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Abstract. Wavelets are actively used for solving of image processing problems in
various fields of science and technology. Modern imaging systems have not kept
pace with the rapid growth in the amount of digital visual information that needs
to be processed, stored, and transmitted. Many approaches are being developed
and used to speed up computations in the implementation of various image pro-
cessing methods. This paper proposes the Winograd method (WM) to speed up
the wavelet image processing methods on modern microelectronic devices. The
scheme for wavelet image filtering using WM has been developed. WM applica-
tion reduced the computational complexity of wavelet filtering asymptotically to
72.9% compared to the direct implementation. An evaluation based on the unit-
gatemodel showed thatWM reduces the device delay to 66.9%, 73.6%, and 68.8%
for 4-, 6-, and 8-tap wavelets, respectively. Revealed that the larger the processed
image fragments size, the less time is spent on wavelet filtering, but the larger the
transformation matrices size, the more difficult their compilation and WM design
on modern microelectronic devices. The obtained results can be used to improve
the performance of wavelet image processing devices for image compression and
denoising.WMhardware implementation on afield-programmable gate arrays and
an application-specific integrated circuits to accelerate wavelet image processing
is a promising direction for further research.

Keywords: Wavelet Transform · Digital Filtering · Group Pixel Processing ·
Computational Complexity · High-Speed Calculations · High-Performance
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1 Introduction

Wavelets are actively used for solving image processing problems in various fields of
science and technology such as denoising [1], color image processing [2], video analy-
sis [3]. However, modern imaging systems have not kept pace with the rapid growth in
the amount of digital visual information that needs to be processed, stored, and trans-
mitted. Many approaches are being developed and used to speed up computations in
the implementation of various image processing methods. The authors of [4] focus on
the evolution and application of various hardware architectures. The fast decomposition
algorithms based on a different representation called product convolution extension has
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been proposed in [5]. This decomposition can be efficiently estimated by assuming that
multiple operator impulse responses are available. The new simple adjacent summethod
is developed in [6] for multidimensional wavelet constructing. This method provides a
systematic way to build multidimensional non-separable wavelet filter banks from two
1D low-pass filters, one of which is interpolating to increase image processing speed.
The authors of [7] describe an asymmetric 2D Haar transform and extend it to wavelet
packets containing an exponentially large number of bases. A basis selection algorithm
is also proposing for optimal basis finding in wavelet packets. Various modern GPU
optimization strategies for the discrete wavelet transform implementation such as the
use of shared memory, registers, warp shuffling instructions, and parallelism at the level
of threads and instructions are presented in [8]. A mixed memory structure for the Haar
transform is proposed in which a multilevel transform can be performed with a single
launch of the combined kernel. The paper [9] proposes a new algorithm for 2D discrete
wavelet transform of high-resolution images on low-cost visual sensors and nodes of the
Internet of things. The reduction in computational complexity and power consumption
compared to modern low-memory 2D discrete wavelet transform methods are the main
advantages of the proposed segmented modified fractional wavelet filter. However, all
of these methods are based on pixel-by-pixel image processing. The Winograd method
(WM) reduce image processing time due to group pixel processing. The processed image
is assembled from fragments of a certain size which reduces the multiplications number
by increasing the additions number.

The purpose of this paper is to accelerate wavelet image processing using WM on
modern microelectronic devices.

2 Wavelet Image Processing Using the Direct Implementation
and the Winograd Method

Wavelet filtering using direct implementation (DI) has the form

I2(x) =
∑f −1

i=0
I1(x − i)K(i), (1)

where I1 and I2 are the original and processed 2D images, respectively, x is the row
number of the pixel processed by f -tap wavelet filter K . The wavelet transform extracts
local information about the signal in both frequency and time. High computational
complexity is a significant disadvantage of this transform. The scheme of 1D wavelet
filtering of an image fragment using DI is shown in Fig. 1a, where SI is the original
image fragment, L and H are the low- and high-pass wavelet filters, PA and PD are the
processed image pixels with approximate and detailing image information, respectively.

Image filtering using WM in matrix form [10] can be presented as

Z = AT
(
(GK) �

(
BTS

))
, (2)

where: Z is the processed image fragment of size z × 1; K is the wavelet filter of size
f × 1; S is the original image fragment of size s × 1, where s = z + f − 1; AT ,
G, BT are the transformation matrices of sizes z × s, s × f , s × s, respectively; � is
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the element-wise matrix multiplication. Algorithms for matrices AT , G, BT obtaining
are described in [11]. WM is denoted as F(z, f ). Digital filtering is performed on two
computational channels corresponding to low- and high-frequency wavelet filters during
wavelet image processing. The products of GL and GH are calculated in advance when
using a specific wavelet. The product of S and the transformation matrix BT can be
computed before splitting the calculations into two channels because does not depend
on the wavelet choice. Next, the element-wise multiplications BTS by GL and GH and
the products of the obtained results with the transformationmatrixAT are performed over
two computational channels. The scheme of 1D wavelet filtering of an image fragment
using WM is shown in Fig. 1b, where S is the original image fragment, L and H are
the low- and high-frequency wavelet filters, BT , AT , G are the transformation matrices,
SA and SD are the processed image fragments with approximate and detailing image
information, respectively.

a) b)

Fig. 1. The schemes of 1D wavelet filtering of an image fragment using: a) the direct
implementation; b) the Winograd method

The results of increasing the speed of wavelet image processing using MW are
presented below.

3 Acceleration of Wavelet Image Processing Using the Winograd
Method

The computational complexity in time of wavelet filtering usingWMF(z, f ) depends on
the z and f and on the choice of points s0, s1, ..., sn−2, sn−1. These values determine the
form of transformation matrices AT , G, BT . The set of the Lagrange polynomial points
L = 0, 1,−1, 2,−2, 4,−4, ..., 2l,−2l, 2l+1,−2l+1, ...,∞ was used to construct the
Vandermonde matrix V and matrices AT , G, BT [11]. The cases of using 4-, 6-, and 8-
tap wavelets and processing of the original image fragments with size z = 2, 3, 4, 5, 6, 7
are considered. Table 1 is based on transformation matrices and contains the counting
results of the multiplications and additions number required for wavelet filtering of
images using DI and WM. The table values are obtained as follows.

1. The DI multiplications number is equal to the wavelet filters coefficients number.
2. TheWMmultiplications number is equal to twice the number of the processed image

fragment pixels.
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3. TheDI additions number is equal to the number 2 less than themultiplications number.
4. TheWMbasic additions number is equal to the additions number of nonzero elements

of matrices AT (twice) and BT by rows.
5. The WM complementary additions number is equal to the sum of the matrix element

units in binary notation reduced by 1 for all elements of matrices AT (twice) and BT .
6. The total additions number is equal to the sum of basic and complementary additions.
7. WM receives several pixel values of the processed image in one iteration. Obtaining

pixel brightness value requires the entire iteration as well as obtaining the entire
fragment. Introduce the pixel specific value (PSV) for a correct comparison of the
methods computational complexity. PSV is calculated as a quotient of the required
operations number (multiplications or additions) divided by the number of pixels in
the processed image fragment.

Table 1 shows that the greatest reduction in the specific weight of a pixel by multi-
pliers is observed for 8-tap wavelet using WM F(6, 8). The computational complexity
decreases asymptotically by 72.9% compared to DI. The asymptotic estimate does not
take into account addition operations since their complexity is an order of magnitude less
than multiplication. This assessment is predominantly theoretical and may have a low
correlation with the results obtained in the design of wavelet image processing devices
in practice. Therefore, the unit-gate model (UGM) was used to calculate the operating
time of a microelectronic device. UGM is a method for theoretical evaluation of device
characteristics based on counting the number of the basic logical elements “and”, “or”
[12]. The response time of one such element will be taken as a conventional unit (CU).
Describe the principles of performing calculations in the theoretical estimation of the
wavelet filtering devices delay according to the schemes in Fig. 1a and Fig. 1b for DI
and WM, respectively. All multiplications are performed in parallel when using both
methods.

Matrix multiplication operations can be replaced by shift and addition operations
using the BT and AT matrices. The number of ones in the number binary representation
for each element of the matrices AT and BT was calculated to determine the terms
number in the rows of these matrices (Table 2). The productsGL andGH are performed
a priori. The products BT S onGL andGH are realized by element-wise multiplications.
Multiplications and additions are implemented using a generalized multiplier (GM) and
a multi-operand adder (MOA), respectively [13]. The delays of GM and MOA for k-
bit numbers on computing devices are 6.8 log2 N + 2 log2 k + 4 and 8.8 log2 k + 4,
respectively [14], where N is the largest number of elements in rows of matrices AT

and BT , k is the image color depth and the coefficients bit-width of used wavelet filters.
The calculations are performed for k = 8. The results of the device delay evaluation for
wavelet image processing using DI and WM are presented in Table 2.
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Table 2. UGM-based evaluation results of the device delay for wavelet processing of 8-bit image
using the direct implementation and the Winograd method

Tap Method Fragment pixels The largest
number of
elements in a
matrix row

Processing time according UGM

AT BT For each fragment Pixel specific value

4 Direct 1 – – 55.0 55.0

F(2, 4) 2 4 4 78.6 39.3

F(3, 4) 3 5 4 80.8 26.9

F(4, 4) 4 6 9 90.5 22.6

F(5, 4) 5 7 8 90.9 18.2

6 Direct 1 – – 59.0 59.0

F(2, 6) 2 6 9 90.5 45.3

F(3, 6) 3 7 8 90.9 30.3

F(4, 6) 4 8 18 100.2 25.0

F(5, 6) 5 9 16 100.2 20.0

F(6, 6) 6 10 34 108.6 18.1

F(7, 6) 7 11 32 108.9 15.6

8 Direct 1 – – 61.8 61.8

F(2, 8) 2 8 18 100.2 50.1

F(3, 8) 3 9 16 100.2 33.4

F(4, 8) 4 10 34 108.6 27.2

F(5, 8) 5 11 32 108.9 21.8

F(6, 8) 6 12 58 115.6 19.3

The following conclusions are drawn based on the results in Table 2.

1. WM reduced the device delay of wavelet image processing to 66.9%, 73.6%, and
68.8% for 4-, 6-, and 8-tap wavelets, respectively, compared DI according to UGM.

2. The larger the processed image fragments size z, the less time is spent onwavelet filter-
ing, but the larger the transformationmatrices size, themore difficult their compilation
and WM design on modern microelectronic devices.

3. The greatest reduction in device delay with an increase in the size of the resulting
image fragments processed using WM is achieved at z = 2 and z = 3 according
to UGM. For example, the device delay is reduced by 55.0 − 39.3 = 15.7 CU and
39.3− 26.9 = 12.4 CU at z = 2 and z = 3, respectively, the device delay is reduced
by 4.3 CU and 4.5 CU at z = 4 and z = 5, respectively, for 4-tap wavelet according
to UGM.
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4 Conclusion

The scheme for 1D wavelet image processing using WM has been developed. A com-
parative analysis of the image filtering time with DI was carried out. WM reduced the
computational complexity ofwavelet image processing asymptotically to 72.9%depend-
ing on the size of the filters used and fragments of the processed image. WM reduced
the device delay of wavelet image processing to 66.9%, 73.6%, and 68.8% for 4-, 6-,
and 8-tap wavelets, respectively, according to UGM. The larger the processed image
fragments size z, the less time is spent on wavelet filtering, but the larger the transfor-
mation matrices size, the more difficult their compilation and WM design on modern
microelectronic devices. The obtained results can be used to improve the performance
of wavelet image processing devices for image compression and denoising. WM hard-
ware implementation on FPGAs and ASICs to accelerate wavelet image processing is a
promising direction for further research.
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