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Abstract. Deep convolutional neural networks (CNN) have proven to
be remarkably effective in semantic segmentation tasks. Most popular
loss functions were introduced targeting improved volumetric scores, such
as the Dice coefficient (DSC). By design, DSC can tackle class imbalance,
however, it does not recognize instance imbalance within a class. As a
result, a large foreground instance can dominate minor instances and still
produce a satisfactory DSC. Nevertheless, detecting tiny instances is cru-
cial for many applications, such as disease monitoring. For example, it
is imperative to locate and surveil small-scale lesions in the follow-up of
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multiple sclerosis patients. We propose a novel family of loss functions,
blob loss, primarily aimed at maximizing instance-level detection met-
rics, such as F1 score and sensitivity. Blob loss is designed for semantic
segmentation problems where detecting multiple instances matters. We
extensively evaluate a DSC-based blob loss in five complex 3D semantic
segmentation tasks featuring pronounced instance heterogeneity in terms
of texture and morphology. Compared to soft Dice loss, we achieve 5%
improvement for MS lesions, 3% improvement for liver tumor, and an
average 2% improvement for microscopy segmentation tasks considering
F1 score.

Keywords: semantic segmentation loss function · instance imbalance
awareness · multiple sclerosis · lightsheet microscopy

1 Introduction

In recent years convolutional neural networks (CNN) have gained increasing pop-
ularity for complex machine learning tasks, such as semantic segmentation. In
semantic segmentation, one segments object from different classes without differ-
entiating multiple instances within a single class. In contrast, instance segmen-
tation explicitly takes multiple instances into account, which involves simultane-
ous localization and segmentation. While U-net variants [23] still represent the
state-of-the-art to address semantic segmentation, Mask-RCNN and its variants
dominate instance segmentation [11]. The scarcity of training data often hinders
the application of back-bone-dependent Mask RCNNs, while U-Nets have proven
to be less data-hungry [5].

However, many semantic segmentation tasks feature relevant instance imbal-
ance, where large instances dominate over smaller ones within a class, as illus-
trated in Fig. 1. Instances can vary not only with regard to size but also texture
and other morphological features. U-nets trained with existing loss functions,
such as Soft Dice [6,18,19,24,28], cannot address this. Instance imbalance is
particularly pronounced and significant in medical applications: For example,
even a single new multiple sclerosis (MS) lesion can impact the therapy deci-
sion. Despite many ways to compensate for class-imbalance [2,9,22,28], there
is a notable void in addressing instance imbalance in semantic segmentation
settings. Additionally, established metrics have been shown to correlate insuffi-
ciently with expert assessment [16].

Contribution: We propose blob loss, a novel framework to equip semantic seg-
mentation models with instance imbalance awareness. This is achieved by dedi-
cating a specific loss term to each instance without the necessity of instance-wise
prediction. Blob loss represents a method to convert any loss function into a
novel instance imbalance aware loss function for semantic segmentation prob-
lems designed to optimize detection metrics. We evaluate its performance on
five complex three-dimensional (3D) semantic segmentation tasks, for which the
discovery of miniature structures matters. We demonstrate that extending soft
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Dice loss to a blob loss improves detection performance in these multi-instance
semantic segmentation tasks significantly. Furthermore, we also achieve volumet-
ric improvements in some cases.

Related Work: Sirinukunwattana et al. [27] suggested an instance-based Dice
metric for evaluating segmentation performance. Salehi et al. [24] were among
the first to propose a loss function, called Tversky loss, for semantic segmen-
tation of multiple sclerosis lesions in magnetic resonance imaging (MR), trying
to improve detection metrics. Similarly, Zhu et al. [32] introduced Focal Loss,
initially designed for object detection tasks [17], into medical semantic segmen-
tation tasks.

There have been few recent attempts aiming for a solution to instance imbal-
ance. Zhang et al. [30] propose an auxiliary lesion-level sphere prediction task.
However, they do not explicitly consider each instance separately. Shirokikh et
al. [25] propose an instance-weighted loss function where a global weight map
is inversely proportional to the size of the instances. However, unlike size, not
all types of imbalance, such as morphology or texture, can be quantified easily,
limiting the method’s applicability.

2 Methods

First, we introduce the problem of instance imbalance in semantic segmentation
tasks. Then we present our proposed blob loss functions.

Problem Statement: Large foreground areas dominate the calculation of
established volumetric metrics (or losses); see Fig. 1. This is because the vol-
umetric measures only accumulate true or false predictions on a voxel level but
not at the instance level. Therefore, training models with volumetry-based loss
functions, such as soft Dice loss (dice), often leads to unsatisfactory instance
detection performance. To achieve a better instance detection performance, it is
necessary to take instance imbalance into account. Instance imbalance can be of
many categories, such as morphology and texture. Importantly, instance imbal-
ance often cannot be easily specified and quantified for use in CNN training,
for example, as instance weights in the loss function. Thus, using conventional
methods, it is difficult to incorporate instance imbalance in CNN training. Our
objective is to design loss functions to compensate for the instance imbalance
while being agnostic to the instance imbalance type. Therefore, we aim to dissect
the image domain in an instance-wise fashion:

blob loss Formulation: Consider a generic volumetric loss function L and
image domain Ω and foreground domain P . Formally our objective is to find
an instance-specific subdomain Ωn ⊆ Ω corresponding to the nth instance such
that L acting on Ωn is aware of instance imbalance. The criteria to obtain these
subsets {Ωn}N

n=1 are such that Ωi ∩ Ωj ∩ P = φ;∀(i, j), s.t. 1 ≤ i, j ≤ N, i �= j
and ∪N

n=1Ωn = Ω. In simple terms, the subsets {Ωn}N
n=1 need to be mutually

exclusive regarding foreground and collectively exhaustive with regard to the
whole image domain.



758 F. Kofler et al.

Fig. 1. Problem statement (left): The Dice coefficient (DSC) for the segmentation with
vs. without a lesion, encircled in green, is: 0.9806. Therefore, the segmentations are
hardly distinguishable in terms of DSC. However, from a clinical perspective, the dif-
ference is important as the detection of a single lesion can affect treatment decisions.
Comparison of segmentation performance (right): Maximum intensity projections of
the FLAIR images overlayed with segmentations for dice and blob dice. Lesions are
colored according to their detection status: Green for true positive; Blue for false pos-
itive; Red for false negative. For this particular patient, applying the transformation
to a blob loss improves F1 from 0.74 to 1.0 and the volumetric Dice coefficient from
0.56 to 0.70 and the latter is caused by an increase in volumetric precision from 0.48
to 0.75, while the volumetric sensitivity remains constant at 0.66.

To formalize blob loss, we address instance imbalance within a binary seman-
tic segmentation framework. At the same time, we remain agnostic towards
particular instance attributes and do not incorporate these in the loss function.
To this extent, we propose to leverage the existing reference annotations and
formally propose a novel family of instance-aware loss functions.

Consider a segmentation problem with N instances; for different input
images, N can vary from few to many. Specifically, we propose to compute the
instance-specific domain Ωn by excluding all but the nth foreground from the
whole image domain Ω, see Eq. (1):

Ωn = Ω \ ∪N
j=1, j �=nPj (1)

where Pj is the foreground domain for jth instances of P . This masking process
is illustrated by Fig. 2. It is worth noting that the background voxels are included
in every Ωn.

We propose to convert any loss function L for binary semantic segmentation
into an instance-aware loss function Lblob defined as:

Lblob ((pi)i∈Ω , (gi)i∈Ω) =
1
N

N∑

n=1

L ((pi)i∈Ωn
, (gi)i∈Ωn

) (2)

where {gi}i∈Ω is the ground-truth segmentation, {pi}i∈Ω is the predicted seg-
mentation, N is the number of instances in the foreground.
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Fig. 2. Masking process described in Eq. (2). Left: the global ground truth label (GT),
with the nth instance highlighted in green. Middle: The loss mask Ωn for the nth

instance (MASK) for multiplication with the network outputs. Right: the label used
for the computation of the local blob loss for the nth instance. This process is repeated
for every instance.

As our goal is to assign equal importance to all instances irrespective of
their size, shape, texture, and other topological attributes, we average over all
instances.

To compute the total loss for a volume, we combine the instance-wise Loss
component from Eq. (2) with a global component to obtain the final Loss:

Ltotal = αLglobal + βLblob (3)

where α and β denote the weights for the global and instance constraint Lblob.
We (anonymously) provide a sample Pytorch implementation of a dice-based
blob loss on GitHub. In order to accelerate our training, we precompute the
instances, here defined as connected components using cc3d [26], version 3.2.1.

Model Training: For all our experiments, we use a basic 3D U-Net implemented
via MONAI inspired by [8] and further depicted in supplementary materials. Fur-
thermore, we use a dropout ratio of 0.1 and employ mish as activation function
[20]. Otherwise, we stick to the default parameters of the U-Net implementation.

Loss Functions for Comparison: As baselines we use the MONAI implemen-
tations of soft Dice loss (dice) and Tversky loss (tversky) [24]. For tversky, we
always use the standard parameters of α = 0.3 and β = 0.7 suggested by the
authors in the original publication [24]. For comparison we create blob dice, by
transforming the standard dice into a blob loss using our conversion method Eq.
(2). The final loss is obtained by employing dice in the Lglobal and Lblob terms of
the proposed total loss Eq. (3). In analog fashion, we derive blob tversky. Further-
more, we compare against inverse weighting (iw), the globally weighted loss func-
tion of Shirokikh et al. [25]. For this, we use the official GitHub implementation
to compute the weight maps and loss and deploy these in our training pipelines.

Training Procedure: Our CNNs are trained on multiple cuboid-shaped crops
per batch element, with higher resolution in the axial dimension, enabling the
learning of contextual image features. The crops are randomly sampled around a
center voxel that consists of foreground with a 95% probability. We consider one

https://pastebin.com/Nqy5VyHR
https://docs.monai.io/en/latest/networks.html#basicunet
https://github.com/neuro-ml/inverse_weighting
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epoch as one full iteration of forward and backward passes through all batches
of the training set. For all training, Ranger21 [29] serves as our optimizer. For
each experiment, we keep the initial learning rate (lr) constant between training
runs. Depending on the segmentation task, we deploy varying suitable image nor-
malization strategies. For comparability, we keep all training parameters except
for the loss functions constant on a segmentation task basis and stick to this
standard training procedure.

Training-Test Split and Model Selection: Given the high heterogeneity
of our bio-medical datasets and the limited availability of high-quality ground
truth annotations due to the very costly labeling procedures requiring domain
experts, we do not set aside data for validation and therefore do not conduct
model selection. Instead, inspired by [13], we split our data 80:20 into training
and test set and evaluate on the last checkpoint of the model training. As an
exception, the MS dataset comes with predefined training, validation, and test
set splits; therefore, we additionally evaluate the best model checkpoint, meaning
the model with the lowest loss on the validation set. As we are more interested in
blob loss’ generalization capabilities than exact quantification of improvements
on particular datasets, we prioritize a broad validation on multiple datasets over
cross-validation.

Technical Details: Our experiments were conducted using NVIDIA RTX8000,
RTX6000, RTX3090, and A6000 GPUs using CUDA version 11.4 in conjunction
with Pytorch version 1.9.1 and MONAI version 0.7.0.

2.1 Evaluation Metrics and Interpretation

Metrics: We obtain global, volumetric performance measures from pymia [14].
In addition to DSC, we also evaluate volumetric sensitivity (S), volumetric pre-
cision (P), and the Surface Dice similarity coefficient (SDSC). To compute
instance-wise detection metrics, namely instance F1 (F1 ), instance sensitivity
(IS) and instance precision (IP), we employ a proven evaluation pipeline from
Pan et al. [21].

Interpretation: By design, human annotators tend to overlook tiny structures.
For comparison, human annotators initially missed 29% of micrometastases
when labeling the DeepMACT light-sheet microscopy dataset [21]. Therefore,
the likelihood of a structure being correctly labeled in the ground truth is much
higher for foreground than for background structures. Additionally, human anno-
tators have a tendency to label a structure’s center but do not perfectly trace
its contours. Both phenomena are illustrated in Fig. 3. These effects are par-
ticularly pronounced for microscopy datasets, which often feature thousands of
blobs. These factors are important to keep in mind when interpreting the results.
Consequently, volumetric - and instance sensitivity are much more informative
than volumetric and instance precision.
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3 Experiments

To validate blob loss, we train segmentation models on a selection of datasets
from different 3D imaging modalities, namely brain MR, thorax CT, and light-
sheet microscopy. We select datasets featuring a variety of fragmented semantic
segmentation problems. For simplicity, we use the default values α = 2.0 and
β = 1.0 across all experiments.

Multiple Sclerosis (MRI): The Multiple Sclerosis (MS) dataset, comprising
521 single timepoint MRI examinations of patients with MS, was collected for
internal validation of MS lesion segmentation algorithms. The patients come
from a representative, institutional cohort covering all stages (in terms of time
from disease onset) and forms (relapsing-remitting, progressive) of MS. A 3D
T1w and a 3D FLAIR sequence were acquired on a 3T Philips Achieva scanner.
All 3D volumes feature 193 × 193× 229 voxels in 1mm isotropic resolution. The
dataset divides into a fixed training set of 200, a validation set of 21, and a
test set of 200 cases. The annotations feature a total of 4791 blobs, with 25.69
± 23.01 blobs per sample. Expert neuroradiologists annotated the MS lesions
manually and ensured pristine ground truth quality with consensus voting.

For all training runs of 500 epochs, we set the initial learning rate to 1e−2
and the batch size to 4. The networks are trained on a single GPU using 2
random crops with a patch size of 192 × 192× 32 voxels per batch element after
applying a min/max normalization. As the MS dataset comes with a predefined
validation set of 21 images, we also save the checkpoint with the lowest loss on the
validation set and compare it to the respective last checkpoint of the training. In
addition to the standard dice, we also compare against tversky. Furthermore, we
conduct an ablation study to find out how the performance metrics are affected
by choosing different values for α and β.

Liver Tumors - LiTS (CT): To develop an understanding of blob loss per-
formance on other imaging modalities, we train a model for segmenting liver
tumors on CT images of the LiTS challenge [4]. The dataset consists of varying
high-resolution CT images of the abdomen. The challenge’s original task was
segmenting liver and liver tumor tissue. As we are primarily interested in seg-
menting small fragmented structures, we limit our experiments to the liver area
and segment only liver tumor tissue (in contrast to tumors, the liver represents
a huge solid structure, and we are interested in blobs). We split the publicly
available training set into 104 images for training and 27 for testing. The anno-
tations were created by expert radiologists and feature a total of 908 blobs, with
12.39 ± 14.92 blobs per sample.

For all training runs of 500 epochs, we set the initial learning rate to 1e−2
and the batch size to 2. The networks are trained on two GPUs in parallel using
2 random crops with a patch size of 192 × 192× 64 voxels per batch element. We
apply normalization based on windowing on the Hounsfield (HU) scale. There-
fore, we define a normalization window suitable for liver tumor segmentation
around center 30 HU with a width of 150 HU, and 20% added tolerance.
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DISCO-MS (Light-Sheet Microscopy). To develop an understanding for
blob loss performance on other imaging modalities, we train a model for seg-
menting Amyloid plaques in light-sheet microscopy images of the DISCO-MS
dataset [3].

Fig. 3. Zoomed in 2D view on a volume
of the SHANEL [31] dataset. The overlayed
labels are colored according to a 3D con-
nected component analysis. The expert biol-
ogists did not label each foreground object in
every slice, e.g., the magenta-colored square.
Furthermore, the contours of the structures
are imperfectly segmented, for instance, the
red label within the bright green circle. These
effects can partially be attributed to the
ambiguity of the light-sheet microscopy sig-
nal [15]. However, they are also observed in
the human annotations of the MS and LiTS
dataset. (Color figure online)

The volumes of 300 × 300× 300
voxels resolution contain cleared tis-
sue of mouse brain. We split the
publicly available dataset into 41
volumes for training and six for test-
ing. The annotations feature a total
of 988 blobs, with 28.32 ± 24.44
blobs per sample. Even though the
label quality is very high, the results
should still be interpreted with care
following the guidelines in Sect. 2.1.

For all training runs of 800
epochs, we set the initial learning
rate to 1e−3 and the batch size to
6. As our initial model trained with
dice does not produce satisfactory
results, we furthermore try learning
rates of 1e−2, 3e−4 and 1e−4, fol-
lowing the heuristics suggested by
[1] without success. The networks
are trained on two GPUs in parallel
using 2 random crops with a patch
size of 192 × 192× 64 per batch ele-
ment. The images are globally nor-
malized, using a minimum and max-
imum threshold defined by the 0.5
and 99.5 percentile.

SHANEL (Light-Sheet Microscopy). For further validation, we evaluate
neuron segmentation in light-sheet microscopy images of the SHANEL dataset
[31]. The volumes of 200 × 200× 200 voxels resolution contain cleared human
brain tissue from the primary visual cortex, the primary sensory cortex, the
primary motor cortex, and the hippocampus. We split this publicly available
dataset into nine volumes for training and three for testing. The annotations
feature a total of 20684 blobs, with 992.14 ± 689.39 blobs per sample. As the
data is more sparsely annotated than DISCO-MS, F1 and especially DSC should
be interpreted with great care, as described in Sect. 2.1.

For all training runs of 1000 epochs, we set the initial learning rate to 1e−3
and the batch size to 3. The networks are trained on two GPUs in parallel using
6 random crops with a patch size of 128 × 128× 32 per batch element, with
min/max normalization.

DeepMACT (Light-Sheet Microscopy). For further validation, we evalu-
ate the segmentation of micrometastasis in light-sheet microscopy images of
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the DeepMact dataset [21]. The volumes of 350 × 350× 350 resolution contain
cleared tissue featuring different body parts of a mouse. We split the publicly
available dataset into 115 images for training and 19 for testing. The annota-
tions feature a total of 484 blobs, with 6.99 ± 8.14 blobs per sample. As the
data is sparsely annotated, F1 and especially DSC should be interpreted with
great care, as described in Sect. 2.1.

For all training runs of 500 epochs, we set the initial learning rate to 1e−2
and the batch size to 4. The networks are trained on a single GPU using 2
random crops with a patch size of 192 × 192 × 48. The images are globally
normalized based using a minimum and maximum threshold defined by the 0.0
and 99.5 percentile.

4 Results

Table 1 summarizes the results of our experiments. Across all datasets, we find
that extending dice to a blob loss helps to improve detection metrics. Further-
more, in some cases, we also observe improvements in volumetric performance
measures. While model selection seems not beneficial on this dataset, employing
blob loss produces more robust results, as both the dice and tversky models suffer
performance drops for the best checkpoints. Notably, even though tversky was
explicitly proposed for MS lesion segmentation, it is clearly outperformed by dice,
as well as blob dice and blob tversky. Further, even with the mitigation strategies
suggested by the authors, inverse weighting produced over-segmentations.

Table 2 summarizes the results of the ablation study on α and β parameters
of blob loss. We find that assigning higher importance to the global parameter
by choosing α = 2 and β = 1 seems to produce the best results. Overall, we
find that blob loss seems quite robust regarding the choice of hyperparameters
as long as the global term remains included by choosing a α greater than 0.

5 Discussion

Contribution: blob loss can be employed to provide existing loss functions with
instance imbalance awareness. We demonstrate that the application of blob loss
improves detection- and in some cases, even volumetric segmentation perfor-
mance across a diverse set of complex 3D bio-medical segmentation tasks. We
evaluate blob loss’ performance in the segmentation of multiple sclerosis (MS)
lesions in MR, liver tumors in CT, and segmentation of different biological struc-
tures in 3D light-sheet microscopy datasets. Depending on the dataset, it achieves
these improvements either due to better detection of foreground objects, better
suppression of background objects, or both. We provide an implementation of
blob loss leveraging on a precomputed connected component analysis for fast
processing times.

Limitations: Certainly, the biggest disadvantage of blob loss is the dependency
on instance segmentation labels; however, in many cases, these can be simply
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Table 1. Experimental results for five datasets. For all training runs with blob loss we
use α = 1 and β = 2. Note that the results for LiTS are based on a different, more
challenging test set and are therefore not comparable with the public leaderboard of
the LiTS challenge. For DISCO-MS, the dice model completely over-segments and
produces dissatisfactory results. Therefore, we try two additional training runs with
reduced learning rates following the heuristics suggested by [1], resulting in similar
over-segmentation. The same problem is observed for inverse weighting (iw). Shirokikh
et al. [25] themselves note the stability problems of the method and suggest lowering
the learning rate to 1− e3.

dataset loss lr DSC SDSC F1 IS IP

MS blob dice 1e−2 0.680 0.848 0.810 0.822 0.828

dice 1e−2 0.660 0.820 0.758 0.854 0.711

iw [25] 1e−2 0.153 0.167 0.278 0.801 0.188

iw [25] 1e−3 0.243 0.273 0.282 0.819 0.189

blob tversky 1e−2 0.690 0.852 0.804 0.829 0.804

tversky 1e−2 0.601 0.697 0.566 0.854 0.459

LiTS blob dice 1e−2 0.663 0.542 0.657 0.861 0.631

dice 1e−2 0.660 0.546 0.623 0.801 0.599

SHANEL blob dice 1e−3 0.543 0.808 0.792 0.874 0.724

dice 1e−3 0.539 0.794 0.783 0.854 0.723

DISCO−MS blob dice 1e−3 0.546 0.678 0.589 0.760 0.481

dice 1e−3 0.095 0.083 0.012 0.870 0.006

dice 3e−4 0.016 0.036 0.379 0.896 0.240

dice 1e−4 0.007 0.011 0.228 0.825 0.132

DeepMACT blob dice 1e−2 0.357 0.393 0.391 0.871 0.276

dice 1e−2 0.353 0.372 0.367 0.801 0.254

Table 2. Ablation analysis on the blob loss’ hyperparameters α and β for the MS
lesions dataset. We observe that blob loss seems to be quite robust with regard to
hyperparameter choice, as long as the global term remains present, compare Eq. (3).
The default parameters α = 2 and β = 1 provide the best results.

loss α β DSC S P SDSC F1 IS IP

blob dice 3 1 0.674 0.629 0.765 0.833 0.790 0.796 0.815

blob dice 2 1 0.680 0.626 0.782 0.848 0.810 0.822 0.828

blob dice 1 1 0.658 0.580 0.802 0.839 0.804 0.840 0.801

blob dice 1 2 0.630 0.552 0.803 0.819 0.792 0.832 0.786

dice 1 0 0.660 0.704 0.656 0.820 0.758 0.854 0.711

blob 0 1 0.522 0.409 0.837 0.728 0.744 0.805 0.727
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obtained by a connected component analysis, as demonstrated in our experi-
ments. Another disadvantage of blob loss compared to other loss functions are the
more extensive computational requirements. By definition, the user is required
to run computations with large patch sizes that feature multiple instances. This
results in an increased demand for GPU memory, especially when working with
3D data (as in our experiments). However, larger patch sizes have proven helpful
for bio-medical segmentation problems, in general, [12]. Furthermore, according
to our formulation, blob loss possesses an interesting mathematical property, it
penalizes false positives proportionally to the number of instances in the volume.
Additionally, even though blob loss can easily be reduced to a single hyperpa-
rameter, and it proved quite robust in our experiments, it might be sensitive to
hyperparameter tuning. Moreover, by design blob loss can only improve perfor-
mance for multi-instance segmentation problems.

Interpretation: One can only speculate why blob loss improves performance
metrics. CNNs learn features that are very sensitive to texture [10]. Unlike con-
ventional loss functions, blob loss adds attention to every single instance in the
volume. Thus the network is forced to learn the instance imbalanced features such
as, but not limited to morphology and texture, which would not be well repre-
sented by optimizing via dice and alike. Such instance imbalance was observed
in the medical field, as it has been shown that MS lesions change their imag-
ing phenotype over time, with recent lesions looking significantly different from
older ones [7]. These aspects might explain the gains in instance sensitivity.
Furthermore, adding the multiple instance terms leads to heavy penalization
on background, which might explain why we often observe an improvement in
precision, see supplementary materials.

Outlook: Future research will have to reveal to which extent transformation to
blob loss can be beneficial for other segmentation tasks and loss functions. A
first and third place in recent public segmentation challenges using a compound-
based variant blob loss indicate that blob loss might possess broad applicability
towards other instance imbalanced semantic segmentation problems.
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