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Abstract This paper proposes a new methodology to evaluate the seismic perfor-
mance of multi-storey Concentrically Braced Frames (CBFs) and to minimize the
concentration of frame nonlinear lateral displacements. A three-storey concentri-
cally braced frame with chevron bracing is first selected. An optimization tool is
then developed to study drift concentration under seismic loading. This tool lever-
ages a fully parametric design script interacting with the OpenSees programme to
generate a large number of potential frame designs analysed under ground motion
accelerations and to iteratively update the frame design using the PSO algorithm
until minimum drift concentration is achieved. Preliminary results of the proposed
methodology and future direction of the research are finally presented.

Keywords Lateral displacements + Low-rise steel concentrically braced frames -
Seismic response

1 Introduction

Steel Concentrically Braced Frames (CBFs) are widely used as the lateral load-
resisting system of multi-storey buildings. Under lateral seismic loads, the lateral
roof displacement may not be distributed evenly between the storeys as their braces
experience nonlinear response through tensile yielding and buckling, resulting in the
concentration of lateral inelastic displacements in one or some of the storeys. This
stems from a poor performance of CBFs in redistributing inelastic demands along
their height mainly due to inherent poor hysteretic response of diagonal braces when
buckling in compression, which significantly reduces storey shear resistance, thus
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discouraging yielding to develop in adjacent floors [20, 29, 32, 54, 60]. This response
is compared to an ideal uniform lateral displacement response in Fig. 1 for a three-
storey steel CBF with chevron bracing. As shown in Fig. 1a, a desirable response
involves brace tensile yielding and compression buckling in all the storeys, resulting
in auniform distribution of lateral displacements over the height of the frame, whereas
the frame in real-life under earthquake loading may experience concentration of
lateral deformation as shown in Fig. 1b (e.g. in the first storey) due to the elastic
response of tension-acting braces in some of the storeys (e.g. Storeys 2 and 3),
leading to soft or weak storey behaviour. The concentration of lateral deformations
become more critical in tall CBFs, those with heavy gravity loads imposing large
P-A effects, and the CBFs located in high seismic regions such as Vancouver or
Victoria, BC [28, 44, 53, 56].

Several design parameters can influence the distribution of the lateral frame
displacement under seismic loads. Past numerical studies have shown the number
of storeys, distribution of seismic mass along the frame height, column orientation
and splices, brace demand-to-capacity ratios, lateral stiffness offered by adjacent
gravity columns, bracing configuration (e.g. X-bracing, chevron, diagonal), bracing
system (e.g. tension—compression, tension-only), brace slenderness ratio within each
storey and its variation over the storeys can affect seismic behaviour of concentrically
braced frames [28, 52, 54].
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Fig. 1 Comparison of concentrically braced frames lateral deformation distributions: a uniform
lateral deformation distribution, b damage concentration in storey 1
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A number of mitigation techniques have been evaluated and proposed by various
researchers in the past to reduce the concentration of lateral deformations in steel
CBFs. These techniques include (1) rigid truss or strong-back systems tied to the CBF
where the CBF acts as the energy dissipation system and the rigid truss is intended to
remain essentially elastic forcing the CBF to undergo uniform lateral deformations
during inelastic response [14, 33-35, 43, 54-56, 62], (2) innovative bracing members
such as buckling-restrained braces (BRBs) instead of conventional braces [2, 3, 12,
19, 21, 26, 27, 38, 45-47, 51, 57, 59, 61], (3) moment-resisting frame (MRF) used
in addition to the CBF to engage frame action [13, 16, 25, 62], (4) zipper or vertical
tie bar systems [24, 49, 66], (5) two-storey X (split-X) system aiming at developing
a 2-storey collapse mechanism [54], (6) rocking systems [4, 18, 22, 37, 41, 48, 58,
63, 64, 7-9, 30, 42, 65].

An alternative design solution to tackle damage concentration in CBFs and achieve
a more uniform seismic response is to adjust brace selection, in particular, the brace
slenderness parameter A = KL/r(F,/n*E)"> where K is the effective length factor, L
is the brace length, r is the radius of gyration of the brace cross-section, Fy is the steel
yield stress, and E is Young’s modulus of steel. Lacerte and Tremblay [28] developed
amethod for the selection of braces in Split-X concentrically braced frames such that
they attain smooth variations of the post-buckling shear resistance over the frame
height. In this method, braces having relatively low slenderness and post-buckling
resistance were selected to help the propagation of inelastic deformations in several
storeys under major seismic events producing a large lateral displacement at the roof
level (in the order of 2% roof drift). This method was verified for systems up to
12 storeys and showed that it can avoid soft storey mechanisms and achieve more
stable global response. Drift concentration in 1-8 storey X-braced frames designed as
tension—compression or tension-only system was mitigated by limiting brace slen-
derness to 2.65 and designing the columns for an in-plane demand equal to 20%
of the plastic moment capacity of the section in addition to the axial compression
forces arising from brace axial resistances and gravity loads [52]. Imanpour et al. [20]
proposed a design method for multi-tiered concentrically braced frames experiencing
significant drift concentration in one of the braced tiers under seismic-induced defor-
mation demands, leading to column yielding and instability. The method involved
new strength and stiffness requirements for columns, which engage column flexural
stiffness to force tensile yielding in adjacent braces under seismic loading.

Although various approaches have been proposed in the past to tackle the poor
seismic performance of steel CBFs when it comes to the distribution of nonlinear
lateral deformations over the frame height and reducing CBF vulnerability to damage
concentration and dynamic instability, they lack taking into account inclusive design
parameters (e.g. number of storeys, brace slenderness ratio, column orientation, brace
demand-to-capacity ratios, bracing configuration and system) affecting the seismic
response of CBFs. To this end, this study proposes and implements a metaheuristic
optimization tool to overcome the challenges associated with investigating the influ-
ence of various design scenarios, which can become computationally intensive, and
to develop a design strategy to efficiently achieve a uniform distribution of lateral
inelastic deformations under seismic loading. The proposed optimization tool is
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developed by linking a fully parametric numerical model of multi-storey CBF, a
three-storey chevron braced frame presented in this paper, to the optimization algo-
rithm, which generates a large number of potential frames by varying the influential
parameters pertaining to brace design and then updates each frame’s members until
damage concentration is minimized. This results in a number of candidate frame
designs, which are subsequently classified into a small number of groups as final
design alternatives using clustering algorithms.

2 Research Methodology

To measure and evaluate concentration of lateral deformation in CBFs, the Drift
Concentration Ratio (DCR) is defined as the maximum standard deviation of storey
drifts recorded under a given ground motion record. The frame that possesses the
smallest DCR is then considered as the one achieving a nearly uniform distribution of
lateral displacements over the height. However, finding the frame with the minimum
DCR in a large set of frames generated to evaluate damage concentration would be
a challenging task if traditional mathematical methods, which require computing
derivatives of a function with respect to its variables, were to be used because the
DCR cannot be expressed as a continuous and differentiable function of the design
variables or the loading input, e.g. ground motion acceleration. Metaheuristic opti-
mization algorithms, which have been developed based on evolutionary behaviour of
species in nature, can be implemented instead [50]. The essence of such methods lies
on their capability to locate global optimum of a function just by evaluating its value
at different points over function’s domain, which in the context of this study can help
assess design parameter patterns in CBFs, contributing to a better understanding and
quantification of such parameters and their impact on minimizing the concentration
of frame lateral nonlinear deformations. The Particle Swarm Optimization (PSO)
algorithm [23], which is a single objective metaheuristic optimization algorithm
vastly used in various engineering disciplines, will be exploited in this study to over-
come the challenge of finding the CBF design with the minimum DCR by bypassing
a more complex assessment involving the combination of a large number of design
variables. The key steps of the iterative process adopted here to minimize the objec-
tive function, i.e. the DCR, with respect to its variables, i.e. brace cross-sections,
taking advantage of the PSO algorithm are summarized below:

1. Generate random population: A set of random particles with a population of N,
i.e. first generation, is created by assigning random values to variables associated
with the problem. Each particle returns a specific value for the objective function
defined for the optimization problem and by inspecting these values, different
particles can be ranked against each other.

2. Objective function evaluation: Particles defined in Step 1 are subject to various
constraints with a feasible space. The selected algorithm forces these constraints
to the particles using a penalty function. If a particle satisfies all the constraints,
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4.

the value of its objective function remains the same. Otherwise, the particle would
get penalized by a multiplier implicit in its objective function to increase its value
such that it cannot compete with feasible solutions of the generation when they
are ranked based on their objective function.

Particle updating by adjusting their velocity: Once the set is sorted in accordance
with the particle objective functions, the algorithm updates particles inside the
generation by adjusting their variables using a velocity term v leading to a new
set of solutions, i.e. the next generation. The algorithm then attempts to find the
objective function’s global minimum by generating a new set of particles and

guiding them towards the global optimum. To update the location of particle i in
r+1

generation ¢, x/, and obtain the adjusted location in generation 7 + 1, x; ", using
the velocity parameter vf“, Egs. 1 and 2 can be used as follows:
= 4 (1)
1
Vitl = wvl + eiri(x), — xf) + cara(xly, — x{) )

where inertia factor w and trust constants c; and c; are selected depending on the
optimization problem and determine whether the particle should move towards
its local best record or the global best record [40]. Factors r; and r; take random
values between 0 and 1 in each iteration, which helps formulate randomness
within the algorithm and search the entire feasible domain of the problem instead
of getting trapped in local optima zones. It is recommended to set w = 0.7298
and ¢; = ¢, = 1.4962 in order to improve the algorithm’s convergence rate [10].
It is worth noting that v} can be taken as zero in the first generation.

A particle’s velocity is a function of three parameters, (1) its velocity in the
previous generation, vi, (2) the location of personal best of that particle, x;,h,
representing the coordinate in which particle i has recorded the smallest value
it could obtain for the objective function after being modified for ¢ generations,
and (3) the location of global best, x; »» being the coordinate of the smallest value
achieved for the objective function by comparing the results of all particles after
t generations. Figure 2 shows the interaction between these three parameters.
Approaching optimum solution: As Steps 2 and 3 are repeated, the algorithm tries
to find the best solutions of each generation and improves them in subsequent
generations. This process eventually converges to the optimum solution provided
that a sufficient number of iterations are conducted. The algorithm should then
terminate creating new generations and bypass performing Steps 2 and 3 by either
setting a total number of generations before the algorithm started generating
solutions, or verifying the convergence at each iteration by comparing the best
solutions of the last two generations with each other (if the difference between
the objective function values corresponding to these two solutions is less than
the specified tolerance it means the algorithm can no longer find a more optimal
solution and it should stop generating new solutions). The drawback associated
with the latter is that the algorithm may get stuck around a local optimum and
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terminating the loop, which performs Steps 2 and 3, may not let the randomness
considered in velocity of particles help the algorithm discover new regions in the
domain that may contain more optimal solutions.

3 Model Building

A three-storey model building was used to illustrate the proposed methodology devel-
oped to assess and minimize damage concentration in steel CBFs under seismic
loading. The building selected is an office building located in Vancouver, BC on site
Class C. The building measures 45 m x 45 m in the plan as shown in Fig. 3a. Four
Moderately Ductile (Type MD) concentrically braced frames with chevron bracing
located on the perimeter of the building are considered to resist lateral seismic loads
in each direction of the building. One of the CBFs as shown in Fig. 3b is evaluated
in this study. Columns are continuous along the height and are pinned at their base.

The loading calculation was performed in accordance with 2015 National Building
Code of Canada [39]. The summary of gravity loads, including dead load, live load,
snow load, and exterior wall load, are given in Table 1.

Lateral seismic loads were calculated using the equivalent static force procedure.
The seismic-induced forces in the braces were then used to select brace cross-sections
from ASTM A1085 Hollow Structural Sections (HSSs) following the Canadian steel
design standard CSA S16:19 [5] provisions assuming a demand-to-capacity ratio
of 0.5 or higher, which are considered as candidate braces to be fed into the algo-
rithm as the optimization variables. An effective length factor K = 0.9 taking into
account the effect of end connections was used to obtain the brace factored axial
resistance. Braces with a broad range of demand-to-capacity and slenderness ratios
help thoroughly investigate design alternatives. The candidate brace cross-sections
are presented in Table 2.
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Fig. 3 a Plan view of building; b elevation view of frame

Table 1 Summary of gravity Location Source Load kPa
loads
Roof Dead 1.35
Snow 1.64
Floor Dead 4.6
Live 2.4
Exterior wall Dead 1.5

The column and beams of the CBF are then sized with W-shape sections selected
from ASTM A992 steel with the yield strength of 345 MPa following the capacity
design principles. The CSA S16:19 provision associated with the reduction of the
probable tensile resistance of the tension-acting braces in chevron braced frames
lower than 4 storeys is ignored in this study to isolate the effect of the brace
characteristics on the frame response.

Brace gusset plate connections were designed under probable axial tension and
compression loads of the braces following the recommendations by [11].

4 Numerical Model

A fibre-based model of the frame was developed in the OpenSees programme
[36]. The numerical model of the frame is shown in Fig. 4a. Columns, beams,
and braces were modelled using nonlinear force-based beam-column elements with
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Table 2 Candidate brace cross-sections for three-storey chevron CBF

Storey Brace section Area (mm?) KL/r A Demand/capacity
3 HSS5 x5 x 1/4 2961.28 111.19 1.47 0.73
HSS 5 x 5 x 5/16 3652.80 112.70 1.49 0.61
HSS 5 x 5 x 3/8 4245.15 114.97 1.52 0.54
HSS 4.5 x 4.5 x 1/4 2638.70 124.05 1.64 0.97
HSS 4.5 x 4.5 x 5/16 3219.35 126.32 1.67 0.82
HSS 4.5 x 4.5 x 3/8 3761.28 128.59 1.70 0.72
HSS 4 x4 x 12 4103.22 153.55 2.03 0.89
2 HSS7 x 7 x 3/8 6180.63 79.42 1.05 0.63
HSS7 x7 x 172 7999.98 81.69 1.08 0.50
HSS 6 x 6 x 3/8 5212.89 93.79 1.24 0.91
HSS6 x 6 x 172 6683.86 96.82 1.28 0.74
1 HSS 8 x 8 x 172 9290.30 74.88 0.99 0.56
HSS 7 x 7 x 3/8 6180.63 83.96 1.11 0.96
HSS7 x7 x 12 7999.98 86.23 1.14 0.77
HSS 7 x 7 x 5/8 9612.88 87.74 1.16 0.65

fibre discretization of the cross-section. Beams, columns, and braces were modelled
according to recommendations by [17].

Shear-tab connections connecting beams to columns were modelled as pin-ended
members. Relatively rigid elastic beam-column elements were used to model the
portions of beams, columns, and braces that intersect with each other as shown in
Fig. 4b. To reproduce brace out-of-plane buckling, assumed in design, gusset plate

a) b)

FAY P

Rigid elastic element
- Fibre-based gusset plate element
o Pin connection

Fig. 4 Fibre-based numerical model of the frame: a three-storey CBF; b gusset plate connection
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connections were modelled using a separate nonlinear beam-column element with
fibre discretization of the gusset plate within the theoretical plastic hinge area, DE,
shown in Fig. 4b, i.e. 2t offset where ¢ is the gusset plate thickness.

All members were modelled using the Stee/02 material with properties recom-
mended by [1]. The yield stress for brace cross-sections was set equal to 460 MPa,
while the yield stress of 345 MPa was used for the rest of frame members.

To perform NonLinear Response History Analysis (NLRHA), masses were
lumped at the mid-point and two ends of each beam. A leaning column, not shown
in Fig. 4a, was modelled to account for P-A effects. Viscous damping was created
using Rayleigh damping method consisting of initial stiffness of the frame CBF and
seismic mass; the damping ratio £ was set to 2% of critical damping.

5 CBF Design Optimization

5.1 Proposed Optimization Tool

An optimization tool was developed to improve the seismic response of steel CBFs
by encouraging a uniform distribution of lateral deformations along the frame height.
This tool was established by linking the PSO algorithm with the parametric OpenSees
model of the CBF and incorporating a parametric design script capable of automati-
cally designing beams, columns, and gusset plates. In the DCR minimization process
shown in Fig. 2, the numerical model of CBF design alternatives plays the role of
particles optimized by PSO algorithm, brace cross-sections are the optimization
variables, OpenSees is the function evaluator to obtain objective function values,
i.e. DCR, for each particle, and m is the total number of generations to be assessed
by the optimization tool. Figure 5 details the steps followed by the automated tool
developed to evaluate and minimize the drift distribution in steel CBFs. These steps
are as follows:

1. First generation of frames is created by randomly selecting three brace cross-
sections from the candidate brace list for each frame.

2. Beams and columns are sized using the lightest section available to carry brace
probable tensile and compressive resistances plus gravity loads. This process is
performed by a parametric design script.

3. Once beam, column, and brace sections are determined, gusset plate dimensions
are calculated using the design script. Since the design script is directly imple-
mented in the optimization tool, no penalty function is required for the PSO
algorithm as all generated particles (i.e. braced frames) already belong to the
feasible domain by satisfying all limit states addressed by design provisions.

4. Each frame is then modelled in OpenSees based on the selected beams, columns,
braces, and gusset plates generated by the design script.

5. The NLRHA is performed using the numerical model in OpenSees for each frame
and the respective DCR values are recorded.
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Fig. 5 Optimization workflow

At the end of each generation, the PSO algorithm modifies brace cross-sections
for each frame based on DCR values obtained and creates a new generation.
Steps 2 to 6 are repeated until the termination criteria is met (i.e. number of
generations analysed reaches m).

Last generation represents a potential set of design alternatives owing to the fact
that all its particles have evolved generation by generation and possess relatively
smaller DCR values compared to results obtained in previous generations. xg,
containing brace cross-sections of the frame with best performance (i.e. least
DCR value) among all frames is reported as the optimum design.

5.2 Clustering

In order to further investigate and gain better understanding of the correlation between
drift concentration and key attributes of brace cross-sections selected in the design
stage, frames with desirable seismic performance obtained from the optimization
tool can be classified into different groups based on the properties of their structural
members and their lateral response features. K-means algorithm [31] is utilized to
cluster the frames into k groups. The steps taken by this algorithm to partition the
optimized frames are demonstrated in Fig. 6 and detailed below:

1.

2.

k random points in the domain of clustering problem are selected as centroids of
clusters.

Euclidian distance between each particle (i.e. frame) and all centroids is
measured. Frames will be assigned to the nearest centroid and form a cluster
with it. Centroids remaining with no particles assigned to them are eliminated
and the algorithm attempts to cluster the data into k-n groups, n being the number
of centroids unable to attract any particles to their clusters.
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a) b) C)

M M

Fig. 6 K-means algorithm steps for clustering: a selection of random centroids, b particle
assignment to centroids, ¢ centroid adjustment

3. Eachcentroid’s location is adjusted by moving it to the mean point of the particles
inside the cluster it represents.

4. By repeating Steps 2 and 3, clusters are modified until particles assigned to each
centroid do not change anymore.

Final clusters’ shape is highly sensitive to the initial location of centroids. It is
therefore suggested that this algorithm is performed on optimized frames multiple
times until clusters with least variation between their particles are achieved. Finally,
the closest particle to the centroid in each cluster can be reported as its representative.

6 Conclusions

This paper introduced a new methodology to address damage concentration in three-
storey steel CBFs by implementing a metaheuristic optimization algorithm, namely
the drift concentration ratios under lateral seismic loads are minimized. The proposed
methodology is summarized as follows:

e A design script capable of sizing CBF braces, beams, columns, and gusset plates
was developed and linked to a fully parametric numerical model constructed in
the OpenSees programme.

e The PSO algorithm used in the proposed optimization tool generates numerous
CBFs and modifies them iteratively with the objective of minimizing their DCR
when the frame is subjected to earthquake ground motion accelerations.
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e Candidate frames obtained from the optimization process with the respective least
DCR value are finally grouped into different clusters using the K-means algorithm.

Although the current proposed methodology facilitates the seismic design of steel
CBFs and assists structural designers to select safer structures less prone to concen-
tration of lateral displacements under seismic loading, additional aspects of braced
frame optimization need to be analysed as described below:

¢ The numerical model of shear-tab connections can be improved using elements
with pinching material instead of assuming pin connections between beams
and columns to account for the additional lateral stiffness and flexural strength
provided by these connections towards the frame lateral response.

e Other steel CBF configurations such as Split-X (two-storey X) braced frames,
which offer a more favourable solution when compared to chevron or V-bracing
configuration, owing lesser unbalanced seismic load applied at the storey beam
mid-span.

e Currently the optimization tool only varies brace cross-sections and the influence
of beams and columns on the frame lateral response is evaluated indirectly. The
number of optimization variables can be increased by creating separate optimiza-
tion variables pertaining to beam and column sections to help take advantage of
beam and column selections on controlling drift concentration.

e Other optimization algorithms such as genetic algorithm [15] or jJEDE [6] can
be used to discover most suitable algorithms for structural applications and
achieve the algorithm with higher convergence rate and lesser function evaluation
compared to the one used in this study.

e Multi-objective optimization can be implemented to account for other design
parameters such as total weight of structure and its correlation with lateral
response.

e Unsupervised algorithms capable of partitioning optimization results to different
groups can be used to alleviate the need of determining the number of clusters k
beforehand.
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