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Abstract. Can we use sparse tokens for dense prediction, e.g., seg-
mentation? Although token sparsification has been applied to Vision
Transformers (ViT) to accelerate classification, it is still unknown how
to perform segmentation from sparse tokens. To this end, we reformu-
late segmentation as a sparse encoding → token completion → dense
decoding (SCD) pipeline. We first empirically show that naïvely applying
existing approaches from classification token pruning and masked image
modeling (MIM) leads to failure and inefficient training caused by inap-
propriate sampling algorithms and the low quality of the restored dense
features. In this paper, we propose Soft-topK Token Pruning (STP) and
Multi-layer Token Assembly (MTA) to address these problems. In sparse
encoding, STP predicts token importance scores with a lightweight sub-
network and samples the topK tokens. The intractable topK gradients
are approximated through a continuous perturbed score distribution. In
token completion, MTA restores a full token sequence by assembling both
sparse output tokens and pruned multi-layer intermediate ones. The last
dense decoding stage is compatible with existing segmentation decoders,
e.g., UNETR. Experiments show SCD pipelines equipped with STP and
MTA are much faster than baselines without token pruning in both train-
ing (up to 120% higher throughput) and inference (up to 60.6% higher
throughput) while maintaining segmentation quality. Code is available
here: https://github.com/cvlab-stonybrook/TokenSparse-for-MedSeg.

Keywords: Token Pruning · Multi-layer Token Assembly · Medical
Image Segmentation

1 Introduction

Vision Transformers (ViT) [6] for dense prediction [20,29] have achieved impres-
sive results in tasks including medical image segmentation [8]. In general, high-
resolution features [26] preserving details are always desirable for precise seg-
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mentation. However, because of the quadratic computation complexity in self-
attention [25], doubling the resolution per dimension in a 3D volume can lead to
an 8× longer sequence and hence 64× more computation. This growing comput-
ing burden can quickly surpass limited computation budgets. Considering ViT’s
flexibility and great potential in masked image modeling [9,14], we explore accel-
eration algorithms based on the standard ViT. Recently, token sparsification
[15,16,21] has been proposed to accelerate inference in ViT for classification by
dropping less important tokens. However, to the best of our knowledge, there are
no ViT token sparsification approaches for segmentation. This leads us to ask
the question: Can we use sparse tokens for dense prediction, e.g., segmentation?

To answer the question, we reformulate segmentation as a sparse encoding
→ token completion → dense decoding (SCD) pipeline. Unlike a standard dense
encoding → dense decoding (DD) pipeline, sparse encoding and token completion
are required in SCD. Sparse encoding requires learning a sparse token represen-
tation for speed and token completion is needed to restore the full set of tokens
for dense prediction. We first examine a naïve realization of sparse encoding and
token completion by applying existing approaches. Specifically, we adapt sam-
pling methods in classification, e.g., EViT [15] and DynamicViT [21], to sparse
encoding, and masked image modeling (MIM) [2,9] to token completion. How-
ever, we observe significantly inferior results in this SCD pipeline (See Table 1).
Next, we provide more insight into the problems of existing methods.

Problems in Sparse Encoding . There are two steps in this step, i.e., token
score estimation and token sampling. We show that EViT’s token score estima-
tion is inappropriate for segmentation and DynamicViT’s token sampling leads
to training inefficiency: i) EViT [15] uses the attention weights between spatial
tokens and the [CLS] token to estimate scores. While this is sound for clas-
sification since [CLS] is used for prediction, it is sub-optimal for segmentation
because [CLS] is deprecated in the segmentation decoder. ii) DynamicViT [21]
estimates token scores with a sub-network. DynamicViT frames token sampling
as a series of independent binary decisions to keep or drop tokens. This does not
guarantee a fixed number of sampled tokens for each training input. To fit in
batch training, DynamicViT keeps all tokens in memory and masks self-attention
entries, leading to training inefficiency.

Problems in Token Completion. Previous sparse token classification mod-
els [15,21] do not require token completion. Thus, we borrow the design from
MIM. MIM reconstructs full tokens from a partial token sequence by padding
it to full length with learnable mask tokens and then hallucinating the masked
regions from their context. While MIM is useful for pre-training, it cannot accu-
rately restore detailed information, resulting in inferior segmentation results.

We propose Soft-topK Token Pruning (STP) and Multi-layer Token Assem-
bly (MTA) to implement sparse encoding and token completion. i) In sparse
encoding, STP predicts token importance scores with a sub-network, avoiding
the limitation of [CLS] in segmentation. STP then samples topK-scored tokens
instead of making binary decisions per token separately, accelerating training
by retaining only the sampled tokens in memory and computing. Motivated by
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subset sampling [5,12,28], the intractable gradients of the topK operation are
approximated through a perturbed continuous score distribution. ii) In token
completion, the MTA restores a full token sequence by assembling both sparse
output tokens and pruned intermediate tokens from multiple layers. Compared
to MIM that fills the pruned positions with identical mask tokens, MTA produces
more informative, position-specific representations. For dense decoding, the SCD
pipeline is compatible with existing segmentation decoders, such as UNETR.

We evaluate our method on two relatively sparse 3D medical image seg-
mentation datasets, the CT Abdomen Multi-organ Segmentation (BTCV [11],
N = 30) dataset and the MRI Brain Tumor Segmentation (MSD BraTS [1],
N = 484) dataset. On both tasks, STP+MTA+UNETR matches the UNETR
baseline while providing significant computing savings with large token prun-
ing ratios. On BraTS, STP+MTA+UNETR accelerates segmentation inference/-
training throughput by 60.6%/120% and achieves the same segmentation accu-
racy. On BTCV, STP+MTA+UNETR increases inference/training throughput by
24.1%/97.36% while maintaining performance. In summary, our contributions
are:

– To the best of our knowledge, we are the first to use token pruning/dropping
for ViT-based medical image segmentation.

– Based on subset sampling, our proposed Soft-topK Token Pruning (STP)
module can be flexibly incorporated into a standard ViT to prune tokens
with greater efficiency while maintaining accuracy.

– We propose Multi-layer Token Assembly (MTA) to recover a full set of tokens,
i.e., a dense representation, from a sparse set. MTA preserves high-detail
information for accurate segmentation.

– We show that STP+MTA+UNETR maintains performance compared with
UNETR with much less computation on two 3D medical image datasets.

2 Methodology

Generally, a segmentation model consists of an encoder and a decoder. Our goal
is to accelerate the ViT segmentation encoder. To this end, we reformulate seg-
mentation as a sparse encoding → token completion → dense decoding (SCD)
pipeline. Sparse encoding learns a sparse token representation for acceleration;
token completion restores the full tokens for dense prediction; dense decoding
predicts the segmentation mask from dense features. We first recap Vision Trans-
formers and then illustrate the three components in the SCD pipeline.

Preliminary: Vision Transformers. Vision Transformers treat an image/vol-
ume as a sequence of tokens. In the case of 3D medical images, a 3D vol-
ume x ∈ R

H×W×D×Cin is first reshaped to a sequence of flattened patches
xp ∈ R

N×(P 3×Cin) where H ×W ×D is the spatial size, Cin is the input channel,
P ×P ×P is the patch size, and N = HWD/P 3 is the sequence length, i.e., the
number of patches. All the patches are then projected linearly to a C-dimensional
token space, with position embeddings added to the projected patches. These
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Fig. 1. Sparse Token Segmentation Pipeline. We reformulate segmentation as a
sparse encoding → token completion → dense decoding pipeline. In sparse encoding,
we design a Soft-topK Token Pruning (STP) module. In the forward pass, STP per-
forms topK sampling on perturbed scores. In the backward pass, STP approximates
the intractable gradient with a continuous Gumbel Softmax estimation. In token com-
pletion, we propose Multi-layer Token Assembly (MTA) to assemble both the output
sparse tokens and the pruned intermediate ones to restore the complete tokens. In dense
decoding, we avoid the intermediate sparse tokens by taking all inputs from the output
of MTA. In this simplified figure, we visualize token pruning as dropping the last token.
However, in practice pruned tokens are selected according to predicted scores.

patch tokens, together with a learnable prepended [CLS] token, are denoted as
z0 ∈ R

(1+N)×C . z0 are further processed by L Transformer blocks sequentially.
Each block consists of a multi-head self-attention (MSA) module and an MLP.
We denote the tokens output from the ith Transformer block as zi ∈ R

(1+N)×C .
For the segmentation task, before feeding the output zL of the encoder to the
decoder, we drop the [CLS] token and project the non-[CLS] token sequence
z[1:N ]

L ∈ R
N×C back to the original 3D feature map xL ∈ R

H/P×W/P×D/P×C .

2.1 Sparse Encoding: Soft-topK Token Pruning (STP)

We build our sparse encoder on a ViT without modifying the self-attention
module. Instead, we propose a learnable plug-and-play Soft-topK Token Pruning
(STP) module. Compared to EViT & DynamicViT, our STP, as shown in the
lower half of Fig. 1, estimates token scores more effectively and can be trained
efficiently. STP can be inserted between two Transformer blocks TFi and TFi+1.
Receiving as input the token sequence zi ∈ R

Ni×C from TFi, STP prunes tokens
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with a ratio r and passes the remaining tokens z′
i ∈ R

�(1−r)Ni�×C to TFi+1. In
particular, STP consists of token-wise score estimation and token sampling. To
be concise, we change the notation of number of tokens from Ni to n.

Token Score Estimation. To decide which tokens to keep or prune, we intro-
duce a lightweight sub-network sθ : Rn×C → R

n to predict the token importance
scores s, where θ are the network parameters. The architecture of sθ is designed
to aggregate both the local and global features, similarly to [21]. The global
feature is simply obtained by average pooling over all the tokens.

s = sθ(z) = Sigmoid

(
MLP2

(
[z, AvgPool

(
MLP1(z)

)
]
))

(1)

Straight-Through Gumbel Soft TopK Sampling. Given a token pruning
ratio r, STP needs to select K = �(1 − r)n� tokens out of n to keep. After
predicting the scores s, we re-interpret each score value si as the probability
of the i-th token ranking in the topK. We formulate this process as sampling
a binary policy mask M ∈ {0, 1}n from the predicted probabilities where M
is subject to sum(M) = K. Mi = 1 indicates keeping the i-th token while
Mi = 0 indicates pruning. However, such discrete sampling is non-differentiable.
To overcome the problem, we relax the sampling of discrete topK masks to a
continuous approximation, the Gumbel-Softmax distribution:

Mi = 1topK(log(si) + gi)︸ ︷︷ ︸
forward

approx←−−−− M̃i =
exp((log(si) + gi)/τ)∑n

j=1 exp((log(sj) + gj)/τ)︸ ︷︷ ︸
backward

(2)

where 1topK is an indicator function of whether the input perturbed score is
among the topK of all n perturbed scores, {g}n are i.i.d samples from the
Gumbel(0, 1) distribution1. While training, we forward STP to sample the topK
tokens based on the discrete M but backward with the gradient approximated by
the continuous M̃. We call this Straight-through (ST) Gumbel Soft TopK Sam-
pling. During inference, we perform normal topK selection based on predicted
scores without Gumbel noise perturbation for deterministic inference.

2.2 Token Completion: Multi-layer Token Assembly (MTA)

The output of the STP-ViT encoder is sparse. Thus, before passing the out-
put to the decoder, we need to first restore the complete tokens. A straight-
forward solution can be obtained from Masked Image Modeling (MIM) [2,9].
MIM reconstructs an image from random partial image patches. It first pads
the sparse token set with learnable [MASK] tokens up to its full length. Then
the padded tokens are forwarded through Transformer blocks to reconstruct the
masked regions. However, MIM is mostly utilized for pre-training which focuses
more on semantic hallucination rather than accurate detail restoration. Thus,
1 Gumbel(0, 1) samples are drawn by sampling −log(−log u) where u ∼ Uniform(0, 1).
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it is sub-optimal for segmentation tasks that require assigning labels to pixels
accurately.

We propose Multi-layer Token Assembly (MTA) to restore dense features by
assembling both the outputted sparse tokens and the pruned intermediate tokens
from multiple layers. Suppose we insert three STPs, {STP1,STP2,STP3}, after
different Transformer blocks in a ViT. We denote the token sets pruned by the
three STPs as {z̄1, z̄2, z̄3}. We concatenate these pruned tokens with the final
output zL and rearrange them to their original spatial order. Then, we add
three learnable block tokens {[BLK1], [BLK2], [BLK3]} to the corresponding pruned
tokens to indicate which block each token is pruned from. Finally, we introduce
sin-cos position embeddings Epos to all the tokens and forward them through
Transformer blocks. The completion process can be summarized as follows:

zcompl = TF(rearrange(
[
z̄1 + [BLK1], z̄2 + [BLK2], z̄3 + [BLK3], zL

]
) +Epos) (3)

2.3 Dense Decoding and Optimization

As our goal is to design an acceleration method that is agnostic to decoder
designs, designing a new segmentation decoder is beyond the scope of this paper.
Thus, we couple the SCD pipeline with existing segmentation decoders. However,
certain segmentation decoders, e.g., UNETR, require inputs from multiple layer
outputs from the encoder, which causes problems because intermediate features
are still sparse. Motivated by recent research on the non-hierarchical feature
pyramid [13], we use the output zcompl of the completion network to replace all
the intermediate features required by the segmentation head, as shown in Fig. 1.

Unlike DynamicViT, we do not introduce additional loss functions for token
pruning. We optimize all segmentation models by segmentation loss. We adopt
a combination of cross entropy and Dice loss. Both loss weights are set to 1.

3 Experiments

3.1 Dataset Description

We evaluate on two benchmark 3D medical segmentation datasets with sparse
targets. The tasks are CT multi-organ and MRI Brain tumor segmentation.

CT Multi-organ Segmentation (BTCV). The BTCV [11] (Multi Atlas
Labeling Beyond The Cranial Vault) dataset consists of 30 subjects with abdom-
inal CT scans where 13 organs were annotated under the supervision of board-
certified radiologists. Each CT volume has 85–198 slices of 512 × 512 pixels,
with a voxel spatial resolution of (0.54 × 0.98 × [2.5–5.0] mm3). For comparison
convenience, we follow [3,4] to split the 30 cases into 18 for training and 12
for validation. Hyper-parameters are selected via 3-fold cross validation in the
training set. We report the average DSC (Dice Similarity Coefficient) and 95%
Hausdorff Distance (HD95) on 8 abdominal organs (aorta, gallbladder, spleen,
left kidney, right kidney, liver, pancreas, spleen, stomach) to align with [4].
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Table 1. Performance of existing approaches on BTCV. We first examine the
performance of the naïve combination of existing approaches. For a large pruning ratio
r = 0.9 on BTCV, MIM fails to perform segmentation effectively. Even with our pro-
posed MTA instead of MIM, EViT and DynamicViT still perform worse than our STP.
We report the mean and std on three random runs unless otherwise stated. Please see
Sec. 3 for more analysis.

DSC(%) on BTCV
(pruning ratio r = 0.9)

sparse encoding

DynamicViT [21] EViT [15] STP (ours)

token completion MIM [2,9] 24.35 (single run) 18.64 (single run) 44.71 (single run)
MTA (ours) 80.24 ± 0.34 78.62 ± 0.10 82.18 ± 0.12

MRI Brain Tumor Segmentation (BraTS). The Medical Segmentation
Decathlon (MSD) [1] BraTS dataset has 484 multi-modal (FLAIR, T1w, T1-Gd
and T2w) MRI scans. The ground-truth segmentation labels include peritumoral
edema, GD-enhancing tumor and the necrotic/non-enhancing tumor core. The
performance is measured on three recombined regions, i.e., tumor core, whole
tumor and enhancing tumor. We randomly split the dataset into training (80%),
validation (15%), and test (5%) sets. We report average DSC and HD95.

3.2 Implementation Details

Our method is implemented in PyTorch [19] and MONAI [18] on a single
NVIDIA A100. Our encoder is based on a ViT-Base model. Three STP modules
are inserted after the 3rd, 6th, and 9th Transformer blocks in ViT-B. We fol-
low UNETR [8] on data processing. For BTCV, we clip the raw values between
−958 and 326, and re-scale the range between −1 and 1. For BraTS, we perform
an instance-wise normalization over the non-zero region per channel. For train-
ing, we set the batch size to 2 and the initial learning rate to 1.3e−4. We use
AdamW as the optimizer and adopt layer-wise learning rate decay (ratio = 0.75)
to improve training. For inference, we use a sliding window with an overlap of
50%.

3.3 Results

Naïve Combination of EViT/DynamicViT+MIM. We first test the
straightforward approach of applying EViT/DynamicViT to sparse encoding
and MIM to token completion. We use UNETR as the segmentation decoder.
In Table 1, EViT/DynamicViT + MIM fails to perform dense prediction for a
very high pruning ratio r = 0.9 on BTCV. This justifies our efforts in this paper
to accelerate sparse token segmentation models while maintaining performance.

Our Approach: STP+MTA. We evaluate the efficiency of our Soft-topK
Token Pruning (STP) and Multi-layer Token Assembly (MTA) on the BTCV
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Table 2. STP+MTA+UNETR vs. UNETR performance comparison. Based
on the same ViT scale and patch size, our proposed STP+MTA+UNETR can maintain
performance while significantly reducing computation by a large margin. We report the
mean and std of three random runs on BTCV. Please refer to Sect. 3.3 for more details
on the experimental setting and analysis.

Method
MSD BraTS Encoder

Throughput(img/s)
Throughput

(img/s) MACs(G)
DSC↑ HD95↓

UNETR 75.44 8.89 7.10 4.85 824.38
STP+MTA+UNETR 75.79 8.31 20.04 7.79 (+60.6%) 428.28

Method
BTCV Encoder

Throughput(img/s)
Throughput

(img/s) MACs(G)
DSC↑ HD95↓

UNETR 80.78 ± 0.34 15.90 ± 1.01 30.30 16.18 273.45
STP+MTA+UNETR 82.18 ± 0.12 19.85 ± 1.12 57.31 20.08 (+24.1%) 146.63

and BraTS datasets based on UNETR. We measure the efficiency by profiling
the throughput(image/s) and MAC number (Multiply-accumulate operations)
for each model variant. The throughput is measured on a NVIDIA A100 GPU
with batch size 1. MACs are computed by measuring the forward complexity of
a single image. We present the results in Table 2. On BraTS, with an input size
of (128× 128× 128), our STP+MTA+UNETR (r = 0.75) maintains performance
while significantly increasing inference throughput by 60.8%. On BTCV, with
an input size of (96 × 96 × 96), STP+MTA+UNETR (r = 0.9) can maintain
performance while the corresponding inference throughput increases by 24.1%.
Our method also increases training efficiency. The training throughput on BTCV
increases from 2.65 imgs/s to 5.23 imgs/s by 97.36%. The training throughput
on BraTS increases from 0.75 imgs/s to 1.65 imgs/s by 120%.

Sparse Encoding: STP vs. EViT/DynamicViT. EViT [15] and Dynam-
icViT [21] were initially designed for classification. Thus, we need to adapt
EViT/DynamicViT for comparison. To constrain the pruning ratio in Dynam-
icViT, we add the ratio loss function Lratio with a weight of λratio = 2 follow-
ing [21]. In EViT, we take the [CLS] attention weights from the Transformer
block as the token scores and use topK for sampling. As shown in Table 4a, our
STP-ViT performs the best. The inferiority of DynamicViT could be caused by
i) mismatch between the training (variable number of pruned tokens) and test-
ing phases (fixed number of pruned tokens) and ii) more hyper-parameters (e.g.,
λratio). The performance drop in EViT indicates that the [CLS] attention scores
are not suitable for representing the true token importance in segmentation.

Token Completion: MTA vs. MIM. We implement a baseline inspired by
MIM [2,9]. As Table 4b shows, MIM-style completion fails (44.71%) with a high
pruning ratio r = 0.9. Our results suggest that pruned token reuse in MTA plays
an important role in a highly sparse token segmentation framework.

Token Pruning Ratio in STP. We ablate the pruning ratio in Table 3. STP is
robust to a wide range of pruning ratios [0.25, 0.9]. Thus, our STP+MTA+UNETR
can adopt a high pruning ratio to reduce computation by a large margin.
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Table 3. Ablation on the Pruning Ratio r. STP shows robustness to a wide
range of pruning ratios (0.25 → 0.9) in terms of DSC. Different datasets have different
optimal pruning ratios. Refer to Sect. 3.3 for more details. We report the mean and std
of three random runs on BTCV unless otherwise stated.

Pruning Ratio
r

BTCV BraTS Encoder
Throughput

Throughput MACs(G)

DSC↑ HD95↓ DSC↑ HD95↓
baseline 80.78 ± 0.34 15.90 ± 1.01 75.44 8.89 7.10 4.85 824.38
0.25 81.56 ± 0.16 19.65 ± 3.25 75.50 7.98 11.77 6.12 631.75
0.50 81.81 ± 0.59 15.78± 1.01 75.02 7.40 17.34 7.35 497.97
0.75 81.95 ± 0.18 16.37 ± 5.41 75.79 8.31 20.04 7.79 428.28
0.9 82.18± 0.12 19.85 ± 1.12 75.32 8.04 21.63 8.04 404.14

Table 4. Ablation studies on BTCV. In (a), we compare STP with DynamicViT
and EViT. STP achieves better performance. In (b), we compare our proposed MTA
with MIM where MIM performs much worse than MTA. In (c), we demonstrate that
Gumbel perturbation is beneficial. In (d), we ablate different τ values. τ = 0.1 and
τ = 1 perform similarly while τ = 0.01 performs worse. We report the mean and std of
three random runs unless otherwise stated.

Encoder DSC
DynamicViT 80.24 ± 0.34

EViT 78.62 ± 0.10

STP-ViT (Ours) 82.18 ± 0.12

Token Completion DSC
MIM 44.71 (single run)

MTA (ours) 82.18 ± 0.12

(a) Comparison with DynamicViT&EViT (b) Token Completion Methods

Perturbation DSC
No (ST TopK) 81.67 ± 0.21

Yes (ours) 82.18 ± 0.12

τ DSC
0.01 81.36 ± 0.15

0.1 82.06 ± 0.22

1 (ours) 82.18 ± 0.12

(c) Gumbel Perturbation (d) Temperature τ in STP

Although our method achieves higher DSC on BTCV than UNETR, the HD95 is
worse. We speculate that HD95 is more sensitive to the boundary segmentation
results and that token pruning may lead to sub-optimal boundary prediction.

Temperature τ in STP. We ablate temperature τ in Eq. 2 in Table 4d. Accord-
ing to [10], a small temperature leads to a large variance of gradients and vice
versa. We tried three different τ values {0.01, 0.1, 1}. Experiments show τ = 0.1
and τ = 1 perform similarly while τ = 0.01 performs worse.

Noise Perturbation in STP. In Soft-topK Token Pruning (STP), we design a
straight-through (ST) Gumbel soft topK algorithm for sampling. STP forward
process can be split into three steps, i.e., score prediction, Gumbel perturbation,
and topK sampling. In Table 4c, we ablate the Gumbel perturbation on BTCV
by evaluating a straight-through (ST) topK variant. Note that we do not add
Gumbel noise during inference, to ensure that the model performs deterministi-
cally for inference. For the ST topK variant, we also remove the Gumbel noise
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Table 5. Comparison with other methods on BTCV.

Framework DSC↑/HD95↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

V-Net [17] 68.81/– 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR [7] 69.77/– 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
U-Net(R50) [22] 74.68/36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
AttnUNet(R50) [23] 75.57/36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
TransUNet [4] 77.48/31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
UNETR (PatchSize = 16) 78.83/25.59 85.46 70.88 83.03 82.02 95.83 50.99 88.26 72.74
UNETR (PatchSize = 8) 80.78/15.90 88.59 70.97 83.38 83.76 95.52 59.76 88.53 74.30
STP+MTA+UNETR (PatchSize = 8) 82.18/19.85 89.23 73.60 85.66 83.65 95.59 62.17 88.84 77.37

Fig. 2. Ground truth and model outputs on BraTS (first two rows) and BTCV (last
two rows). We visualize the depth at which tokens are pruned under high (r = 0.9)
and low (r = 0.25) pruning ratios (red shading in columns 2 and 3). Tokens that are
immediately dropped are not shaded, whereas darker red shading indicates the pruning
of tokens in later layers. (Color figure online)

perturbation from the training phase. With a pruning ratio r = 0.9, results show
that the Gumbel perturbation is beneficial. It is worth noting that the ST topK
variant without perturbation also achieves a competitive result.

Pruning Policy Visualization. We visualize the pruning policy for both brain
tumors and abdominal organs in Fig. 2 under two extreme pruning ratios, the
highest one at r = 0.9 and the lowest at r = 0.25. We use shades of red to
denote the depth at which tokens are pruned. Patches (tokens in ViT) with no
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red overlap are pruned by the very first STP, whereas patches with the deepest
red color are kept in ViT until the last. In Fig. 2, with r = 0.9, most tokens are
dropped at a very early stage. Some tokens around the brain tumor, especially
at tumor boundaries, are never pruned. When the ratio decreases to r = 0.25,
more patches are kept and still cluster around the target tumor region.

Class-Wise Comparison with Others on BTCV. We show class-wise
results of UNETR, STP+MTA+UNETR, and other methods in Table 5.

STP+MTA+UNETR shows improvement over a series of methods on BTCV.
Note that current SOTA methods [24,27,30] rely on either stronger priors (win-
dow attention) or SSL pre-training. However, our goal is accelerating standard
ViT-based segmentation instead of purely pursuing increased performance.

4 Conclusion and Future Work

We introduced a ViT-based sparse token segmentation framework for medical
images. First, we proposed a Soft-topK Token Pruning (STP) module to prune
tokens in ViT. STP can speed up ViTs in both training and inference phases. To
produce a full set of tokens for dense prediction, we proposed Multi-layer Token
Assembly (MTA) that recovers a complete set of tokens by assembling both
output and intermediate tokens from multiple layers. In our 3D medical image
experiments STP+MTA+UNETR speeds up the UNETR baseline significantly
while maintaining segmentation performance. Accelerating the decoder, which
also plays a big role in the inference speed, is left for future work.
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