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Abstract. The article explores the option of using information theory’s
mathematical tools to model artificial neural networks. The two primary
network architectures for image recognition, classification, and cluster-
ing are the feedforward network and convolutional networks. The study
investigates the use of orthogonal transformations to enhance the effec-
tiveness of neural networks and wavelet transforms in convolutional net-
works. The research proposes practical applications based on the theo-
retical findings.
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1 Introduction

The construction of artificial neural networks (ANN) is based on the organi-
zation and operation principles of their biological equivalents [1]. The research
on ANN has its roots in the theory of brain functioning, which was established
in 1943 by W. McCulloch and W. Pitts. Their work is widely regarded as a
significant contribution to this field [2]. The theory of ANN has undergone sub-
stantial development over the past 80 years, including advances in architecture
and learning methods. However, it is crucial to note that the development of
ANN is primarily intuitive and algorithmic rather than mathematical. Many
ANN architectures have been borrowed from the biological realm [3]. The math-
ematical depiction of ANN received a significant advancement through the works
of Kolmogorov-Arnold [4,5] and Hecht-Nielsen [6]. These works are regarded as
notable milestones in this field.

The use of information theory in the study of ANN has been relatively uncom-
mon. Claude Shannon’s groundbreaking work in information theory [7] estab-
lished the basis for measuring and optimizing information transmission through
communication channels, including the role of coding redundancy in improving
error detection and correction. Since ANNs are essentially systems that process
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information, researchers have applied the mathematical tools of information the-
ory to investigate self-organization models [3].

The authors of this article conducted a series of studies [8–10] to examine the
information processes in feedforward ANNs. These studies have shown potential
benefits, including reduced redundancy, energy consumption, and training time,
when considering the information processing characteristics of neural networks.
The mathematical model of a neuron’s ability to perform various transforma-
tions in the ANN layers enables us to analyze the input information processing
methods from an information theory standpoint. The conventional approach,
known as the McCulloch-Peets model [2], regards the mathematical model of a
neuron as follows:

yk,l = f

(
n∑

i=1

wk,l
i xk,l

i

)
(1)

where k and l are the number of layer and neuron in the layer, respectively, yk,l is
the output of the neuron, xk,l

i signifies the inputs of the neuron, wk,l
i symbolizes

the weights (synapses) of the input signals, and f is the neuron output function,
which can be linear or not. Several linear transformations in information theory
possess a comparable structure, such as orthogonal transformations, convolution,
correlation, filtering in the frequency domain, among others. Previous research
[8–10] addressed problems such as the optimal loss function, non-linear neuron
characteristics, and neural network volume optimization. The goal of this article
is to examine neural networks for image processing from an information theory
perspective and establish general principles for building ANNs to solve specific
problems. The research is entirely theoretical, and the article does not aim to
experimentally validate the authors’ propositions using mathematical tools of
information theory.

2 Materials and Methods

2.1 The Wave Model of Feedforward ANN

According to previous studies [8], the information model of a feedforward ANN
involves a multidimensional input vector Xi =

{
xi
1, x

i
2, . . . , x

i
n

}
, which can be

discretized in time and level values of some input function x (t). This input
value Xi is processed by each neuron in each layer of the ANN according to
Eq. (1), resulting in discrete output values Yi =

{
yi
1, y

i
2, . . . , y

i
m

}
. The Kotelnikov

theorem, also known as the Nyquist criterion, is used to discretize the functions
x(t) and y(t) in the information model of a feedforward ANN. It should be noted
that the set {Xi}i=1,2,...,n is not complete, which means that some input values
may not be included in the training alphabet of the ANN. This is different
from the decoding process in an information channel, where the alphabet of
transmitted discrete messages is finite and predefined, as described by Shenon
[7]. Additionally, the weight values in all neurons of the ANN are assumed to be
randomly assigned before the learning process begins. When training the ANN
with a teacher, the output function y(t) is completely known.
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ANNs are composed of an input layer that can handle Xi, an output layer
with a capacity of Yi, and one or more hidden layers. Depending on the applica-
tion, ANNs can perform different tasks like image classification, clustering, and
function approximation. To better understand the function being studied, the
operation of the network will be analyzed in the application domain that is most
appropriate.

The output layer is a critical component in ANNs for tasks such as classifi-
cation or clustering. Its purpose is to assign input signals to their corresponding
classes or clusters, similar to how a received signal in communication systems
is observed to determine the transmitted signal [12]. However, just like in com-
munication systems, ANNs can also experience interference, which depends on
the set of input information used for classification or clustering rather than
the communication channel. To mathematically describe the ANN, a transition
probability p [x (t) |y (t)] is used, which represents the probability of converting
a received realization into the correct class or cluster. A model using additive
white Gaussian noise, similar to communication theory, can be applied to the
data [13]. This model is suitable when there is a large number of data in the
set, such as in the MNIST database [14], which contains 60,000 records. The
transition probability decreases exponentially with the square of the Euclidean
distance d2 (x, y) between the obtained value of Xi and the ideal representation
of class Yi given by:

p [x (t) |y (t)] = k exp
(

− 1
N0

d2 (x, y)
)

, (2)

where k is a coefficient independent of x(t) and y(t), N0 is the spectral density
of noise, and

d2 (x, y) =
∫ T

0

[x (t) − y (t)]2 dt. (3)

In some problems involving approximation and prediction, it is assumed that
the signals x(t) and y(t) have the same period, but in the specific problem classes,
they are treated as separate. For instance, in image classification problems like
those found in the MNIST database, the input vector comprises 784 pixel val-
ues, and there are ten image classes. To solve these problems, it’s necessary to
establish a clear mapping Yi ↔ X̃i, where an observation Xi is compared to
an “ideal representation” of class X̃i, and if they are similar, it is inferred that
observation Xi belongs to class Yi. This process is expressed mathematically in
the following equation:

(Xi ∈ Yi) = min
j

d2
(
Xi, X̃j

)
. (4)

Opening the parentheses in Eq. (3) and replacing the representation y with
x̃ (t), we obtain:

d2 (x, x̃) =
∫ T

0

x(t)2dt−2
∫ T

0

x (t) x̃ (t) dt+
∫ T

0

x̃(t)2dt = ‖x‖2−2z+‖x̃‖2 . (5)
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The Eq. (5) involves the energy of the input realization and the cluster rep-
resentation x̃ denoted by |x|2 and |x̃|2, respectively. These values are constants
when the input signal is normalized. The term z in the equation represents the
correlation between the input realization x and the cluster representation x̃ and
can be calculated as follows:

z =
∫ T

0

x (t) x̃ (t) dt. (6)

This quantity is often referred to as the mutual energy of the two signals.
Taking Eqs. (5) and (6) into account, we can represent Eq. (4) as follows:

(Xi ∈ Yi) = max
j

zi
j (7)

The correlation between input signal Xi and the j-th cluster representation
X̃j is denoted by zi

j . To prevent signal distortion, it is necessary to normalize
the cluster representations as shown in Eq. (5)). When dealing with input signals
of different lengths, the process is referred to as volume packing, where the aver-
age energy Ē = 1

n

∑
i = 1nEi = const is constant. If all input signals have the

same length and their endpoints are on a spherical surface, it is called spherical
packing.

Let’s revisit Eq. (1), which forms the foundation of all neuron operations. If
the weights of the output layer, denoted by W k,l, are randomly assigned, then the
vector W k,l acts as a multiplying interference, causing an increase in the packing
volume. However, during the learning process, the weights become meaningful
values determined by Eq. (7) by computing the error function and converting
it into the gradient vector W k,l. This operation is called “matched filtering” in
information theory, and as the ANN’s output layer is optimized during learning,
it takes on the form of a matched filter. According to information theory, the
condition for achieving the maximum response from a device with an impulse
response is given by [15]:

h (t) = kx(−t). (8)

n order to determine the weights of a neuron for a particular class Yi, it
is necessary for them to have a Hilbert-conjugate relationship with the ideal
representation of class X̃i. This implies that if the weights are set in each neuron
of the output layer based on expression (8) for each class and the function maxi Yi

is used as the output layer’s function, a matched filter with a dimension of m can
be obtained. However, there is an issue with this proposed solution. However,
there is a certain issue with this proposed solution. The correlation integral (6)
can be represented in both the time and frequency formats:

zi =
∫

x (t) x̃i (t − τ) dτ = X (jω) X̃i (jω) . (9)

Equation (1) is not suitable for calculating the correlation function in the
time domain. This is because if the signals X and X̃ are decomposed into an
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orthogonal basis, such as the Fourier basis, all products with non-coinciding
indices are set to zero, resulting in expression (1). However, if the orthogonality
condition is not met, using Eq. (1) will produce correlation values (9) that contain
errors. This can lead to an increase in classification errors and results that deviate
from the expected outcomes.

Equation (9) indicates that the most favorable outcome could be achieved
if the inputs to the output layer are orthogonal vectors. To accomplish this, a
group of orthogonal functions, denoted as {un(t)} = {u1(t), u2(t), . . . , un(t)},
is utilized. These functions fulfill the criteria (10) for each pair, and they are
utilized to determine the conversion coefficients.∫ T

0

ui (t) uj (t) dt =
{

a, ∀i = j
0, ∀i �= j

(10)

The conversion coefficients are not difficult to determine as

cj =
1
a

∫ T

0

x (t)uj (t) dt, j = 1, 2, . . . ,m. (11)

The original Eq. (11) was used to transform continuous images represented by
x(t) to the discrete space of clusters. In the context of digital image processing,
the integral in Eq. (11) was substituted with a sum.

cj =
1
a

n−1∑
k=0

xkuk
j . (12)

The article by Ahmed et al. [16] provides an extensive discussion of vari-
ous types of orthogonal transformations that can be used for pattern recogni-
tion. These transformations are linear and establish a one-to-one correspondence
between the input vector X and the output vector of coefficients C, resulting
in an n-dimensional output vector. Comparing Eqs. (12) and (1), it becomes
evident that they are identical. In other words, if we substitute weights wk

j for
uk

j , the ANN layer can represent an orthogonal transformation, and the output
of the layer will have values {cj}. By representing vector X̃ as an orthogonal
transformation C̃x, we obtain expression (9) in the following form:

Zi =
n−1∑
j=0

XiX̃i =
n−1∑
j=0

xj x̃j . (13)

Therefore, using an orthogonal transformation allows for the implementation of
a feedforward ANN-based pattern recognition system.

In the study of the wave model of ANN [8–10], it was noted that both the
standard and wave models had similar classification errors during the learning
process, but they took different amounts of time to achieve this. This is because
the standard learning algorithm, which primarily relies on the gradient method
and error backpropagation, modifies the weights from the last layer to the first
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(error backpropagation). Consequently, the decomposition functions in the first
layer are selected based on the classification errors in the last layer. The key
characteristic of the gradient used in ANN training is that it determines the
direction in which a function f(x) increases the most.

∇f (x) =
df

dx1
e1 +

df

dx2
e2 + . . . +

df

dxn
en. (14)

The error function is represented by the vector E = (e1, e2, . . . , en), and
the direction in which the function f(x) does not increase is indicated by the
opposite of the gradient. Using this information, the algorithm calculates the
correction vector for the weights of the last layer and the previous layer based
on the respective errors. The algorithm selects the decomposition functions of
the first hidden layer, which become complex due to the nonlinearity of the
neuron transfer function. This complexity was predicted by V.I. Arnold in [5].

The above examples indicate that using orthogonal transformations in artifi-
cial neural networks can enhance information processing. Such transformations
allow for operations like correlation and convolution to be performed in appro-
priate planes, and the multiplication of elements with non-coincident indices
in different planes is automatically excluded due to the orthogonal properties.
Consequently, the use of orthogonal transformations can greatly reduce the com-
putational burden required for image processing tasks in neural networks.

2.2 Wave Model of Convolutional ANN

Classification or clustering tasks are better suited for convolutional neural net-
works (CNN) than feedforward neural networks. CNN were proposed by Ian
Lekun in 1988 and are known for their efficiency. They consist of one or more
convolutional layers that use a small-sized kernel for the convolution operation.
This operation reduces the size of the image, which is particularly beneficial for
color images. A 3-dimensional kernel is used in this case to produce a single
image on the layer output instead of 3. Typically, the convolutional layer is the
first layer in the ANN structure and may be followed by pooling (subsampling)
operations. However, we will not discuss this aspect in detail here. The output
of the convolution operation is a feature map that can be classified using the
last layer of the feedforward ANN.

Since the convolution integral is similar to the correlation integral (9), the
advantages of using orthogonal transformations discussed in the previous section
also apply to the convolution operation. Therefore, using an orthogonal transfor-
mation to represent the input signal and kernel can improve the efficiency and
simplicity of the convolution calculation. Consequently, it is reasonable to use
a layer that performs orthogonal transformations as the first layer in a typical
CNN.

Linear transformations are commonly used in signal processing for informa-
tion theory. Among them, subband encoding, which is a linear transformation,
has several advantageous properties that are relevant to ANN theory. There are
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two types of encoders based on linear transformation: transformation encoders
and subband encoders [17]. The Fourier transform, which decomposes a signal
into sinusoidal components, is an example of the first type, while the discrete
cosine transform (DCT) and the Karhunen-Loève theorem are examples of the
second type. These transformations are computed by convolving a finite-length
signal with a set of basis functions, resulting in a set of coefficients that can be
further processed. Most of these transformations are applied to non-overlapping
signal blocks, and efficient computational algorithms have been developed for
many of them [17].

Subband encoding applies several bandpass filters to the signal and then
thins out the result by decimation. Each resulting signal carries information
about a specific spectral component of the original signal on a particular spatial
or temporal scale. There are several crucial properties to consider when encoding
images using this method [17], including:

– scale and orientation;
– spatial localization;
– orthogonality;
– fast calculation algorithms.

In subband coding, orthogonality is not usually emphasized in communica-
tion theory. Instead, orthogonal transformations are used to decorrelate signal
samples. While Fourier bases have good frequency localization, they lack spatial
localization, which is not a problem when encoding a signal described by a Gaus-
sian process. However, certain image features cannot be accurately represented
by this model and require bases that are spatially localized. Filter blocks that
are local and in space provide better decorrelation on average. The correlation
between pixels decreases exponentially with distance, as shown by the equation:

Rl = e−ω0|δ|, (15)

where δ is the distance variable. The corresponding spectral power density is

Φl (ω) =
2ω0

ω2
0 + (2πω)2

. (16)

To obtain smooth segments of the spectrum, it is necessary to accurately
divide the spectrum at lower frequencies and approximately divide it at higher
frequencies, as revealed by the Eq. (16). This process will generate subbands
that exhibit white noise characteristics, with the variance directly proportional
to the power spectrum within that range.

The Fourier transform is known to have a drawback in that it necessitates
all of the time-related data of a signal in order to produce a single conversion
coefficient. This leads to the time peak of the signal spreading throughout the
frequency domain of the Fourier transform. To address this issue, the windowed
Fourier transform is frequently utilized.

Φx (ω, b) =
∫

x (t) e−jωtw (t − b) dt. (17)
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In this particular case, the transformation characterization involves a time
window of the form w(t − b). As a result, the transformation becomes time-
dependent, generating a time-frequency matrix of the signal as described in [18].
By selecting the Gaussian function as the window, the inverse transformation
can also be conducted using the same function.

The fixed size of the window in Eq. (17) is a major drawback, as it can-
not be adapted to suit the features of the image. A wavelet transform can be
used instead of the Fourier transform to overcome this limitation. The wavelet
transform has the form:

ψa,b (t) = a− 1
2 ψ

(
t − b

a

)
. (18)

It is evident that the basic wavelet functions are real and located at different
positions in proximity to the x-axis. These wavelets are defined for a brief time
interval, which is shorter than the signal period. The fundamental functions
can be seen as rescaled and time-shifted versions of one another, according to
Eq. (18), where b and a denote the time position and scaling factor, respectively.
The direct wavelet transform can be mathematically formulated as:

Φx (a, b) = a− 1
2

∫
x (t) ψ

(
t − b

a

)
dt. (19)

The convolutional layer of a CNN is responsible for computing the convolu-
tion of the input signal block X with a core J of size s × s, i.e.

Ci,j =
s−1∑
k=0

s−1∑
l=0

Xi+k,j+l Jk,l. (20)

Through the conversion of Eq. (19) for discretized signals and functions
and comparing it with (20), the fundamental wavelet transform function can
be depicted as the essential component of a convolutional layer. This implies
that utilizing multiple fundamental functions is equivalent to applying several
filters with distinct kernel sizes. Consequently, it is feasible to choose adapt-
able parameters for the window that accommodate the signal, enabling greater
flexibility in the convolutional layer of the CNN.

The use of wavelet transforms in ANNs is not a novel concept, as it has
been investigated in prior research [20]. Nonetheless, a more recent approach
entails using the wavelet transform as the foundation of the convolutional layer
in the initial layer of a feedforward CNN, as presented in [21]. This method is
more attractive since the convolutional layer can function with several kernels
simultaneously, making it possible to obtain multiple approximations within a
single layer.

In communication theory, a signal can be expressed as a series of successive
approximations, which can be advantageous for signal analysis. For instance, in
image transmission, an initial rough version of an image can be transmitted and
subsequently refined in sequence, facilitating rapid viewing of numerous images
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from a database. A similar method can be employed for image recognition. If
an image cannot be classified into a specific category based on the coarsest
approximation, there is no need to compare it in a more precise approximation.
This technique is referred to as multiscale analysis.

Multiplescale analysis involves describing the space L2(R) using hierarchical
nested subspaces Vm, that do not overlap, and their union results in the limit
L2(R), i.e. . . .∪V2∪V1∪V0∪V−1V−2∪ . . .,

⋂
m∈Z Vm = {0},

⋃
m∈Z Vm = L2(R).

These subspaces have the property that any function f(x) belonging to Vm will
have a compressed version that belongs to Vm−1, i.e. f(x) ∈ Vm ⇔ f(2x) ∈
Vm−1. Additionally, there exists a function ϕ(x) ∈ V0, whose shifted versions
ϕ0,m (x) = ϕ(x − m) form an orthonormalized basis of space V0. The functions
ϕn,m (x) = 2−m

2 ϕ(2−mx−n) form an orthonormal basis of space Vm. These basis
functions are called scaling functions as they create scaled versions of functions
in L2(R) [17]. Thus, a function f(x) in L2 (R) can be represented by its set of
successive approximations fm(x) in Vm.

Therefore, it is possible to perform image analysis at various resolution or
scale levels by selecting the value of m, which is known as the scale factor or
level of analysis. A higher value of m results in a coarser approximation of the
image, lacking in details, but allowing for identification of broader generaliza-
tions. Decreasing the scaling coefficient enables identification of finer details. In
essence, fm(x) is an orthogonal projection of f(x) onto Vm [17], i.e.

fm (x) =
∑

n

〈ϕm,n (x) , f (x)〉 ϕm,n (x) =
∑

n

cm,nϕm,n (x) . (21)

Without delving into the specifics of wavelet analysis at present, it is worth
mentioning that any function f(x) within the space L2(R) can be expressed as
a combination of orthogonal projections. When analyzing the function up to a
specific scale factor m, the function f(x) can be represented as the addition of its
crude approximation and various details. The Haar wavelet family, for example,
offers such functionalities [18].

When employing subband transforms, the potential for constructing filter
banks must be taken into account, which involve filtering followed by down-
sampling [17,19]. In a two-band filter bank, the low-frequency component pro-
vides a crude estimation of the signal without capturing intricate details, while
the high-frequency component contains finer details. Depending on the partic-
ular processing objective, an ANN can utilize the low-frequency approximation
to emphasize broad and smooth features, or the high-frequency component to
emphasize specific details.

Utilizing wavelets as the kernel of a CNN enables the extraction and enhance-
ment of the necessary image features. While this approach is not new in infor-
mation processing and transmission theory, it is being utilized to establish an
information model for CNNs. This technique not only advances our comprehen-
sion of the process of feature map generation but also simplifies the development
of a lifting scheme for information processing in a multi-layer CNN.
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3 Results

Using orthogonal transformations can be advantageous when working with
images, irrespective of the ANN architecture employed. For instance, in feed-
forward ANNs, the use of orthogonal transformations can improve the efficiency
of the final layer where image classification or clustering is performed. Orthogo-
nalizing the data can enhance the accuracy of computing the correlation integral
for the classified signal and ideal class representation.

Convolutional neural networks (CNNs) employ feedforward networks in their
last layer, similar to traditional feedforward ANNs, which is essential for feature
map classification. To enhance the efficiency of the last layer in CNNs, orthogonal
transformations are utilized, as in feedforward ANNs. However, when analyzing
image details, the Fourier transform (or similar ones) does not offer significant
benefits. Therefore, wavelet transforms are more promising as they have localiza-
tion in both frequency and time, unlike the window Fourier transform. Wavelets
can also function as orthogonal transformations and enable the creation of filter
banks for general and detailed image analysis based on specific criteria. This
approach not only allows for general image classification, as in the case of the
MNIST database, but also enables complex image classification based on specific
details.

To confirm the effectiveness of the approach described above, experimental
validation is necessary. The next step is to explore the wavelet transforms cur-
rently available for CNNs and their implementation in convolutional layers. It
is essential to ensure that the feature maps are sufficiently detailed to enable
efficient processing in subsequent layers.
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