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Abstract. When developing tools for automated cortical segmentation,
the ability to produce topologically correct segmentations is important in
order to compute geometrically valid morphometry measures. In practice,
accurate cortical segmentation is challenged by image artifacts and the
highly convoluted anatomy of the cortex itself. To address this, we pro-
pose a novel deep learning-based cortical segmentation method in which
prior knowledge about the geometry of the cortex is incorporated into
the network during the training process. We design a loss function which
uses the theory of Laplace’s equation applied to the cortex to locally
penalize unresolved boundaries between tightly folded sulci. Using an ex
vivo MRI dataset of human medial temporal lobe specimens, we demon-
strate that our approach outperforms baseline segmentation networks,
both quantitatively and qualitatively.
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1 Introduction

Segmentation of the cerebral cortex from MRI is an important first step in
many neuroimaging pipelines such as quantitative morphometry analyses aimed
at understanding the pathophysiology of neurological disorders. Automated
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segmentation methods applied to the cortex are challenged by various artifacts
such as image noise, partial volume effects and intensity inhomogeneities which
make accurate identification of the tissue boundaries difficult and result in geo-
metrically inaccurate cortical reconstructions. The cerebral cortex or gray matter
(GM) can be defined as the space between two cortical surfaces; the pial surface
which separates the GM from the surrounding cerebrospinal fluid (CSF), and the
white matter (WM) surface which separates the GM from WM. The cortex has
a complex geometry and is often modelled as a highly folded 2D sheet, with spa-
tially varying curvature and thickness [14]. Geometrically accurate segmentation
of the cortex requires accurate reconstruction of both the WM and pial cortical
surfaces, complete with all cortical folds and narrow sulci. A commonly used
simplification when solving cortical surface reconstruction problems is to view
the cortical surfaces as having the topology of a 3D sphere [4]. However, unless
explicitly corrected for, imaging artifacts often introduce topological defects in
the resulting surface reconstructions. Defects due to partial volume effects are
particularly apparent in tightly folded sulci and result in opposing banks of sulci
appearing fused together. This creates either ‘bridged’ or ‘unresolved’ sulci in
the resulting cortical reconstruction, which cause errors in downstream quanti-
tative brain morphometry measures such as cortical thickness. While topological
defects can be corrected by manual editing, these checks can be time-consuming.

Topology-corrected reconstruction of cortical surfaces is a well studied topic
in in vivo neuroimaging literature, and several state-of-the-art methods have
been developed to address this problem [4,5,11]. The widely used Freesurfer
framework employs a mesh-based approach to topology-correction which con-
sists of two main steps [4]. First, the inner WM surface is generated by applying
mesh tessellation to a volumetric WM segmentation that has been corrected for
topological defects [4]. Second, this WM surface is expanded using a deformable
surface model to reconstruct the outer, pial surface, while ensuring that the
topology of the initial surface is preserved [4,5,11]. In recent years, elements of
the FreeSurfer pipeline have been implemented as deep learning networks, result-
ing in significant speedups [1,7,8,12]. However, these frameworks still either
require the time-consuming post-processing step of topology correction [1,7] or
rely on a predefined initial mesh with the correct, spherical topology to recon-
struct the cortical surface [8,12].

In this work, we are specifically interested in developing an automated corti-
cal segmentation method that can be applied to ex vivo brain MRI datasets to
generate geometrically valid models of the cortex. Instead of a mesh deformation-
based approach, we propose a novel volumetric deep image segmentation method
that learns to segment the cortex while explicitly modeling the ‘sheet-like’ geom-
etry of the cortex. In ex vivo studies, it is common to image only a portion of the
brain hemisphere, thus violating the assumption of spherical WM topology made
by mesh-based approaches. Furthermore, many of the in vivo cortical segmen-
tation methods contain algorithms that are optimized for data with a standard
1mm voxel size [4], and would result in unrealistic computational times if applied
to high-resolution ex vivo MRI datasets. As a result, existing methods are not
easily applicable to ex vivo MRI scans. As far as we know, no prior work has
focused on topology correction of ex vivo cortical segmentations.
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Previous studies have used the concept of Laplace’s equation as a tool for
modelling the cortex [10,11,14]. By setting different boundary conditions at
the WM/GM and GM/CSF interfaces, Laplace’s equation can be solved within
the GM volume to generate a laminar ‘potential’ field that smoothly varies in
value depending on its distance between the two cortical surfaces. The gradi-
ent of the Laplacian field can be used to compute cortical thickness [10] and
defines an expansion path which guarantees topology-preserving deformation
between the WM and pial cortical surfaces [11,14]. Building on this idea and
the success of deep convolutional neural networks (CNN) in medical image seg-
mentation tasks, here we design a differentiable numerical solver for Laplace’s
equation and incorporate it within a deep segmentation framework to locally
impose a Laplacian mapping between the predicted WM and pial surfaces. We
train the segmentation network by comparing the predicted tissue segmenta-
tions and corresponding Laplacian field maps with the equivalent ground truth
images, thus penalizing self-intersections in the predicted segmentations. Our
results show that when compared to a baseline network trained without Lapla-
cian constraints, our method is able to better reconstruct the intrinsic, layered
geometry of the cortex. To our knowledge, this is the first time that an iterative
numerical solver has been incorporated within a cortical segmentation network
to directly compute Laplacian fields in an end-to-end setting.

2 Methods

As illustrated in Fig. 1, our proposed framework builds upon any given backbone
segmentation network (Sect. 2.1) by appending a numerical solver for Laplace’s
equation to the output of the network. We reformulate the solver to be differ-
entiable with respect to the input image to allow for gradient-based learning,
used within standard CNN training (Sect. 2.2). In addition to the standard tis-
sue segmentation loss, we design a loss function which compares the predicted
Laplacian field to the solution of Laplace’s equation applied to the ground truth
cortical segmentation, which is assumed to have correct topology (Sect. 2.3).

2.1 Backbone Segmentation Network

The proposed Laplacian solver is compatible with any semantic segmentation
network since it only relies on the segmentation map output by the backbone
network. We conducted experiments using two backbone networks for 3D image
segmentation: the state-of-art nnU-Net framework [9] based on the U-net archi-
tecture, and nnFormer [18], a variant framework based on the recently popular
transformer architecture. Both frameworks use image patches, deep supervision,
and a variety of data-augmentation techniques to train the network [9].

2.2 Differentiable Laplacian Solver

To compute the Laplacian field corresponding to the cortical segmentation pre-
dicted based on a given input patch, the iterative solver for Laplace’s equation
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Fig. 1. Schematic illustration of the proposed framework. A differentiable numerical
solver for Laplace’s equation, based on the successive over relaxation (SOR) algorithm,
is incorporated within end-to-end training of a segmentation network.

is appended after the final layer of the backbone network. Laplace’s equation,
Δϕ = 0, is a second-order partial differential equation, where Δ is the Laplacian
operator (∂2

xx+∂2
yy+∂2

zz) and ϕ is a twice-differentiable, real-valued function. To
solve Laplace’s equation within a domain (in our case, the GM volume), specific
conditions need to be set that the Laplacian field ϕ must satisfy at the bound-
aries of the domain. In our case, we set ϕx,y,z = 0 at the GM/WM boundary
and ϕx,y,z = 1 at the GM/pial boundary. Voxels within the GM domain are
initialized with ϕx,y,z = 0.5.

Given these boundary conditions, the Laplacian field can be approximated
using the finite-difference method, which is solved using an iterative numerical
solver. Here, we use the Successive Over Relaxation (SOR) algorithm, a variant
of the Gauss-Seidel method, to solve for the Laplacian field [6]. In the Gauss-
Seidel method, given initial values for all the voxels in an image, at each iteration,
the new value for a particular voxel within the GM volume, ϕ̃xyz, is computed
by taking the weighted sum of the most recently updated values of its six neigh-
boring voxels (Eq. 1). The superscript n refers to the iteration of the algorithm
and the subscripts are the voxel indices.

ϕ̃n
xyz =

1
6
(ϕn

x−1,y,z + ϕn−1
x+1,y,z + ϕn

x,y−1,z + ϕn−1
x,y+1,z + ϕn

x,y,z−1 + ϕn−1
x,y,z+1) (1)

The SOR algorithm accelerates this approach by taking, at each iteration
n, the weighted sum of the current solution and the solution from the previous
iteration (Eq. 2). The over-relaxation parameter, ω accelerates the rate of con-
vergence of the Gauss-Seidel method when 1 < ω < 2 [17]. It has been shown
that the optimum value, ωopt is given by ωopt = 2

1+sin( π
N+1 )

where N is the
minimum dimension of the input grid [17].

ϕn
x,y,z = (1 − ωopt)ϕn−1

x,y,z +
ωopt

6
(ϕn

x−1,y,z + ϕn−1
x+1,y,z

+ϕn
x,y−1,z + ϕn−1

x,y+1,z + ϕn
x,y,z−1 + ϕn−1

x,y,z+1)
(2)
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Instead of updating the value of each voxel in the image serially, computation
of Eq. 2 can be parallelized using the Red-Black SOR approach, wherein the
voxels in an image are divided into ‘red’ and ‘black’ following a checkerboard
pattern [3]. During the update step, the ‘red’ voxels only depend on the values
of the ‘black’ voxels and vice versa. Therefore, at each iteration, the Laplacian
solution is updated in two steps; first, the update equation is applied to all of the
black voxels in parallel and second, the update equation is applied to all of the
red voxels in parallel, using the updated values computed at the black voxels.
After convergence, the resulting Laplacian field contains values within the GM
volume increasing smoothly from 0 at the WM surface to 1 at the pial surface.

To incorporate this numerical solver within a CNN, an important consid-
eration is that the computations used to generate the Laplacian field must be
differentiable with respect to the predicted tissue class probabilities to allow for
back-propagation of the final loss through the network. To this end, we initial-
ized the boundary conditions for the Laplacian solver by taking a weighted sum
of the GM, WM and background probability maps, with weights of 0.5, 0 and
1 respectively (Fig. 1A). Additionally, the SOR update step (Eq. 2) was refor-
mulated as a 1×1 convolutional layer with fixed neighborhood weights specified
in a 3× 3× 3 kernel (Fig. 1B). The voxels in the image were divided into a red
and black grid by generating 3D ‘red’ (mod(x + y + z, 2) = 0), and ‘black’
(mod(x + y + z, 2) = 1) binary checkerboard images which were applied as
image masks to retain values of interest after each convolutional layer (Fig. 1C).
Lastly, the maximum number of iterations for the Laplacian solver was empir-
ically set to 60, as a trade-off between computational time and convergence of
the Laplacian solution. Since the solver numerically computes the solution to
Laplace’s equation, it does not introduce any additional training parameters
within the network.

2.3 Loss Function

To train the model, the backbone networks compare the predicted tissue seg-
mentation, Spred with the ground truth cortical segmentation, Sgt using a com-
bination of Dice and cross-entropy loss, DCE(Sgt, Spred) [9]. We introduce an
additional loss term which compares the Laplacian field computed from the
predicted tissue segmentation, ϕpred, with the solution of Laplace’s equation
applied to the ground truth segmentation, ϕgt. To simplify comparison between
the predicted Laplacian field and the ground truth solution, we convert the
Laplacian field computed by the solver to a multi-label segmentation, Sϕ

pred

using a series of thresholding functions. The advantage of this approach is that
it enables the use of the same combined Dice and cross-entropy loss used by
the backbone network on the outputs of the Laplacian solver, instead of the
mean square error loss, thereby allowing us to equally weight the two loss
terms: L = DCE(Sgt, Spred) + DCE(Sϕ

gt, S
ϕ
pred). To threshold the Laplacian

field and create a multi-label segmentation in a differentiable way, the com-
puted Laplacian field is passed through a product of two sigmoid functions,
(1 + e−β(x−tlower))−1 × (1 + eβ(x−tupper))−1, which together create a ‘band-pass’
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thresholding filter. β controls the steepness of the filter, and tlower and tupper

control the domain of the filter. Each filter creates an image that has values
close to 1 for voxels in the Laplacian field lying within the domain of the fil-
ter, and values close to 0 otherwise. Therefore, by varying the lower and upper
threshold values, a one-hot encoded image can be created, where each channel
corresponds to a different label along the laminar axis of the GM. A multi-label
Laplacian segmentation is then generated by applying the argmax operation to
the computed one-hot encoded image (Fig. 1D).

3 Experiments

3.1 Dataset

MRI Image Acquisition. To train and evaluate the proposed framework, we
used ex vivo images of intact temporal lobe specimens, obtained from 27 brain
donors from either the brain bank operated by the National Disease Research
Interchange, or autopsies performed at the University of Pennsylvania Center
for Neurodegenerative Disease Research (CNDR) and the University of Castilla-
La Mancha (UCLM) Human Neuroanatomy Laboratory (HNL) in Spain. Brain
specimens were obtained in accordance with the University of Pennsylvania
Institutional Review Board guidelines, and the Ethical Committee of UCLM.
Where possible, pre-consent during life and, in all cases, next-of-kin consent
at death was given. Following 4+ weeks of fixation, the tissue specimens were
scanned overnight on a 9.4T 31 cm bore MRI scanner using a T2-weighted,
multi-slice spin echo sequence (TE = 9330ms, TR = 23ms), with a resolution
of 0.2× 0.2× 0.2mm3. Following image acquisition, the images were corrected
for bias field non-uniformity and normalized to a common intensity range of [0,
1000]. In our work, we are specifically interested in segmenting the medial tem-
poral lobe (MTL), a region affected early in Alzheimer’s Disease. Therefore, to
facilitate semi-automated MTL segmentation, each scan was re-oriented so that
the long axis of the MTL aligned with the anterior-poster direction.

Ground Truth Tissue Segmentation. To generate 3D segmentations of the MTL
cortex, we adopted a semi-automatic interpolation technique [15]. The boundary
of the MTL was manually traced approximately every 3mm (i.e. 12–15 slices per
dataset). Given the subset of labeled slices, the interpolation method uses con-
tour and intensity information to compute the intermediate segmentations. This
algorithm was applied iteratively, allowing the interpolated result to be reviewed
and manually edited at each step to refine the segmentation. When editing, we
ensured that in narrow and bridged sulci, the full extent of each sulcus was cor-
rectly labeled as background. Additionally, in a small region surrounding the
MTL, the white matter and background voxels were semi-automatically labeled
using a combination of intensity-based thresholding and morphological opera-
tions. The ground truth segmentations also contain a separate label for the stra-
tum radiatum lacunosum moleculare (SRLM), which is the thin, hypo-intense
layer within the hippocampus. We note that the ground truth segmentations
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only cover the region in the image encompassing the MTL, and not the entirety
of the ex vivo MRI scan.

Ground Truth Laplacian Maps. The proposed framework requires the Lapla-
cian field maps corresponding to the ground truth segmentations to train the
model. To solve Laplace’s equation within the ground truth GM volume, we used
the iterative finite-differences approach, as implemented in [2]. This implemen-
tation employs a 26-neighbour average to compute the updated potential field
and terminates the numerical solver when the Laplacian field change is below a
specified threshold (sum of changes <0.001% of total volume). To initialize the
solver, source and sink boundary conditions were semi-manually labeled as the
WM and pial surfaces of the MTL respectively. We note that the hippocampus
voxels were not included in the GM domain of Laplace’s equation.

3.2 Implementation Details

We used Pytorch 1.9.1 and Nvidia Quadro RTX 500 GPUs to train the mod-
els. We implemented the differentiable Laplacian solver within the standardized
training framework presented in [9] that is employed by both backbone networks.
The framework includes pre-processing, automated hyper-parameter selection
and fixed techniques for data augmentation. In our experiments, we made a
few modifications to the default training parameters. First, since the ground
truth segmentations only cover a portion of the input ex vivo MRI scans, we
set the ignore_label parameter in the loss function to 0 to exclude the unla-
beled background voxels from the training process. Additionally, we increased
the oversample_foreground parameter such that only foreground patches are
sampled during training. Lastly, we used an input patch size of 96 × 96× 96,
to encourage the network to learn more local image features instead of larger
contextual information, like the anatomical boundaries of the MTL. The net-
works were trained with a batch size of 2 (nnFormer) and 4 (nnU-Net), for 250
epochs in a five-fold cross validation setting. We used the results of the first fold
to tune the network parameters. Consistent with the evaluation scheme used
within nnU-Net, we aggregated the results across the remaining four folds for
reporting test accuracy. We tested the performance of the network when using
either 5 or 10 class labels (i.e. laminar layers) for generating the Laplacian seg-
mentation. We found that increasing the number of class labels and training the
network using Laplacian segmentations with a denser number of laminar layers
improved the network’s ability to detect obscured sulci. To convert the Lapla-
cian fields to segmentations, we used β = 10 (softmax scaling parameter) and
selected evenly spaced thresholds spanning the [0, 1] range of the Laplacian field.
More specifically, the following lower (tlower) and upper (tupper) threshold values
were used: [(−0.3, −0.2), (0, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), (0.5,
0.6), (0.6, 0.7), (0.7, 0.8), (0.8, 0.95), (0.95, 1.05)]. Additionally, we tested the
effect of increasing the weight given to the Laplacian segmentation loss relative
to the tissue segmentation loss and found that it had minimal effect on cortical
segmentation accuracy.
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3.3 Evaluation

We compared the performance of our approach with the performance of the
corresponding backbone segmentation networks, trained only with the tissue
segmentation loss. We measured segmentation accuracy by computing the DSC
between the predicted and ground truth tissue segmentations, and Laplacian field
segmentations within the MTL region of interest. We also report the symmetric
Hausdorff Distance (HD) 95th percentile between the predicted and ground truth
segmentation of the MTL cortex. Since the numerical solvers used to generate
the ground truth Laplacian fields and embedded in the network leverage different
finite-difference approximation methods, during evaluation, we re-computed the
Laplacian field for both the ground truth and predicted cortical segmentations
using 120 iterations of the SOR solver used by the network, and computed the
corresponding Laplacian segmentation with 5 laminar layers.

In a secondary analysis we evaluated the effect of introducing the Laplacian
constraint on downstream cortical thickness measures. We applied the nnU-Net
models to a dataset of 36 temporal lobe specimens obtained from individuals
not included in the training dataset. For each specimen, we quantified MTL
thickness at 6 manually identified landmarks corresponding to the anterior and
posterior locations of MTL subregions Brodmann Area (BA) 35, BA36 and the
parahippocampal cortex (PHC). We chose these subregions since they typically
lie along the banks of the collateral sulcus (CS), and are therefore mostly likely
to be affected by topological errors in the segmentation. For each location, we
extracted the GM segmentation surrounding the landmark and measured cortical
thickness using the pipeline described in [16]. In brief, given the GM segmenta-
tion surrounding a landmark, a maximally inscribed sphere is computed using
Voronoi skelentonization [13], and the diameter of the sphere gives the thick-
ness at that landmark. We compared thickness measurements obtained when
using automatic GM segmentations generated by the baseline nnU-Net and the
proposed model (nnU-Net+Laplacian), and reference thickness measurements
computed using semi-automatic segmentations of the GM in terms of Pear-
son’s correlation and the average fixed-raters Intra-Class Correlation Coefficient
(ICC).

4 Results and Discussion

4.1 Segmentation Accuracy

Table 1 presents the quantitative results, averaged across four cross-validation
folds, evaluating the proposed framework using the corresponding backbone net-
works as baseline. Since sulci can be very thin structures, any improvements to
mislabeled sulci would contribute minimally to the tissue segmentation DSC.
Therefore, it is not surprising that we do not see statistically significant differ-
ences in the GM DSC measures. However, when looking at the Laplacian seg-
mentation DSC, the results show that the Laplacian solver significantly improves
upon the baseline performance of both nnU-Net and nnFormer in terms of better
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Fig. 2. Qualitative comparison of the cortical segmentations generated by the proposed
method and nnU-Net. Cross-sectional views are provided through the anterior and
posterior MTL, using four different specimens. The white dashed boxes are used to
indicate cortical folds demonstrating improved geometric accuracy. GM: Gray Matter;
WM: White Matter; SRLM: Stratum Radiatum Lacunosum Moleculare (Color figure
online)

preserving the layered structure of the cortex. This is visualized in Fig. 2 which
provides a qualitative comparison of the predicted segmentations generated by
each method. Labels 1–3 correspond to layers closest to the pial surface, and
are therefore the class labels mostly likely to reflect errors such as bridged or
unresolved sulci.

We observe that in the anterior portion of the MTL, the baseline models
are often able to distinguish the sulcus, even without the Laplacian constraint
(Fig. 2, row 2). This is likely because in the ground truth segmentation protocol,
the labeled GM extends to include both banks of the CS in the anterior MTL,
but only the medial bank of the CS in the posterior MTL. As a result, in the
ground truth segmentation, the sulcus is clearly labeled in the anterior MTL
and therefore included in the tissue segmentation loss. Conversely, in the poste-
rior MTL, the ground truth tissue segmentation does not explicitly enforce the
presence of the sulcus. However, in this region, the Laplacian segmentation term
implicitly includes information about the location of the sulcus and therefore
drives the network to learn the correct pial boundary of the cortex. To further
investigate the contribution of the proposed loss function in the anterior and
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Table 1. Quantitative metrics comparing cortical segmentation accuracy of the pro-
posed network and the baseline networks. We compute the Laplacian Segmentation
accuracy, which reflects the networks ability to capture the layered nature of the cortex,
across the whole MTL, and also separately for the anterior and posterior MTL. Metrics:
Dice Score Coefficient (DSC) per label; Hausdorff Distance (HD). Standard deviations
are reported in parentheses. (Statistical significance was assessed using paired t-tests;
*** < 0.001, **: p < 0.01, *: p < 0.05)

DSC Laplacian Segmentation (%) DSC Tissue Segmentation (%)
Method

Pial Surface → WM Surface GM WM BG SRLM
HD 95 (mm)

nnU-Net
78.3
(3.3)

78.6
(3.1)

77.4
(3.1)

77.7
(5.0)

58.7
(12.3)

94.5
(1.5)

96.0
(1.3)

95.3
(6.1)

85.8
(3.8)

0.341
(0.134)

nnU-Net + Laplacian
80.7****

(2.6)
81.8****

(2.4)
80.4****

(3.5)
78.9*
(5.8)

58.2
(13.4)

94.5
(1.7)

95.9
(1.3)

95.4
(5.9)

85.6
(3.8)

0.344
(0.205)

nnFormer
75.5
(4.1)

75.5
(3.7)

74.6
(3.4)

75.9
(4.7)

57.0*
(10.6)

93.8**
(1.9)

95.1 *
(2.1)

95.1
(6.1)

83.8**
(4.2)

0.559
(0.885)

Whole
MTL

nnFormer + Laplacian
78.1***
(3.4)

79.8****
(3.0)

78.4****
(3.6)

77.3***
(5.2)

55.7
(11.6)

93.5
(2.2)

94.9
(2.3)

95.1
(6.0)

83.2
(4.5)

0.589
(0.980)

nnU-Net
80.0
(3.7)

80.6
(3.4)

79.9
(3.3)

79.6
(5.0)

59.3
(12.8)

94.5
(1.6)

95.0**
(1.6)

95.7
(5.1)

85.9
(4.4)

0.208
(0.025)

nnU-Net + Laplacian
81.6**
(3.0)

82.8***
(2.7)

81.8***
(3.7)

80.3
(5.9)

58.1
(13.7)

94.4
(1.9)

94.7
(1.7)

95.9
(5.0)

85.7
(4.5)

0.217
(0.049)

nnFormer
76.8
(4.5)

76.9
(4.3)

76.5
(4.4)

78.0
(5.1)

58.4**
(11.4)

93.8*
(2.5)

93.9
(3.6)

95.7
(5.2)

83.7**
(5.0)

0.208
(0.0205)

Anterior
MTL

nnFormer + Laplacian
79.3***
(3.4)

80.9****
(3.0)

80.0****
(3.8)

79.1**
(5.2)

56.8
(12.1)

93.6
(2.7)

93.7
(3.9)

95.8
(5.1)

83.1
(5.4)

0.212
(0.030)

nnU-Net
74.8
(6.2)

74.7
(5.8)

73.2
(5.4)

74.6
(6.1)

57.2
(12.9)

94.7
(1.6)

96.9
(1.4)

94.3*
(9.0)

85.3
(3.4)

0.228
(0.096)

nnU-Net + Laplacian
78.9****

(4.7)
79.8****

(3.9)
78.1****

(4.1)
76.8***
(6.5)

58.0
(13.5)

94.6
(1.7)

97.0
(1.1)

94.1
(9.0)

85.2
(3.4)

0.223
(0.062)

nnFormer
72.7
(8.1)

72.8
(7.0)

71.1
(6.6)

72.7
(6.9)

55.0
(11.9)

93.9***
(2.5)

96.2*
(2.0)

93.8*
(8.9)

84.3*
(4.0)

0.348
(0.430)

Posterior
MTL

nnFormer + Laplacian
75.4***
(8.3)

77.5****
(6.9)

75.4****
(6.6)

74.3**
(7.9)

54.0
(13.1)

93.2
(3.2)

96.0
(2.2)

93.6
(9.0)

83.6
(4.0)

0.436
(0.692)

posterior MTL, we computed the DSC metrics of the Laplacian segmentations
separately for the anterior and posterior MTL (Table 1). We observe that even
when considering the anterior MTL on its own, the proposed framework improves
Laplacian segmentation accuracy compared to the baseline networks, confirming
that the addition of the Laplacian term is in fact contributing towards the net-
work better learning the layered organization of the cortex. This is further seen
in the nnU-Net+Laplacian result in Fig. 2, row 2, where the proposed network
is able to detect a buried sulcus in a cortical fold not included within the ground
truth region of interest. We note that Laplacian segmentation label 5, which
corresponds to the innermost cortical surface at the GM/WM boundary, forms
a very thin layer and therefore has greater variation in DSC compared to the
other labels.

4.2 Downstream Thickness Measurements

Figure 3 shows the results of the morphometry analysis correlating automated
and manual measurements of cortical thickness in BA35, BA36 and the PHC,
when using cortical segmentations generated with and without the Laplacian-
based loss term. Since we found that nnU-Net achieves better segmentation
performance than nnFormer, we only conducted experiments using nnU-Net in
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Fig. 3. A) Example scan showing the 6 landmarks where cortical thickness is measured.
For each subregion, the thickness measurement is averaged across two landmark loca-
tions. B) Scatter plots showing the correlation between automated segmentation-based
cortical thickness measurements and reference measurements based on semi-automatic
segmentations for three MTL subregions, with (green) and without (purple) the Lapla-
cian constraint. C) Segmentations produced by nnUnet and nnU-Net+Laplacian for
BA36 (red) and PHC (blue) landmarks where thickness measures derived from the
two networks differed the most. BA: Brodmann Area; PHC: parahippocampal cortex
(Color figure online)

the secondary analysis. Compared to the baseline nnU-Net, we observe that the
thickness measurements of BA36 and the PHC computed using the proposed
network are more strongly correlated with manual measurements, in terms of
both correlation coefficient and ICC. Both models achieve similar correlations
in BA35. BA36 is located in the anterior MTL, whereas PHC corresponds to
the posterior MTL. The strengthened correlations in both these regions further
demonstrate that the proposed method is able to improve the accuracy of the
predicted segmentations across the whole length of MTL.

5 Conclusions

We present a novel deep learning-based solution for cortical segmentation,
applied to ex vivo MRI, that is able to learn the layered geometry of the cortex
by locally imposing Laplacian mappings between the predicted WM and pial cor-
tical surfaces. A limitation of this approach is the long run-time of the iterative
solver during training (∼9x slower/epoch relative to the backbone). However, at
inference time, the input image is only passed through the backbone segmenta-
tion network which typically takes 3–5 min per scan. Another limitation is the
need for the sulci to be well delineated in the training data. In the future, we
will explore ways to relax this requirement, perhaps using additional geometric
priors. While in this work we demonstrate the utility of our approach in the
context of MTL cortical segmentation, this approach can be extended to other
high-resolution neuroimaging datasets such as ex vivo whole hemisphere scans
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or other in vivo image segmentation tasks which involve similar sheet-like struc-
tures. Future work will focus on applying this method to in vivo brain MRI,
thus allowing for evaluation of our approach against existing cortical surface
reconstruction methods.
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