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Abstract The steel-concrete composite construction is known as one of the fast,
economical, and eco-friendly methods due to its advantages in terms of saving
in weight of steel and concrete. Composite constructions are extensively used in
multi-story buildings and medium-span bridge decks. The longitudinal shear transfer
between the steel beam and reinforced concrete slab is achieved through various
mechanical devices called shear connectors. The mechanical properties of the shear
connector, including the strength and stiffness, play a vital role in the composite action
of the steel-concrete beam. The stud-type connectors are widely used in composite
construction and are subjected to flexural and axial forces when resisting the interface
forces by means of dowel action. In a composite slab, the degree of shear connec-
tion, the shear strength, and the stiffness of an individual stud can be determined
experimentally by conducting push-out tests. Previous studies have conducted flex-
ural tests to investigate the composite interaction in steel-concrete composite beam
elements. This paper reviews different types of push-out and flexural tests proposed
in the literature to evaluate the characteristics of composite slabs. The paper also
provides different approaches to investigate the interaction of composite elements.
This research contributes to the field by providing a comprehensive discussion of
the advantages and challenges of the experimental methods to perform the push-out
and flexural tests and how these two types of tests can cooperatively promote the
understanding of the behavior of composite slabs.
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1 Introduction

Advancement of material properties and construction technologies, as well as human
challenges to the height and span of structures, led to creative innovations in the
construction industry, such as composite steel-concrete systems. This is formed
by connecting concrete slabs to the supporting steel members in the composite
beam/floor system, enhancing its structural performance. Many previous studies have
investigated the behavior and design of steel-concrete composite members [1, 2].
Compared with conventional reinforced concrete beams, steel-concrete composite
beams have significant bending resistance and stiffness advantages. This is achieved
mainly by fully utilizing the steel’s material strength, such as high strength, ductility,
and ease of erection, and reinforced concrete, such as high rigidity and low cost. The
efficiency of a composite beam lies in restraining the slip between the steel beam and
concrete slab and enabling shear force transfer between them to ensure the composite
action through mechanical action, friction, and adhesion [3]. Mechanical action is
provided by different shear connectors that guarantee the transfer of shear forces at
the interface between the steel beam and the concrete slab, which are directly related
to the bearing capacity of the whole composite beam [4, 5]. If the shear connectors
are rigid, the full composite action or the full interaction is achieved [6, 7]. The degree
of shear connection and the degree of composite interaction are the two terms used
to describe the behavior of shear connectors in a steel-concrete composite beam.
The degree of shear connection refers to the equilibrium of forces in a composite
beam at the ultimate limit state (ULS). In contrast, the degree of interaction refers
to the compatibility of displacements and, more specifically, the shape of the strain
profile through the depth of a given section [8]. The degree of shear connection, 7,
is provided in Eq. (1) and is defined as the ratio of the ultimate shear strength of the
interface in a shear span, F;, to the minimum strength necessary for the section to
develop its full flexural capacity at the end of the shear span, Fy.

F
n=— (D
Fy

This connection can be full, partial, or there can be no connection at all. Figure 1a
shows the longitudinal equilibrium of forces at the ULS for a full shear connection (1
= 1), partial shear connection (0 < 1 < 1), and no shear connection (n = 0). In design
codes, the shear strength of the interface is calculated using the ultimate strength
of all shear connectors in the shear span, neglecting friction and bond. It should be
noted that the degree of shear connection is independent of the load at any given
time. As a result, a beam or girder can be described as having a constant degree
of shear connection [9]. Although the degree of shear connection can be defined
straightforwardly, the degree of composite interaction, ¢, is difficult to define without
using differential calculus and complex compatibility equations. Newmark et al. [10]
formulated the linear elastic partial-interaction theory, which was later extended, and
a simplified equation (Eq. (2)) was proposed [8] based on the ratio of the neutral axis
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Fig. 1 Degree of a Shear connection; b Composite action [9]

separation, %, to the maximum neutral axis separation, /..

p=1- 2

he

This maximum neutral axis separation is the distance between the steel and
concrete neutral axis in case of non-composite behavior. Figure 1b schematically
shows strain profiles in full (¢ = 1), partial (0 < ¢ < 1), and no interaction (¢ =
0) cases. Unlike the degree of shear connection, the degree of composite interaction
changes with loading history, over the beam’s length, and the beam’s life.

It is possible to perform both flexural beam tests or push-out tests to establish a
stud shear connector’s load-slip behavior, nominal shear strength, and stiffness. These
tests are characterized by several shear connectors embedded in a small section of
the concrete slab and attached to a steel section. The schematic view of a typical
push-out and flexural test for a composite beam is shown in Fig. 2a, b. The steel
section or the concrete slab is loaded during testing while the other element is held in
position. In Fig. 3, the strain profile is shown in the steel and concrete section of the
composite beam in flexural and push-out tests. In this figure, the deformed shapes
are also illustrated.

Instead of expensive full-scale beam tests, push-out tests are preferred, and spec-
ifications such as AISC [11] and Eurocode 4 [12] provide empirical equations based
on push test results to calculate the stud shear resistance. The shear stud strength in
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Fig. 2 Typical experimental test of composite beam: a Push-out test; b Four-node flexural test
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Fig. 3 Strain profiles and deformed shape in: a Push-out test; b Flexural test [9]

solid reinforced slabs was first determined by [13] and presented in terms of empirical
formulas such as Eq. (3) by performing 48 push-out tests.

Q. = 0.5A,\/f/E. < A Fy )

where Q, is the normal shear stud strength embedded in a solid concrete slab,
A, is the effective cross-sectional area of a stud anchor (mm?), f/ is the cylinder
compressive strength of concrete (MPa), E. is the modulus of elasticity of concrete
(MPa) and F is the ultimate tensile strength of the steel stud (MPa). In a typical
push-out test, the cast in situ or precast concrete slabs are attached to the flanges
of a steel beam using pre-welded shear studs. The concrete slabs are symmetrically
placed at both sides of a steel beam to simulate the actual loading condition and are
restrained for any lateral movements during the test procedure. The loading process
can be monolithic or cyclic, applied in a displacement or force-controlled mode.
In general, failures observed in push-out tests can be categorized into five different
modes: (1) stud shearing; (2) concrete pull-out; (3) rib shearing; (4) splitting, and (5)
rib punching.
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In a composite beam flexural test, the shear studs are welded to the flange of
the steel beam, which is set on a bearing plate and roller assembly that restrain
the vertical movement and allow rotation at each end. Then, the cast-in-place or
precast concrete slabs are placed on the steel beam, and the load is applied through
hydraulic pistons to load distribution elements. The loading process can be cyclic
or monolithic, with specific increments until a specified midspan displacement or
a sudden loss in load-carrying capacity is observed [14]. However, in a composite
beam test, the connectors are loaded indirectly from the flexural forces within the
beam. The force on a connector is not directly proportional to the load applied to the
beam but depends on the stiffness of various components of the composite beam.

Therefore, the main difference between the push-out and beam tests is how the
shear forces arise. In the beam test, the externally applied load causes a strain
gradient with a discontinuity at the interface (also called “slip strain”). Connectors
are subjected to shear force to resist slip accumulation due to the strain discontinuity
on the length of the beam. In a push-out test, however, connectors resist shear force
because they are part of the load path between the applied load and the balancing
reaction at the base of the specimen. The drawback of the load-slip curve obtained
from the push-out test is that it does not give a quantitative indication of the composite
action that may result from the presence of a connector in a beam. In other words,
in a push-out test, the shear forces on individual connectors remain constant relative
to one another throughout the test. In contrast, in a beam test, when one shear stud
begins to fail and crack, the other neighboring shear studs begin to compensate for
the increased shear force, and as a result, the force redistribution is featured. Since
the induction of composite action is the primary function of a shear connector, the
push-out test fails to evaluate connectors on this basis.

Consequently, to quantify the flexural capacity of the composite steel beam with
concrete slab, it is essential to perform both push-out and composite beam tests with
complete information on the degree of shear connection and degree of composite
interaction. The primary purpose of the current paper is to review different types of
push-out and flexural tests proposed in the literature to evaluate the characteristics of
composite slabs. The paper also provides different approaches for investigating the
interaction of composite elements. This research contributes to the field by providing
a comprehensive discussion of the advantages and challenges of the experimental
methods to perform the push-out and flexural tests and how these two types of tests
can cooperatively promote the understanding of the behavior of composite beams.

2 Literature Review

This section provides an overview of the literature about the previous studies inves-
tigating the composite action between the steel beam and concrete slab in composite
steel beams. The first subsection of this review investigates the different push-out
tests conducted to determine the shear strength of the shear connectors. The second
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subsection will highlight recent research on the composite action between the steel
beam and the concrete slabs.

2.1 Determining the Shear Strength of Shear Connectors

Shear stud connectors are the essential components of steel-concrete composite
structures that transfer the longitudinal shear force at the interface between the steel
and concrete [15]. The push-out tests are the preferred method to establish the load-
slip behavior, nominal shear strength, and stiffness of a stud shear connector. In
the push-out tests, the strain distribution can be measured more easily because the
shear connectors are part of the load path between the applied load and balancing
reactions at the base of the specimen. Nevertheless, despite the popularity of push-
out tests to establish the static and fatigue capacity of shear connectors, the test
method and the layout of the specimen have been discussed for several decades.
The common challenges and factors investigated by recent studies conducting push-
out tests include: (1) the eccentricity between the load and the supports [16], (2) the
support conditions; (3) the absence of normal compressive force at the steel-concrete
interface; (4) the width and height of the slab, and (5) the number of shear connector
rows. Modified push-out tests have been proposed recently to determine the shear
strength and stiffness of stud shear connectors under combined shear and tension
forces. Generally, the modified push-out test follows the established standard push-
out test recommended in EN 1994-1-1 [17], except the concrete-steel interface is
inclined to an angle of about 15° from the vertical [18].

Previous experimental, numerical, and theoretical studies indicate that the shear
resistance of a stud shear connection in a composite steel-concrete beam depends
on the following factors: (1) compressive and tensile strength of the concrete, as
well as the elastic modulus; (2) tensile strength of stud shear connectors as well as
their shapes and sizes; (3) welding quality of shear studs and dimensions of welding
collars at stud roots; (4) arrangements of the shear stud connectors; and (5) sizes and
arrangement of steel reinforcement in the vicinity of the shear stud [19, 20].

Different types of shear connectors have been used in composite structures.
However, headed studs’ popularity stems because they can be installed easily through
the cellular steel deck using a welding gun [21]. The behavior of a headed stud
shear connector depends on the stud details and the concrete environment, such
as concrete properties and reinforcement detailing. Under cyclic loading, the fatigue
failure of headed studs is the primary failure mode and should be considered in struc-
tural design [22, 23]. Studies have shown that the stud geometry, shear stress range,
concrete material properties, stud welding process, and fatigue test methods affect the
fatigue performance of the shear connectors [24-27]. Based on these studies, design
codes on composite structures have specified fatigue strength curves of headed stud
connectors based on nominal shear stress [28]. Wang et al. [29] conducted a total
of 96 push-out tests and investigated the interface shear force-slip curves and the
failure modes of shear stud groups (SSGs) (Fig. 4). Their results revealed that the
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Fig. 4 Shear stud groups on PC composite beam [21]

shear behavior of the SSGs in square reserved holes is more favorable than that in
circular reserved holes. They concluded that the shear strength of SSGs in precast
(PC) decks is smaller than that in cast-in-place (CIP) decks under monotonic loads,
whereas the shear strength of SSGs in PC decks is similar to that in CIP decks under
repetitive loads.

Yu-Liang et al. [30] performed nine push-out tests to investigate the mechan-
ical behavior of grouped stud shear connectors embedded in hybrid fiber-reinforced
concrete (HFRC), considering the spacing and number of studs. They developed a
refined 3D finite element (FE) model of the HFRC incorporating the constitutive
model in the ANSYS software. Based on the test and the FE analysis results, an
equation was proposed considering the contribution of the steel and polypropylene
fiber to estimate the capacity of a single stud. Bonilla et al. [31] developed an accurate
nonlinear FE model to study the behavior of headed stud shear connectors welded to
the deck in composite beams with profiled steel sheeting. The nonlinear material of
the concrete was modeled with damaged plasticity available in ABAQUS software
[32]. The FE analyses and the experimental push-out test results were compared with
the codified shear resistance of the shear studs calculated using AISC-LRFD [33]
and Eurocode 4 [12]. The comparison of the results revealed that the codified shear
resistance of stud connectors might not necessarily be conservative.

Sun et al. [34] conducted a series of push-out tests to study the monotonic and
cyclic behavior of headed steel stud anchors in composite beams with profiled steel
decks by considering profile type, steel deck direction, and load conditions. The
results indicated that both monotonic and cyclic responses are affected by the shape
of the profile. Tong et al. [35] investigated the shear performance of stud connectors in
high-strength steel-UHPC composite beam specimens under static loads considering
the diameter and layout of studs. Experimental results indicated that the failure
modes of all specimens were stud shank failure, where the diameter of the studs
significantly affected their shear performance. Wang et al. [29] investigated the static
behavior of large stud shear connectors in steel-UHPC composite structures through
18 push-out specimens. The investigated parameters in their study were the stud
diameter, stud aspect ratio, concrete strength, and concrete slab thickness. They
resulted that the shear strength, stiffness, and ductility of a stud with a 30 mm diameter
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were approximately 15, 45, and 60% higher than those of a stud with a 22 mm
diameter, respectively. Also, the stud aspect ratio and concrete slab thickness showed
no apparent influence on the static behavior of the test specimens.

Finally, they proposed an empirical equation considering stud diameter to predict
the load-slip curve of headed studs as:

ﬂ _ S/dstud (4)
Pu N 0.006 + 1.0zs/dslud

where P is the shear load of stud, S is slip, and, P, is the maximum shear load.

Souza et al. [36] analyzed the degree of shear connection between hollow core
slabs and headed studs connected to the web of the steel beam by performing push-
out tests. They found that when the concrete compressive strength is increased, the
stress concentration occurs at the base of the stud. Shen and Chung [18] investigated
the structural behavior of stud shear connections under combined shear and tension
forces. They carried out two series of push-out tests. In the first series, eleven standard
push-out tests were performed where the shear connectors only underwent the shear
forces. However, in the second series of tests, shear connectors’ behavior was studied
using modified push-out tests under combined shear and tension forces. The results
revealed that when the tension force T, is smaller than or equal to 0.267*Q,,,, where
On, is the standard shear resistance, the shear resistance of the shear connection
should be reduced with a factor of 0.84 and 0.75.

Lowe etal. [37] performed 15 push-out tests to determine the longitudinal splitting
characteristics of a concrete slab in a steel-concrete composite beam with headed
shear stud connectors under cyclic and monotonic loads. It was concluded that the
transverse compression forces across the base of the studs would increase the capacity
of the beam against longitudinal splitting. Zhang et al. [38] conducted an experimental
study including six push-out and eight flexural composite beam tests to investigate the
transverse reinforcement ratio on the degree of shear connection. They proposed an
equation for calculating the longitudinal shear resistance of steel-concrete composite
beams with longitudinal double-row studs. Etim et al. [39] performed experimental
push-out tests on composite slabs comprising normal and pultruded fiber-reinforced
polymer (PFRP) concrete. In the first phase of the test, the effects of the headed
shear stud configuration on the load-carrying capacity of the composite slabs were
studied. The second phase focused on characterizing the behavior of the composite
slab by varying the shear stud diameter. The test results revealed that the dominant
failure modes were the FRP plates’ bearing, net tension, and shear-out failures. These
results differed from those prevalent in the conventional steel-concrete composite,
either stud shank failure or concrete pull out.

Ahmed and Tsavdaridis [40] performed a series of push-out tests to study the
shear resistance and behavior of the connection systems designed for a prefabricated
ultra-shallow flooring system consisting of a T-ribbed lightweight concrete floor
and C-channel steel edge beam. The studied connection system was either web-
welded shear studs only or combined with horizontally lying steel dowels. Prakash
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Fig. 5 Schematic illustration of the setup for the modified push-out test [41]

et al. [41] conducted modified push-out tests to determine high-strength steel studs’
shear strength and stiffness. The configuration of their test setup is schematically
illustrated in Fig. 5. Their experimental study indicated that concrete confinement
in the vicinity of the high-strength shear stud connector could significantly enhance
concrete’s compressive strength and splitting resistance.

Yanez et al. [42] presented a modified push-out test on a joist-type profile to
capture the stiffness coefficient when the stud anchor is placed on the weak or strong
side relative to the steel deck stiffener. Four different stiffness coefficients were
calculated in their experimental study to characterize the overall beam deflection
when full-interaction, slip, and shear deformation is considered. They concluded that
studs placed on the solid side of the stiffener give better performance when compared
with the weak stud position, enhancing deflection values by 5% on average. Table
1 summarizes the previous experimental and numerical studies investigating the
load-slip behavior, nominal shear strength, and stiffness of a stud shear connector in
steel—concrete composite construction using push-out tests.

2.2 Investigating the Flexural Response of Composite
Systems by Bending Tests

The flexural performance and composite action of composite steel beams with
concrete slabs have been investigated in previous studies [44—48]. The preferred
method for quantifying the composite action between the composite steel beam and
the concrete slab is through the bending test, in which shear connectors resist the
accumulation of the slip and the externally applied load results in a strain slip with a
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discontinuity at the interface. Consequently, bending tests provide a quantitative indi-
cation of the composite action that results from the presence of connectors in a beam.
Recently, [49] conducted a four-point bending test to investigate the flexural perfor-
mance of large-scale composite beams composed of a precast UHPC (ultra-high
performance concrete) slab connected to the steel girder by large-headed stud clusters
embedded with shear pockets. Based on the test results, they proposed a formulation
according to a simplified plasticity theory considering the tensile strength of UHPC
for predicting the ultimate flexural capacity of the steel-UHPC composite beams.
Dar et al. [50] conducted an experimental study on full-scale supported cold-formed
steel (CFS) concrete composite beams under four-point monotonic loading to inves-
tigate the flexural strength and the degree of shear interaction. They also assessed
the performance of various shear connectors in strength, stiffness, and ductility.
Baran [51] performed flexural tests and numerical simulations on concrete hollow
core panels (PCHC) to understand the effect of concrete topping over the surface of
precast concrete hollow core on the flexural response (Fig. 6). Their results demon-
strated that significant composite action is developed between the hollow core unit
and the topping slab under load levels corresponding to the uncracked state of the
cross section. Also, the existence of topping concrete resulted in improvements in
the cracking moment and initial stiffness of hollow-core units. Ibrahim et al. [52]
investigated the shear-flexural capacity of composite slabs using PCHC units and
concrete topping. Their test intended to obtain vertical shear failure considering the
effects of surface conditions. Their specimens were subjected to a static three-point
bending test on a simple span with roller supports at both ends. The vertical deflec-
tion, interface (horizontal) slip and vertical slip (or interface dilation) were measured
using potentiometers. Their results revealed that the surface roughness and moisture
condition of the PCHC units affect the performance and behavior of composite slabs
and the ultimate shear capacity between the PCHC units and the concrete topping.
Zhang et al. [38] performed a three-point bending test on steel-UHPC composite
beams with stud and bolt connectors, as shown in Fig. 7. Their results showed
that steel-UHPC composite beams exhibited excellent cracking and flexural perfor-
mance under the hogging moment. Compared with the steel-normal strength concrete

C.L
Cast-in-place

Precast concrete P
Diisgl. tr concrate topping
hollow-core unit e aicy
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{four 8t each end)
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39 c — I —
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Fig. 6 Specimen cross section, instrumentation, and loading setup details adopted by [51]: a On-site
photos; b Schematic sketch
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composite beam, the cracking load and ultimate flexural capacity of steel-UHPC
composite beams were increased by around 340 and 26%, respectively. Also, veri-
fied by test results, theoretical formulas were proposed in their study to calculate the
slip moment, the moment at a crack width of 0.05 mm, and the ultimate moment of
the steel-UHPC composite beams under the hogging moment.

As shown in Fig. 8, they calculated the position of the plastic axis of the composite
section according to the axial force equilibrium. They predicted the ultimate slip
moment (My,) as follows:

N + Nip + Ny + Nyt = Nye + Ny (5)

x = fcrbehu + fryArt + fsy(Ast + hwtwAsb) +

2 ot ) (6)

Msu = fryArty1 + fcrbehuyZ + fsy(Asty3 + Awty4 + chyS + Asby6) (7)

where the resultant forces of concrete stress block are N, forces of steel reinforce-
ment is Ny , forces of the top flange plate is Ny, forces of web in tension is Ny,
forces of the web in compression is Ny, and forces of the bottom flange plate of the
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UHPC(or NSC) flange plate ; 2 P
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Fig. 8 Analytical model of SU-S under hogging moment at the ultimate state [38]
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steel beam is Ng,. Also, f, is the cracking strength of UHPC, and f;, and f, are
the yield strengths of steel reinforcement and steel beam, respectively. As denoted
in Fig. 8, A is the reinforcement area in tension, A is the flange area of the steel
beam in tension, Ay, is the web area of the steel beam in tension, Ay, is the web
area of the steel beam in compression, and Ay, is the flange area of the steel beam in
compression.

Qi et al. [53] studied the flexural behavior of steel-ultra high-performance fiber-
reinforced concrete (UHPFRC) composite beams by conducting bending tests and
an analytical program. They performed four-point bending tests on two large-scale
beams, one made of normal-strength concrete (NC) slab and another consisting of a
UHPFRC slab. The results showed that using the UHPFRC slab increased the stiffness
and improved the crack control capacity of the composite beam. Bandelt et al. [14]
conducted an experimental study on the full-scale and component specimens to
investigate the flexural response of a girder-slab © composite system. The system
combines steel beams, precast hollow core slabs, steel reinforcement, and composite
floor assembly for residential and commercial construction applications (Fig. 10).
Furthermore, they compared the experimental results with the predicted flexural
strength of the system based on two analytical methods: (1) a strain compatibility
analysis using principles of displacement-curvature behavior and (2) a simplified
plastic composite section analysis. Their results showed that both methods could
accurately predict the full-scale specimen’s experimental strength but over-predicted
the component specimen strength due to the boundary conditions.

Table 2 summarizes previous experimental and numerical studies investigating
the composite action between the composite steel beam and concrete slabs using
bending tests.

1
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Fig. 9 a Overview of the full-scale composite experimental setup, b Elevation of the composite
component specimen [14]
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3 Summary and Discussion

The findings of this paper can be summarized below:

¢ The main difference between the push-out and beam tests is how the shear forces
arise. In a push-out test, connectors resist shear force as a part of the load path
between the applied load and the balancing reaction at the base of the specimen.
The shear forces on individual connectors remain constant relative to one another
throughout the test. The drawback of the load-slip curve obtained from the push-
out test is that it does not give a quantitative indication of the composite action
that may result from the presence of a connector in a beam. In the beam tests,
however, connectors are subjected to shear force to resist the slip accumulation
due to the strain discontinuity on the length of the beam. When one shear stud
begins to fail and crack, the other neighboring studs start to compensate for the
increased shear force, and as a result, the force redistribution is featured. In other
words, in the push-out test, the degree of shear connection is measured, referring
to the equilibrium of forces in a composite beam at the ultimate limit state. It is
independent of the loading condition, while the degree of composite interaction
refers to the compatibility of displacements and changes with the loading condi-
tions. Typically, performing the flexural tests is costly and requires a relatively
complex setup in which controlling the boundary conditions is difficult. On the
contrary, push-out tests are easy to perform, requiring the least instrumentation
to capture and interpret the results. Consequently, many code provisions inter-
changeably use the degree of shear connection and composite action for defining
design procedures.

e To better understand the behavior of the composite beams, performing both the
push-out and flexural beam tests is recommended. The push-out tests establish the
load-slip behavior, nominal shear strength, and stiffness of stud shear connectors
in composite beams. The beam tests quantify the flexural capacity of the composite
beams.

e At the University of Sherbrooke, 11 standard push-out tests and two full-scale
flexural tests have been conducted on composite steel beams with precast concrete
hollow core (PCHC) slabs. Verified numerical finite element models will follow
the research to modify the design equations of clause 17-composite beams, trusses,
and joists of the S16-19 [54] design of steel structures for PCHC applications.
As a result, the appropriate configuration of the shear studs and the degree of
composite action between the PCHC slab and the steel beam connected via cast
in situ cover concrete would be quantified. Finally, a new design methodology
will be proposed which considers the composite action between the composite
steel beams and PCHC slabs.
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