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Abstract. Advanced minimally invasive neurosurgery navigation relies
mainly on Magnetic Resonance Imaging (MRI) guidance. MRI guidance,
however, only provides pre-operative information in the majority of the
cases. Once the surgery begins, the value of this guidance diminishes to
some extent because of the anatomical changes due to surgery. Guid-
ance with live image feedback coming directly from the surgical device,
e.g., endoscope, can complement MRI-based navigation or be an alterna-
tive if MRI guidance is not feasible. With this motivation, we present a
method for live image-only guidance leveraging a large data set of anno-
tated neurosurgical videos. First, we report the performance of a deep
learning-based object detection method, YOLO, on detecting anatomi-
cal structures in neurosurgical images. Second, we present a method for
generating neurosurgical roadmaps using unsupervised embedding with-
out assuming exact anatomical matches between patients, presence of an
extensive anatomical atlas, or the need for simultaneous localization and
mapping. A generated roadmap encodes the common anatomical paths
taken in surgeries in the training set. At inference, the roadmap can
be used to map a surgeon’s current location using live image feedback
on the path to provide guidance by being able to predict which struc-
tures should appear going forward or backward, much like a mapping
application. Even though the embedding is not supervised by position
information, we show that it is correlated to the location inside the brain
and on the surgical path. We trained and evaluated the proposed method
with a data set of 166 transsphenoidal adenomectomy procedures.

Keywords: Neuronavigation · Unsupervised Embedding · Endoscopic
Surgeries

1 Introduction

Specialists with extensive experience and a specific skill set are required to
perform minimally invasive neurosurgeries. During these surgical procedures,
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differentiation between anatomical structures, orientation and localization is
extremely challenging. On one side, excellent knowledge of the specific anatomy
as visualized by the image feedback of the surgical device is required. On the
other hand, low contrast, non-rigid deformations, a lack of clear boundaries
between anatomical structures, and disruptions such as bleeding, make recogni-
tion even for experienced surgeons occasionally very challenging. Various tech-
niques have been developed to help neurosurgeons become oriented and to per-
form surgery. Computer-assisted neuronavigation has been an important tool
and research topic for more than a decade [8,15], but it is still preoperative
imaging-based, deeming it unreliable once the arachnoidal cisterns are opened
and brain shift occurs [10]. More real-time anatomical guidance can be pro-
vided by intraoperative MRI [1,22,23] and ultrasound [2,26]. Orientation has
also been greatly enhanced by the application of fluorescent substances such
as 5-aminolevulinic acid [7,24]. Awake surgery [9] and electrophysiological neu-
romonitoring [3,19] can also help navigating around essential brain tissue. These
techniques work well and rely on physical traits, other than light reflection.
However, they are expensive to implement, require the operating surgeon to
become fluent in a new imaging modality, and may require temporarily halting
the surgery or retracting surgical instruments to get the intra-operative infor-
mation [21].

Real-time anatomic recognition based on live image feedback from the surgi-
cal device has the potential to address these disadvantages and to act as a reliable
tool for intraoperative orientation. This makes the application of machine vision
algorithms appealing. The concepts of machine vision can likewise be employed
in the neurosurgery operating room to analyze the digital image taken by the
micro- or endoscope for automatically identifying the visible anatomic structures
and mapping oneself on a planned surgical path [21].

Deep learning applications within the operating room have become more
prevalent in recent years. The applications include instrument and robotic tool
detection and segmentation [20,28], surgical skill assessment [4], surgical task
analysis [13], and procedure automation [25]. Instrument or robotic tool detec-
tion and segmentation have been extensively researched for endoscopic proce-
dures owing to the availability of various datasets and challenges [18]. Despite
this research on endoscopic videos, the task of anatomic structure detection or
segmentation, which could be a foundation for a new approach to neuronaviga-
tion, remains relatively unexplored and continues to be a challenge. Note that,
anatomy recognition in surgical videos is significantly more challenging than
the task of surgical tool detection because of the lack of clear boundaries and
differences in color or texture between anatomical structures.

The desire to provide a cheaper real-time solution without relying on addi-
tional machines and the improvement of deep learning techniques has driven also
the development of vision-based localization methods. Approaches include struc-
ture from motion [11] and SLAM [6], such as [14,16], for 3D map reconstruction
based on feature correspondence. Many vision-based localization methods rely
on landmarks or the challenging task of depth and pose estimation. The main
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idea behind these methods is to find distinctive landmark positions and follow
them across frames for localization, which negatively impacts their performance
owing to the low texture, a lack of distinguishable features, non-rigid deforma-
tions, and disruptions in endoscopic videos [16]. These methods have mostly
been applied to diagnostic procedures, such as colonoscopy, instead of surgical
procedures, which pose significant difficulties. Abrupt changes due to the sur-
gical procedure, e.g., bleeding and removal of tissue, make tracking landmarks
extremely challenging or even impossible. Therefore, an alternative solution is
required to address these challenges.

In this study, a live image-only deep learning approach is proposed to provide
guidance during endoscopic neurosurgical procedures. This approach relies on
the detection of anatomical structures from RGB images in the form of bounding
boxes instead of arbitrary landmarks, as was done in other approaches [5,16],
which are difficult to identify and track in the abruptly changing environment
during a surgery. The bounding box detections are then used to map a sequence
of video frames onto a 1-dimensional trajectory, that represents the surgical
path. This allows for localization along the surgical path, and therefore predict
anatomical structures in forward or backward directions. The surgical path is
learned in an unsupervised manner using an autoencoder architecture from a
training set of videos. Therefore, instead of reconstructing a 3D environment
and localizing based on landmarks, we rely on a common surgical roadmap and
localize ourselves within that map using bounding box detections.

The learned mapping rests on the principle that the visible anatomy and
their relative sizes are strongly correlated with the position along the surgical
trajectory. Towards this end, bounding box detections capture the presence of
structures, their sizes, also relative to each other, and constellations. A simplified
representation is shown in Fig. 1. Using bounding box detection of anatomical
structures as semantic features mitigates the problem of varying appearance
across different patients since bounding box composition is less likely to change
across patients than the appearance of the anatomy in RGB images. Further-
more, because the considered anatomical structures only have one instance in
every patient, we do not need to rely on tracking of arbitrary structures, e.g.,
areas with unique appearance compared to their surrounding, which further
facilitates dealing with disruptions during surgery, such as bleeding or flushing.
We applied the proposed approach on the transsphenoidal adenomectomy pro-
cedure, where the surgical path is relatively one-dimensional, as shown in Fig. 2,
which makes it well-suited for the proof-of-concept of the suggested method.

2 Methods

2.1 Problem Formulation and Approach

Let St denote an image sequence that consists of endoscopic frames xt−s:t, such
as the one shown in Fig. 2, where s represents the sequence length in terms of the
number of frames, and xt ∈ R

w×h×c is the t-th frame with w, h, and c denoting
the width, height, and number of channels, respectively. Our main aim is to
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Fig. 1. Simplified representation of the suggested approach. 1. A sequence of input
images is processed to detect bounding boxes of anatomical structures. 2. A neural
network encodes the sequence of detections into a latent variable that correlates with
the position along the surgical path. 3. Given the current position along the surgical
path, an estimation of anatomical structures in the forward or backward directions can
be obtained, by extrapolating the current value of the latent variable.

embed the sequence St in a 1D latent dimension represented by the variable
z. This 1-D latent space represents the surgical path taken from the beginning
of the procedure until the final desired anatomy is reached. The approach we
take is to determine the anatomical structures visible in the sequence St along
the surgical path and map the frame xt to the latent space, where effectively
the latent space acts as an implicit anatomical atlas. We refer to this as an
implicit atlas because the position information along the surgical path is not
available for construction of the latent space. To achieve this, we perform object
detection on all frames xt−s:t in St and obtain a sequence of detections ct−s:t that
we denote as Ct. A detection ct ∈ R

n×5 represents the anatomical structures
and bounding boxes of the t-th frame, where n denotes the number of different
classes in the surgery. More specifically, ct consists of a binary variable yt =
[y0t , . . . , y

n
t ] ∈ {0, 1}n denoting the present structures (or classes) in the t-th

frame and bt = [b0
t , . . . ,b

n
t ]T ∈ R

n×4 denoting the respective bounding box
coordinates. An autoencoder architecture was used to achieve the embedding,
i.e., mapping Ct to zt. The encoder maps Ct to zt, and the decoder generates
ĉt, which represents the detections of the last frame in a given sequence, given
zt. The model parameters are updated to ensure that ĉt fits ct on a training set
as will be explained in the following.

2.2 Object Detection

Our approach requires being able to detect anatomical structures as bounding
boxes in frames from a video. To this end, the object detection part of the pipeline
is fulfilled by an iteration of the YOLO network [17]. Specifically, the YOLOv7
network was used [27]. The network was trained on the endoscopic videos in
the training set, where frames are sparsely labeled with bounding boxes, which
contains 15 different anatomical classes and one surgical instrument class. The
trained network was then applied to all the frames of the training videos to
create detections of these classes on every frame of the videos. These are then
used to train the subsequent autoencoder that models the embedding.
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2.3 Embedding

To encode the bounding boxes onto the 1D latent space, the output from the
YOLO network was slightly modified to exclude the surgical instrument, because
the presence of the instrument in the frame is not necessarily correlated with
the frame’s position along the surgical path. The autoencoder was designed to
reconstruct only the last frame ct in Ct because zt is desired to correspond to

Fig. 2. Left: Transsphenoidal adenomectomy procedure is performed to remove a tumor
from the pituitary gland, located at the base of the brain. Through the use of an
endoscope and various instruments, the surgeon inserts the instruments into the nostril
and crosses the sphenoidal sinus to access the pituitary gland located behind the sella
floor. All procedures in the dataset only accessed one nostril to perform the procedure
instead of two. Right: A video frame showing only the anatomy. Note that there is lack
of clear differences between anatomical structures in such images.

Fig. 3. The model architecture. The model consists of an encoder and two decoders.
The encoder consists of a multi-head attention layer, i.e., a transformer encoder, which
takes Ct as input, followed by a series of fully connected layers to embed the input in
a 1D latent dimension. The two decoders consist of fully connected layers to generate
the class probabilities ŷt and the bounding box coordinates b̂t, respectively.
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the current position. However, it takes into account s previous frames to provide
more information while determining the latent representation zt of an xt.

The encoder of the autoencoder network consists of multi-head attention
layers followed by fully connected layers, which eventually reduce the features
to a 1D value. Here a transformer-based encoder is used to encode the temporal
information in the sequence of detections. The decoder consists of two fully
connected decoders, the first of which generates the class probabilities ŷt of ĉt
and the second generates the corresponding bounding boxes b̂t. A simplified
representation of the network is shown in Fig. 3. The loss function consists of
a classification loss and a bounding box loss, which is only calculated for the
classes present in the ground truth. This results in the following objective to
minimize for the t-th frame in the m-th training video:

Lm,t = −
n∑

i=1

(
yi
m,t log

(
ŷi
m,t

)
+

(
1 − yi

m,t

)
log

(
1 − ŷi

m,t

))
+

n∑

i=1

yi
m,t

∣∣∣bi
m,t − b̂i

m,t

∣∣∣ ,

where | · | is the l1 loss and ŷim,t and n̂i
m,t are generated from zm,t using the

autoencoder. The total training loss is then obtained by summing Lm,t over
all frames and training videos. The proposed loss function can be considered
to correspond to maximizing the joint likelihood of a given y and b with a
probabilistic model that uses a mixture model for the bounding boxes.

3 Experiments and Results

3.1 Dataset

The object detection dataset used consists of 166 anonymized videos recorded
during a transsphenoidal adenomectomy in 166 patients. The videos were
recorded using various endoscopes and at multiple facilities, and made avail-
able through general research consent. The videos were labeled by neurosurgeons
and include 16 different classes, that is, 15 different anatomical structure classes
and one surgical instrument class. In total the dataset consists of approximately
19000 labeled frames, and around 3 × 106 frames in total. All the classes have
only one instance in every video because of the anatomical nature of the human
body, except for the instrument class, because of the various instruments being
used during the procedures. Out of the 166 videos, 146 were used for training
and validation, and 20 for testing. While we used different centers in our data,
we acknowledge that all the centers are concentrated in one geographic location,
which may induce biases in our algorithms. However, we also note that we use
different endoscopes and they were acquired throughout the last 10 years.

3.2 Implementation Details

The implementation of the YOLO network follows [27] using an input resolution
of 1280 × 1280. The model reached convergence after 125 epochs. To generate
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the data to train the autoencoder, the object confidence score and intersection-
over-union (IoU) threshold were set to 0.25 and 0.45, respectively.

The autoencoder uses a transformer encoder that consists of six transformer
encoder layers with five heads and an input size of s×15×5, where s is set to 64
frames. Subsequently, the dimension of the output of the transformer encoder is
reduced by three fully connected layers to 512, 256, and 128 using rectified linear
unit (ReLU) activation functions in between. Finally, the last fully connected
layer reduces the dimension to 1D and uses a sigmoid activation function to
obtain the final latent variable. Furthermore, the two decoders, the class decoder
and bounding box decoder, consist of two fully connected layers, increasing the
dimension of the latent variable from 1D to 8, 15, and 32, 15 × 4, respectively.
The first layer of both decoders is followed by a ReLU activation function and
the final layer by a sigmoid activation function.

For training of the autoencoder, the AdamW optimizer [12] was used in
combination with a warm-up scheduler that linearly increases the learning rate
from 0 to 1 × 10−4 over 60 epochs. The model was trained for 170 epochs.

3.3 Results

Anatomical Structure Detection: The performance of the YOLO network on
the test videos is shown in Table 1, using an IoU threshold for non-maximum
suppression of 0.45 and an object confidence threshold of 0.001. The latter is
set to 0.001 as this is the common threshold used in other detection works. It is
surprising how well YOLO model works on the challenging problem of detecting
anatomical structures in endoscopic neurosurgical videos.

Qualitative Assessment of the Embedding: First, to evaluate the learned latent
representation, we compute the confidences for every class, i.e., yi, for different
points on the latent space, and plot them in Fig. 4. The confidences are nor-
malized for every class, where the maximum confidence of a class corresponds
to the darkest shade of blue, and vice versa. This shows how likely it is to find

Table 1. YOLO detection model results on 20 test videos with an IoU threshold for
non-maximum suppression of 0.45 and an object confidence threshold of 0.001.

Class AP50 AP50:95 Class AP50 AP50:95

All (mean) 53.4 26.2 Ostium 43.1 19.4

Septum 78.6 57.9 Instrument 94.4 55.4

SupM 40.6 21.7 Rostrum 17.9 4.70

MidM 63.8 36.7 Sphenoidal Sinus 74.0 40.9

InfM 62.9 33.7 Sella Floor 70.6 27.6

Coana 54.3 22.2 Clival Recess 58.9 23.4

Floor 65.3 31.2 Planum 34.9 15.1

RecSphEthm 41.1 14.9 Osseous Carotis Right 21.6 5.37

Osseous Carotis Left 32.4 9.63
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Fig. 4. The normalized generated confidences of each class along the latent space. This
visualizes the probability of finding a certain anatomical structure at a specific point
in the latent space. Additionally, video frames of twenty test videos responsible for
the first appearances of anatomical structures in every video have been encoded and
overlaid onto the confidence intervals to demonstrate that their locations correlate with
the beginning of these intervals.

an anatomical structure at a certain location in the latent space, resembling a
confidence interval for the structure’s presence along the surgical path.

Figure 4 shows how the autoencoder encodes and separates anatomical struc-
tures along the surgical path. For example, from left (z = 0, the start of the
surgical path) to right (z = 1, the end of the surgical path), it can be seen that
the septum is frequently visible at the start of the surgical path, but later it is
no longer be visible. Because a sequence encodes to a single point in the latent
space, positioning along the surgical path is possible and allows the forecasting
of structures in both the forward and backward directions.

Furthermore, twenty test videos were used to validate the spatial embedding
of the anatomical structures. For every single one of the videos, the frame of
the first appearance of every anatomical structure was noted. To obtain the
corresponding z-value for each of the noted frames, a sequence was created
from the same frame, using the s previous frames, for all of the noted frames.
These sequences were then embedded into the 1D latent dimension to determine
whether their locations corresponded to the beginning of the confidence intervals
in the latent space where corresponding anatomical structures were expected to
start appearing. When examining the encodings of the video data, it is evident
that the points are located on the left side of the confidence interval for every
class. When considering a path from z = 0 to z = 1, this demonstrates that
the autoencoder is able to accurately map the first appearances of every class in
the validation videos to the beginning of the confidence intervals for the classes,
showing the network is capable of relative positional embedding.

Figure 5 plots the z-value against time (t) over an entire surgical video, where
t = 1 denotes the end of the video. The plot on the right shows how the endoscope
is frequently extracted going from a certain z-value back to 0, the beginning of the
surgical path, instantaneously. Retraction of the endoscope and replacement is
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common in this surgery and the plot reflects this. Subsequently, swift reinsertion
of the endoscope to the region of interest is performed, spending little time at
z-values inferior to the ones visited before extraction. Additionally, locations
along the latent space are visible where more time is spent than others, such as
around z = 0.2 and around z = 0.6, which correspond to locations where tissue is
removed or passageways are created, such as the opening of the sphenoidal sinus.
We also note that the z-value also shoots to z=1 at certain times. Z-values from
0.5 to 1.0 actually correspond to a narrow section of the surgical path. However,
this narrow section is the crux of the surgery where the surgeon spends more
time. Hence the behavior of the model is expected since more time spent in
this section leads to a higher number of images, and ultimately, covers a larger
section of the latent space.

Lastly, we used the decoder to generate bounding boxes moving along the 1D
latent dimension from one end to the other. A GIF showing the bounding boxes
of the classes that the model expected to encounter along the surgical path can
be found here at the following link: https://gifyu.com/image/SkMIX. Certain
classes are expected at different points, and their locations and sizes vary along
the latent space. From appearance to disappearance of classes, their bounding
boxes grow larger and their centers either move away from the center of the frame
to the outer region of the frame or stay centered. This behavior is expected when
moving through a tunnel structure, as in an endoscopic procedure. This shows
that the latent space can learn a roadmap of the surgery with the expected
anatomical structures at any location on the surgical path.

Quantitative Assessment of the Embedding: Beyond qualitative analyses, we
performed quantitative analysis to demonstrate that the latent space spatially
embeds the surgery path. As there are no ground truth labels on the position
of a video frame on the surgical path, a direct quantitative analysis comparing

Fig. 5. Z-values over time during a surgical video. Certain z-values are encoded more
frequently than others, such as approximately z = 0.2 and z = 0.6, which is related to
the amount of time spent at a certain location during the surgery.

https://gifyu.com/image/SkMIX
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Fig. 6. Latent variable plotted against time of its first encoding for 5 surgical videos.
Pearson correlation coefficients for first-time of appearance and z values are given for
an untrained (left) and trained (right) model. In these plots, t = 1 denotes the end of
a video. The untrained model provides a baseline for expected correlation coefficients.
High correlation coefficients suggest the embedding captures the relative position on
the surgical path.

z-value to ground truth position on the surgical path is not possible. To pro-
vide a quantitative evaluation, we make the observation that if the latent space
represents the surgical path spatially, frames encoding z-values at the beginning
of the path should be encountered in the early stages of the surgery, and vice
versa. Therefore, the timestamp t of a sequence responsible for the first encoding
of a specific z-value should increase with increasing z-value. This is confirmed
by the mean correlation coefficient between t and z for the 20 videos, which is
0.80. Figure 6 shows the relation between t and z for five test videos with their
corresponding Pearson correlation coefficients r for an untrained and a trained
model.

4 Conclusion

In this study, we propose a novel approach to neuronavigation based on deep
learning. The suggested approach is live image-based and uses bounding box
detections of anatomical structures to localize itself on a common surgical
roadmap that is learned from a dataset containing numerous videos from a spe-
cific surgical procedure. The mapping is modeled by the use of an autoencoder
architecture and trained without supervision. The method allows for the local-
ization and forecasting of anatomical structures that are to be encountered in
forward and backward directions along the surgical path, similar to a mapping
application.

The presented work has also some limitations. The main limitation is that
we focused on only one surgery in this initial work. Extension to other surgeries
is our future research topic. The proposed method can also be combined with
SLAM approaches as well as guidance provided by MRI. Both of these directions
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also form our future work. Another limitation is that the latent dimension only
provides relative positional encoding. Going beyond this may require further
labels on the real position on the surgical path.
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