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Abstract. Brain midline shift (MLS) is one of the most critical factors
to be considered for clinical diagnosis and treatment decision-making for
intracranial hemorrhage. Existing computational methods on MLS quan-
tification not only require intensive labeling in millimeter-level measure-
ment but also suffer from poor performance due to their dependence on
specific landmarks or simplified anatomical assumptions. In this paper,
we propose a novel semi-supervised framework to accurately measure the
scale of MLS from head CT scans. We formulate the MLS measurement
task as a deformation estimation problem and solve it using a few MLS
slices with sparse labels. Meanwhile, with the help of diffusion models, we
are able to use a great number of unlabeled MLS data and 2793 non-MLS
cases for representation learning and regularization. The extracted repre-
sentation reflects how the image is different from a non-MLS image and
regularization serves an important role in the sparse-to-dense refinement
of the deformation field. Our experiment on a real clinical brain hemor-
rhage dataset has achieved state-of-the-art performance and can generate
interpretable deformation fields. Our code is available at: https://github.
com/med-air/DiffusionMLS.

Keywords: Computer-aided diagnosis · Semi-supervised learning ·
Diffusion models · Intracranial hemorrhage

1 Introduction

Intracranial hemorrhage (ICH) refers to brain bleeding within the skull, a seri-
ous medical emergency that would cause severe disability or even death [1].
A characteristic symptom of severe ICH is brain midline shift (MLS), which
is the lateral displacement of midline cerebral structures (see Fig. 1). MLS is
an important and quantifiable indicator of the severity of mass effects and the
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Fig. 1. Examples of head CT scans to illustrate how radiologists measure MLS. Dash
red line connecting the anterior falx and posterior falx denote a hypothetical normal
midline. Blue circles denote the shifted landmarks. Perpendicular red lines from the
shifted landmarks to normal midline are measured as MLS scale. (Color figure online)

urgency of intervention [2,3,9]. For instance, the 5 mm (mm) threshold of MLS
is frequently used for immediate intervention and close monitoring [4]. MLS
quantification demands high accuracy and efficiency, which is difficult to achieve
with manual quantification, especially in emergencies, due to the variability in
shift regions, unclear landmark boundaries, and non-standard scanning pose. An
automated MLS quantification algorithm that can immediately and accurately
quantify MLS is highly desirable to identify urgent patients for timely treatment.

To measure MLS, clinicians usually first identify a few CT slices with large
shifts and then measure and identify the maximum deviation of landmarks such
as the septum pellucidum, third ventricle, or falx from their normal counterpart
as the final MLS distance (see examples in Fig. 1). Such a clinical fashion of
MLS quantification can be difficult to be translated into a well-defined automa-
tion process. Currently, there are only limited studies on automated MLS quan-
tification, using different strategies and varied labeling requirements. Nguyen
et al. proposed a landmark-based method that relies on anatomical markers to
determine the location of the deformed midline [9]. However, this method can
only apply to cases where MLS appears on these specific marker regions. Liao et
al. adopted a symmetric-based method to seek a curve connecting all deformed
structures [10], which is difficult to generalize due to over-simplified anatomical
assumptions and sensitivity to patients’ scan poses. A few recent works try to
overcome these limitations by using stronger supervision with dense labeling.
Some studies formulated MLS quantification as a midline segmentation task [5–
7], by delineating the intact midline as labels to supervise the training of seg-
mentation models. Another study designed a hemisphere segmentation task to
quantify MLS [8], which requires pixel-wise annotation for each slice. However,
obtaining such dense annotations is very costly and time-consuming, while may
not be necessary for MLS quantification.

To tackle these limitations, we propose to fit MLS quantification into a defor-
mation prediction problem by using semi-supervised learning (SSL) with only
limited annotations. Our framework avoids the strong dependency on specific
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landmarks or over-simplified assumptions in previous methods while not increas-
ing the labeling efforts. We aim to use only sparse and weak labels as ground
truth supervisions, which are just one shifted landmark and its normal counter-
part on a limited number of slices provided by radiologists, but we try to fully
exploit the unlabeled slices and non-MLS data to impose extra regularization
for the sparse-to-dense extension. Existing SSL methods typically use a partially
trained model with labeled data to generate pseudo labels for unlabeled data,
assuming that labeled and unlabeled data are generally similar. These meth-
ods can be sub-optimal in our case as labeled slices of MLS usually present the
largest deformation while unlabeled slices contain only minor or no deformation.
Instead, we propose our SSL strategy by generating a corresponding non-MLS
image for each unlabeled MLS slice with generative models and regularizing
that the deformation field should warp the generated non-MLS images into the
original MLS ones. However, as we only have volume-wise labels for MLS and
non-MLS classification, it can be difficult to train a slice-wise discriminator as
required by many generative models such as GANs [12]. Fortunately, the recently
proposed diffusion models [15], which prove to have strong power in both dis-
tribution learning and image generation without dependency on discriminators,
can be a potentially good solution.

In this work, we propose a novel semi-supervised learning framework based
on diffusion models to quantify the brain MLS from head CT images with defor-
mation prediction. Our method effectively exploits supervision and regulariza-
tion from all types of available data including MLS images with sparse ground
truth labels, MLS images without labels, and non-MLS images. We validate our
method on a real clinical head CT dataset, showing effectiveness of each pro-
posed component. Our contributions include: (1) innovating an effective defor-
mation strategy for brain MLS quantification, (2) incorporating diffusion models
as a representation learner to extract features reflecting where and how an MLS
image differs from a non-MLS image, and (3) proposing a diffusion model-based
semi-supervised framework that can effectively leverage massive unlabelled data
to improve the model performance.

2 Methods

Figure 2 illustrates our diffusion model-based semi-supervised learning frame-
work for MLS quantification via deformation prediction. In Sect. 2.1, we intro-
duce our deformation strategy with only sparse supervision. In Sect. 2.2, we
propose to incorporate non-MLS data for representation learning. In Sect. 2.3,
we describe how to utilize unlabeled MLS images for sparse-to-dense regulariza-
tion.

2.1 MLS Quantification Through Deformation Estimation

Our proposed deformation strategy for brain MLS quantification aims to find an
optimal deformation field φ so that an MLS image can be regarded as a hypo-
thetically non-MLS image warped with this deformation field. The deformation
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Fig. 2. The pipeline of our proposed semi-supervised deformation strategy for MLS
quantification. Sparse labels supervise the labeled image xl and the unlabeled image
xu is self-supervised with generated negative image x′u.

field can be parameterized by a function with high complexity so that it does
not explicitly rely on a single landmark or over-simplified symmetric assump-
tions, which naturally overcomes the limitations of existing methods. We apply
a learning-based framework to parameterize the deformation field with a U shape
neural network. The input to the network is individual 2D slices and the net-
work’s output is the stationary velocity field v. The diffeomorphic deformation
field φ is then calculated through the integration of the velocity field, similarly
to VoxelMorph [11] for image registration. The learning process is supervised
by sparse deformation ground truth. For each labeled slice, we have the ground
truth y = (y1, y2), which is a two-dimensional vector directing from shifted land-
mark point toward its presumably normal location (the red arrow in Fig. 2). The
predicted deformation ŷ is bilinearly interpolated at the shifted landmark point
from the deformation field, which is also a two-dimensional vector. To alleviate
the influence of a few extremely large deformation points and increase model’s
robustness, we use Huber loss to measure the similarity between the predicted
deformation and the label:

lhuber(yd, ŷd) =

⎧
⎨

⎩

|yd − ŷd|, |yd − ŷd| ≥ c,

(yd − ŷd)2 + c2

2c
, |yd − ŷd| < c.

(1)

where d ∈ {1, 2}. The hyperparameter c defines the range for absolute error or
squared error. We also encourage a smooth deformation field with a diffusion
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regularizer on the spatial gradients of deformation φ to avoid a discontinuous
deformation field:

lsmooth =
∑

j

∑

k

‖φjk − φ(j−1)k‖2 + ‖φjk − φj(k−1)‖2, (2)

We apply a coarse-to-fine manner, where velocity fields are generated through
upsampling with skip connection to progressively aggregate features of different
scales, making the model more adaptive to extremely large deformation.

2.2 Learning Negative Patterns from Non-MLS Images

In order to learn a deformation field to warp a non-MLS image into MLS one,
ideally we would need a pair of non-MLS and MLS images for network training,
which however does not exist in practice. A naive substitution is to generate a
corresponding non-MLS image. However, generated images entail some random-
ness and often lack important details. Depending too much on such fake inputs
can lead to poor robustness. Inspired by the score-matching interpretation of dif-
fusion models [17], we propose to learn the non-MLS distribution from massive
amount of negative cases. Given an MLS image, we can evaluate which parts of
the image make it different from a non-MLS image. This deviation can serve as
latent features that help the deformation network with deformation prediction.

Diffusion models, especially DDPM [14], define a forward diffusion process as
the Markov process progressively adding random Gaussian noise to a given image
and then trying to approximate the reverse process by a Gaussian distribution.
The forward process can be simplified by a one-step sampling: xt =

√
αtx0 +√

1 − αtε, where αt :=
∏t

s=0 1 − βt, and βt are predefined variance schedule.
ε is sampled from N (0, I). The mean μθ(xt, t) and variance Σθ(xt, t) of the
reverse process can be parameterized by neural networks. A popular choice is
to re-parameterize μθ(xt, t) so that ε̂θ(xt, t) instead of μθ(xt, t) is estimated by
neural networks to approximate the noise ε. Moreover, the output of the diffusion
network ε(xt, t) is actually a scaled score function ∇ log p(xt) as it moves the
corrupted image towards the opposite direction of the corruption [18].

As a result, through pre-training one unconditional diffusion model trained
with all data (denoted as U) and one conditional diffusion model trained with
only non-MLS data (denoted as C), the subtraction of two outputs

ε̂θU (xt, t) − ε̂θC (xt, t) ∝ ∇ log p(xt|n) − ∇ log p(xt) = ∇ log p(n|xt), (3)

can be regarded as the gradient of class prediction (n = 1 for non-MLS and 0
otherwise) w.r.t to the input image, which reflects how the input images deviate
from a non-MLS image. This latent contains information regarding how to trans-
form the MLS positive image into a non-MLS one and therefore is helpful for
training the deformation network. Moreover, this feature representation exhibits
less fluctuation toward the randomness of the additive noise as both terms are
somehow estimations of the stochastic noise, which are then eliminated through
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subtraction. It is more stable than the predicted noise or generated MSL neg-
ative images. For training, we randomly sample t from 0 to the diffusion steps
Ttrain, while for inference we fix it to be a certain value. We examine the effects
of this value in Sect. 3.4.

2.3 Semi-supervised Deformation Regularization

Deformation estimation is a dense prediction problem, while we only have sparse
supervision. This can lead to flickering and poor generalizability if the deforma-
tion lacks certain regularization. On the other hand, we have a significant amount
of unlabeled data from the MLS volumes that is potentially helpful. Therefore,
we propose to include these unlabeled data during training in a semi-supervised
manner, so that unlabeled data can provide extra regularization for training or
produce additional training examples based on noisy pseudo labels. Many exist-
ing semi-supervised methods seek to use the prediction for unlabeled data given
by the same or a twin network as pseudo-labels and then supervise the model or
impose some regularization with these pseudo-labels. However, these methods
hold a strong assumption that labeled and unlabeled data are drawn from the
same distribution, which is not true in our case because most labeled data are
with large deformation while unlabeled data are with minor or no deformation.
Therefore, we want to find another type of pseudo-label to bypass the distribu-
tion assumption. As the deformation field is assumed to warp a hypothetically
normal image into an MLS one, we generate hypothetically non-MLS images
x′
0 using pre-trained diffusion models through a series of denoising steps with

classifier-free guidance [16]:

ε̂(xt, t) = λε̂θC (xt, t) + (1 − λ)ε̂θU (xt, t), (4)

where λ is a hyper-parameter controlling the strength of the guidance. We com-
pare x′

0 warped with the deformation field φ(x′
0) and calculate its similarity with

the original x0 through MSE loss. As it can be difficult for the generated image
to be fully faithful to the original image because the generative process entails a
lot of random sampling, this lmse can only serve as noisy supervision. Therefore,
instead of generating x′

0 ahead of deformation network training, we generate it
in an ad-hoc way (i.e. generating new cases at each iteration) so that the noisy
effects can be counteracted.

The final MLS measurement is estimated by calculating the length of the
maximum displacement vector from the predicted deformation field, so it is more
sensitive to over-estimation. As for unlabelled slices, we still have the prior that
its MLS cannot be larger than the MLS of that specific volume δ, we propose to
incorporate an additional ceiling loss to punish the over-estimation:

lceil =
∑

j

∑

k

max(0, ||φjk|| − δ). (5)

Overall, the loss term is a combination of supervised loss and unsupervised loss,
with a weight term controlling the relative importance of each loss term:

l = lhuber + w1lsmooth + u(i)(lmse + w2lceil), (6)
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where w1 and w2 are two fixed weight terms and u(i) is a time-varying weight
term that is expected to gradually increase as the training iteration i progresses
so that the training can converge quickly through strong supervision first and
then refine and enhance generalizability via unsupervised loss.

3 Experiments and Results

3.1 Data Acquisition and Preprocessing

We retrospectively collected anonymous thick-slice, non-contrast head CT of
patients who were admitted with head trauma or stroke symptoms and diagnosed
with various subtypes of intracranial hemorrhage, including epidural hemor-
rhage, subdural hemorrhage, subarachnoid hemorrhage, intraventricular hemor-
rhage, and intraparenchymal hemorrhage, between July 2019 and December 2019
in the Prince of Wales Hospital, a public hospital under the Hospital Author-
ity of Hong Kong. The ethics approval was obtained from the Joint Chinese
University of Hong Kong-New Territories East Cluster Clinical Research ethics
committee. The eligible patients comprised 2793 CT volumes, among them 124
are MLS positive cases. The MLS ranges between 2.24 mm and 20.12 mm, with
mean value of 8.34 mm and medium value of 8.73 mm. The annotation was per-
formed by two trained physicians and verified by one experienced radiologist
(with over 10 years of clinical experience on ICH). The labeling process followed
a real clinical measurement pipeline, where the shifted landmark, anterior falx
point, and posterior falx point were pointed out, and the length of the vertical
line from the landmark to the line connecting the anterior falx point and the
posterior falx point was the measured MLS value. For each volume, a few slices
with large deformation were separately measured and annotated while the shift
of the largest one served as the case-level label. On average, 4 out of 30 slices
of each volume were labeled. All slices of non-MLS cases are unlabeled. We dis-
carded the first 8 and the last 5 slices as they are mainly structures irrelevant to
MLS. For pre-processing, we adjusted the pixel size of all images to 0.86 mm and
then cropped or padded the resulting images to the resolution of 256 × 256 pix-
els. The HU window was set to 0 and 80. We applied intensity clipping (0.5 and
99.5 percentiles) and min-max normalization (between -1 and 1) to each image.
Random rotation between −15◦ and 15◦ was used for data augmentation.

3.2 Implementation Details

For the diffusion network, we use the network architecture designed in
DDPM [15] and set the noise level from 10−4 to 2 × 10−2 by linearly scheduling
with Ttrain = 1000. For non-MLS image generation, we apply the Denoising Dif-
fusion Implicit Model (DDIM) [13] with 50 steps and set the noise scale to 15 to
shorten the generative time. We set the hyper-parameters as α = 1, β = 1, c = 3
and γ = 2. u(i) is set from 1 to 10 with the linear schedule. The diffusion models
are trained by the AdamW optimizer with an initial learning rate of 1 × 10−4,
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Table 1. Comparison of different methods with 5-fold cross-validation.

Methods Training data Volume-wise Slice-wise

Labeled Unlabeled MAE↓(mm) RMSE↓(mm) MAE↓(mm) RMSE↓(mm)

Regression � 3.91 (2.52) 4.90 3.56 (1.91) 4.16

Deformation � 3.80 (2.35) 4.47 2.51 (1.84) 3.17

Mean-Teacher [19] � � 2.89 (2.26) 3.67 2.43 (1.78) 3.22

CPS [20] � � 2.72 (2.08) 3.42 2.38 (1.79) 3.15

Ours � � 2.43 (2.02) 3.17 2.25 (1.74) 3.09

batch size 4, for 2×105 iterations. We up-sample the MLS positive data by 10×
when training the unconditional diffusion model. The deformation network is
trained by the AdamW optimizer with an initial learning rate of 1×10−4, batch
size 16, for 100 epochs. All models are implemented with PyTorch 1.12.1 using
one Nvidia GeForce RTX 3090 GPU.

3.3 Quantification Accuracy and Deformation Quality

We evaluate the performance of our quantification strategy through mean abso-
lute error (MAE) and root mean square error (RMSE). For volume-wise evalu-
ation, we measure the maximum deformation of each slice of the whole volume
and select the largest one as the final result. We also report the slice-wise eval-
uation based on labeled slices, which reflect how the models perform on slices
with large deformation. Since existing MLS estimation methods require different
types of labels from ours, it is difficult to directly compare with those methods.
We therefore first compare our deformation-based strategy with a regression-
based strategy, which uses DenseNet-121 [21] to directly predict the slice-wise
MLS. We also compare our proposed semi-supervised learning approach with two
popular semi-supervised learning methods: Mean-Teacher [19] and Cross Pseudo
Supervision (CPS) [20], which are implemented into our deformation framework.
The results are given in Table 1, which are based on 5-fold cross-validations.

From the results, we can see that when only using labeled MLS slices for
model learning, our deformation strategy already shows better performance than
the regression model. This may attribute to that our deformation model learns
the knowledge of both MLS values and locations while a regression model only
captures the MLS value information. This difference can be further enlarged if
we consider slice-wise performance. Moreover, all three semi-supervised learn-
ing methods, i.e., Mean-Teacher, CPS, and ours, consistently improve the per-
formance of deformation prediction, showing the benefits and importance of
incorporating unlabeled data into model learning. Our semi-supervised learn-
ing method based on diffusion models achieves better quantification results
than Mean-Teacher and CPS, significantly reducing the volume-wise MAE from
3.80 mm to 2.43 mm. An interesting observation is that the unlabeled data
contribute more to the volume-wise evaluation than the slice-wise evaluation.
By inspecting the prediction, we find that the deformation prediction trained
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Fig. 3. Predicted deformation on (a) MLS images. (b) non-MLS images. The regions
with the largest deformation are highlighted. Slice-wise predicted MSL and ground
truth are provided.

with labeled data tends to overestimate the deformation of slices with little or
no deformation, which makes the volume-wise prediction error-prone. As most
unlabeled data are slices with minor shifts, incorporating these data for semi-
supervised learning can impose constraints to avoid large deformation, which
greatly improves the model’s robustness.

We also visualize the predicted deformation field of several sample cases.
From Fig. 3(a), we can see the model can well posit the location where the
maximum shift appears and push it to its hypothetically normal counterpart.
The largest deformation happens exactly at the site with the maximum shift. To
validate the robustness of our model, we also select several patients diagnosed
with no MLS and plot the predicted deformation of these samples. As can be
seen in Fig. 3(b), our method is able to provide a reasonable prediction for non-
MLS images by outputting much smaller values than that for MLS images. Our
model’s predictions for non-MLS images are not exactly zero are caused on
one hand by that even for a completely healthy person, the midline cannot be
perfectly aligned due to multiple factors such as scan pose, on the other hand, our
models tend to overestimate the shift because we are calculating the maximum
deformation as final measurement.
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Table 2. Effects of the representation.

Methods MAE↓(mm) RMSE↓(mm)

Fully-supervised 3.61 4.47

+ Representation 3.22 3.69

Semi-supervised 2.61 3.24

+ Representation 2.45 3.05

Fig. 4. Effects of the noise level.

3.4 Ablation Study

We conduct several ablation experiments to study the effects of several compo-
nents in our proposed framework on the model performance. The volume-wise
results reported are trained on four folders and tested on one folder.

Effects for Representation Learning. We first conduct ablation studies to
verify that the latent feature extracted from the two diffusion models is truly
useful for deformation prediction. To this end, we select two deformation models,
one trained with only labeled data and the other using semi-supervised learning,
and compare their performance with and without the extracted representation
as input. The results are given in Table 2. As expected, incorporating the repre-
sentation can improve the model performance in both cases.

The noise level is an important component of diffusion models. Only with a
proper noise level, can the model accurately estimate the deviation of the image
toward the negative sample space. Therefore, we do inference with multiple noise
levels and compare its effect on model performance. The results are shown in
Fig. 4. Our model is very robust towards this hyper-parameter. As long as t is
not too small, the model gives very similar performances. The best performance
appears in the middle when t = 600. This is reasonable as small noise fails to
corrupt the original image thus degenerating the performance of score estimation
while large noise may obscure too many details of the original image.

Quantity of Unlabeled Images. To verify the usefulness of unlabeled images,
we conduct ablation studies on the number of unlabeled images used. For each
experiment, we randomly sample 20%, 40%, 60%, and 80% volumes, and we
incorporate unlabeled slices of these volumes for semi-supervised training. For
the rest volumes, we are only using the labeled slices. We also do one experiment
that completely removes the uses of unlabeled images. For each experiment, the
pre-trained diffusion models are the same, which uses all the data. In other
words, these unlabeled images somehow still contribute to the model training.
The results are shown in Fig. 5(a). As can be seen, the model performance and
robustness can be enhanced as we incorporate more unlabeled images. This
provides strong evidence for our claim that our model truly learns valuable
information from unlabeled data.
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Fig. 5. Results of our ablation experiments in terms of: (a) proportion of unlabeled
data used, and (b) proportion of negative data used.

Quantity of Non-MLS Images. To further measure the benefits of including
non-MLS cases, we conduct another ablation study on the proportion of non-
MLS cases. As currently, the amount of non-MLS cases is much higher than MLS
cases, we upsample the MLS cases so that their quantities are approximately
the same when training the unconditional diffusion model. For ablation, we first
downsample the non-MLS data so that their quantity is 1×, 5×, and 10× that
of the MLS cases, and then upsample the MLS cases to make them balanced.
From the results in Fig. 5(b), we find model performance improves with more
non-MLS cases incorporated. Increasing non-MLS cases can help train diffusion
models and further improve the quality of generated images and extracted fea-
ture representations. However, this effect will soon be saturated as the amount
of MLS cases is relatively small. This can be a bottleneck for effectively using
the non-MLS cases as it is challenging to train unconditional diffusion models
with such imbalanced datasets.

4 Conclusions and Future Work

In this paper, we propose a novel framework based on deformation field esti-
mation to automatically measure the brain MLS. The labels we are using are
sparse which can greatly alleviate the labeling workload. We also propose a
semi-supervised learning strategy based on diffusion models which significantly
improves the model performance. Experiments on a clinic dataset show our meth-
ods can achieve satisfying performance. We also verify that using unlabeled data
and non-MLS cases can truly help improve the model’s performance. Our meth-
ods have several limitations. First, the model performance highly relies on pre-
trained diffusion models. Training diffusion models with extremely imbalanced
data requires great effort. Second, the measurement results exhibit randomness
due to noise corruption. Finally, the measurement results are prone to overesti-
mation. Our future work will figure out solutions for these limitations.
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