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Abstract. Visual scene understanding is a fundamental problem and
a complex task in computer vision, which not only requires identifying
objects in isolation, but also the ability to understand and recognize the
relationships between them. These relationships can be abstracted into
a semantic representation of < subject, predicate, object >, resulting in
a scene graph that captures much of the visual information and seman-
tics in the scene. In recent years, scene graph generation with message-
passing mechanism [1] has been an active area of research, as it has the
potential to capture global dependencies between objects and their rela-
tionships. Inspired by these developments, this paper introduces a novel
scene graph generation approach based on spatial relationships. Our app-
roach performs a classification of the spatial relationship between each
pair of objects to generate the initial scene graph. Then, based on the
semantic features, the model detects action relationships in the scene
and updates the scene graph by applying the message-passing mecha-
nism. We conclude this paper by comparing the proposed method with
the state-of-the-art approaches [1–7] and demonstrate the effectiveness
of our method over the Visual Genome [1] dataset.

Keywords: Scene understanding · scene graph · visual relationships
detection · spatial relationships · message-passing

1 Introduction

A scene graph is a structured representation of image content that encodes spa-
tial and semantic information of each object and the relationship between each
pair of them. Recently, inferring such a graph has gained more attention since
it provides a deep understanding of the scene and improves various vision tasks
such as Image Retrieval [8,9], Image Generation [10,11], Image/Video Caption-
ing [12,13], and Visual Question Answering [14,15].

The major challenge of generating scene graphs is reasoning about rela-
tionships. Earlier works [16,17] aimed to produce a local prediction of object
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relationships in order to simplify the process of generating visually-grounded scene
graphs. The approach was to independently predict relationships between pairs
of objects without considering the scene’s context. In contrast, co-reasoning with
contextual information could often resolve the ambiguity due to local predictions
in isolation [18].

Message passing between individual objects or triplet is valuable for visual
relationship detection [18]. Since objects with visual relationships are semanti-
cally related to each other, and relationships that share objects partially also
have semantic relations, message passing between related elements is beneficial
as it can improve the quality of visual relationship detection [2]. However, this
mechanism is expensive and requires much computation time due to the numer-
ous features to handle [19]. Moreover, visual appearance of the same relation
varies significantly from one scene to another [20], making the features extrac-
tion phase more challenging. Thus, many methods focus on semantic features
[21], trying to compensate for the lack of visual features.

To address these challenges and overcome the obstacle of variability in visual
appearance, this work proposes a novel message-passing approach based on pair-
wise semantic spatial relationships. The concept is to replicate the human capac-
ity to predict the relations between objects in a scene using their pairwise seman-
tic spatial relationships.

In this paper, we first review past works related to message-passing scene graph
generation and spatial relationships classification. Then, we introduce the pro-
posed method in Sect. 3. In Sect. 4, the experimental results are shown and dis-
cussed. Finally, Sect. 5 concludes the paper by summarizing the obtained results.

2 Related Work

To contextualize our approach and evaluate its performance against the existing
methods, we review the related work on message-passing scene graph generation
and spatial relationships applications.

2.1 Message Passing

There are three levels to understanding and perceiving the context [18]: first, the
interdependence between the different phrase components in a triplet is funda-
mental, the prediction of one component, such as the subject, predicate, or object,
depends on the others. Second, triplets are not isolated, objects with relations
are semantically dependent, and the relations that partly share object(s) are also
semantically linked. Third, Visual relationships are specific to the scene, and
global view features help predict relationships. Hence, message passing between
objects and triplets is significant in detecting visual relationships.

The literature divides message-passing technique into two types:

Local Message Passing Within Triplet. Li et al. [22] proposed a phrase-
guided visual relationship detection framework that first extracts three feature
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branches for each triplet proposal (subject, predicate, and object). Then, it uses
a phrase-guided message-passing structure to exchange information between the
three branches. Dai et al. [23] proposed an efficient framework known as the Deep
Relational Network (DR-Net). By using multiple units of inference that capture
the statistical relationships between triplet components, the DR-Net produces
the posterior probabilities of the subject, object, and relationship. Zoom-Net [2]
is another interesting model. It uses a Spatiality-Context-Appearance Module
consisting of 2 spatiality-aware feature alignment cells to pass messages between
the different triplet components. This type of message passing ignores the global
context, whereas joint reasoning using contextual information can often resolve
ambiguities caused by isolated local predictions [18].

Global Message Passing Across All Elements. Li et al. [3] developed a
Multi-level Scene Description Network (MSDN) in which the passage of the mes-
sage is guided by a dynamic graph constructed from objects and caption region
proposals. F-Net, proposed by Li et al. [24], clusters the fully-connected graph
into several subgraphs. Next, it uses a Spatial-weight Message Passing structure
for passing messages between subgraph and object features. MSDN and F-Net
considered a subgraph as a whole when sending and receiving messages. Liao et
al. [25] proposed semantics-guided graph relation neural network (SGRNN). In
their approach, the target and the source must be an object or a predicate within
a subgraph. When considering all other objects as carriers of global contextual
information for each object, they will pass messages to each other throughout a
fully-connected graph. However, propagating many types of features and infer-
encing on a densely connected graph is very expensive and time-consuming to
train [19].

2.2 Spatial Pairwise Relationships

Apprehending the spatial relationships between objects and how they are posi-
tioned and related to one another is imperative for a deep understanding of the
scene. The application of spatial relation detection is useful in visually situated
dialog and Human-robot interaction. For example, when instructing a robot in
a household environment to accomplish a specific task [26] or when self-driving
cars are designed to provide a textual explanation for their actions [27]. Like-
wise, the explicit use of spatial prepositions is also helpful in automatic image
captioning [28].

For the proposed approach, we decide to stimulate the human capacity to
infer much information by knowing the spatial relations between the different
objects in the scene to detect and infer activities and action relations between
image entities.

In this work, we propose a novel approach for scene graph generation based
on the global message-passing mechanism. By incorporating semantic spatial
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relationships, our approach aims to overcome the challenge of variability in visual
appearance and make more robust predictions about the relationships between
objects in a scene.

3 Proposed Method

The proposed approach for scene graph generation is divided into pairwise spa-
tial relationships classifications and scene graph update, as Fig. 1 shows. Our
model tackles the visually-grounded scene graph generation from an image by
generating a graph with a spatial relationship between each object pair. Then,
recognize the action relationship and update the scene graph by applying the
message-passing mechanism using only semantic features (objects and spatial
relations labels). To achieve this, we use two neural network architectures that
focus on each task independently and stack both architectures together once
they have been trained. We use ground truth objects for object detection and
recognition to evaluate the approach appropriately.

Fig. 1. An overview pipeline of our image scene graph generation model.

Before delving into the proposed model, we describe the scene graph struc-
ture. Formally, a scene graph is a structured representation of a scene’s content.
It comprises the objects’ labels with bounding box coordinates and the relation-
ship between each object pair.

A scene graph is defined as a 3-tuple set G = {B,O,R}:
B = {b1, b2, ..., bn} is the bounding box set, bi ∈ R4 corresponds to the

bounding box of the ith region.
O = {o1, o2, ..., on} object’s label set, oi corresponds to the label class of the

region bi.
R = {r1→2, r1→3, ..., rn→n−1} relationship triplet set, where ri→j is a triplet

of the object (oj , bj), the subject (oi, bi), and the relationship class ai→j .
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3.1 Pairwise Spatial Relationships Classifications

Features Extraction. This module aims to get the objects’ appearance,
semantic cues, and relative spatial locations between pairwise objects. This app-
roach is inspired by [29] to extract three types of features to classify the semantic
spatial relationship between each object’s pair in the scene.

Geometric Features: we exploit the spatial contextual information from the sub-
ject, object, union, and intersection boxes. For each box (x1, y1, x2, y2), a 9-
dimensional vector is calculated as (1) shows:
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2 , y1+y2

2 ) is the box’s centroid, (w, h) = (x2 − x1, y2 − y1)
denotes the width and the height of the box, and (W,H) the width and the
height of the image. For an empty intersection box, a zero vector represents the
intersection box’s geometric features. Then, all four vectors are concatenated to
compose the geometric features.

Appearance Features: for the subject bounding box region, object bounding box
region, union box, and intersection box, we use the FC7 layer from VGG16 [30]
pre-trained on ImageNet [31] to extract the appearance feature vector (4096-d).
For an empty intersection box, a zero vector represents the intersection box’s
appreance features. Then we concatenate all four vectors to compose the appear-
ance features of the spatial relationship.

Semantic Features: glove [32] is used as a word embedding engine to encode
objects’ label names for the subject and the object. For phrase names, the mean
vector is calculated. By concatenating the two encoded name features, the seman-
tic relation features are composed.

Finally, the relation features are obtained by concatenating geometric,
appearance, and semantic features.

Spatial Relationship Classification. After concatenating the extracted fea-
tures described in 3.1 for each object’s pair, we feed them to a multilayer per-
ceptron neural network architecture (MLP) to classify the spatial relationships.
Then, the initial scene graph with only pairwise spatial relationships is gener-
ated.

3.2 Scene Graph Update

We aim to update the scene graph relationships generated in 3.1 by applying
the message-passing mechanism to have more meaningful semantic information
with activities and action relationships.



386 A. Amirat et al.

Action Relationship Recognition. This step aimes to update edge represen-
tation while keeping node representations constant by using a variant of GGNN
[33] to propagate information among edges. For each edge as→o, three steps, as
Fig. 2 shows, are needed: pass preparation, information aggregation, and edge
update.

Pass Preparation: for each node from the subject node (os, bs), and the object
(oo, bo), its set of neighbors (oi, bj) is selected .

Information Aggregation: for each node from subject node (os, bs) and object
node (oo, bo), information is summarized by computing incoming information
from its neighbors as shown in (2) :

mk = ok +
∑

ai→k · oi −
∑

ak→j · oj (2)

Edge Update: after information aggregation, we concatenate ms and mo. Then
it is passed with the current state aS→O to Gated Recurrent Unit (GRU) to
update the edge label. Finally, a scene graph with, in addition, pairwise action
relationships is obtained.

Fig. 2. Relation update process. After computing the information (Informations Aggre-
gation) from the selected neighbors (Information Preparation), the state of the edge
(on) is updated to (riding) by passing both the information computed and the current
state (on) to the GRU (Edge Update).

4 Test and Results

This section presents a details evaluation of the proposed model. First, an eval-
uation of the spatial relationship classifier is processed. Then, we pass to the
model of scene graph generation. Tests are conducted on a personal computer
with an i7 processor, 16 GB memory, and a 2 GB Nvidia GPU.
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4.1 Pairwise Spatial Relationships Classifications

Dataset. We conduct the experiments and evaluate the Spatial relationships
classifier on the SpatialSense dataset [34], a collected benchmark for spatial
relation recognition that contains 17498 spatial relations on 11596 images. All
images are collected from Flickr and NYU [37]. The annotated spatial relation
in the dataset covers 3679 unique object classes and 9 unique predicates (i.e.,
above, behind, in, in front of, next to, on, to the left of, to the right of, under).
The SpatialSense dataset provides positive and negative examples of spatial
relationships. To train the spatial relationship classifier, only positive triplets
are considered. Following the official split in [34], we take 65% of relations for
training, 15% for validation, and 20% for testing.

Evaluation Metric. The proposed classifier’s ability to classify pairwise spatial
relationships can be evaluated using classification accuracy [35] as a reliable and
fair measure.

Compared with State-of-the-art Methods. We compare our classifier with
various recent methods.

Table 1. Classification accuracy comparison on the test split of the SpatialSense
dataset (All Values Expressed as Percentages). IFO = in front of, TTFO = to the
left of, TTRO = to the right of. Bold font represents the highest accuracy; underline
means the second highest.

Model overall above behind in IFO next to on TTFO TTRO under

Vip-CNN [22] 67.2 55.6 68.1 66.0 62.7 62.3 72.5 69.7 73.3 66.6

Peyre et al. [36] 67.5 59.0 67.1 69.8 57.8 65.7 75.6 56.7 69.2 66.2

PPR-FCN [38] 66.3 61.5 65.2 70.4 64.2 53.4 72.0 69.1 71.9 59.3

DRNet [23] 71.3 62.8 72.2 69.8 66.9 59.9 79.4 63.5 66.4 75.9

VTranE [30] 69.4 61.5 69.7 67.8 64.9 57.7 76.2 64.6 68.5 76.9

Language-only [34] 60.1 60.4 62.0 54.4 55.1 56.8 63.2 51.7 54.1 70.3

2D-only [34] 68.8 58.0 66.9 70.7 63.1 62.0 76.0 66.3 74.7 67.9

Language+2D [34] 71.1 61.1 67.5 69.2 66.2 64.8 77.9 69.7 74.7 77.2

DSRR [40] 72.7 61.5 71.3 71.3 67.8 65.1 79.8 69.4 75.3 78.6

The proposed approach 71.6 62.1 67.0 70.2 66.6 64.5 79.9 65.9 73.2 72.6

Table 1 shows the performance of different approaches on the SpatialSense
dataset. Vip-CNN [22], Peyre et al. [36], PPR-FCN [38], DRNet [23], and
VtransE [39], initially designed for visual relationship detection, are based only
on visual appearance. Language-only,2D-only, and Language+2D [34], designed
for spatial relation recognition, are based on 2D/Language features. Our clas-
sifier takes into consideration the three main types of features: appearance fea-
tures, semantic features, and geometric features. Overall, the results of the accu-
racy score indicate that our proposed classifier outperforms almost all existing
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Fig. 3. Classification examples of spatial relationships by the proposed classifier on the
SpatialSense dataset: a, b, c, d, and e are correct classifications, and in contract f is
a misclassification. We believe that with depth information, our classifier could predict
the proper label in front of instead of under for the misclassification f.

approaches in terms of overall accuracy, except DSRR (by only 1.1%) [40], which
exploits depth information with an additional depth estimation model. With
the additional depth, we expect our classifier to gain another performance boost
and correctly classify complex cases that were previously misclassified, as Fig. 3
shows.

4.2 Scene Graph Generation

After training and testing our classifier for spatial relationships between pairs of
objects, this sub-section evaluates the whole scene graph generation process.

Dataset. To evaluate the proposed approach, we use VG150 [1]. It is a widely
adopted subset of Visual Genome for evaluating scene graph generation tasks.
It contains 108073 images and covers 150 object categories and 50 predicate
categories. We follow the same split in [1] for evaluating our approach.

Evaluation Metric. We aim to generate the scene graph for images. The key
points are relationship classification and graph generation, while we no longer
evaluate the accuracy of object detection or recognition. We evaluate the model
performance from the aspect of predicate classification (PredCls) as we use both
ground truth boxes and object labels directly. We use R@50 and R@100 to eval-
uate the performance. R@K computes the fraction of times a true relationship
is predicted in an image’s top k confident relation predictions.
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Compared with State-of-the-art Methods. We report predicate classifica-
tion on Visual Genome [1] in Table 2. This experiment is meant to serve as a
benchmark against existing message-passing scene graph approaches.

Table 2. Evaluation results of the predicate classification task on the visual Genome
dataset [1].

Model R@50 R@100

MP [1] 41.8 55.5

Zoom-Net [2] 67.25 77.51

MSDN [3] 67.03 71.01

AGGNN [4] 65.1 67.2

ReRN* [5] 62.1 63.7

Dornadula et al. [6] 56.65 57.21

SGRN [7] 64.2 66.4

Proposed Approach 73.09 78.1

The experiments prove the effectiveness of our proposed method. We outper-
form existing models that use Visual Genome supervision for PredCls by 6,06
recall@50 and 0.51 recall@100. Message Passing [1], and Zoom-Net [2] are local
message-passing-based methods. In contrast, the rest are all global message-
passing-based methods.

Visual features for the same relation vary greatly from scene to scene, making
relation predicting more challenging, especially for rare and unseen configura-
tions and relations. For example, the visual features that represent the “riding”
relation between a person and a horse can be very different from one image
to another, depending on the pose, the background, the lighting condition, etc.
In contrast, considering the semantic pairwise spatial relationships between the
objects in the scene, we can infer from “the man on the horse and horse on the
grass” that the action relation between man and horse is “riding”. That is why
focusing on semantic features like semantic pairwise spatial relationships can
improve predicate classification tasks.

5 Conclusion

This paper investigates a novel message-passing scene graph generation approach
based on semantic spatial relationships. First, we classify the spatial relationship
between each pair of objects in the scene by extracting geometric, appearance,
and semantic features and then passing them to an MLP architecture. After, we
apply the message-passing mechanism as a second step to detect action relation-
ships and update the scene graph.
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Experimental results demonstrate its efficiency and competitiveness com-
pared to the state-of-the-art approaches with 73.09 for R@50 and 78.1 for R@100.
However, there are several prospective paths for improving this approach fur-
ther. Firstly, incorporating additional depth information into the spatial relation-
ship classifier can improve the accuracy and robustness of the model. Moreover,
training the spatial relationships classifier on datasets with other spatial rela-
tionship classes, such as between, near, and far can be useful in scenes with more
diverse spatial configurations. Furthermore, extending the proposed method to
work with multi-spatial relations instead of single-spatial relations can boost our
model, as it can capture more nuanced relationships between objects.

By incorporating these improvements, the proposed method can be enhanced
and upgraded to achieve even better performance.

These prospective paths can be explored in future research and can contribute
to advancing the field of scene understanding.
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