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Abstract. Access to the proper infrastructure is critical when perform-
ing medical image segmentation with Deep Learning. This requirement
makes it difficult to run state-of-the-art segmentation models in resource-
constrained scenarios like primary care facilities in rural areas and during
crises. The recently emerging field of Neural Cellular Automata (NCA)
has shown that locally interacting one-cell models can achieve compet-
itive results in tasks such as image generation or segmentations in low-
resolution inputs. However, they are constrained by high VRAM require-
ments and the difficulty of reaching convergence for high-resolution
images. To counteract these limitations we propose Med-NCA, an end-to-
end NCA training pipeline for high-resolution image segmentation. Our
method follows a two-step process. Global knowledge is first communi-
cated between cells across the downscaled image. Following that, patch-
based segmentation is performed. Our proposed Med-NCA outperforms
the classic UNet by 2% and 3% Dice for hippocampus and prostate seg-
mentation, respectively, while also being 500 times smaller. We also
show that Med-NCA is by design invariant with respect to image scale,
shape and translation, experiencing only slight performance degradation
even with strong shifts; and is robust against MRI acquisition artefacts.
Med-NCA enables high-resolution medical image segmentation even on
a Raspberry Pi B+, arguably the smallest device able to run PyTorch
and that can be powered by a standard power bank.

Keywords: Neural Cellular Automata · Medical Image
Segmentation · Robustness

1 Introduction

State-of-the-art medical image segmentation is dominated by UNet-style archi-
tectures [18], which still perform at the top of most grand challenges in its vari-
ous forms [12]. This trend of task-specific optimizations of UNet-style models is
usually accompanied by diminishing returns regarding model size versus perfor-
mance. The increase in model complexity raises serious concerns that machine
learning cannot be leveraged in resource-constrained environments [1]. In settings
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such as primary care facilities in rural areas, only minimal computing infrastruc-
ture is available [4], so it is challenging to deploy models requiring large GPUs.
UNet-style models are also particularly susceptible to the domain shift problem
[7] and have difficulty generalising to other input resolutions. To mitigate this,
shifts are often brute-forced into the training pipeline by adding augmentations
like translation or simulated acquisition artefacts [5].

Fig. 1. NCA models are lightweight due to their small size and asynchronous inference,
and can be run on low-powered systems. They are also, by design, invariant to the input
scale and field of view. Further, they are robust against image artefacts.

Unlike most state-of-the-art methods that rely on optimising UNet-based
frameworks, such as the nnUNet pipeline [12], we investigate a fundamentally
different learning system that is by design lightweight, robust and input-
invariant, yet achieves reliable performance. We introduce Neural Cellular
Automata (NCA) as our base architecture, which due to the one-cell model
size, can be distributed across any image size during deployment. The minimal
size and asynchronous inference requires significantly less computing power than
classical models. Additionally, due in part to the limited amount of parameters,
a rule has to be learnt that generalises well across the problem space, which
renders it robust by design (illustrated in Fig. 1).

Heavily inspired by the interaction between cells in living organisms, NCAs
are minimal models that look at a single cell at a time and can only communicate
with their direct neighbours. Global knowledge can be transmitted by deploying
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the model on each cell and iteratively applying the same rules. Each iteration
increases the perceptive range by one cell in each direction. Recently, NCAs have
made advances in tasks like robust image generation [13] and even segmentation
for small-resolution natural images [20], all while learning a single local update
rule that is applied incrementally to each cell.

Despite its advantages such as lightweight inference, training NCAs requires
exponentially higher video ram (VRAM) depending on the input size during
training, which quickly reaches 20 GB for a single sample with a resolution
of 256 × 256. In medical image processing, this is prohibiting as data is typ-
ically high in resolution. The local interaction makes inference on big images
difficult (greater than 100 × 100), as many steps are required to communicate
global knowledge. In addition, high-resolution images increase the convergence
difficulty. Due to these constraints, previous works on NCAs have focused on
small-resolution computer vision benchmarks [2,9,13–15,17]. We solve these lim-
itations with Med-NCA, a two-step NCA model. The model distributes global
knowledge across a downscaled image in the first step. In the second step, Med-
NCA combines the resulting information with high-resolution image patches to
perform high-quality segmentations.

We evaluate our proposed Med-NCA on T1-weighted hippocampus and T2-
weighted prostate MRI datasets. We first compare the segmentation performance
of Med-NCA to classic and efficient UNet-style architectures, where Med-NCA
outperforms them by at least 2% for the hippocampus and 3% for the prostate,
with a 90 to 500 times smaller model size, although there is still a 2% and 10%
performance gap to the auto ML pipeline nnUNet. Secondly, we perform an in-
depth analysis of three types of input invariances: scale, shape and translation.
Med-NCA shows consistent performance in comparison to UNet-style models
and can even outperform the nnUNet for strong shifts in shape and transla-
tion. We then investigate the influence of synthetic MRI acquisition artefacts
of increasing severity on Med-NCA and UNet. Despite the vastly different one-
cell local interaction setup of Med-NCA, our experiments show similar robust-
ness to the UNet in terms of anisotropy and bias field and even slightly better
robustness to ghosting artefacts. Lastly, we demonstrate that deployment in
low-resource environments is possible, due to the asynchronous inference
and the one-cell model size of NCAs, on a Raspberry Pi Model B+(US$ 35).
There is currently a slightly stronger successor, the Raspberry Pi Zero, which
costs US$ 5.

To ensure reproducibility and drive further research on NCA segmentation,
we make our complete framework available under github.com/MECLabTUDA/
Med-NCA.

2 Related Work

Recent publications have shown the applicability of NCAs to different tasks, such
as robust image generation from a single cell [13] and foreground-background
segmentation [20]. In this section, we review relevant related work on NCAs and
medical image segmentation.

https://github.com/MECLabTUDA/Med-NCA
https://github.com/MECLabTUDA/Med-NCA
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Neural Cellular Automata: NCA models are a one-cell model architecture,
recently adapted to convolutional neural networks by Gilpin [6]. NCAs do not
look at the whole image globally but instead only interact locally. Each cell can
exclusively communicate with its direct neighbours, and all inherit the same
learnt rule. By performing multiple iterations, global knowledge can be con-
veyed between cells. Despite their small size, NCAs have shown robustness in
tasks such as image generation [13,15], where models display a high degree of
resilience against perturbations. To the best of our knowledge, only one previ-
ous work explores image segmentation with NCAs [20]. The proposed method
focuses on foreground-background segmentation on small images of 64 × 64.
While it provides a simple up/downscaling solution for high-resolution images,
performance is insufficient for medical image segmentation (see Table 1).

Medical Image Segmentation: With the improvements in graphics cards
and VRAM availability [12], machine learning models are growing significantly
in size. Models like the state-of-the-art nnUNet define 4GB of VRAM as their
minimum requirement [12], and thus require proper infrastructure for infer-
ence. There have been several attempts to create minimal segmentation models,
mainly by modifying the well-established UNet [18]. The ‘Segmentation Models’
python package [10] provides a collection of UNet-style models where the encoder
has been replaced with smaller architectures like EfficientNet [22], MobileNetV2
[19], DenseNet [11], ResNet18 [8] and VGG11 [21]. However, computational
requirements are still significant (see Fig. 3).

UNets and other state-of-the-art segmentation models typically have a
pyramid-like structure with multiple up- and downscaling blocks. NCAs stand in
strong contrast as they are tiny models acting on a single pixel and communicat-
ing global knowledge through iteratively applying the same rule. This intrinsic
change in the design allows NCAs to maintain a number of parameters several
orders of magnitude lower, and consequently to be run on minimal hardware.

3 Methodology

The local architecture of NCAs, where the model deals only with a single cell
and its surroundings, allows them to be lightweight in terms of storage space
and inference time, but this does not come without limitations. Training NCAs
end-to-end on images of size 256 × 256 can easily require 20GB of VRAM (for
batch size 1). This is because NCAs are replicated across all input image pixels,
and backpropagation is performed through all the iterative steps of the model,
increasing VRAM needs. VRAM requirements are therefore dependent on model
size, input size and number of iterations/steps.

An additional consideration is that increasing the difficulty of the problem
(e.g. directly learning on the full-scale high-resolution image) can result in NCAs
not converging. Med-NCA reduces VRAM needs and simplifies the segmentation
problem by separating it into two steps (illustrated in Fig. 2). Its standard con-
figuration reduces the required VRAM for training by a factor of 16 compared to
a full-resolution learning setup and enough steps to increase the perceptive range
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of each cell to a global scale. This could be improved even further by adding one
or more downsampling steps into the pipeline if the need arose.

3.1 Med-NCA

Med-NCA is our main methodological contribution defining a pipeline for train-
ing NCAs on high-resolution images. It is optimised to reduce VRAM as well
as simplify training for bigger images. We illustrate the training procedure in
Fig. 2. We start by describing the backbone NCAs we use in Med-NCA, and then
describe the training and inference processes.

Fig. 2. The Med-NCA training strategy relies on cropped images in the ‘High Res’ step
of segmentation to limit VRAM requirements. The final inference is performed on the
full image and does not require patchification.

3.2 Backbone NCA

Med-NCA consists of two identical backbone NCA models that iterate over dif-
ferent scales of the input image. Our models are inspired by the architecture
presented in Growing Neural Cellular Automata [13].

The backbone model is constructed of n input channels, where the first x
channels are reserved for the image. The NCA can freely set the remaining n - x
channels. Instead of growing from a single pixel, we adapt it to the segmentation
task by immediately distributing it across the whole image.

The proposed model consists of two 3 × 3 learnt convolutional layers and
is concatenated with the current cell state, resulting in a state vector of size
3 ∗ n, as illustrated in Fig. 2. It is important that the learnt convolutional layers
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use reflect padding, as the model otherwise learns to use the image borders
for ‘spatial orientation’, which worsens input invariance capabilities. The state
vector is connected to a dense layer with hidden size h, following a ReLU and
another dense layer with the output size n. The standard configuration of our
model uses the following parameters: n = 32, h = 128. These parameters are set
to the maximum value at which the model still converges stably, as this provides
cells with more memory and allows them to learn a more advanced update rule.
For a version of the model that requires 2.5 times fewer parameters, the channel
size can be set to n = 16, resulting in a slight performance degradation, as shown
in the ablation study in Table 1. Similar to other NCA approaches [13,20], we
randomly activate x = 50% of the cells in each step to simulate asynchronous
activation.

3.3 Training of Med-NCA

Med-NCA uses multiple-level NCAs for performing the segmentation. We do
that by training two backbone NCAs b1 and b2 on different image scales so that
training remains stable and the model learns to consider global and detail-rich
information.

The pipeline is executed as follows: in the first step, the image is downsampled
by a factor of four. Then, b1 is iteratively applied for s steps on the input image
x. Afterwards, the output x̄ is upscaled back to the original image size. In the
next step, we replace the first channel of the output, still containing the upscaled
low-resolution image, with its high-resolution counterpart, thus allowing b2 to
refine the outputs further. We then take a random patch p that is of similar
size as x and iteratively apply b2 s times. Lastly, we perform backpropagation
with a loss of Dice and binary cross-entropy on the patch prediction and the
corresponding ground truth segmentation.

This two-step process lowers VRAM requirements by a factor of 16 during
training, making it possible to train Med-NCA on high-resolution images.

3.4 Inference

While training has to be specifically adapted to work well with big images,
inference is very simple. Extracting a prediction is extremely lightweight and
can be carried out on nearly any device that runs PyTorch. The asynchronous
and iterative nature of NCAs makes this possible. Inference is only limited by
the RAM size, where Med-NCA has a much smaller footprint than, e.g., a UNet.
Since NCAs itself are very small, only the size of the image and number of
channels are relevant. Further, during inference patchification is not necessary
as the trained model can be applied directly to the whole image.

4 Experimental Setup

The evaluation of our Med-NCA focuses on the three main aspects robustness,
input invariance and model size. The evaluation is performed on two segmenta-
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tion tasks, namely hippocampus and prostate. We compare our proposed method
with UNet-style architectures as well as the auto ML pipeline nnUNet.

Data: We use the hippocampus data released for the Medical Segmentation
Decathlon (MSD) [2]. The prostate data is a mixture of two datasets, the MSD
(CC-BY-SA 4.0 licence) and ISBI 2013 challenge (CC BY 3.0) [3]. The prostate
images range from 320 × 320 to 384 × 384. We scale the image to a training size
of 256 × 256, allowing us to perform out-of-distribution experiments for smaller
and higher-resolution scales.

Evaluated Architectures: We compare the performance of our proposed Med-
NCA to the well-established UNet [18] and different resource-efficient versions.
In the latter case, the encoder is replaced by EfficientNet [22], MobileNetV2
[19], DenseNet [11], ResNet18 [8] and VGG11 [21]. We use the version of each
encoder with the least amount of parameters provided in the Segmentation Mod-
els repository [10]. We also compare our approach to 2D and 3D full-resolution
versions of the nnUNet [12].

5 Results

The evaluation of our proposed Med-NCA model shows that it deals well with
MRI acquisition artefacts and input size variations while reaching state-of-the-
art performance on the hippocampus and prostate segmentation datasets.

5.1 Performance and Resource Consumption

We perform a thorough performance analysis of Med-NCA compared to other
UNet-style architectures, and place it in the context to resource consumption.
This relation is illustrated in Fig. 3.

Fig. 3. We compare Med-NCA to other efficient UNet setups as well as the nnUNet in
terms of performance vs. the number of parameters.
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Fig. 4. Med-NCA single slice segmen-
tation time on a Raspberry Pi B+by
image size.

We see a general trend of UNet-style
models suffering in performance from a
decrease in model size. Med-NCA, on the
other hand, reaches higher Dice scores
than the classic UNet, outperforming it
by 2% on the hippocampus data and 3%
on the prostate dataset, while also requir-
ing 500 times less trainable parameters.

To show how lightweight Med-NCA is
we deploy it on a Raspberry Pi B+and
perform inference up to an image size of
320 × 320 (see Fig. 4). While inference is
rather slow, with 30 min per slice for the
maximal image size of 320 × 320, using
a more recent system with an RTX 2060
Super and an AMD Ryzen 5600X inference only takes seconds for a whole MRI.
In comparison, the UNet can only be executed on the Raspberry Pi up to an
image size of 32 × 32.

5.2 Input Invariance

When dealing with medical images, the scale or input size may change after
training. A problem with UNet-style segmentation models is that they are not
good at adapting to such variability, which our experiments in Fig. 5 show. When
UNet faces strong shifts in vertical shape, the Dice drops by 13%, whereas Med-
NCA only loses 3%. While the auto ML pipeline nnUNet performs robustly until
strong severity of shape changes, it then loses even more performance and drops
to 50% Dice. We experience similar results for translational changes. While Med-
NCA performs consistently across all introduced shifts, the UNet drops to 0%
Dice, indicating strong overfitting on the position of the image. As for shape
variations, the nnUNet performs stable until strong translational shifts appear,
where it again drops to 56% Dice. The third experiment we conduct is Med-
NCAs capability of dealing with different image sizes as it can be arbitrarily
distributed across any image size due to its one-cell model setup. Med-NCA
shows only slight performance losses of maximal 3% when dealing with images
that are in the range of 0.8 up to 1.5 times the training size. When working on
MRIs, input invariance is especially relevant as only scanning a partial region
or lowering the resolution can greatly increase capturing speed. Med-NCA has
the considerable advantage that it can be trained on a full upper body scan but
perform equally on partial images.

5.3 Robustness

Robustness against MRI acquisition artefacts is an important trait in medical
image segmentation. In our robustness analysis, illustrated in Fig. 6, we show
that Med-NCA can handle anisotropy and bias field artefacts similarly well to
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Fig. 5. Comparison of our proposed Med-NCA with UNet and the nnUNet in of out-
of-distribution (a) scale, (b) shape and (c) translation scenarios.

a classic UNet. Both models experience no drop in performance with anisotropy
artefacts up to a severeness factor of 4. In the case of bias field, Med-NCA and
UNet drop more than 25% in performance when the severity of the artefacts
becomes too strong. In cases of severe ghosting artefacts, we can see the perfor-
mance of Med-NCA suffers less than a classic UNet, where Med-NCA performs
12% better in the most severe cases of ghosting.

Fig. 6. Robustness analysis of our proposed Med-NCA in comparison to UNet and the
nnUNet. nnUNet results are collected for fewer data points, indicated by the dashed
line, as the non-flexible pipeline requires manual evaluation. Analysis is performed for
synthetic MRI acquisition artefacts of increasing severity: (a) Ghosting, (b) Anisotropy
and (c) Bias Field (using TorchIO [16]).

As our comparison to the nnUNet demonstrates, an auto ML pipeline can
increase the robustness as nnUNet only suffers from slight performance losses
across the MRI acquisition artefacts. It is plausible to include a similar setup in
the training of Med-CNA and thus improve robustness.
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Table 1. Comparison of different Med-NCA setups (where c = channels, h =
hiddensize), as well as the Backbone-NCA, previous work on NCA segmentation and
a standard 2D UNet.

Model Hippocampus Prostate

Dice ↑ # Param. ↓ Dice ↑ # Param. ↓
Med-NCA 0.886 ± 0.042 70016 0.838 ± 0.083 70016

Med-NCA c = 16 0.873 ± 0.033 25920 0.822 ± 0.087 25920

Med-NCA h = 64 0.858 ± 0.047 47530 0.808 ± 0.125 47530

Backbone-NCA 64 × 64 0.871 ± 0.870 35008 0.789 ± 0.132 35008

Seg. NCA [20] 0.805 ± 0.045 39472 0.634 ± 0.190 39472

UNet 0.858 ± 0.044 36951555 0.799 ± 0.099 36951555

5.4 Ablation Study

Lastly, we perform an ablation on our approach in Table 1. Our results show
that a different trade-off of performance vs. model size can make Med-NCA 2.5x
more lightweight while only sacrificing 1% of performance. Further, we can see
that the previous NCA segmentation model Seg. NCA [20] is not suitable for the
task of medical image segmentation as it performs 7.4% worse for hippocampus
and even 20.2% worse for the prostate segmentation task.

6 Discussion

We have shown that NCA-based architectures are not only suitable for low-
resolution imaging tasks, but can also be leveraged for high-resolution image
segmentation with our proposed Med-NCA. Since standard NCAs require expo-
nential amounts of VRAM, determined by the input size, this requires an adapted
training pipeline. We enable the training with high-resolution images by incor-
porating patches in the second segmentation step during training. Inference can
be performed directly on the full-resolution image.

When comparing Med-NCA to the classical UNet and resource-efficient vari-
ations, Med-NCA outperforms them by 2% and 3% Dice for hippocampus and
prostate image segmentation, respectively. Med-NCA is also more robust to
changes in image scale, shape and translation, which is directly inherited by
its one-cell model size. The local interaction prevents the model from knowing
where in space information is located and therefore eliminates biases based on
position. Further, despite the vastly different one-cell model size with 500 times
fewer parameters, Med-NCA shows similar or better robustness than a UNet
to MRI acquisition artefacts. Due to the one-cell model size and asynchronous
inference, NCAs are lightweight enough to be executed on any hardware that
runs PyTorch, which we demonstrate by deploying Med-NCA on a Raspberry Pi
B+, that can be powered by any 5 W power source like a standard power bank.

While we have solved the problem of NCAs for high-resolution inputs, one
limitation of the present approach is that it only admits 2D image slices. Further
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optimisations could make Med-NCA work for 3D inputs by adapting the percep-
tive field and integrating VRAM improvements based on the three-dimensional
space. 3D inputs would make Med-NCA suitable for more datasets and might fur-
ther improve performance. In addition, although Med-NCA is inherently robust,
we experience performance degradation when the severity of the acquisition arte-
facts becomes too strong, which could be improved upon in future work.

A further limitation is that there is a 10% performance difference between
Med-NCA and nnUNet on the prostate task. For future work, we propose the
development of a training pipeline similar to the nnUNet, which uses NCA as
the core architecture and includes data augmentations and post-processing steps
during training. We expect that such a framework could achieve equivalent per-
formance while profiting from the inherited benefits of the NCA architecture like
size and scale invariance and general robustness.

7 Conclusion

In this work we introduce the Med-NCA segmentation model, which solves the
VRAM limitations inherited by NCAs for high-resolution images and is therefore
suitable for medical images. Our approach can be run on minimal hardware (e.g.
a Raspberry Pi B+), is inherently robust against scale, shape, translation and
image artefacts, and reaches near state-of-the-art segmentation performance. We
compare our model to UNet-style models optimised for low parameter size and
show that Med-NCA not only achieves a higher Dice score, but also outperforms
them in terms of input invariance, robustness and resource use. This makes Med-
NCA a perfect candidate for primary care scenarios with limited infrastructure
and highly variable imaging equipment.
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16. Pérez-Garćıa, F., Sparks, R., Ourselin, S.: TorchIO: a python library for efficient
loading, preprocessing, augmentation and patch-based sampling of medical images
in deep learning. Comput. Methods Programs Biomed. 106236 (2021). https://doi.
org/10.1016/j.cmpb.2021.106236. https://www.sciencedirect.com/science/article/
pii/S0169260721003102

17. Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M., Greydanus, S.: Self-
classifying MNIST digits. Distill 5(8), e00027–002 (2020)

18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv 2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

20. Sandler, M., Zhmoginov, A., Luo, L., Mordvintsev, A., Randazzo, E., et al.: Image
segmentation via cellular automata. arXiv preprint arXiv:2008.04965 (2020)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
http://arxiv.org/abs/1404.1869
https://doi.org/10.1016/j.cmpb.2021.106236
https://doi.org/10.1016/j.cmpb.2021.106236
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/2008.04965
http://arxiv.org/abs/1409.1556

	Med-NCA: Robust and Lightweight Segmentation with Neural Cellular Automata
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Med-NCA
	3.2 Backbone NCA
	3.3 Training of Med-NCA
	3.4 Inference

	4 Experimental Setup
	5 Results
	5.1 Performance and Resource Consumption
	5.2 Input Invariance
	5.3 Robustness
	5.4 Ablation Study

	6 Discussion
	7 Conclusion
	References




