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Abstract. Self-supervised image denoising techniques emerged as con-
venient methods that allow training denoising models without requiring
ground-truth noise-free data. Existing methods usually optimize loss met-
rics that are calculated from multiple noisy realizations of similar images,
e.g., from neighboring tomographic slices. However, those approaches fail
to utilize the multiple contrasts that are routinely acquired in medical
imaging modalities like MRI or dual-energy CT. In this work, we propose
the new self-supervised training scheme Noise2Contrast that combines
information from multiple measured image contrasts to train a denois-
ing model. We stack denoising with domain-transfer operators to utilize
the independent noise realizations of different image contrasts to derive
a self-supervised loss. The trained denoising operator achieves convincing
quantitative and qualitative results, outperforming state-of-the-art self-
supervised methods by 4.7–11.0%/4.8–7.3% (PSNR/SSIM) on brain MRI
data and by 43.6–50.5%/57.1–77.1% (PSNR/SSIM) on dual-energy CT
X-ray microscopy data with respect to the noisy baseline. Our experiments
on different real measured data sets indicate that Noise2Contrast training
generalizes to other multi-contrast imaging modalities.

Keywords: Self-Supervised Denoising · Known Operator Learning ·
Contrast Fusion

1 Introduction

Measured data is inherently affected by uncertainty determined by the measure-
ment process and its related physics. In image data, that uncertainty appears
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Fig. 1. Noise2Contrast: Fusion of image contrasts A and B enables self-supervised
denoising, e.g., using T1 and T2 weighted MRI scans.

as image noise, disturbing an underlying ground truth image signal. Whereas
imaging parameters like acquisition time, detector sensitivity, or illumination
can be chosen to keep noise levels low, realistic imaging settings usually require
a trade-off between acquisition parameters and image quality. In fact, some mea-
surements, e.g., in clinical workflows, can only be carried out by accepting severe
amounts of noise due to radiation exposure, acquisition time, or patient motion.
Therefore, image processing algorithms were developed to reduce noise levels
and extract the underlying noise-free signal. Conventional algorithms robustly
denoise image data but require expert knowledge to adapt the algorithm to
domain-specific conditions [14]. Unlike conventional filters, learning-based mod-
els can learn task-specific features purely from a training data distribution with-
out domain-specific knowledge. However, deep neural networks inherently lack
interpretability and were shown to be prone to prediction artifacts on out-of-
domain samples [15]. Different hybrid approaches tried to combine data-driven
optimization with conventional image filters to create reliable denoising opera-
tors with close to state-of-the-art performance [16].

Recently, multiple self-supervised denoising methods were proposed, cir-
cumventing the need for ground truth noise-free data during training [1,6–8].
Noise2Noise [8] and Noise2Void [7] allow self-supervised image denoising using
two noisy representations of the same image or pixel-wise masking to calculate
loss metrics that do not require a ground truth. Different other works applied
these concepts to medical imaging modalities, e.g., by using neighboring volumet-
ric slices [5,19] or time frames [18] as training targets following the Noise2Noise
scheme.

Although self-supervised training on individual medical scans showed promis-
ing results, most existing approaches are not capable of using all available data.
Many used medical imaging modalities like Magnetic Resonance Imaging (MRI)
or dual-energy Computed Tomography (DECT) routinely acquire multiple image
contrasts of the same scanned object that remain so far unused in self-supervised
denoising approaches. In this work, we present the novel denoising method
Noise2Contrast which is capable of using multiple image contrasts to train a
denoising model in a fully self-supervised manner. An overview of Noise2Contrast
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is illustrated in Fig. 1. Our method is able to employ the independent noise real-
izations in different image contrasts of medical imaging modalities to train a
robust denoising operator. We confirm our theoretical considerations with exten-
sive experiments on real medical data. Our contributions are three-fold.
– We present the self-supervised denoising method Noise2Contrast combining

image information from different acquired image contrasts.
– We demonstrate how to train a robust denoising operator using our proposed

scheme by simultaneously learning denoising and domain transformation.
– Extensive experiments quantitatively and qualitatively confirm the applica-

bility of our method on different real medical data sets.

2 Methods

2.1 Self-supervised Image Denoising

Each image acquisition j introduces noise n through the image formation and
detection processes to the ground truth object y

x
(j)
i = yi + nj . (1)

Image denoising then aims to find an operator fw that maps noise-affected images
x
(j)
i to a denoised prediction ŷi close to the noise-free ground truth yi by mini-

mizing

argmin
w

∑

i

L
(
fw

(
x
(1)
i

)
, yi

)
(2)

based on a loss metric L and parameters w. Supervised learning methods typ-
ically use a training set of N paired samples

(
x
(1)
i , yi

)
with i ∈ {1, . . . , N} to

train a neural network data driven to predict denoised images from the learned
training data distribution. As paired ground truth images are often difficult to
obtain in real applications, self-supervised training methods aim to find an opti-
mal denoising operator while having solely access to noisy images. Lehtinen et
al. [8] demonstrated that learning the mapping of the noisy measurement to a
second image with the same content but a different noise realization x

(2)
i , e.g., a

second photo taken, is similar to solving the supervised problem in Eq. 2

argmin
w

∑

i

L
(
fw

(
x
(1)
i

)
, x

(2)
i

)
. (3)

Although many works adopt this so-called Noise2Noise training scheme, the
method requires at least two images with equivalent content and contrast per
sample during training which might not be available in reality. Other works,
e.g., Noise2Void [7], propose masking individual pixels of noisy images to create
pseudo-paired training samples x

(1�)
i . Subsequently, a denoising model can be

trained by learning to predict the correct intensity values at the masked posi-
tions. However, Noise2Void demands pixel-wise statistically independent noise
which is often not satisfied in particular on real detector data and for medical
imaging modalities [16].
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2.2 Denoising Using Known Operators

Including prior knowledge in neural network architectures has been shown bene-
ficial in terms of model performance, generalizability, and prediction robustness
[9,15]. We adapt the known operator learning concept in our proposed method
by separating denoising and domain-transfer tasks through the network archi-
tecture as described in Sect. 2.3. As the denoising operator, we use trainable
bilateral filter layers [16] that can be trained via gradient-based optimization
like any other neural network layer. The filter forward operation smooths image
content in homogeneous regions (spatial kernel) while preserving edges through
a range kernel

Ŷk =
1
αk

∑

n∈N
Gσs

(‖k − n‖)Gσr
(Xk − Xn)Xn (4)

with

αk =
∑

n∈N
Gσs

(‖k − n‖)Gσr
(Xk − Xn) (5)

and Gσs
and Gσr

denoting Gaussian spatial and range kernel of width σs and σr

respectively. ‖. . . ‖ indicates the spatial distance between pixels of index k and
n and N is the filter window. The differentiable implementation of Wagner et
al. [16] allows optimizing all filter parameters σs and σr data driven using deep
learning frameworks. The algorithmic filter design from Eq. 4 proves that the
bilateral filter can solely act as a denoising operator as it is not able to extract
complex features or modify the images besides local pixel intensity averaging.

In addition to data-driven optimization of a known denoising algorithm, we
demonstrate how to employ a neural network as an independent denoising oper-
ator. By training denoising and domain-transfer networks subsequently, different
image processing tasks can be entirely separated into independent network parts
to enable self-supervised denoising of multi-contrast data. The proposed training
schemes are presented in the following section.

2.3 Multi-contrast Fusion Through Domain Transfer

Measuring two images with the same content to perform Noise2Noise denoising
is often infeasible in medical imaging due to radiation and time constraints. How-
ever, modalities like MRI or DECT routinely acquire multiple image contrasts
that show the same anatomical structures but highlight different biological fea-
tures. A second noisy image contrast indicated by † (e.g., T1 and T2 weighting
in MRI imaging)

x
†(j)
i = y

†(j)
i + n (6)

could be used as a noise-affected target image in the setting of Eq. 3. In such
a setting, a network would learn to predict a denoised image with the target
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Fig. 2. Illustration of the proposed domain-transfer-based self-supervised denoising
approach Noise2Contrast on the example of MRI T1 and T2-weighted contrasts. A
noisy input of contrast one is processed by subsequent denoising (blue) and domain-
transfer (green) operators. This allows deriving a self-supervised loss metric L using
the noisy target with contrast two. The denoised input image is obtained by removing
the domain-transfer operator. (Color figure online)

contrast. However, it is not possible to extract a solely denoised image ŷi from
the network prediction with preserved contrast. To avoid mixing both tasks,
we propose separating the trained model into known operators to allow using
the network parts individually during inference as we are only interested in
the denoised prediction but want to preserve the original image contrast. An
illustration of the presented training scheme is illustrated in Fig. 2. We present
two solutions how to separate the denoising and domain translation tasks to
enable self-supervised denoising.

Known Operator-Based. First, a known denoising operator is used in combi-
nation with a domain translation neural network dv and trained self supervised.
We use a trainable bilateral filter layer (Sect. 2.2) as the filter operation can not
perform complex domain translations or intensity shifts by design and thus can
be considered as a known denoising operator. Therefore, denoising and domain
translation are inherently separated through the pipeline’s architecture when
training the chained operators dv and fw. The following training task results

argmin
w,v

∑

i

L
(
dv

(
fw

(
x
(1)
i

))
, x

†(1)
i

)
(7)

containing the domain translation operator dv represented by a U-Net [11] with
trainable parameters v. A self-supervised mean squared error loss is calculated
between the denoised and domain-translated input image and the target contrast
image x

†(1)
i with independent noise.
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Network Operator-Based. Second, a neural network is trained as a denoising
operator in the same setting as Eq. 7. To enforce a strict separation of denoising
and domain translation, operators dv and fw are trained in a subsequent fashion.
First, the domain translation network is trained in the known operator-based
setting to predict images of target contrast y†

i from denoised input contrast
images ŷi. Subsequently, that trained network is frozen and employed as a domain
translation operator to transfer the predictions of a denoising neural network to
the target contrast domain. The sequential training of denoising and domain
translation operator enforces the networks to learn tasks independently and use
them as separate image processing operators.

3 Experiments

3.1 Data

We perform multiple experiments to investigate how noise can be effectively
reduced in multi-contrast medical data without requiring noise-free ground truth
data. First, we evaluate our method on three different MRI contrasts that are
routinely used to identify tissue-specific properties and abnormalities: T1, T2,
and Fluid Attenuated Inversion Recovery (FLAIR)-weighting. We use the public
Brain-Tumor-Progression data set [12] consisting of clinical MRI head scans of
20 brain tumor patients and split it into twelve training, two validation, and six
test patients. Each scan contains T1, T2, and FLAIR-weighted reconstructions
that are used as input and target data to evaluate the proposed self-supervised
denoising method. We simulate Gaussian noise as present in the real and imagi-
nary part of complex-valued reconstructed MR images or in the phase-corrected
magnitude images [10] and choose the noise standard deviation as 5% of the
maximum scan intensity.

In a second experiment, we compare denoising methods on a mouse tibia
bone sample scanned in a dual-energy Zeiss Xradia 620 Versa X-ray Micro-
scope (XRM). Tomographic XRM imaging is instructive for investigating bone-
remodeling and bone-related diseases on the micrometer scale due to its high
bone-to-soft tissue contrast. Here, dual-energy acquisitions allow quantitative
measurements of bone density and sample composition [4]. However, dual-energy
XRM measurements contain severe noise levels due to finite scan times and dose
concerns in potential in vivo measurements [17]. We denoise a 1.5h dual-energy
scan (50 kV and 70 kV) and compare the predictions with a 14h high-SNR acqui-
sition that is regarded as ground truth. XRM scans are reconstructed using the
pipeline of Thies et al. [13]. The two settings LE (low-energy) → HE (high-
energy) and HE → LE are investigated.

3.2 Networks

Three stacked trainable bilateral filter layers [16] are employed as known
operator-based denoising model fw. The domain translation network dv is rep-
resented by a standard U-Net [11] with 16 input features and around 1.1Mio
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trainable parameters v. We use the Adam optimizer with learning rate 5 ·10−5 in
all our experiments. Models are trained until convergence of the self-supervised
training loss computed on the validation scans in each epoch (MRI data) or on
the training scan (XRM data).

3.3 Denoising Experiments

Different contrast combinations are investigated for the MRI data set to evaluate
the generalizability of our proposed self-supervised denoising approach. We chose
the settings T1 → T2, T2 → T1, and T2 → FLAIR for our experiments with the
respective input xi and target x†

i contrast domains input → target and trained
a model for each setting individually.

We compare our methods to the state-of-the-art blind-spot training scheme
Noise2Void (N2V) [7]. In addition, we compare to a different reference method
where a target image x

(2)
i is chosen as the neighboring slice of the input

image x
(1)
i . Multiple related works apply this or similar principles to create

pseudo-pairs of noisy images [2,5,19]. We denote the reference approach as
Noise2Neighbor (N2N) in the following as it comes close to the initial Noise2Noise
idea where two noisy images of the same contrast are available. Our known oper-
ator and network operator-based methods are denoted as Noise2Contrast (BFs)
and Noise2Contrast (U-Net) respectively.

4 Results

Table 1. Quantitative denoising results on the Brain-Tumor-Progression [12] MRI test
data set. (mean ± std) is calculated over the patients. The best-performing method is
highlighted in bold.

Setting Method PSNR (mean ± std) SSIM (mean ± std)

T1 → T2 Noisy baseline 26.02 ± 0.01 0.384 ± 0.059

Noise2Contrast (BFs) 36.76 ± 1.40 0.869 ± 0.021

Noise2Contrast (U-Net) 30.43 ± 0.20 0.385 ± 0.119

Noise2Void (BFs) [7] 35.81 ± 1.56 0.847 ± 0.023

Noise2Neighbor (BFs) [2,19] 32.49 ± 4.36 0.867 ± 0.047

T2 → T1 Noisy baseline 26.02 ± 0.02 0.444 ± 0.071

Noise2Contrast (BFs) 34.69 ± 1.91 0.865 ± 0.023

Noise2Contrast (U-Net) 33.19 ± 1.03 0.698 ± 0.070

Noise2Void (BFs) [7] 34.30 ± 1.69 0.841 ± 0.024

Noise2Neighbor (BFs) [2,19] 29.91 ± 3.80 0.828 ± 0.067

T2 → FLAIR Noisy baseline 26.02 ± 0.02 0.444 ± 0.071

Noise2Contrast (BFs) 35.21 ± 1.70 0.871 ± 0.022

Noise2Contrast (U-Net) 21.74 ± 0.05 0.221 ± 0.135

Noise2Void (BFs) [7] 34.30 ± 1.69 0.842 ± 0.023

Noise2Neighbor (BFs) [2,19] 29.90 ± 3.80 0.828 ± 0.067
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Table 2. Quantitative denoising results on the dual-energy XRM bone scan. (mean ±
std) is calculated over the z-slices. The best-performing method is highlighted in bold.

Setting Method PSNR (mean ± std) SSIM (mean ± std)

LE → HE Noisy baseline 22.17 ± 0.29 0.158 ± 0.008

Noise2Contrast (BFs) 29.86 ± 0.19 0.622 ± 0.015

Noise2Void (BFs) [7] 27.28 ± 0.22 0.420 ± 0.015

HE → LE Noisy baseline 23.15 ± 0.29 0.178 ± 0.010

Noise2Contrast (BFs) 30.63 ± 0.22 0.610 ± 0.015

Noise2Void (BFs) [7] 28.36 ± 0.24 0.453 ± 0.015

Fig. 3. Qualitative denoising results on the Brain-Tumor-Progression [12] MRI test
data set of T1 → T2 (top) and T2 → T1 predictions. The images are displayed in
equal windows.
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Fig. 4. Qualitative denoising results on the dual-energy XRM bone scan in the LE →
HE setting. The images are displayed in equal windows. Diff denotes the difference
images between the respective method and the high-dose ground truth.

We compute the quantitative image quality metrics peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM) for all model
predictions. Results on the Brain-Tumor-Progression data are presented in
Table 1. Our proposed multi-contrast training scheme using known opera-
tors Noise2Contrast (BFs) quantitatively outperforms all comparison methods.
Noise2Contrast (BFs) improves the results of Noise2Void by 4.7–11.0% PSNR
and by 4.8–7.3% SSIM with respect to the noisy baseline. Exemplary predic-
tions visualized in Fig. 3 confirm the quantitative findings and show that our
training scheme converges to a solution that preserves features while remov-
ing the image noise. Predictions of our additional experiment using a U-Net
for denoising (Noise2Contrast (U-Net)) exhibit lower noise removal compared to
the known operator-based method. State-of-the-art Noise2Void training achieves
similar visual results compared to our method, however, predictions contain a
slightly higher noise level. Noise2Neighbor fails to predict reasonable images and
blurs high-frequency features. The lower half of the magnified regions in Fig. 3
contains a brain lesion that allows comparing perceptual noise levels on a clinical
pathology.

Results on the dual-energy XRM data are presented in Table 2 and Fig. 4.
Here, Noise2Contrast (BFs) improves the results of Noise2Void by 43.6–50.5%
PSNR and by 57.1–77.1% SSIM with respect to the noisy baseline. On par
with the quantitative metrics, the visual predictions of Noise2Void contain con-
siderably more noise than our presented Noise2Contrast (BFs) training. This is
particularly visible in the provided difference images that are calculated between
the model predictions and the 14h high-SNR XRM acquisitions. Note that the
low-dose network input and the high-dose ground-truth scans are independently
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acquired scans. Despite the high mechanical precision of the used XRM, subse-
quent scanning results in small micrometer-scale shifts that are visible as thin
edges in the difference images.

5 Discussion

The training configuration using a U-Net-based denoising model in combination
with a domain-transfer model Noise2Contrast (U-Net) achieved promising visual
results. However, the quantitative performance left room for improvement com-
pared to the best-performing methods. We recognized that the trained denoising
U-Net predicted visually appealing results but did not always fully preserve all
input contrast intensities which led to poor quantitative metrics. We believe that
a better-designed and more thoroughly trained domain-transfer model would
help to provide more reasonable image gradients to the denoising network and
improve the overall denoising performance. Pre-trained domain transfer mod-
els that are trained on ground truth data [3] can be employed here to improve
the domain transfer operation. Alternatively, a regularizing loss term calculated
between denoised input contrast and noisy input image can be investigated to
enforce preserved intensities.

In the case of abnormalities being highlighted by the former image contrast
but not being visible in the latter one or vice versa, the question arises if the
Noise2Contrast training scheme can handle such samples and provide meaningful
gradients to the denoising operator. We believe that as long as the domain
transfer operator can learn a reasonable contrast transformation in particular a
known and stable denoising operator like trainable bilateral filters that focus on
local image properties can learn a reasonable denoising. In fact, the presented
experiments on the Brain-Tumor-Progression MRI data contain such samples
as tumors greatly vary in their visibility for different MRI contrasts. However,
the generalizability of this finding must be proven on more clinical data and
evaluated individually on the given imaging modality and set of pathologies.

We performed additional experiments directly mapping the input contrast to
the target contrast image with a single model following the standard Noise2Noise
approach. Although such models learned to simultaneously denoise and map to
the target domain, their clinical application remains very limited as the model
predictions inherently alter the image contrast which is usually not desired.
In this Noise2Noise setting, image quality metrics calculated between model
prediction and input contrast ground truth yielded poor scores as expected due
to the modified prediction contrast. Additionally, we investigated a setting with
a known denoising operator like the trainable bilateral filter used to predict
the denoised input contrast by mapping on the target contrast without using
a domain translation network. This yielded poor results likewise as the known
denoising operator is not capable of learning the contrast mapping such that it
only predicted blurred images to minimize the training loss.

Only a few fully self-supervised denoising techniques exist that can remove
noise while preserving high-frequency image features. Blind-spot methods like
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Noise2Void can achieve impressive results on certain data sets but are limited to
pixel-wise independent noise statistics by design. Therefore, compelling results
can be achieved on imaging modalities with simple noise characteristics and
simulated data like the Brain-Tumor-Progression MRI scans in the first part
of our study. Real measured data and computed tomography scans generally
contain correlated noise caused by the detection process and the image recon-
struction algorithm. Our experiments on real measured dual-energy XRM data
confirm this limitation of Noise2Void. In contrast, our proposed known operator-
based training scheme Noise2Contrast achieves considerably better quantitative
and qualitative results as it relaxes prerequisites for specific noise properties
like pixel-wise independent signals in the measured and reconstructed image
data as demonstrated by the XRM experiments. Therefore, we conclude that
Noise2Contrast is better suited to train models on modalities with correlated
noise patterns like dual-energy CT compared to state-of-the-art Noise2Void
training.

6 Conclusion

In this work, we presented the Noise2Contrast training scheme that allows self-
supervised image denoising using multi-contrast data. Noise2Contrast combines
information from independently measured image contrasts through an operator-
based pipeline to train a denoising model. Our experiments on routine clinical
MRI contrasts and on a pre-clinical dual-energy tomographic X-ray Microscope
bone scan demonstrate superior performance of Noise2Contrast compared to the
few other existing self-supervised denoising techniques. We believe that the uni-
versal Noise2Contrast training scheme can be applied on data from many more
multi-contrast imaging modalities like photon-counting-CT, confocal microscopy,
or hyperspectral imaging.
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