W = C + R + Esk + (Cres + Eres) (4)

C = fcl · hc · (Tcl − Ta) (5)

R = σ · εcl · fcl · Fvf ·
[
(Tcl + 273.15)4 − (Tr + 273.15)4

]
(6)

Cres + Eres = 0.014 · M · (34− Ta)
+0.0173 · M · (5.87− Pa) (7)

Esk = 3.05 · (5.73− 0.007 · M − Pa) + 0.42 · (M − 58.15)) (8)
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All the used variables are briefly explained in Table 1 [13]. Finally, to estimate
the thermal comfort based on the above equations the factors needed to estimate
real-time PMV are [12]:

PMV = f(Ta, RH, Icl,M), (9)

where Ta refers to room temperature, RH refers to room humidity, Icl and M
refer to clothing insulation and metabolic rate respectively.

Room environmental conditions (i.e., Ta, RH) may be retrieved from indoor
temperature and humidity sensors while estimating the personal factors may be
proven to be a thorny problem [12]. Even though values for the personal factors
may be retrieved from the ASHRAE table, an estimation of Icl and M values
based solely on the ASHRAE table may generate a significant mistake during
thermal comfort estimation [14,15]. As a result, another approach for estimating
personal factors should be followed.

Table 1. PMV and PPD variables

Variable Meaning Unit

W external work W/m2

M metabolic rate (internal energy production) W/m2

C heat loss by convection W/m2

R heat loss by thermal radiation W/m2

Esk heat loss by evaporation from the skin W/m2

Cres sensible heat loss due to respiration W/m2

Eres heat loss by evaporation from the skin W/m2

Tcl clothing surface temperature oC
Ta ambient air temperature (indoor) oC
hc heat transfer coefficient W/m2 · K
Va air velocity m/s

fcl clothing area factor clo

εcl emmisivity of clothing
Fvf view factor between the body and the surrounding
σ Stefan Boltzmann constant [11] W/m2 · K4

Tr radiant temperature oC
Pa partial vapour pressure Pa

RH relative humidity %

Icl thermal insulation of clothing clo
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2.2 Clothing Insulation Estimation

Indoor temperature is an essential factor in clothing worn inside buildings, as
suggested by the non-linear regression relationship between clothing insulation
and indoor temperatures based on feedback observations in [7]. In this paper
[7], an equation is used to calculate the insulation of clothing based on the
temperature inside a room:

ClTin
= f(Ta) = 89.279(Ta)−1.592 (10)

Additionally, the influence of season on clothing insulation is significant in
determining thermal comfort, as individuals require different levels of insulation
in their clothing to maintain comfort in different seasons [18]. During colder
seasons, individuals require more insulation to keep warm, while during warmer
seasons, individuals require less insulation to avoid overheating [21]. There are
some standard values that correspond to each season, such as the ’Typical sum-
mer indoor clothing’ equal to 0.5 and the ’Typical winter indoor clothing’ equal
to 1.0. A year is separated into four periods on the basis of seasonality. Each
season is represented by average clothing insulation and the clothing insulation
by season Cls is depicted in Fig. 1.

Fig. 1. Cls: Average clothing insulation by season values

The insulation value of clothing can also be expressed as representative of a
particular clothing ensemble as a function of the outdoor temperature [18].

ClTout
= 2.1 · 10−5T 3

out + 8 · 10−4T 2
out − 0.0282Tout + 0.8167 (11)

where Tout is the outdoor temperature expressed in oC. This equation is deter-
mining the Icl insulation of clothing based on real-time values.

There is a method that combines the ClTin
and the Cls to estimate total

clothing insulation as [12]:

Icl = wCls + (1− w)ClTin
, (12)

this method was tested in real-life environments and has proven to be accurate
enough. Nonetheless, this method may produce a significant error during periods
of time when the outdoor temperature is extremely high or low than the average
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seasonal outdoor temperatures (e.g., during spring outdoor temperatures can be
more than 25 oC or less than 10 oC). As a result, in this paper, we suggest a
new method that will “correct” this specific error by combining all temperature
factors. The insulation value of clothing is:

Icl = aCls + bClTin
+ (1− a − b)ClTout

. (13)

During an experimental phase, the values of a and b were set to a = 0.5 and
b = 0.25.

Finally, when estimating the clothing insulation of a person in motion, it is
important to account for the dynamic nature of the insulation, which is affected
by both the individual’s activity level and the air speed around them. As per
the ISO 7730 standard, it is necessary to correct for these factors [2]. Similarly,
the ASHRAE 55 Standard provides a correction equation for body movement
for activities with a metabolic rate of 1.2 met or higher, expressed as:

Icl = Icl(0.6 +
0.4
met

), (14)

2.3 Metabolic Rate

Fig. 2. Metabolic rates for typical tasks ASHRAE Standard 55 [17]

The metabolic rate that corresponds to the ideal level of comfort ranges from
84.8W/m2 to 89.9W/m2. This range is determined based on occupants’ feedback
who reported feeling thermally comfortable during a survey [16]. According to
the ASHRAE metabolic rate table in Fig. 2, this range of activity is classified as
low-level activity, similar to activities such as standing or relaxing. It appears
that low-level activities are more feasible in a household setting, while more
strenuous activities such as cleaning the house are not so frequent [16]. As a
result, the metabolic rate could be set to low-level activities (that is, 70–80W/m2

or 1.2met), such as standing and relaxed activities. During the night, the activity
can be set to sleep (that is, 40W/m2 or 0.7met).
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2.4 Overall System

The overall conceptual architecture of the system suggested in Sect. 2 is depicted
in Fig. 3. The sensors push real-time indoor environmental conditions to be uti-
lized for both thermal comfort and clothing insulation estimation. The date and
time are utilized for the estimation of metabolic rate and clothing estimation.
In addition, outdoor conditions are utilized for clothing insulation. It may be
observed how clothing insulation is estimated through a multifactor process.

Fig. 3. Thermal comfort estimation conceptual architecture

3 Results

In this section, the results of the suggested methodology of thermal comfort
estimation will be presented. Initially, how the experiment was set up will be
discussed. Finally, experimental results will be showcased in the last subsection.

3.1 Experiment Set up

To test the suggested methodology as described in Sect. 2, data from the
CERTH.ITI smart-home were exploited [19]. Data from a temperature humidity
sensor (i.e., [20]) were retrieved. Values from a specific room for a year (i.e.,
temperature, humidity) were utilized for the tests (Fig. 4).

The average values during the tested period are presented in Table 2.
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Fig. 4. Thermal comfort set up experiment

Table 2. Data-set average values

Month Average Indoor
Temperature oC

Average Indoor
Humidity %

Average Outdoor
Temperature oC

January 17.96 28 8.5
February 18.23 29.11 10.7
March 20.23 30.3 14.3
April 22.5 27.5 18.6
May 22.5 32.3 17.3
June 25.1 34.5 17.9
July 26.2 33.6 20.1
August 28.1 38.8 20.8
September 27 23.8 18.5
October 24.3 20.5 17.3
November 22.96 27.1 15.7
December 23.4 28.6 10.1

3.2 Experimental Results

In this section, some indicative results will be presented, one for each season. In
the following graphs, real-time values of indoor and outdoor temperatures from
the CERTH.ITI smart-home [19], along with the values of the PMV calculated
with the two methods will be presented. PMV old value based on Equation
(12) and the PMV new value based on Eq. (13). The graph for each of the
four seasons (i.e., Spring, Summer, Fall, and Winter), depicts a representative
day from each season. When analyzing the following graphs two facts must be
considered. First, the indoor temperature tends to stay more constant than the
outdoor temperature and therefore closer to the average seasonal temperature,
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for reasons such as insulation of the building, heating and cooling systems, and
solar radiation. Second, in terms of the thermal sensation scale in Fig. 5, as the
PMV value is closer to 0 there is a better thermal sensation, and it is expected
that in the summer season, it tends to go higher, where in the winter season it
is lower.

Fig. 5. Thermal Sensation Scale

Figure 6 depicts values from April 13th, 2022 during the spring season. Out-
door temperatures may be observed to fall below average spring temperatures
(e.g., average below 12 oC). As a result, the line of the PMV value calculated
with the new equation is lower than the other, meaning that the resident is feel-
ing colder. While the outdoor and indoor temperature increases, the deviation
between the two PMV values is smaller.

Fig. 6. Thermal comfort comparison for Spring

Figure 7 shows values from July 13th, 2022 during the summer season. On
this day, outdoor temperatures are very close to indoor ones. So, here the fact
that the PMV values calculated with the new equation are closer to 0, means
that there is a better thermal sensation compared to the old one, as expected.

Following up, in the winter season, Fig. 8 depicts the data values for the day
of December 28, 2022. The first thing that becomes apparent is that the line
based on the old equation takes values higher than 0, which is in contrast to
previous acknowledgments.
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Fig. 7. Thermal comfort comparison for Summer

Fig. 8. Thermal comfort comparison for Winter

Fig. 9. Thermal comfort comparison for Fall
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Finally, during the fall season, Fig. 9 depicts the values from October 24th,
2022. In this case, outdoor temperature values are far below the indoor ones
and this leads to the conclusion that the line base on the new equation is more
accurate.

4 Conclusions

In general, thermal comfort is an important factor in building occupants’ behav-
ior, which is difficult to predict, model, or calculate due to the complexity of
humans. In this paper, a novel approach for calculating thermal comfort was pre-
sented that combines algorithms to enhance the precision of existing approaches.
The proposed methodology was tested in real-time environments and has proven
to be accurate enough.

The analyses of the graphs lead to the conclusion that when the outdoor and
indoor temperatures are close, the new PMV values are more comparable to the
optimum thermal sensation. Furthermore, the old method may produce a sig-
nificant error in the thermal comfort calculation when the outdoor temperature
is extremely higher or lower than the average seasonal outdoor temperature and
consequently the indoor temperatures.

In summary, the proposed approach has shown promising results and could
have significant implications for improving building occupant comfort and energy
efficiency. However, to further improve the accuracy and applicability of the
method, additional steps such as conducting validation tests in different settings,
integrating the methodology with building automation systems, incorporating
other factors that impact thermal comfort, and considering user feedback and
perception should be taken into account.
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