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Abstract In the design of roof structures for large single-storey buildings, it is
common practice to extend the primary girders of alternate bays beyond the columns
to support the girders in the other bays, the span of which is adjusted to balance the
moment distribution along the girder line. This structural system, typicallywith open-
web steel joists constituting the secondary members, is commonly known as Gerber
construction. Despite the common use of the Gerber system, concerns have arisen
about how designers evaluate the stability of overhanging girders, as contemporary
steel design standards remain mostly silent on how to take into account the inter-
action between the back span and the cantilever. The main objective of this paper
is to provide new insights into the stability response and design of overhanging
girders. Commonly used design procedures for overhanging girders used to assess
the limit state of lateral–torsional buckling are first discussed. A finite-elementmodel
capable of consideringmaterial and geometric nonlinearities, residual stresses, initial
out-of-straightness, and cross-sectional distortions is then utilised to obtain the buck-
ling resistances of a practical range of overhanging girders. It is assumed that the
back span is under top-flange loading, and open-web steel joists provide only lateral
restraints to the main girder. Three different restraint conditions are considered at
the cantilever tip: free, lateral restraint at the top flange, and lateral restraint at both
the top and bottom flanges. Finally, the results are compared to the predictions of
available design procedures. The results suggest that the current methods may lead
to overly conservative or unconservative predictions, as they either overlook the role
of interaction between the back span and the cantilever or miscalculate the beneficial
effect of top-flange bracing on the stability of the back span under reverse-curvature
bending.
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1 Introduction

Cantilever-suspended-span construction, with overhanging girders considered to
be the main components, is a popular roof framing scheme for large single-
storey buildings in North America. The beauty of this system is that it enjoys
more balanced moment distributions than its conventional counterpart with simply
supported girders, thereby reducing the peak positive moments by allowing negative
moments to develop at the column locations. In addition, simpler connections and
ease of erection are among the comparative merits of such a structural system [2].
Nevertheless, a lack of consensus on the appropriate means of stability design of
overhanging girders, considering the interaction between their individual segments,
has consistently been a matter of concern among structural designers. There have
also remained many unanswered questions on the way overhanging girders benefit
from the restraints provided by the secondary members such as open-web steel joists
(OWSJs).

In an effort to develop a design method for overhanging girders, [11] proposed the
notional effective length concept, in which the back span and the cantilever segment
are of the same length. The cantilever tip is assumed to be laterally restrained at the
shear-centre level, whereas the back span is free of loads and restraints between the
supports. The proposed method neglects to account for the effect of the back span
bay dimension on the stability of the overhanging girder. In order to address this
issue, [10] recommended considering the length of the back span as the minimum
allowable effective length of the cantilever. However, the concept of effective length
was adopted by the Structural Stability Research Council (SSRC) guide [8] without
implementing the above-mentioned limitation.

An interaction method was proposed by [13] so as to obtain the elastic buckling
resistance of a double-overhanging girder with equal cantilevers. It was assumed
that the girder was unable to move laterally at the two supports. With regard to
the loading condition at the cantilever tips, top-flange and shear-centre loadings
were investigated. In this method, the buckling resistances of the back span and the
cantilever are first estimated separately. The back span is assumed to be under a
free-to-warp condition at the two ends, whereas the cantilever is considered built-in
at the support. Eventually, the overall capacity of the double-overhanging girder is
obtained considering the interaction between the adjacent segments. For the cases
with top-flange loading at the tip, this method tends to overestimate the buckling
resistance of the system [7].

Another interaction method was proposed by [7] in order to calculate the critical
elastic moment of overhanging girders when the cantilever segment is more critical
than the back span. It was assumed that no restraints were provided to the back
span between the column locations. Additionally, both top-flange and shear-centre
loadings were considered at the cantilever tip. In this method, the critical elastic
moments associated with the individual segments under a free-to-warp condition at
the supports are calculated. Interaction equations were provided for the cases with
two different restraint conditions at the cantilever tip: free and laterally restrained
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at the top-flange level. For the case where the cantilever tip is laterally restrained at
both the top- and bottom- flange levels, the design procedures presented in the SSRC
guide [8] or by [12] can be utilised. Furthermore, the overall buckling resistance of
the overhanging girder can be taken as the buckling resistance of the back span if the
back span is more critical [13].

The stability response of girders with reverse-curvature bending was investigated
by [14] with the aim of finding the actual unbraced length of the girder with top-
flange bracing under negative bending moments. It was recommended that the point
of contraflexure could not generally be considered a braced point. Several lateral–
torsional buckling (LTB) modification factors were also proposed to account for
special cases of girders with reverse-curvature bending, including cases free between
the supports and thosewith continuous bracing of the top flange. Furthermore, girders
restrained at one flange were scrutinised, focusing on lateral and torsional bracings
and composite construction.

Esmaeili et al. [6] further investigated the effect of top-flange bracing on the
stability of girders with reverse-curvature bending, which are representative of the
back span bay of a typical overhanging girder. The elastic buckling resistances
associated with the back spans of 19,200 different single-overhanging girders with
top-flange bracing under free-to-warp conditions were obtained through the finite-
element method and compared to the predictions of prevailing design methods.
The current LTB modification factors were found to be excessively either conser-
vative or unconservative. An artificial intelligence (AI)-based model was also
proposed for predicting the elastic buckling resistance of the back span of a typical
single-overhanging girder with top-flange bracing under free-to-warp conditions.

From the presented literature review, it can be deduced that crucial questions have
yet to be addressed in regard to the way current design methods account for the inter-
action buckling of overhanging girders and the actual effect of restraints afforded by
secondarymembers. This paper is aimed at the performance assessment of commonly
used design procedures for overhanging girders. To achieve this, a practical range of
single-overhanging girders is first numerically simulated and analysed considering
material and geometric nonlinearities as well as initial imperfections. The back span
is assumed to be under top-flange loading, and only lateral restraints are considered
to be provided to the girder by OWSJs. Also, three distinct restraint conditions are
considered at the cantilever tip: free, lateral restraint at the top flange, and lateral
restraint at both the top and bottom flanges. Finally, the results are compared to the
predictions by current design procedures.

2 Scope of Numerical Simulations

Figure 1 depicts the configuration of a typical single-overhanging girder, along with
its bending moment diagram, and presents the relevant load and geometric variables.
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Fig. 1 Typical single-overhanging girder (symbol red circle represents point of lateral support)

In Fig. 1,

• Pb refers to the point loads on the back span arising from the end reactions of
OWSJs;

• P represents the point load at the cantilever tip;
• Lb denotes the length of the back span;
• Lc is the length of the cantilever;
• s represents the joist spacing;
• n equals the number of point loads on the back span plus 1;
• Ml

max is the local maximum bending moment along the back span;
• MF signifies the (negative) bending moment at the fulcrum;
• κ ′ is defined as the ratio between Ml

max and MF, including sign.

A total of 1699 single-overhanging girders using 24 standard steel W-shapes,
representing the most common cross-sections utilised in Gerber construction, are
considered. The selected sections conform to CSAG40.21 Grade 345WM [4], which
is aligned with ASTM A992 [1]. The W-shapes considered, along with the class of
each [5], are presented in Table 1.

Herein lies the main modelling features:

• Lateral deflections and twisting are prevented at support locations (fork supports).
• Warping deformation is allowed at support locations.
• Torsional restraints afforded to the girder by OWSJs are neglected.
• Restraints afforded and loads delivered to the girder by OWSJs are defined as

follows:

– For the back span, loads and lateral restraints are applied at the top-flange level.
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Table 1 W-shapes considered and classes of cross-sectional elements

Cross section Class Cross section Class Cross section Class

Flange Web Flange Web Flange Web

W410 × 39 2 2 W530 × 82 2 1 W690 × 152 1 1

W410 × 60 1 1 W530 × 138 1 1 W760 × 134 2 2

W410 × 85 1 1 W610 × 92 1 1 W760 × 147 1 1

W460 × 52 1 1 W610 × 125 1 1 W760 × 161 1 1

W460 × 60 1 1 W610 × 155 2 1 W840 × 176 1 1

W460 × 97 1 1 W610 × 241 1 1 W840 × 193 1 1

W460 × 144 1 1 W690 × 125 1 1 W920 × 201 1 1

W530 × 66 1 1 W690 × 140 1 1 W920 × 223 1 1

– Three different restraint conditions are considered at the cantilever tip: (1)
free, (2) lateral restraint at the top flange—as shown in Fig. 1—and (3) lateral
restraint at both top and bottom flanges.

– For restraint condition (1), the point load at the cantilever tip comes from the
adjacent drop-in segment and is applied at the shear-centre level.

– For restraint conditions (2) and (3), the point load at the cantilever tip comprises
both joist and drop-in segment reactions and is conservatively applied at the
top-flange level.

Considering the above-mentioned criteria, Table 2 summarises all the possible
loading and restraint conditions (LRCs) considered, and Fig. 2 depicts the three
configurations.

To illuminate the inclusiveness and practicality of the set of girders considered,
the statistical indices associated with the contributing variables are reported in Table.
Figures 3 and 4 demonstrate the relative frequency distribution for the length of back
span and joist spacing, along with their mean values and coefficients of variation.

In Table 3,

• b
2t signifies the flange slenderness ratio, where b is the overall width of the flange
and t denotes its thickness;

• h
w
is indicative of the web slenderness, where h denotes the clear depth of the web

and w is its thickness;

Table 2 Loading and
restraint conditions (LRCs) Cantilever tip

Restraint condition Loading condition

LRC 1 Condition (2) Top flange

LRC 2 Condition (1) Shear centre

LRC 3 Condition (3) Top flange
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Configuration

LRC 1

LRC 2

LRC 3 

Fig. 2 Configurations for single-overhanging girders

Fig. 3 Relative frequency distribution for length of back span, Lb

• Ix
Iy
represents the ratio of the strong- and weak-axis geometric stiffnesses of the

girder;
• d

b is the overall cross-sectional aspect ratio of the girder, where d is the depth of
the section and b is the width of the flange;

• X = π
Lb

√
ECw

GJ is principally a torsional parameter reflective of the ratio between
the warping and St. Venant torsional stiffnesses;

• Lb
d is the ratio between the length of the back span and the overall depth of the
section;
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Fig. 4 Relative frequency distribution for joist spacing, s

Table 3 Statistical indices associated with the contributing variables

Lb(m) s(m) b
2t

h
w

Ix
Iy

d
b X Lb

d
Lb
ry

Maximum 18.0 2.00 8.5 60.4 45.2 3.4 1.1 22 347

Minimum 8.0 1.60 4.5 31.5 8.7 1.7 0.4 15 119

Mean 12.4 1.78 6.8 49.7 27.1 2.7 0.7 19 240

Coefficient of variation (CoV) (%) 23 6 16 18 33 15 18 10 21

• Lb
ry

is the ratio between the length of the back span and the radius of gyration of
the section about its weak axis.

It is important that a broad variety of load patterns be considered in the evaluation
of the existing design procedures. To establish a criterion for measuring this factor,
a typical roof framing under a schematic load pattern is considered—as shown in
Fig. 5.

Fig. 5 Typical roof framing under a schematic load pattern
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Fig. 6 Residual stress
pattern proposed by
Galambos and Ketter [9]

In Fig. 5, qb refers to the intensity of the uniformly distributed load on the back
span bay; q represents the uniformly distributed load on the adjacent bay; and κ ′′ is
defined as the ratio between qb and q. To ensure that the dataset includes the most
commonly used load patterns, the following range is considered for κ ′′:

κ ′′ = {2.00, 1.60, 1.30, 1.00, 0.77, 0.63, 0.50} (1)

For the purpose of numerical simulation, the finite-elementmodel developed by [6]—
which is capable of considering material and geometric nonlinearities and imperfec-
tions—is adopted. An elastic–perfectly plastic stress–strain curve is considered for
the material with an elastic modulus and a yield stress of 200 GPa and 345 MPa,
respectively. Moreover, a parabolic sweep with the maximum out-of-straightness of
Lb/1000 along the back span is used to introduce initial geometric imperfections
into the numerical model. In order for the residual stresses to be incorporated, the
pattern proposed by Galambos and Ketter [9]—as shown in Fig. 6—is employed.

In Fig. 6,

• σc = 0.3Fy represents the maximum compressive stress at the flange tips, where
Fy signifies the specified minimum yield stress of steel;

• σt = bt
bt+w(d−2t) σc is the maximum tensile stress throughout the web and at the

flange-web intersection.

To distinguish between various types of instability, themaximum internal bending
moment, the maximum compressive stress, and deformations throughout the girder
are monitored during analysis. Therefore, if no local instabilities are captured, three
different scenarios are possible:

• The girder becomes unstable as a result of plastic hinge formation as soon as the
maximum internal bending moment reaches the plastic moment of the section,
Mp.
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• The instability of the girder is classified as inelastic buckling if the compression
flange is partly yielded at the buckling stage.

• The instability of the girder is classified as elastic buckling if the compression
flange is not yielded at the buckling stage.

3 Existing Design Methods

For the design of overhanging girders, it is standard practice to first obtain the buck-
ling resistances of their individual segments, i.e. the back span and the cantilever
segment, separately. Afterwards, the buckling resistance of the entire system is
calculated either considering or neglecting the interaction between the individual
segments.

3.1 Back Span

Theback spanof overhanginggirders typically experiences bothpositive andnegative
bendingmoments. Considering the different bracing conditions at the top and bottom
flanges along the back span, its adequacy under these two moments needs to be
evaluated in different ways.

3.1.1 Under Maximum Positive Moment

The capacity of the back span under the maximum positive moment can be checked
based on the procedure CSA S16-19 (2019) proposes for the bending capacity of
laterally unsupported members. To do this, the critical elastic moment of the back
span at the point of maximum positive moment is calculated as:

M+
crb = ω2π

s

√
E IyG J +

(
πE

s

)2

IyCw (2)

where E and G are the elastic modulus and shear modulus of steel, respectively; Iy
is the moment of inertia about the weak axis of the cross section; J and Cw represent
the St. Venant torsional constant and warping torsional constant, respectively; s is the
joist spacing representing the unbraced length as the top flange is under compression;
and ω2 is a coefficient to account for various moment gradients along the unbraced
segment and is calculated using the following equation:

ω2 = 4Mmax√
M2

max + 4M2
a + 7M2

b + 4M2
c

≤ 2.5 (3)
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In Eq. (3),Ma ,Mb, andMc are the absolute values ofmoments at the quarter point,
centreline, and three-quarter point of the unbraced segment, respectively; Mmax is
the absolute value of the maximum moment in the unbraced segment.

3.1.2 Under Maximum Negative Moment

The capacity of the back span under themaximum negative moment can be evaluated
in two different ways. The first approach is to use the same procedure as for the back
span under the maximum positive moment, considering the full length of the back
span as the unbraced length. Therefore, the critical elastic moment of the back span
at the point of maximum negative moment is calculated as:

M−
crb = ω2π

Lb

√
E IyG J +

(
πE

Lb

)2

IyCw (4)

where Lb is the length of the back span. The reason that Lb is considered to be the
unbraced length is that the bottom flange is partly under compression, but no lateral
restraints are provided to the bottom flange between the two supports. Additionally,
the point of contraflexure—where the bending moment is zero—could not generally
be considered a point of lateral support.

The second approach is to replace ω2 with an LTB modification factor proposed
by [14], which is calculated as:

Cb−YH = 3.0 − 2

3

(
M1

Mo

)
− 8

3

[
MCL

(Mo + M1)

]
(5)

in which Mo is the (negative) moment at the end of the back span that gives the
largest compressive stress in the bottom flange; M1 is the moment at the other end
of the back span; MCL is the moment at the centreline of the back span, including
sign; and (Mo + M1) is taken equal to Mo if M1 is positive and causes tension on
the bottom flange.

3.2 Cantilever

In order to check the adequacy of the cantilever segment, the notional effective
length—as defined by [10]—is utilised. In this approach, the critical elastic moment
of the cantilever segment—under its actual loading and restraint conditions—is
assumed to be equal to that of a notional simply supported girder of identical
section under uniform moment. Thus, the critical elastic moment of the cantilever is
calculated as:
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Mcrc = π

kLc

√
E IyG J +

(
πE

kLc

)2

IyCw (6)

where Lc signifies the length of the cantilever; k is referred to as effective length factor
and is determined based on the loading and restraint conditions of the cantilever, as
presented in Table 4.

A different set of effective length factors was proposed by the Canadian Institute
of Steel Construction [2] as specified in Table 5.

Table 4 Effective length
factors, k, proposed by [10] Restraint condition Loading condition at tip

Top flange Others

2.5 1.0

2.5 0.9

1.2 0.7

Table 5 Effective length
factors, k, proposed by the
CISC [2]

Conditiona Restraints k

1.5–2.5

1.0–1.5

0.8–1.0

a Lateral restraint is provided to bottom flange at the root of
cantilever by OWSJ bottom chord extension
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3.3 Interaction Method

For an overhanging girder, due to the interaction between its adjacent segments
during buckling, the less critically loaded segment restrains themore critically loaded
one [7]. When the back span is more critical, the overall buckling resistance of the
overhanging girder can be taken as the buckling resistance of the back span alone
[13]. However, when the cantilever is more critical and its tip is either free or laterally
restrained at the top-flange level only, the critical elastic moment of the overhanging
girder at the point of maximum negative moment is determined as [7]:

M−
cr = Mcrc + FI

(
M−

crb − Mcrc

)
(7)

where

• M−
crb refers to the critical elastic moment of the back span at the point of maximum

negative moment and can be calculated based on Eq. (4) through either ω2 (Eq. 3)
or Cb−YH (Eq. 5);

• Mcrc denotes the critical elastic moment of the cantilever at the point of maximum
negative moment and is calculated as specified in Table 6;

• FI is referred to as interaction factor and is calculated as specified in Table 7.

For the casewhere lateral restraints are provided to both the top and bottomflanges
at the cantilever tip, the following steps need to be taken [12]:

• The critical elastic moment of the cantilever is calculated as:

Mcrc = 1.75π

Lc

√
E IyG J +

(
πE

Lc

)2

IyCw (8)

• The stiffness of the back span, the restraining segment, is defined as:

Table 6 Critical elastic
moment of cantilever
segment, Mcrc [7]

Loading condition Mcrc

Top flange 1.5GJ
d

Shear centre 4
Lc

√
E IyG J

Table 7 Interaction factors,
FI , proposed by [7] Restraint condition Interaction factor (FI )

−0.08 + 0.18 Lb
Lc

− 0.009
(
Lb
Lc

)2

0.064 + 0.162 Lb
Lc

− 0.009
(
Lb
Lc

)2
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αb = 3E Iy
Lb

(
1 − Mcrc

M−
crb

)
(9)

• The stiffness of the cantilever, the critical segment, is computed as:

αc = 3E Iy
Lc

(10)

• The stiffness ratio for the root of the cantilever is calculated as:

GRoot = αc

αb
(11)

• Assuming infinity as the stiffness ratio for the cantilever tip, GTip, implying it
is free to rotate about the weak axis and warp, the effective length factor for
interaction method—kI—is determined from Fig. 7.

• Using the following equation, the critical elasticmoment of the overhanging girder
at the point of maximum negative moment is obtained:

Fig. 7 Nomograph for
effective length factors of
columns in continuous
frames with sidesway
prevented [3]
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M−
cr = 1.75π

kI Lc

√
E IyG J +

(
πE

kI Lc

)2

IyCw (12)

3.4 Ultimate Capacity

Having the critical elastic moments of the individual segments, the following steps
are taken to finalise the design:

• M+
cr , the critical elasticmoment of the overhanging girder at the point ofmaximum

positive moment, is set to M+
crb (Eq. 2).• For methods considering the interaction between the back span and the cantilever,

M−
cr—the critical elastic moment of the overhanging girder at the point of

maximum negative moment—is obtained from Eqs. (7) or (12) based on the
restraint condition at the cantilever tip.

• For methods neglecting the interaction between the back span and the cantilever,
M−

cr is taken as the lesser of M−
crb and Mcrc .• M+

n , the nominal capacity of the overhanging girder at the point of maximum
positive moment, is determined as [5]:

M+
n =

{
M+

cr M+
cr ≤ 0.67Mp

1.15Mp

[
1 − 0.28Mp

M+
cr

]
≤ Mp M+

cr > 0.67Mp
(13)

• M−
n , the nominal capacity of the overhanging girder at the point of maximum

negative moment, is calculated as [5]:

M−
n =

{
M−

cr M−
cr ≤ 0.67Mp

1.15Mp

[
1 − 0.28Mp

M−
cr

]
≤ Mp M−

cr > 0.67Mp
(14)

• Mn , the overall nominal capacity of the overhanging girder, is then computed as:

Mn =
{
M−

n
M+

n

M−
n

≥ ∣∣κ ′∣∣
M+

n
|κ ′|

M+
n

M−
n

<
∣∣κ ′∣∣ (15)

It is noteworthy that Mn is nominally the maximum moment the overhanging
girder can resist at the location of maximum negative moment, that is, the fulcrum.
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4 Performance Assessment of Existing Design Procedures

Based on the design methods utilised for checking the adequacy of the individual
segments of the overhanging girder and the decision as to whether or not the interac-
tion between the individual segments is to be taken into account, the designer could
adopt any of the design procedures presented in Table 8.

In order to evaluate the performance of the above-mentioned design procedures,
for each girder from the 1,699 cases previously defined for the numerical simula-
tion, the nominal capacity—taken at the fulcrum—is obtained from a finite-element
analysis (FEA) and introduced as Mn−FEA. The nominal capacity of each case is also
calculated based on the six design procedures specified in Table 8. Afterwards, the
performance of each design procedure is evaluated for each of the LRCs of single-
overhanging girders through the information summarised in Tables 9 and 10. In Table
9, the mean normalised moments for each of the LRCs of single-overhanging girders
obtained from the FEAs are presented. Additionally, the mean ratio between the
nominal capacities obtained from the FEAs and those calculated using each of the
six design procedures specified in Table 8 is reported in Table 10—along with the
associated coefficient of variation—for each type of instability separately.

From Tables 9 and 10, the following observations emerge:

• Under LRC 1,

– a few girders (4.4%) buckle elastically;
– the mean value of Mmax−FEA

Mp
is equal to 0.80—representing a quite inclusive

range of girders that undergo inelastic buckling;

Table 8 Existing design procedures for overhanging girders

Procedure M+
crb M−

crb Mcrc or M
−
cr

1 S16/S16/IM S16-19 (2019) S16-19 (2019) Interaction method

2 S16/YH/IM S16-19 (2019) [14] Interaction method

3 S16/S16/KN S16-19 (2019) S16-19 (2019) [10]

4 S16/S16/CISC S16-19 (2019) S16-19 (2019) CISC [2]

5 S16/YH/KN S16-19 (2019) [14] [10]

6 S16/YH/CISC S16-19 (2019) [14] CISC [2]

Table 9 Mean normalised
moments for different LRCs
based on FEAs

(
Mn−FEA

Mp

)
mean

( |κ ′|Mn−FEA
Mp

)
mean

(
Mmax−FEA

Mp

)
mean

a

LRC 1 0.49 0.73 0.80

LRC 2 0.61 0.85 0.94

LRC 3 0.66 0.88 0.98

a Mmax−FEA = max
(
Mn−FEA,

∣∣κ ′∣∣Mn−FEA
)
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Table 10 FEA/design ratios for existing design procedures

LRC 1

Instability type Elastic Inelastic Plastic

Number of cases 25 427 115

Procedure Mean CoV (%) Mean CoV (%) Mean CoV (%)

1 S16/S16/
IM

1.52 26 1.86 26 1.24 23

2 S16/YH/IM 0.83 11 0.82 17 1.00 0

3 S16/S16/
KN

1.26 33 1.70 28 1.19 22

4 S16/S16/
CISC

1.26 33 1.70 28 1.19 22

5 S16/YH/
KN

0.81 15 0.82 19 1.00 0

6 S16/YH/
CISC

0.64 8 0.79 21 1.00 0

LRC 2

Instability type Elastic Inelastic Plastic

Number of cases 9 353 204

Procedure Mean CoV (%) Mean CoV (%) Mean CoV (%)

1 S16/S16/
IM

1.88 23 2.29 35 1.46 37

2 S16/YH/IM 1.01 5 0.98 4 1.01 3

3 S16/S16/
KN

1.88 23 2.29 35 1.46 37

4 S16/S16/
CISC

1.88 23 2.29 35 1.46 37

5 S16/YH/
KN

1.01 5 0.98 4 1.01 3

6 S16/YH/
CISC

1.02 4 0.98 5 1.01 3

LRC 3

Instability type Elastic Inelastic Plastic

Number of cases 0 301 265

Procedure Mean CoV Mean CoV (%) Mean CoV (%)

1 S16/S16/IM – – 2.48 43 1.76 45

2 S16/YH/IM – – 1.05 14 1.04 7

3 S16/S16/
KN

– – 2.48 43 1.76 45

4 S16/S16/
CISC

– – 2.48 43 1.76 45

5 S16/YH/KN – – 1.05 14 1.04 7

(continued)
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Table 10 (continued)

LRC 3

Instability type Elastic Inelastic Plastic

Number of cases 0 301 265

Procedure Mean CoV Mean CoV (%) Mean CoV (%)

6 S16/YH/
CISC

– – 1.05 14 1.04 7

– the accuracy of the considered design procedures mostly depends on the
method used for the calculation of M−

crb ;
– the procedures using the S16 method to calculate M−

crb tend to be overly
conservative;

– in the procedures using the S16 method to calculate M−
crb without considering

the interaction between the back span and the cantilever, Mcrc can never affect
the ultimate capacity of the overhanging girder owing to the conservatism of
the S16 method;

– the procedures using Cb−YH to calculate M−
crb tend to be unconservative—yet

practically accurate for the cases reaching their fully plastic capacity;
– considering the interaction between the back span and the cantilever could

make the design procedure even more conservative when the S16 method is
employed to calculate M−

crb ;
– using the CISC’s effective length factors rather than Kirby and Nethercot’s

to calculate Mcrc could make the design procedure even more unconservative
when Cb−YH is utilised to calculate M−

crb .

• Under LRC 2,

only a very few girders (1.6%) experience elastic buckling;
the mean value of Mmax−FEA

Mp
is quite close to 1.0—which means, for the

cases going under inelastic buckling, very large portions of the most critical
compression flanges yielded;
the accuracy of the design procedures solely depends on the method used for
the calculation of M−

crb ;
the procedures using the S16 method to calculate M−

crb tend to be overly
conservative—i.e. more conservative than those under LRC 1;
the procedures usingCb−YH to calculate M−

crb are sometimes unconservative—
yet quite accurate.

• Under LRC 3,

none of the girders undergoes elastic buckling;
the mean value of Mmax−FEA

Mp
is practically equal to 1.0—which means even the

cases experiencing inelastic buckling tend to verge on plastic hinge formation;
the accuracy of the design procedures solely depends on the method used for
the calculation of M−

crb ;
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the procedures using the S16 method to calculate M−
crb tend to be overly

conservative—i.e. more conservative than those under LRC 2;
the procedures using Cb−YH to calculate M−

crb are mostly unconservative—yet
quite accurate.

5 Summary and Conclusions

A set of 1699 single-overhanging girders was analytically investigated considering
material and geometric nonlinearities, residual stresses, initial geometric imperfec-
tions, and cross-sectional distortions. As a result of open-web steel joists, the concen-
trated loads and lateral restraints were applied at the top-flange level—at discrete
locations along the back span. Three different restraint conditions were considered
at the cantilever tip: free, lateral restraint at the top flange, and lateral restraint at both
the top and bottom flanges. The results reveal that existing design procedures may
lead to overly conservative or unconservative predictions, as a result of neglecting the
interaction between the back span and the cantilever or miscalculating the effect of
top-flange bracing on the stability of the back span under reverse-curvature bending.
Furthermore, the level of conservatism could differ significantly for different loading
and restraint conditions at the cantilever tip, as well as different potential types of
instability. It can also be concluded that the method used for calculating the critical
elastic moment of the back span at the point of maximum negative moment could
dramatically affect the accuracy of the design procedure.
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