
The Importance of the Current Input
in Sequence Modeling

Christian Oliva(B) and Luis F. Lago-Fernández

Universidad Autónoma de Madrid, Madrid 28049, Spain
{christian.oliva,luis.lago}@uam.es

Abstract. The last advances in sequence modeling are mainly based on
deep learning approaches. The current state of the art involves the use
of variations of the standard LSTM architecture, combined with several
adjustments that improve the final prediction rates of the trained neural
networks. However, in some cases, these adaptations might be too much
tuned to the particular problems being addressed. In this article, we show
that a very simple idea, to add a direct connection between the input
and the output, skipping the recurrent module, leads to an increase of
the prediction accuracy in sequence modeling problems related to natu-
ral language processing. Experiments carried out on different problems
show that the addition of this kind of connection to a recurrent network
always improves the results, regardless of the architecture and training-
specific details. When this idea is introduced into the models that lead
the field, the resulting networks achieve a new state-of-the-art perplexity
in language modeling problems.

1 Introduction

Deep learning models constitute the current state of the art in most artificial
intelligence applications, from computer vision to robotics or medicine. When
dealing with sequential data, Recurrent Neural Networks (RNNs), specially those
architectures with gating mechanisms such as the LSTM [7], the GRU [3] and
other variants, are usually the default choice. One of the most interesting applica-
tions of RNNs is related to the field of Natural Language Processing, where most
tasks, such as machine translation, document summarization or language mod-
eling, involve the manipulation of sequences of textual data. Of these, language
modeling has been extensively used to test different innovations in recurrent
architectures, mainly due to the ease of obtaining very large datasets that can
be used to train neural networks with millions of parameters.

Sequence modeling consists of predicting the next element in a sequence given
the past history. In language modeling, the sequence is a text, and hence the task
is to predict the next word or the next character. In this context, some of the
best performing architectures include the Mogrifier LSTM [12] and different vari-
ations of the Averaged SGD Weight-Drop (AWD) LSTM [13], usually combined
with dynamic evaluation and Mixture of Sofmaxes (MoS) [6,20]. These models

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
I. Maglogiannis et al. (Eds.): AIAI 2023, IFIP AICT 675, pp. 161–172, 2023.
https://doi.org/10.1007/978-3-031-34111-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34111-3_15&domain=pdf
http://orcid.org/0000-0002-8785-6252
http://orcid.org/0000-0001-8639-8731
https://doi.org/10.1007/978-3-031-34111-3_15


162 C. Oliva and L. F. Lago-Fernández

obtain the best state-of-the-art performance with moderate size datasets, such
as the Penn Treebank [15] or the Wikitext-2 [14] corpora, when no additional
data are used during training. When larger datasets are considered, or when
external data are used to pre-train the networks, attention-based architectures
usually outperform other models [2,18].

In this work we use moderate-scale language modeling datasets to explore the
effect of a mechanism recently proposed by [16], when combined with different
LSTM-based models in the language modeling context. The idea consists of
modifying a recurrent architecture by introducing a direct connection between
the input and the output of the recurrent module. This has been shown to
improve both the model’s generalization results and its readability in simple
tasks related to the recognition of regular languages.

In a standard RNN, the output depends only on the network’s hidden state,
ht, which in turn depends on both the input, xt, and the recent past, ht−1.
But there is no explicit dependence of the network’s output on its input. In
some cases this could be a shortcoming, since the transformation of xt needed to
compute the network’s internal state is not necessarily the most appropriate to
compute the output. However, an explicit dependence of the output on xt can
be forced by adding a dual connection that skips the recurrent layers. We claim
that this strategy may be of general application in RNN models.

To test our hypothesis we perform a thorough comparison of several state-
of-the-art RNN architectures, with and without the dual connection, on the
Penn Treebank (PTB) and the Wikitext-2 (WT2) datasets. Our results show
that, under all experimental conditions, the dual architectures outperform their
non-dual counterparts. In addition, the Mogrifier-LSTM enhanced with a dual
connection establishes a new state-of-the-art word-level perplexity for the Penn
Treebank dataset when no additional data are used to train the models.

The remainder of the article is organized as follows. First, in Sect. 2, we
present the different models we have used and the two possible architectures,
the standard recurrent architecture and the dual architecture. In Sect. 3, we
describe the datasets and the experimental setup. In Sect. 4, we present our
results. And finally, in Sect. 5, we extract some conclusions and discuss further
lines of research.

2 Models

We start by presenting the standard recurrent architecture which is common to
all the models. In absence of a dual connection, the basic architecture involves
an embedding layer, a recurrent layer and a fully-connected layer with softmax
activation:

et = W exxt (1)
ht = REC(et, St−1) (2)
yt = softmax(W yhht + by), (3)



The Importance of the Current Input in Sequence Modeling 163

where W ∗∗ and b∗ are weight matrices and biases, respectively, and xt is the
input vector at time t. The REC module represents an arbitrary recurrent layer,
with St−1 being a set of vectors describing its internal state at the previous time
step. In the most general case, this module will simply be an LSTM cell, but we
consider other possibilities as well, as described below.

The dual architecture introduces an additional layer, with ReLU activation,
which is fed with both the output of the embedding layer and the output of the
recurrent module:

et = W exxt (4)
ht = REC(et, St−1) (5)
dt = ReLU(W deet + W dhht + bd) (6)
yt = softmax(W yddt + by). (7)

This way the network’s input can reach the softmax layer following two dif-
ferent paths, through the recurrent layer and through the dual connection. In the
following we consider different forms for the recurrent module in Eq. 2 and 5.

2.1 The LSTM Module

In the simplest approach the recurrent module consists of an LSTM cell, where
the internal state includes both the output and the memory, St = {ht; ct}, which
are computed as follows:

ft = σ(W feet + W fhht−1 + bf ) (8)
it = σ(W ieet + W ihht−1 + bi) (9)
ot = σ(W oeet + W ohht−1 + bo) (10)
zt = tanh(W zeet + W zhht−1 + bz) (11)
ct = ft � ct−1 + it � zt (12)
ht = ot � tanh(ct), (13)

where, as before, W ∗∗ are weight matrices and b∗ are bias vectors. The � operator
denotes an element-wise product, and σ is the logistic sigmoid function. For
convenience, we summarize the joint effect of Eqs. 8–13 as:

ht = LSTM(et, {ht−1; ct−1}). (14)

In the literature it is quite common to stack several LSTM layers. Here we
consider a double-layer LSTM, where the output ht of the recurrent module is
obtained by the concatenated application of two LSTM layers:

h′
t = LSTM1(et, {h′

t−1; c
′
t−1}) (15)

ht = LSTM2(h′
t, {ht−1; ct−1}). (16)



164 C. Oliva and L. F. Lago-Fernández

We refer to this double LSTM module as dLSTM :

ht = dLSTM(et, {ht−1; ct−1;h′
t−1; c

′
t−1}) (17)

= LSTM2(LSTM1(et, {h′
t−1; c

′
t−1}), {ht−1; ct−1}). (18)

2.2 The Mogrifier-LSTM Module

The Mogrifier-LSTM [12] is one of the state-of-the-art variations of the standard
LSTM architecture achieving the lowest perplexity scores in language modeling
tasks. It basically consists of a standard LSTM block, but the input et and
the hidden state ht−1 are transformed before entering Eqs. 8–13. The mogrifier
transformation involves several steps where et and ht−1 modulate each other:

eit = 2σ(Qihi−1
t−1) � ei−2

t , for odd i ∈ {1, 2, ..., r} (19)

hi
t−1 = 2σ(Riei−1

t ) � hi−2
t−1, for even i ∈ {1, 2, ..., r}, (20)

where Qi and Ri are weight matrices and we have e−1
t = et and h0

t−1 = ht−1.
The linear transformations Qihi−1

t−1 and Riei−1
t can also include the addition of

a bias vector, which has been omitted for the sake of clarity. The constant r is a
hyperparameter whose value defines the number of rounds of the transformation.
We refer to this recurrent module, including the mogrifier transformation and
the subsequent application of the LSTM layer, as:

ht = mLSTM(et, {ht−1; ct−1}) = LSTM(e∗
t , {h∗

t−1; ct−1}), (21)

where e∗
t and h∗

t−1 are the highest indexed eit and hi
t−1 in Eq. 19 and 20. Note

that the choice r = 0 recovers the standard LSTM model.
The original work also explored the use of a double-layer LSTM enhanced

with the mogrifier transformation. This strategy can be summarized as follows:

ht = mdLSTM(et, {ht−1; ct−1;h′
t−1; c

′
t−1}) (22)

= mLSTM2(mLSTM1(et, {h′
t−1; c

′
t−1}), {ht−1; ct−1}). (23)

3 Experiments

3.1 Datasets

We perform experiments on two datasets: the Penn Treebank (PTB) corpus [11],
as preprocessed by [15], and the WikiText-2 (WT2) dataset [14]. In both cases,
the data are used without any additional preprocessing.

The Penn Treebank dataset has been widely used in the literature to exper-
iment with language modeling. The standard data preprocessing is due to
[15], and includes transformation of all letters to lower case, elimination of



The Importance of the Current Input in Sequence Modeling 165

punctuation symbols, and replacement of all numbers with a special token. The
vocabulary is limited to the 10,000 most frequent words. The data is split into a
training set which contains almost 930,000 tokens, and validation and test sets
with around 80,000 words each.

The WikiText-2 dataset, introduced by [14], is a more realistic benchmark
for language modeling tasks. It consists of more than 2 million words extracted
from Wikipedia articles. The training, validation and test sets contain around
2,125,000, 220,000, and 250,000 words, respectively. The vocabulary includes
over 30,000 words, and the data retain capitalization, punctuation, and numbers.

3.2 Experimental Setup

All the considered models follow one of the two architectures discussed in Sect. 2,
either the Embedding-Recurrent-Softmax (ERS) architecture (Eqs. 1–3) or the
dual architecture (Eqs. 4–7). In either case, the recurrent module can be any of
LSTM , dLSTM , or mdLSTM . Weight tying [8,17] is used to couple the weight
matrices of the embedding and the output layers. This reduces the number of
parameters and prevents the model from learning a one-to-one correspondence
between the input and the output [13].

We run two different sets of experiments. First, we analyze the effect of
the dual connection by comparing the performances of the two architectures
(ERS vs Dual), using each of the recurrent modules, on both the PTB and
the WT2 datasets. In this setting the hyperparameters are tuned for the ERS
architecture, and then transferred to the dual case. Second, we search for the
best hyperparameters for the dual architecture using the mdLSTM recurrence,
and compare the perplexity score with current state-of-the-art values. All the
experiments have been performed using the Keras library [4].

The networks are trained using the Nadam optimizer [5], a variation of Adam
[9] where Nesterov momentum is applied. The number of training epochs is dif-
ferent for each experimental condition. On one hand, when the objective is to
perform a pairwise comparison between dual and non-dual architectures, we
train the models for 100 epochs. On the other hand, when the goal is to com-
pare the dual network with state of the art approaches, we let the models run for
300 epochs. We use batch sizes of 32 and 128 for the PTB and the WT2 prob-
lems, respectively, and set the sequence length to 25 in all cases. The remaining
hyperparameters are searched in the ranges described in Table 1.

Finally, all the models are run twice, both with and without dynamic eval-
uation [10]. Dynamic evaluation is a standard method commonly used to adapt
the model parameters, learned during training, using also the validation data.
This allows the networks to get adapted to the new evaluation conditions, which
in general improves their performance. In order to keep the models as simple as
possible, no additional modifications have been considered.



166 C. Oliva and L. F. Lago-Fernández

Table 1. List of all the hyperparameters and the search range associated with each of
them. Those marked with an asterisk (∗) refer to the dual architectures only.

Name Description Values

Num epochs Number of training epochs {100, 300}
Learning rate Learning rate [10−6, 10−3]

Batch size Batch size {32, 128}
Seq len Sequence length {10, 25, 50}
Embedding units Size of the embedding layer {400, 850}
Recurrent units Size of the recurrent layers {400, 850, 1150}
LSTM layers Number of recurrent layers {1, 2, 3}
Dual units∗ Size of the dual layer {400, 850}
Embedding L2reg L2 regularization applied to the

Embedding and output layers
{0, 10−6, 10−5}

Rec. input L2reg L2 regularization applied to the input
weights of the recurrent layer

{0, 10−6, 10−5}

Rec. L2reg L2 regularization applied to the recurrent
weights of the recurrent layer

{0, 10−6, 10−5}

Activation L2reg L2 regularization applied to the recurrent
layers output

{0, 10−6, 10−5}

Dual L2reg∗ L2 regularization applied to dual layer {0, 10−6, 10−5}
Rec. input Dropout Dropout before the first recurrent layer [0.0, 0.5]

Rec. Dropout Dropout for the linear transformation of
the recurrent state

[0.0, 0.5]

Rec. internal Dropout Dropout between the recurrent layers [0.0, 0.5]

Rec. output Dropout Dropout after the last recurrent layer [0.0, 0.5]

Dual input Dropout∗ Dropout before the dual layer [0.0, 0.5]

Dual output Dropout∗ Dropout after the dual layer [0.0, 0.5]

Mogrifier deep Mogrifier rounds {0, 2, 3, 4, 5, 6}
Mogrifier L2reg L2 regularization applied to Mogrifier

weights
{0, 10−6, 10−5}

Mogrifier rank Weight factorization. Qi ∈ Rm×n = Qi
lQ

i
r

with Qi
l ∈ Rm×k, Qi

r ∈ Rk×n
{0, 50, 100, 200}

Mogrifier Dropout Dropout between the Mogrifier weights [0.0, 0.2]

Learning rate eval Learning rate when Dynamic evaluation [10−6, 10−3]

Seq len eval Sequence length when Dynamic
evaluation

[5, 50]

Clipnorm eval Gradients clipping to a maximum norm [0.0, 1.0]



The Importance of the Current Input in Sequence Modeling 167

4 Results

We first show the results of the comparative analysis ERS vs Dual, then we focus
on the search of the optimal hyperparameters for the dual architecture with the
mdLSTM recurrence.

4.1 Dual vs Non-dual Architectures

Table 2 displays the validation and test perplexity scores obtained for each of the
experimental configurations on the PTB and the WT2 problems, both with and
without dynamic evaluation. To facilitate the comparison, each pair of rows con-
tain the results for one of the recurrent modules (LSTM , dLSTM or mdLSTM)
using the two architectures ERS and Dual, with the best values shown in bold.
In each case, the hyperparameters are tuned for the standard ERS architecture
and then used within the dual networks without any additional adaptation. The
exceptions are hyperparameters, such as the dual dropout, which do not exist
in the ERS configuration (those marked with an asterisk in Table 1). To give a
measure of the model complexity, Table 2 contains also the approximate number
of trainable parameters for each configuration.

Table 2. Validation and test word-level perplexity obtained for each of the experimen-
tal configurations on the PTB (top) and the WT2 (bottom) datasets.

Penn Treebank Dataset

No. Dyneval Dyneval

Model No. PARAMS Val. Test Val. Test

LSTM 8.88 M 67.37 64.91 62.31 61.17

Dual LSTM 9.60 M 61.22 59.39 55.26 54.69

dLSTM 13.62 M 63.44 61.03 57.18 56.01

Dual dLSTM 13.94 M 60.99 59.56 56.11 54.87

mdLSTM 21.43 M 57.42 55.48 51.16 50.27

Dual mdLSTM 22.88 M 56.08 54.12 48.82 48.00

mdLSTM+ 22.16 M 57.77 56.29 50.42 49.83

WikiText-2 Dataset

No. Dyneval Dyneval

Model No. PARAMS Val. Test Val. Test

LSTM 20.23 M 92.84 88.28 74.98 69.42

Dual LSTM 20.95 M 85.88 82.48 61.94 57.61

dLSTM 29.60 M 78.65 75.60 63.26 59.42

Dual dLSTM 30.32 M 77.01 73.90 61.10 57.10

mdLSTM 37.51 M 72.05 69.06 57.42 53.93

Dual mdLSTM 38.95 M 71.78 70.83 53.48 50.71



168 C. Oliva and L. F. Lago-Fernández

As expected, dynamic evaluation improves the results regardless of the model
or the dataset. The main observation, however, is that networks enhanced with
the dual connection display lower perplexity scores for almost all the training
conditions on both the PTB and the WT2 datasets. The advantage of the Dual vs
the ERS architecture is larger for less complex models, and narrows as the model
complexity increases. Nevertheless, even for networks with mdLSTM recurrence,
the dual architectures outperform their non-dual counterparts in more than 2
perplexity points on the test set, when dynamic evaluation is used.

In order to test that this improvement is due to the dual connection and
not to the presence of an extra processing layer, we performed an additional
experiment with a Dual mdLSTM model, but removing the term W deet from
Eq. 6. The results for the PTB dataset are shown in Table 2 as mdLSTM+. Note
that, in spite of slightly improving the baseline, this enhanced mogrifier model
is still well below the result obtained with the full dual architecture.

Finally, it is worth noting that all the results presented correspond to our
own implementation of the models, and that in most cases we are not including
some of the several training or validation adaptations frequently used in the
literature (such as AWD or MoS, for example). This can explain the difference
with respect to the results reported by [12] for the Mogrifier-LSTM model. We
would expect a further improvement of the results if these additional mechanisms
were implemented.

4.2 Dual Mogrifier Fine Tuning

The second part of the experiments consists of searching for the best hyperpa-
rameters in the configuration that provided the smallest perplexity in the previ-
ous setup, that is the Dual mdLSTM architecture. We carry out this experiment
with the PTB problem. After an extensive search (see Table 1), the best perfor-
mance is obtained with a model with 850 units in the embedding layer, 850
units in each of the mogrifier LSTM layers, and 850 units also in the dual layer.
The input, recurrent, internal, and output dropout rates are all set to 0.5, the
dual input and output dropout rates are set to 0.5 and 0.4, respectively, and
the mogrifier dropout rate is set to 0.15. Both the embedding and the dual L2
regularization parameters are set to 10−5. The mogrifier number of rounds is set
to 4, and the rank to 100. All the remaining hyperparameters are set to 0.

After the training phase, we continue with a fine tuning of some additional
hyperparameters, using the validation data. First, we look for the best sequence
length in the range [5, 70], and then we fine-tune the softmax temperature in
the range [0.9, 1.3]. When using dynamic evaluation, we also look for the best
gradient clipping value (in the range [0.0, 1.0]) and, following [12], we repeat the
whole procedure with the β1 parameter of the Nadam optimizer set to 0, which
resembles the RMSProp optimizer without momentum. The results are shown
in Table 3, together with the top perplexity scores reported in the literature for
the same problem.

The state-of-the-art is dominated by several variations of the AWD-LSTM
network [13], the most common being the inclusion of a Mixture of Softmaxes



The Importance of the Current Input in Sequence Modeling 169

Table 3. Best validation and test word-level perplexity scores reported in the literature
for the Penn Treebank dataset, with and without dynamic evaluation. Missing values
in the last two columns correspond to works where the dynamic evaluation approach
was not considered. The last row in the table displays the results obtained with our
Dual mdLSTM network.

No Dyneval Dyneval

Model Val. Test Val. Test

AWD-LSTM [13] 24 M 60.00 57.30 – –

AWD-LSTM-DOC [19] 23 M 54.12 52.38 – –

AWD-LSTM [10] 24 M 59.80 57.70 51.60 51.10

mdLSTM - ours 22 M 57.42 55.48 51.16 50.27

AWD-LSTM +PDR [1] 24 M 57.90 55.60 50.10 49.30

AWD-LSTM +MoS [21] 22 M 56.54 54.44 48.33 47.69

AWD-LSTM +MoS +PDR [1] 22 M 56.20 53.80 48.00 47.30

AWD-LSTM-DOC x5 [19] 185 M 48.63 47.17 – –

AWD-LSTM +MoS +FRAGE [6] 24 M 55.52 53.51 47.38 46.54

AWD-LSTM +MoS +Adv [20] 22 M 54.98 52.87 47.15 46.52

AWD-LSTM +MoS +Adv +PS [20] 22 M 54.10 52.20 46.63 46.01

Mogrifier-LSTM [12] 24 M 51.40 50.10 44.90 44.80

Dual mdLSTM - ours 23 M 52.87 51.19 45.13 44.61

(MoS) [21]. Other add-ons include Direct Output Connection (DOC) [19], which
is a generalization of MoS, Frequency Agnostic word Embedding (FRAGE) [6],
Past Decode Regularization (PDR) [1], or Partial Shuffling (PS) with Adversarial
Training (Adv) [20]. The mogrifier-LSTM described in Sect. 2.2 combines many
of these ideas with a mutual gating between the input and the hidden state
vectors to obtain the best results reported in the literature for the PTB problem,
among those obtained by networks that do not use additional data during the
training phase. Compared with all these models, our current approach leads the
ranking with a perplexity score of 44.61, even though most of the aforementioned
adjustments have not been considered.

Finally, it is important to mention that the last two rows in the table do not
correspond to comparable models. While the penultimate row shows the results
reported by Melis et al. [12] with their Mogrifier-LSTM model, the last table
row contains the results of our Dual mdLSTM model, which uses the mogrifier
transformation but lacks many of the additional characteristics of the Melis et al.
model. Hence, regarding the improvement associated with fine-tuning the Dual
mdLSTM model, the fair comparison would be with the results shown in Table
2, which have been also included in Table 3 for the sake of clarity. In this case
the dual model outperforms its non-dual equivalent in more than 5 perplexity
points (50.27 versus 44.61) on the test set.



170 C. Oliva and L. F. Lago-Fernández

5 Discussion

In this work, we have presented a new network design for the Language Modeling
task based on the dual network proposed by [16]. This network adds a direct
connection between the input and the output, skipping the recurrent module, and
can be adapted to any of the traditional Embedding-Recurrent-Softmax (ERS)
models, opening the way to new approaches for this task. We have based our
work on the Penn Treebank [15] and the WikiText-2 [14] datasets, comparing the
ERS approach and its dual alternative. Regardless of the configuration, the dual
version performs always better, even though it faces a slight disadvantage, since
most of the hyperparameters are tuned using the ERS model. We can expect
a much better performance if the complete set of hyperparameters is properly
tuned for the dual network.

This is in fact the case for the second experiment, where a Dual mdLSTM,
which includes a simplified version of the mogrifier LSTM [12] within a dual
architecture, is fine tuned for the Penn Treebank dataset. After a thorough
search of the hyperparameter space, we have found a network configuration that
establishes a new state-of-the-art score for this problem. Interestingly, this new
record has been obtained in spite of leaving aside many of the standard features
used in most state-of-the-art approaches, such as AWD [13] or MoS [21]. The
incorporation of these features into the dual architecture can be expected to
further increase the model performance.

The dual architecture was firstly proposed as an alternative that reduces the
computational load on the recurrent layer, letting it concentrate on modeling
the temporal dependencies only. From a more abstract point of view, it has been
argued that the dual architecture can be understood as a sort of Mealy machine,
where the output explicitly depends on both the hidden state and the input [16].
Our results show that this explicit dependence on the input can indeed lead to
better performance on language modeling tasks. This emphasizes the importance
of the current input in RNN models.

Finally, although the new approach has not been tested with large-scale lan-
guage corpora, we expect that our results scale well to larger datasets. Work in
progress contemplates this extension. The dual architecture also needs further
research concerning the deepness of the specific variations of Language Model-
ing and other families of problems not necessarily related to Natural Language
Processing. This work opens a new line of research to be considered when pro-
cessing any sequence or time series. The utility of this approach in more general
problems will be addressed as future work.

Acknowledgments. This work has been partially funded by Spanish project
PID2020-114867RB-I00, (MCIN/AEI and ERDF- “A way of making Europe”).

References

1. Brahma, S.: Improved language modeling by decoding the past. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
1468–1476. Association for Computational Linguistics, Florence, Italy (Jul 2019)



The Importance of the Current Input in Sequence Modeling 171

2. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020)

3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.)
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, 25–29 October 2014, Doha, Qatar, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pp. 1724–1734. ACL (2014)

4. Chollet, F., et al.: Keras (2015). https://keras.io
5. Dozat, T.: Incorporating nesterov momentum into adam. In: Proceedings of 4th

International Conference on Learning Representations, Workshop Track (2016)
6. Gong, C., He, D., Tan, X., Qin, T., Wang, L., Liu, T.Y.: Frage: Frequency-agnostic

word representation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31. Curran Associates, Inc. (2018)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Inan, H., Khosravi, K., Socher, R.: Tying word vectors and word classifiers: A
loss framework for language modeling. In: Proceedings of the 5th International
Conference on Learning Representations (2017)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings
(2015)

10. Krause, B., Kahembwe, E., Murray, I., Renals, S.: Dynamic evaluation of neural
sequence models. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International
Conference on Machine Learning. Proceedings of Machine Learning Research, 10–
15 Jul, vol. 80, pp. 2766–2775. PMLR (2018)

11. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of english: The penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

12. Melis, G., Kočiský, T., Blunsom, P.: Mogrifier LSTM. In: International Conference
on Learning Representations (2020)

13. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM language
models. In: International Conference on Learning Representations (2018)

14. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

15. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent
neural network based language model. In: Kobayashi, T., Hirose, K., Nakamura,
S. (eds.) INTERSPEECH, pp. 1045–1048. ISCA (2010)

16. Oliva, C., Lago-Fernández, L.F.: Separation of Memory and Processing in Dual
Recurrent Neural Networks. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.)
ICANN 2021. LNCS, vol. 12894, pp. 360–371. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86380-7 29

17. Press, O., Wolf, L.: Using the output embedding to improve language models. In:
Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, pp. 157–163. Association
for Computational Linguistics, Valencia, Spain (Apr 2017)

18. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

https://keras.io
https://doi.org/10.1007/978-3-030-86380-7_29
https://doi.org/10.1007/978-3-030-86380-7_29


172 C. Oliva and L. F. Lago-Fernández

19. Takase, S., Suzuki, J., Nagata, M.: Direct output connection for a high-rank lan-
guage model. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 4599–4609. Association for Computational Lin-
guistics, Brussels, Belgium (Oct-Nov 2018)

20. Wang, D., Gong, C., Liu, Q.: Improving neural language modeling via adversar-
ial training. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, 09–15 Jun, vol. 97, pp. 6555–6565. PMLR (2019)

21. Yang, Z., Dai, Z., Salakhutdinov, R., Cohen, W.W.: Breaking the softmax bottle-
neck: A high-rank RNN language model. In: International Conference on Learning
Representations (2018)


	The Importance of the Current Input in Sequence Modeling
	1 Introduction
	2 Models
	2.1 The LSTM Module
	2.2 The Mogrifier-LSTM Module

	3 Experiments
	3.1 Datasets
	3.2 Experimental Setup

	4 Results
	4.1 Dual vs Non-dual Architectures
	4.2 Dual Mogrifier Fine Tuning

	5 Discussion
	References




