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Abstract. Reconstructing a 3D surface from colonoscopy video is chal-
lenging due to illumination and reflectivity variation in the video frame
that can cause defective shape predictions. Aiming to overcome this
challenge, we utilize the characteristics of surface normal vectors and
develop a two-step neural framework that significantly improves the
colonoscopy reconstruction quality. The normal-based depth initializa-
tion network trained with self-supervised normal consistency loss pro-
vides depth map initialization to the normal-depth refinement module,
which utilizes the relationship between illumination and surface normals
to refine the frame-wise normal and depth predictions recursively. Our
framework’s depth accuracy performance on phantom colonoscopy data
demonstrates the value of exploiting the surface normals in colonoscopy
reconstruction, especially on en face views. Due to its low depth error, the
prediction result from our framework will require limited post-processing
to be clinically applicable for real-time colonoscopy reconstruction.
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1 Introduction

Reconstructing the 3D model of colon surfaces concurrently during colonoscopy
improves polyp (lesion) detection rate by lowering the percentage of the colon
surface that is missed during examination [7]. Often surface regions are missed
due to oblique camera orientations or occlusion by the colon folds. By recon-
structing the surveyed region, the unsurveyed part can be reported to the physi-
cian as holes in the 3D surface (as in Fig. 1). This approach makes it possible to
guide the physician back and examine the missing region without delay.
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Fig. 1. Reconstructing the 3D mesh from a colonoscopy video in real-time according to
the predicted depth and camera pose, allowing holes in the mesh to alert the physician
to unsurveyed regions on the colon surface.

To reconstruct colon surfaces from the colonoscopy video, a dense depth
map and camera position need to be predicted from each frame. Previous work
[12,14] trained deep neural networks to predict the needed information in real
time. With the proper help from post-processing [13,15], these methods often
are able to reconstruct frames with abundant photometric and geometric fea-
tures such as in “down-the-barrel” (axial) views where the optical axis is aligned
with the organ axis. However, they often fail to reconstruct from frames where
the optical axis is perpendicular to the surface (“en face” views). We address the
problem of reconstruction from these en face views. In our target colonoscopy
application, the geometry of scenes in these two viewpoints are significantly dif-
ferent, manifesting as a difference in depth ranges. In particular, the en face views
have near planar geometry, resulting in limited geometric structures informing
the photometric cues. As a result, dense depth estimation is challenging using
photometric cues alone. However, the characteristics of the endoscopic environ-
ment (with a co-located light source and camera located in close proximity to
the highly reflective mucus layer coating the colon) mean that illumination is
a strong cue for understanding depth and the surface geometry. We capitalize
upon this signal to improve reconstruction in en face views. We also aim to yield
the reconstruction from frame-wise predictions with minimal post-integration to
achieve near real-time execution, which requires strong geometric awareness of
the network.

In this work we build a neural framework that fully exploits the surface nor-
mal information for colonoscopy reconstruction. Our approach is two-fold, 1)
normal-based depth initialization (Sect. 3.1) followed by 2) normal-depth
refinement (Sect. 3.2). Trained with a large amount of clinical data, the normal-
based depth initialization network alone can already provide good-quality recon-
structions of “down-the-barrel” video segments. To improve the performance on
en face views, we introduced the normal-depth refinement module to refine the
depth prediction. We find that the incorporation of surface normal-aware losses
improves both frame-wise depth estimation and 3D surface reconstruction from
the C3DV [3] and clinical datasets, as indicated by both measurements and
visualization.
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2 Background

Here we describe prior work on 3D reconstruction from endoscopic video, par-
ticularly focusing on colonoscopic applications. They usually start with a neural
module to provide frame-wise depth and camera pose estimation, followed by
an integration step that combines features across a video sequence to generate a
3D surface. With no ground truth from clinical data to supervise the frame-wise
estimation network training, some methods transferred the prior learned from
synthetic data to real data [4,16,17] while others utilized the self-consistent
nature of video frames to conduct unsupervised training [12]. In order to incor-
porate optimization-based methods to calibrate the results from learning-based
methods, Ma et al. [14,15] introduced the system with a SLAM component [5]
and a post-averaging step to correct potential camera pose errors; Bae et al. [1]
and Liu et al. [13] integrated Structure-from-Motion [18] with the network, trad-
ing off time efficiency for better dense depth quality.

When using widely-applied photometric and simple depth consistency objec-
tives [2,25] in training, networks frequently fail to predict high quality and
temporally consistent results due to the low geometric texture of endoscopic
surfaces and time-varying lighting [23]. The corresponding reconstructions pro-
duced by these methods have misaligned or unrealistic shapes as a result. Mean-
while, recent work in computer vision has shown surface normals to be useful for
enforcing additional geometric constraints in refining depth predictions [8,20,22]
while the relationship between surface normals and scene illumination has been
exploited in photometric stereo [9–11,19]. The success of utilizing surface nor-
mals in complex scene reconstruction inspires us to explore this property in the
endoscopic environment.

3 Methods

Surface normal maps describe the orientation of the 3D surface and reflect local
shape knowledge. We incorporate this information in two ways: first, to enhance
unsupervised consistency losses in our normal-based depth initialization (Fig. 2a)
and second, to allow us to use illumination information in our normal-depth
refinement (Fig. 2b). We use this framework as initialization for a SLAM-based
pipeline that fuses the frame-wise output into a 3D mesh following Ma et al. [15].

3.1 Normal-Based Depth Initialization

In order to fully utilize the large amount of unlabeled clinical data, our ini-
tialization network is trained with self-supervision signals based on the scene’s
consistency of frames from the same video. We particularly exploit the surface
normal consistency in training to deal with the challenges of complicated colon
topology in addition to applying the commonly used photometric consistency
losses [2,6,25], which are less reliable due to lighting complexity in our appli-
cation. Trained with the scheme described below, this network produces good
depth and camera pose initialization for later reconstruction. We refer to this
model as “NormDepth” or “ND” in Sect. 4.
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Fig. 2. Our two-fold framework of colonoscopy reconstruction. a) Normal-based
depth initialization network is trained with self-supervised surface normal consis-
tency loss to produce depth map and camera pose initialization. b) Normal-depth
refinement framework utilizes the relation between illumination and surface geometry
to refine depth and normal predictions.

Background - Projection. The self-supervised training losses discussed in this
section are built upon the pinhole camera model and the projection relation
between a source view s and a target view t [25]. Given the camera intrinsic K,
a pixel pt in a target view can be projected into the source view according to
the predicted depth map D̂t and the relative camera transformation T̂t→s. This
process yields the pixel’s homogeneous coordinates p̂s and its projected depth
d̂ts in the source view, as in Eq. 1:

p̂s, d̂
t
s ∼ KT̂t→sD̂t(pt)K−1pt (1)

Normal Consistency Objective. As the derivative of vertices’ 3D positions,
surface normals can be sensitive to the error and noise on the predicted surface.
Therefore, when the surface normal information is appropriately connected with
the network’s primary predictions, i.e., the depth and camera pose, utilizing
surface normal consistency during training can further correct the predictions
and improve the shape consistency.

Let N̂t be the object’s surface normals in the target coordinate system. In
the source view’s coordinate system, the direction of those vectors depends on
the relative camera rotation R̂t→s (the rotation component of T̂t→s) and should
agree with the source view’s own normal prediction N̂s; using this correspondence
we form the normal consistency objective as
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Lnorm = ||N̂s 〈p̂s〉 − R̂t→sN̂t||1 (2)

Here, we use the numerical difference between the two vectors (L1 loss) for error.
In practice, we find that using angular difference has similar performance.

Surface Normal Prediction. We found that when training with colonoscopy data,
computing normals directly from depths as in some previous work [20,21] is less
stable and tends to result in unrealistic shapes. Instead, we built the network
to output the initial surface normal information individually, and trained it in
consensus with depth prediction using Lorth:

V̂ (p) = D̂(pa)K−1pa − D̂(pb)K−1pb (3)

Lorth =
∑

p

N̂(p) · V̂ (p) (4)

where V̂ (p) is the approximate surface vector around p, which is computed from
the depths of pa and pb, p’s nearby pixels. In practice, we apply two pairs of pa/b
position combinations, i.e., p’s top-left/bottom-right and top-right/bottom-left
neighboring pixels. This orthogonality constraint bridges the surface normal and
depth outputs so that the geometric consistency constraint on the normal will
in turn regularize the depth prediction.

Training Overview. We adapt our depth initialization network from Godard
et al. [6] with an additional decoder to produce per-pixel normal vectors besides
depths, and apply their implementation of photometric consistency loss Lphoto

and depth smoothness loss Lsm. Besides the surface normal consistency, we
also enforce the prediction’s geometric consistency by minimizing the difference
between the predicted depths of the same scene in different frames, as in [2]:

Ldepth =

∣∣∣D̂s 〈p̂s〉 − D̂t
s

∣∣∣

D̂s 〈p̂s〉 + D̂t
s

(5)

With the per-pixel mask M to mask out the stationary [6], invalid projected or
specular pixels, the final training loss to supervise this initialization network is
the weighted sum of the above elements, where λ1−4 are the hyper-parameters:

Linit =(Lphoto + λ1Lnorm + λ2Ldepth) � M + λ3Lorth + λ4Lsm (6)

3.2 Normal-Depth Refinement

In the endoscopic environment, there is a strong correlation between the scene
illumination from the point light source and the scene geometry characterized by
the surface normals. Our normal-depth refinement framework uses a combination
of the color image, scene illumination as represented by the light field, and an
initial surface normal map as input. We use both supervised and self-supervised
consistency losses to simultaneously enforce improved normal map refinement
and consistent performance across varying scene illumination scenarios.
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Light Field Computation. We use the light field to approximate the amount of
light each point on the viewed surface receives from the light source. As in Lichy
et al. [10] we parameterize our light source by its position relative to the camera,
light direction, and angular attenuation. In the endoscopic environment, the light
source and camera are effectively co-located so we take the light source position
and light direction to be fixed at the origin O and parallel to the optical axis �z,
respectively. Thus for attenuation μ and depth map D̂, we define the point-wise
light field F̂ and the point-wise attenuation Â as

F̂ =
O − D̂

||O − D̂|| , Â =
(−∑

F̂ · �z)µ
||O − D̂||2 (7)

For our model input, we concatenate the RGB image, F̂ , Â, and normal map N̂
(computed from the gradient of the depth map) along the channel dimension.

Training Overview. In order to use illumination in colonoscopy reconstruc-
tion, we adapt our depth-normal refinement model from Lichy et al. [10] with
additional consistency losses and modified initialization. We use repeated iter-
ations for refinement; in order to reduce introduced noise, we use a multi-scale
network as in many works in neural photometric stereo [9–11]. After each recur-
sive iteration, we upsample the depth map to compute normal refinement at a
higher resolution. We denote n iterations with “n×NR”.

We compute the following losses for each scale, rescaling the ground truth
where necessary to match the model output. For the supervised loss Lgt for
iteration i, we minimize L1 loss on the normal refinement module output N̂i

and the matching ground truth normal map N as well as the L1 loss on the
depth-from-normal model output D̂i and the matching ground truth depth map
D. We define a scaling factor αi =

median(D)

median(D̂i)
.

Lgt =
∑

i

||N − N̂i||1 + ||D − αiD̂i||1 (8)

For the depth-from-normal integration module, we compute a normal map N̂ ′
i

from its depth output and minimize L1 loss between it and the input normal
map N̂i; this has the effect of imposing the orthogonality constraint between the
depth and surface normal maps.

Ldfn =
∑

i

||N̂ ′
i − N̂i||1 (9)

We use a multi-phase training regime for stability. In an iteration, we first
train the normal refinement module and substitute an analytical depth-from-
normal integration method. For the second phase, we freeze the normal refine-
ment module and train only the depth-from-normal integration module. For the
third and final phase of training, we use the normal refinement module and neu-
ral integration, optimizing a weighted sum of all losses with hyperparameters λ1

and λ2. Thus we define the losses for each phase respectively as follows:
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L
(1)
refine = Lgt + λ1Lnorm (10)

L
(2)
refine = Ldfn (11)

L
(3)
refine = Lgt + λ1Lnorm + λ2Ldfn (12)

4 Experiments

In our experiments, we demonstrate that incorporating surface normal informa-
tion improves both frame-wise depth estimation and 3D surface reconstruction.
We describe the frame-wise depth map improvement over baseline and the effect
of various ablations in Sect. 4.1. To evaluate the effect of the frame-wise depth
estimation on surface reconstruction, we compare the reconstructions obtained
from initializing the SLAM pipeline [15] with the outputs from various methods
of frame-wise depth estimation against initialization with ground truth depth
maps. We provide a comparison of Chamfer distance [24] on aligned mesh recon-
structions in Table 1 and a qualitative comparison in Sect. 4.2. We also provide
a qualitative comparison of the surfaces reconstructed from clinical video in
Sect. 4.3.
Dataset. To train the normal-based depth initialization network, as well as the
self-supervised baseline Monodepth2 [6], we collected videos from 85 clinical
procedures and randomly sampled 185k frames as the training set and another
5k for validation. We used the Colonoscopy 3D Video Dataset (C3DV) [3] for
the normal-depth refinement module, which provides ground truth depth maps
and camera poses from a colonoscopy of a silicone colon phantom. We divide
this dataset into 5 randomly-drawn cross-validation partitions with 20 training
and 3 testing sequences such that the test sequences do not overlap. The results
reported in Sect. 4.1 are the methods’ average performance across all folds.

4.1 Frame-Wise Depth Evaluation

We compared our method’s depth prediction with several ablations and the
baseline against the ground truth in C3DV. Following the practice in Godard

Table 1. Error averaged over 5-fold cross validation test sets of C3DV, ± standard
deviation. Best performance in bold. “NormDepth” and “ND” stand for normal-based
depth initialization and “n×NR” stands for normal-depth refinement for n iterations.
“NormDepth −Lnorm” denotes NormDepth trained without Lnorm. “flat init” denotes
refinement initialized with planar depth rather than NormDepth output.

Method Depth Error ↓ Chamfer Distance ↓
Abs Rel Sq Rel RMSE log RMSE

Monodepth2 [6] 0.189 2.878 11.779 0.232 0.057 ± 0.039

NormDepth −Lnorm 0.137 1.328 7.411 0.168 0.044 ± 0.018
NormDepth 0.141 1.373 7.447 0.173 0.046 ± 0.019

ND init + 1×NR 0.136 1.271 7.376 0.170 0.038 ± 0.017
ND init + 4×NR 0.141 1.353 7.479 0.173 0.044 ± 0.018
flat init + 4×NR 0.166 1.927 8.955 0.201 0.047 ± 0.022
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Fig. 3. Example depth predictions and RMSE from C3DV. For the depth maps, darker
colors denote more distant depths. For the RMSE, brighter colors denote higher error.
Some areas of improvement are highlighted in boxes. (Color figure online)

et al. [6], we rescaled our depth output to match the median of the ground truth
and reported 4 pixel-wise aggregated error metrics in Table 1.

Comparing depth prediction errors (Fig. 3), both models using our two-stage
method significantly outperform the photometric-based baseline Monodepth2,
demonstrating the merit of emphasising geometric features (specifically surface
normals) in colonoscopic depth estimation. Meanwhile, although each individual
stage of our two-stage method (NormDepth and flat init+NR) already produces
relatively good performance, our combined system performs even better and
generates the best quantitative result on this dataset (from ND init + 1×NR).
Notice that although based on the results from ablation models, the normal
consistency loss Lnorm and multi-iteration of normal refinement quantitatively
do not boost performance here due to the nature of C3DV dataset, they are
critical for generating better 3D reconstruction shapes (Sects. 4.2 and 4.3).

4.2 C3DV Reconstruction

In this section, we demonstrate the improvement in reconstructions of the C3DV
data using our normal-aware methods. In particular, we examine the effects of
initializing our SLAM pipeline with the various depth and pose estimation meth-
ods. Although C3DV provides a digital model of the phantom, here we compare
against the reconstruction produced by using the ground truth depths and poses
as initialization to our SLAM pipeline (and refer to this as the ground truth
below). In this way, we can control for the impact of the SLAM pipeline in our
reconstruction comparison. In Table 1, we measure the Chamfer distance from
the ground truth to the reconstructed mesh after ordinary Procrustes alignment
and optimizing the scaling factor for Chamfer distance from the ground truth
to the reconstruction.
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Fig. 4. Example reconstructed sequences from C3DV using various methods of initial-
ization for SLAM pipeline. The more planar shapes observed in the ND init+n×NR
compared to NormDepth variations are closer to the ground truth reconstruction while
the noisy reconstructions using Monodepth2 and flat init+4×NR are farther from the
ground truth. Select areas of improvement highlighted with arrows.

Overall, we find that the performance improvements observed in the frame-
wise depth estimation are reflected in the reconstructions as well. Similarly,
the weaknesses observed in the frame-wise inference also transfer to the recon-
structions. In particular, we note that where significant noise is present in the
frame-wise depth estimation for ND init+1xNR and reduced in ND init+4xNR,
the corresponding reconstructions reflect the difference in noise as well.

In Fig. 4, we visualize the reconstructions corresponding to example video
sequences. In these sequences, we observe that our normal-aware methods sig-
nificantly outperform the baseline Monodepth2 in qualitative similarity to the
ground truth. In addition, we notice that the high curvature of the surface
observed in the NormDepth and NormDepth-Lnorm reconstructions is reduced
after refinement, bringing the overall reconstructed result closer to the ground
truth.

4.3 Clinical Reconstructions

We tested our trained depth estimation models on clinical colonoscopy sequences
and generated 3D reconstruction with the SLAM pipeline. Figure 5 shows the
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Fig. 5. 3D reconstruction results on clinical colonoscopy data. Our combined system
can handle both “down-the-barrel” and en face views, outperforming the photometric
baseline Monodepth2.

reconstructed meshes of two “down-the-barrel” segments (Fig. 5a and b) and an
en face segment (Fig. 5c).

The reconstruction quality from the two stages of our method (“ND” and
“ND+n×NR”) significantly outperforms the photometric baseline Monodepth2.
For “down-the-barrel” sequences where features are relatively rich, we expect a
generalized cylinder shape with limited sparsity. For sequence (a), we expect
two large blind spots due to occlusion by ridges and a slightly curved center-
line. For sequence (b), we also expect two large blind spots due to the camera
position but fairly dense surface coverage elsewhere. For these sequences, our
predictions’ shapes are more cylindrical and have surface coverage that more
accurately reflect the quantity of surface surveyed compared to the reconstruc-
tion produced using Monodepth2. The results also indicate that when trained
without the normal consistency loss (−Lnorm), NormDepth tends to predict
more artifacts such as the skirt-shape outlier in sequence (a). This demonstrates
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the benefit of surface normal information in network training for improved con-
sistency between frames. Meanwhile, using multi-scale iterations of normal-depth
refinement can reduce the noise and sparsity of reconstructed meshes compared
to a single iteration.

For the en-face sequence (c), we expect a nearly planar surface. Similar to
the observations made in reconstructing sequences from C3DV, the high surface
curvature produced from the initialization network is reduced after refinement,
resulting in a more realistic reconstruction.

5 Conclusion

In this work we introduced the use of surface normal information to improve
frame-wise depth and camera pose estimation in colonoscopy video and found
that this in turn improves our ability to reconstruct 3D surfaces from videos
with low geometric texture. We used a combination of supervised and unsu-
pervised losses to train our multi-stage framework and found significant per-
formance improvements over methods that do not consider surface geometry.
We have also shown that the incorporation of normal-aware losses allows us to
reconstruct clinical videos of low-texture en face views.

Limitations and Future Work. In this work, we have treated “down-the-barrel”
and en face views separately. In practice, colonoscopy videos transition between
these two view types, so constructing a framework that can also transition
between view types would have significant clinical application; we leave this
investigation to future work.

Acknowledgements. We thank Zhen Li and his team at Olympus, Inc. for support
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