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Abstract. Since the Gravitational Waves’ initial direct detection, a veil
of mystery from the Universe has been lifted, ushering a new era of
intriguing physics, as-tronomy, and astrophysics research. Unfortunately,
since then, not much progress has been reported, because so far all of
the detected Gravitational Waves fell only into the Binary bursting wave
type (B-GWs), which are cre-ated via spinning binary compact objects
such as black holes. Nowadays, as-tronomy scientists seek to detect a
new type of gravitational waves called: Continuous Gravitational Waves
(C-GWs). Unlike the complicated burst na-ture of B-GWs, C-GWs have
elegant and much simpler form, being able to provide higher quality
of information for the Universe exploration. Never-theless, C-GWs are
much weaker comparing to the B-GWs, which makes them considerably
harder to be detected. For this task, we propose a novel Deep-Learning-
based methodology, being sensitive enough for detecting and visualizing
C-GWs, based on Short-Time-Fourier data provided by LIGO. Based on
extensive experimental simulations, our approach significantly outper-
formed the state-of-the-art approaches, for every applied experimental
configuration, revealing the efficiency of the proposed methodology. Our
expectation is that this work can potentially assist scientists to improve
their detection sensitivity, leading to new Astrophysical discoveries, via
the incor-poration of Data-Mining and Deep-Learning sciences.

Keywords: Deep learning · 2D image processing · SFT signal
processing · remote sensing applications · ML methods for sensing
systems

1 Introduction

Accelerated masses produce Gravitational Waves (GWs), which are disturbances
or ripples in the curvature of spacetime that move as waves away from their
source at the speed of light [6]. These cosmic ripples would move through space
and time, bringing with them clues to the nature of gravity and information
about their origins [26].
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In 2015, a signal produced by the merger of two black holes, was detected by
the Laser-Interferometer-Gravitational-wave-Observatory (LIGO) gravitational
wave detectors in Livingston Louisiana, and Hanford Washington, which was the
GWs’ initial direct observation [13]. This type of detected GWs are produced
by orbiting pairs of massive and dense/compact objects such as white dwarf
stars, black holes, and neutron stars. Neutron stars are extremely dense objects
created by collapsed stars, which run out all of their energy [1,2]. Due to the
compact-binary-spinning source mechanism of this type of waves, they took the
name: “compact Binary inspiral Gravitational Waves (B-GWs)”. Furthermore,
it is worth mentioning that, depending on the spinning pair’s object type, the
B-GWs are separated into the following three sub-categories: binary neutron
star, binary black hole, neutron star-black hole binary [4,8].

However, scientists have predicted the existence of a new type of GWs called:
Continuous Gravitational Waves (C-GWs), which are created by the rotation
of single non-perfect neutron stars spheres [3]. Unlike the complicated burst
of B-GW, C-GWs are elegant, well-defined, and almost constant being able to
provide much more information about universe wonders, like neutron stars. Via
the detection of C-GWs we will get a better knowledge of stellar evolution and
populations as well as the internal structure and evolutionary history of these
exceptional and yet intriguing objects, which will offer insights into the invisible
huge population of neutron stars that inhabits our Galaxy [3,24].

Unfortunately, despite all of this progress, since 2015 all of the objects LIGO
has detected so far, fall only into the B-GWs category, while the direct detec-
tion of real C-GWs still remains an open problem. In contrast to the common
detected B-GWs, C-GWs are much weaker, which makes them much harder to
be detected. Therefore, we aim to propose a novel Deep-Learning-based method-
ology, being sensitive enough for detecting C-GWs.

Deep learning (DL) [22] is a subset of machine learning that utilizes neural
networks with multiple layers to learn patterns and features from data. It has
been particularly effective in tasks such as image and speech recognition, nat-
ural language processing, and decision making. Convolutional Neural Networks
(CNNs) [10,30] are a type of DL algorithm, which are particularly well-suited for
image and video processing, which were applied in a wide range of applications
[14,15,18]. This type of models work by repeatedly applying a set of filters to
the input data, which allows them to learn spatial hierarchies of features.

In this work, we propose a Deep-Learning methodology for detecting and
visualizing C-GWs utilizing a dataset based on the LIGO laboratory. This
dataset has a time-frequency form constituted of a set of Short-time Fourier
Transforms (SFTs) with respect to the GPS time stamps for each interferom-
eter (LIGO Hanford and LIGO Livingston). Each data sample contains either
real or simulated noise and possibly a simulated C-GW signal, while the task
is to identify when a C-GW signal is present in the data. More specifically, the
main objective of our proposed methodology is to create a more robust and
clear representation form removing noise, by incorporating SFT pre-processing
techniques, comparing to the state-of-the-art end-to-end deep-learning baseline
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approach (initial representation form of LIGO laboratory which is fed into a
CNN model). The proposed transformation methodology considerably outper-
formed the baseline approach, for every applied experimental configuration (e.g.,
CNN model, input-shape, and augmentation choices) revealing the efficiency of
the proposed approach.

The main contributions of this work are summarized as follows: We propose
a novel pre-processing and deep-learning-based methodology for detecting and
visualizing C-GWs (C-GWs are much harder to detect comparing to B-GWs),
managing to achieve high accuracy comparing to the baseline approaches. The
proposed method, managed to achieve a high overall performance proving to be
a promising supporting tool to Astronomy and Physics Scientists for detecting
possible C-GWs signals. Also, the incorporation of SpecAugm [19] methodology,
drastically improved the results for every utilized model in every configuration.
Finally, this work can potentially help scientists detect the new type of GWs
called C-GWs, while further studies of these waves may enable scientists to
learn about the structure of the most extreme stars in our universe.

To the best of our knowledge there are not any noticeable Machine-Learning-
based approaches for automatic detection of Continuous-Gravitational-Waves
(C-GWs), although there are plenty of research works on detection of compact
Binary inspiral Gravitational Waves (B-GWs) [27,31]. Due to the complicated
SFT spectrogram form of LIGO provided data, the high difficulty detection level
of C-GWs, and the totally different nature and shape-form between the B-GWs
and the C-GWs [3,24], it is not possible and reasonable to utilize as baseline
state-of-the-art approaches the ones proposed for B-GWs detection problem.

Thus, specifically for the C-GW problem, it is reasonable to consider as
state-of-the-art baseline approach, an end-to-end deep-learning-based approach
utilizing the initial SFT representation form of the data provided by LIGO. In
this baseline approach, the multi-channel spectrogram-based data of LIGO are
fed into a multi-channel pre-trained CNN model, in order to perform the final
classification. Instead, in our proposed approach, we apply SFT pre-processing
and transformation techniques in order to reduce the initial high dimension,
remove noise, and create a more robust representation for feeding a pre-trained
CNN model in order to perform the final classification task.

2 Methodology

In this section, we describe in detail the data acquisition procedure and our
proposed DL methodology for detecting possible signals of C-GW.

2.1 LIGO Interferometers

LIGO [5] is a marvel of meticulous engineering and the biggest gravitational
wave observatory in the world. LIGO, consists of two enormous laser interfer-
ometers separated by 3000 km km, uses the physical characteristics of light and
space itself to detect and comprehend the origins of gravitational waves. In brief,
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LIGO has two gravitational-wave interferometers: LIGO Hanford (H) and LIGO
Livingston (L). Each of them has two 4 km long arms arranged in the shape of
an “L”, acting as antennae to detect gravitational waves.

The basic operation principle in which LIGO detects GWs is briefly described
as follows: Space itself is stretched by gravitational waves in one direction, while
it is also compressed in the opposite direction [5]. As long as a wave is passing,
the one arm of the LIGO interferometer is getting longer while the other gets
shorter. In this way, LIGO is able to detect a possible GW signal. Similarly, to a
human ear, which is able to detect vibrations in a medium like air or water, LIGO
acts as an antenna able to detect vibrations in the “medium” of space-time.

2.2 Description of Case-Study Dataset Used for Detecting C-GWs

The frequency and amplitude of a C-GW signal from a rotating neutron star will
be almost precisely constant [3]. However, over a long period of time, since the
neutron star loses energy as it emits gravitational and electromagnetic waves,
which causes it to rotate more slowly, the frequency of the signal gradually
changes. With regard to the neutron star, the detector on Earth is moving. This
alters the gravitational wave frequency that the detector picks up. Monitoring all
potential frequency changes can be very computationally challenging. For this
reason, Short-time Fourier Transforms (SFTs) [7] are used for quantifying the
change of a non-stationary signal’s frequency and phase content over time.

The utilized dataset in this research is based on the LIGO laboratory, which
contains time-frequency data from two gravitational-wave interferometers: LIGO
Hanford (H) and LIGO Livingston (L). Each data sample contains either real or
simulated noise and possibly a simulated C-GW signal. The task is to identify
when a signal is present in the data.

More specifically, each sample is comprised of a set of Short-time Fourier
Transforms (SFTs) and corresponding GPS time stamps for each interferometer
H and L. The SFTs are not always contiguous in time since the interferometers
are not continuously online. Each sample can be represented as a spectrogram
of the Real and Imaginary part of the complex form of the furrier transform
corresponding to each interferometer H and L. Therefore, each sample/instance
has the following initial spectrogram representation input-shape format:

Ninter × Ncomplex × Freq × Time (1)

where Ninter = 2 represents the number of interferometers, Ncomplex = 2 repre-
sents the number of complex parts (real and imaginary), Freq = 360 represents
the signal’s frequency and Time is time in GPS timestamp.

2.3 State-of-the-Art Baseline Approach

Figure 1 presents a high-level presentation of the “baseline approach” (a 4
channel-CNN based on the Initial SFT spectrogram representation form of LIGO
laboratory).
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Fig. 1. Schematic presentation of the state-of-the-art end-to-end deep-learning baseline
approach (a 4ch-CNN fed with the initial SFT form of LIGO laboratory)

Let assume the initial input matrices HF×T
C

and LF×T
C

corresponding to the
SFT amplitudes hf,t ∈ C and lf,t ∈ C of the signals detected via the interfer-
ometers of LIGO Hanford (H) & LIGO Livingston (L) which are respectively
defined by

HF×T
C

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h1,1 · · · h1,t · · · h1,T

...
. . .

...
. . .

...
hf,1 · · · hf,t · · · hf,T

...
. . .

...
. . .

...
hF,1 · · · hF,t · · · hF,T

⎤
⎥⎥⎥⎥⎥⎥⎦

and LF×T
C

=

⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 · · · l1,t · · · l1,T
...

. . .
...

. . .
...

lf,1 · · · lf,t · · · lf,T
...

. . .
...

. . .
...

lF,1 · · · lF,t · · · lF,T

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where f = 1, 2, . . . , F corresponds to the frequency index, t = 1, 2, . . . , T to the
timestamps-samples number and C to the complex numbers set. Each complex
number is represented by a real and imaginary part; therefore, for the matrices
defined in Eq. (2), we have

HC = HF×T
R

+ iHF×T
I

and LC = LF×T
R

+ iLF×T
I

(3)

where i is the imaginary unit and HR,HI,LR,LI correspond to the Real and
Imaginary part of the HC and LC matrices, respectively. Thus, the input X4×F×T

In

as defined in Eq. (4), is fed into a 4-channel CNN, corresponds to the state-of-
the-art end-to-end deep-learning-based baseline approach.

X4×F×T
In = (HR,HI,LR,LI) × 1e22 (4)
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It is worth mentioning that the amplitude values hf,t, lf,t range in 1e−22

order, since the initial signals detected are extremely weak. Feeding them in a
CNN model would result in losing the numbers precision. For this reason, it is
essential to multiply the input matrices with the term 1e22, as defined in Eq. (4).

2.4 Proposed Methodology

Figure 2 illustrates a schematic presentation of the “proposed deep learning C-
GW detection approach”.

Fig. 2. Schematic presentation of the proposed DL C-GW detection approach
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In order to create a robust representation and remove noise from the HC and
LC spectrograms, we are able to compute their power spectrums HP and LP

respectively (Step 1, Fig. 3), which are defined as follows:

HP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h
(P )
1,1 · · · h(P )

1,t · · · h(P )
1,T

...
. . .

...
. . .

...
h
(P )
f,1 · · · h(P )

f,t · · · h(P )
f,T

...
. . .

...
. . .

...
h
(P )
F,1 · · · h(P )

F,t · · · h(P )
F,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and LP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l
(P )
1,1 · · · l(P )

1,t · · · l(P )
1,T

...
. . .

...
. . .

...
l
(P )
f,1 · · · l(P )

f,t · · · l(P )
f,T

...
. . .

...
. . .

...
l
(P )
F,1 · · · l(P )

F,t · · · l(P )
F,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where h
(P )
f,t =

√
(h(R)

f,t )2 + (h(I)
f,t)2 and l

(P )
f,t =

√
(l(R)f,t )2 + (l(I)f,t)2, while h

(R)
f,t , h(I)

f,t,

l
(R)
f,t , and l

(I)
f,t are the amplitudes values of HR, HI, LR and LI, respectively.

Since the data is time correlated with respect to the timestamps t, we further
transform the data via a time-window-averaging approach (see Step 2 in Fig. 3),
in order to further remove noise and create a compressed and even more robust
final representation form, aiming to reveal possible signs of C-GWs (Fig. 4),
defined as follows

H
F×T ′
PAv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
(
h
(P )
1,1 , . . . , h

(P )
1,k

)
· · · E

(
h
(P )
1,k(j−1), . . . , h

(P )
1,kj

)
· · · E

(
h
(P )
1,k(T ′−1)

, . . . , h
(P )
1,kT ′

)

.

.

.
. . .

.

.

.
. . .

.

.

.

E
(
h
(P )
f,1 , . . . , h

(P )
f,k

)
· · · E

(
h
(P )
f,k(j−1), . . . , h

(P )
f,kj

)
· · · E

(
h
(P )
f,k(T ′−1)

, . . . , h
(P )
f,kT ′

)

.

.

.
. . .

.

.

.
. . .

.

.

.

E
(
h
(P )
F,1 , . . . , h

(P )
F,k

)
· · · E

(
h
(P )
F,k(j−1), . . . , h

(P )
F,kj

)
· · · E

(
h
(P )
F,k(T ′−1)

, . . . , h
(P )
F,kT ′

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

LF×T ′
PAv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
(
l
(P )
1,1 , . . . , l

(P )
1,k

)
· · · E

(
l
(P )
1,k(j−1)

, . . . , l
(P )
1,kj

)
· · · E

(
l
(P )
1,k(T ′−1)

, . . . , l
(P )
1,kT ′

)

.

.

.
. . .

.

.

.
. . .

.

.

.

E
(
l
(P )
f,1 , . . . , l

(P )
f,k

)
· · · E

(
l
(P )
f,k(j−1)

, . . . , l
(P )
f,kj

)
· · · E

(
l
(P )
f,k(T ′−1)

, . . . , l
(P )
f,kT ′

)

.

.

.
. . .

.

.

.
. . .

.

.

.

E
(
l
(P )
F,1 , . . . , l

(P )
F,k

)
· · · E

(
l
(P )
F,k(j−1)

, . . . , l
(P )
F,kj

)
· · · E

(
l
(P )
F,k(T ′−1)

, . . . , l
(P )
F,kT ′

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where k = T
T ′ is the averaging window size, T ′ < T , k ∈ N the new total

timestamps of the compressed power spectrograms, and E(·) is the Expected
value function (also called Average or Mean).

Thus, the input X2×F×T ′
Tr of the 2Ch-CNN which corresponds to the Pro-

posed Approach is defined as:

X2×F×T ′
Tr = (HF×T ′

PAv ,LF×T ′
PAv ) × 1e22.
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Figure 3(a) presents an instance labeled as “C-GW” based on its initial SFT
spectrogram representation form of LIGO laboratory. However, due to noise is
almost impossible to identify signs of waves in this form making it appear as
pure noise signal. Instead, based on the proposed transformed representation
form (Fig. 3(b)), clearly signs of a C-GW are visualized1.

Fig. 3. Presentation of a “C-GW” instance based on (a) its initial SFT form of LIGO
laboratory (a), compared to (b) its proposed transformed representation form

3 Experimental Results

In this section, we analyze and present our experimental setup, comparing the
Proposed Approach, with the state-of-the-art end-to-end deep-learning approach
(initial representation form of LIGO laboratory which feds a 4-channel CNN
model), utilizing various CNN baselines, for different input shapes, using also
sophisticated augmentation approach2.

It is worth mentioning that the selection of the utilized CNN baselines in our
experiments was based on those which managed to bring the best overall results.

Inception-v4 [28] is a deep convolutional neural network architecture for
object recognition and image classification tasks being an extension of the Incep-
tion architecture. The key innovation in Inception-v4 is the use of residual con-
nections, which have been shown to improve the performance of deep neural
networks. ResNeSt [32] is a deep convolutional neural network architecture for
image classification and object recognition tasks. The key innovation in ResNeSt
is the use of split attention mechanism, which allows the network to attend to
both global and local features simultaneously. DenseNet [11] is a deep convolu-
tional neural network architecture for image classification and object recognition
tasks. The key innovation in DenseNet is the use of dense connections, which
1 For visualization purposes, we averaged the multi channels spectrograms to 1-

channel.
2 The datasets used in our research, can be found in https://www.kaggle.com/

datasets/emmanuelpintelas/gw-datasets.

https://www.kaggle.com/datasets/emmanuelpintelas/gw-datasets
https://www.kaggle.com/datasets/emmanuelpintelas/gw-datasets
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connect each layer to every other layer in a feed-forward fashion. Efficientnet-b8
[12] is a deep convolutional neural network architecture for image classification
and object recognition tasks. The key innovation in EfficientNet is the use of
compound scaling, which adjusts the depth, width, and resolution of the net-
work to improve its performance.

In order to guarantee the reliability of the final experimental performance
results, we performed a 5-fold-cross-validation averaging strategy for every uti-
lized experimental configuration (CNN model, input-shape and augm. selection).
The evaluation procedure was performed based on the following performance
metrics: Accuracy (Acc), F1-score (F1), Sensitivity (Sen), Specificity (Spe), and
the Area Under the Curve (AUC) [16,23].

It is worth mentioning that the initial frequency and time dimensions of
every spectrogram instance 360 Hz and 4320 timestamps, respectively, which
implies that for the baseline approach the input’s data shape was 4×360×4320.
However, each utilized pre-trained model reported unsatisfactory performance.
Therefore, we resized the input data to 4×360×720 using bilinear interpolation,
which reported the best performance. Additionally, for the proposed approach,
we investigated its performance using various values for the parameter k, i.e.
2, 4, 6, 8, 12 and 24). In our experiments, we selected k = 6 and k = 24, which
implies that the input’s data shapes for the proposed CNN model were 2×360×
720 and 2 × 360 × 180, respectively.

We have also utilized the SpecAugmen [19] data augmentation method (this
augmentation method was initially proposed and applied on automatic Speech
Recognition), in order to prevent overfitting and increase the diversity of our
training data, which managed to considerably improve the performance results.

Tables 1 and 2 summarize our experimental results. The proposed transfor-
mation methodology considerably outperformed the baseline end-to-end CNN
approach (initial representation form of LIGO laboratory feeding a 4-channel
CNN model), for every applied experimental configuration (e.g., CNN model,
input-shape and augm. choices). The proposed method, managed to achieve a
high overall performance proving to be a promising supporting tool to Astron-
omy and Physics Scientists for detecting possible C-GWs signals.

The incorporation of SpecAugm methodology, drastically improved the
results for every utilized model in all input-shape configurations. The best results
in overall were achieved for the lowest time compression size applied, while as
the compression size was increased, the results significantly decreased.

Furthermore, regarding our experimental findings, it is worth mentioning
that the best results in overall were achieved for the lowest time compression
size applied, while as the compression size was increased, the results significantly
decreased. This was probably due to the fact that on high dimensions, the input
has more noise leading to model overfitting, while the C-GWs signal appear
much weaker and unclear. In contrast on low sizes, the input becomes more
robust enabling the C-GW signal to be much stronger and apparent assisting
the CNN model to easily identify and reveal it.
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Table 1. Experimental results based on the initial representation form of LIGO labo-
ratory (baseline approach)

Augm. CNN baseline Input size Acc F1 Sen Spe AUC

None Inception-v4 4 × 360 × 720 66.5% 0.795 0.034 0.979 0.567

ResNeSt 66.7% 0.778 0.0 1.0 0.573

DenseNet 65.9% 0.799 0.011 0.995 0.543

Efficientnet-b8 61.5% 0.732 0.208 0.827 0.556

SpecAugm Inception-v4 4 × 360 × 720 66.2% 0.680 0.0 1.0 0.563

ResNeSt 54.0% 0.551 0.534 0.533 0.547

DenseNet 66.7% 0.789 0.0 1.0 0.564

Efficientnet-b8 57.7% 0.659 0.335 0.697 0.571

Table 2. Experimental results based on the initial representation form of LIGO labo-
ratory (proposed approach)

Augm. CNN baseline Input size Acc F1 Sen Spe AUC

None Inception-v4 2 × 360 × 720 66.7% 0.800 0.0 1.0 0.599

2 × 360 × 180 65.5% 0.712 0.426 0.752 0.724

ResNeSt 2 × 360 × 720 66.3% 0.792 0.005 0.992 0.612

2 × 360 × 180 67.0% 0.750 0.394 0.791 0.697

DenseNet 2 × 360 × 720 66.2% 0.791 0.070 0.958 0.622

2 × 360 × 180 68.7% 0.757 0.553 0.753 0.762

Efficientnet-b8 2 × 360 × 720 64.5% 0.758 0.254 0.851 0.624

2 × 360 × 180 66.5% 0.763 0.381 0.823 0.750

SpecAugm Inception-v4 2 × 360 × 720 62.2% 0.694 0.487 0.700 0.684

2 × 360 × 180 66.5% 0.757 0.378 0.818 0.751

ResNeSt 2 × 360 × 720 60.8% 0.640 0.757 0.545 0.709

2 × 360 × 180 66.8% 0.754 0.458 0.777 0.752

DenseNet 2 × 360 × 720 64.0% 0.744 0.319 0.815 0.671

2 × 360 × 180 69.6% 0.775 0.511 0.793 0.774

Efficientnet-b8 2 × 360 × 720 66.5% 0.798 0.0 0.997 0.661

2 × 360 × 180 70.3% 0.748 0.782 0.667 0.796

4 Conclusions

In this work, we proposed a novel pre-processing and deep-learning-based
methodology for detecting and visualizing C-GWs utilizing a dataset based on
the LIGO laboratory as case-study scenario. This dataset has time-frequency
form based on two gravitational-wave interferometers: LIGO Hanford and LIGO



A Deep Learning-Based Methodology for Detecting and Visualizing Waves 13

Livingston. Each data sample contained either real or simulated noise and pos-
sibly a simulated C-GW signal. In brief, the task was to identify when a C-GW
signal is present in the data.

Our proposed methodology aimed to create a more robust and clear represen-
tation form in order to feed a CNN model. Based on extensive experimental sim-
ulations, our approach significantly outperformed the state-of-the-art end-to-end
deep-learning approach, for every applied experimental configuration, revealing
the efficiency of the proposed methodology and proving to be a promising sup-
porting tool to Astrophysical scientists for detecting possible C-GWs signals.

The con of this works lies on the fact that no time-series-based approached
were investigated, since the initial type of data are time-correlated. Thus, in
our future research, we intent to further improve our model’s detection sensi-
tivity by incorporating statistical analysis and time-series enhancing approaches
[14,17]. Finally, we also intend to improve our work by adding the Explainabil-
ity/Interpretability property [20,21,25] to our detection approach, which is obvi-
ously of crucial significance in Astrophysical sciences for unveiling and explaining
the mysteries of Universe.
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30. Véstias, M.P.: Convolutional neural network. In: Encyclopedia of Information Sci-
ence and Technology, Fifth Edition, pp. 12–26. IGI Global (2021)

31. Wei, W., Huerta, E.: Deep learning for gravitational wave forecasting of neutron
star mergers. Phys. Lett. B 816, 136185 (2021)

32. Zhang, H., et al.: Resnest: Split-attention networks. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2736–2746 (2022)

https://doi.org/10.1007/s00521-020-05169-y
http://arxiv.org/abs/1904.08779
http://arxiv.org/abs/1410.5330

	A Deep Learning-Based Methodology for Detecting and Visualizing Continuous Gravitational Waves
	1 Introduction
	2 Methodology
	2.1 LIGO Interferometers
	2.2 Description of Case-Study Dataset Used for Detecting C-GWs
	2.3 State-of-the-Art Baseline Approach
	2.4 Proposed Methodology

	3 Experimental Results
	4 Conclusions
	References




