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Abstract. Contrastive learning has shown great promise over annota-
tion scarcity problems in the context of medical image segmentation.
Existing approaches typically assume a balanced class distribution for
both labeled and unlabeled medical images. However, medical image data
in reality is commonly imbalanced (i.e., multi-class label imbalance),
which naturally yields blurry contours and usually incorrectly labels rare
objects. Moreover, it remains unclear whether all negative samples are
equally negative. In this work, we present ACTION, an Anatomical-
aware ConTrastive dIstillatiON framework, for semi-supervised med-
ical image segmentation. Specifically, we first develop an iterative con-
trastive distillation algorithm by softly labeling the negatives rather than
binary supervision between positive and negative pairs. We also capture
more semantically similar features from the randomly chosen negative
set compared to the positives to enforce the diversity of the sampled
data. Second, we raise a more important question: Can we really handle
imbalanced samples to yield better performance? Hence, the key inno-
vation in ACTION is to learn global semantic relationship across the
entire dataset and local anatomical features among the neighbouring
pixels with minimal additional memory footprint. During the training,
we introduce anatomical contrast by actively sampling a sparse set of
hard negative pixels, which can generate smoother segmentation bound-
aries and more accurate predictions. Extensive experiments across two
benchmark datasets and different unlabeled settings show that ACTION
significantly outperforms the current state-of-the-art semi-supervised
methods.

Keywords: Contrastive Learning · Knowledge Distillation · Active
Sampling · Semi-Supervised Learning · Medical Image Segmentation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Frangi et al. (Eds.): IPMI 2023, LNCS 13939, pp. 641–653, 2023.
https://doi.org/10.1007/978-3-031-34048-2_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34048-2_49&domain=pdf
https://doi.org/10.1007/978-3-031-34048-2_49


642 C. You et al.

Fig. 1. Examples of two benchmarks (i.e., ACDC and LiTS) showing the large varia-
tions of class distribution.

1 Introduction

Manually labeling sufficient medical data with pixel-level accuracy is time-
consuming, expensive, and often requires domain-specific knowledge. To bypass
the cost for labeled data, semi-supervised learning (SSL) is one of the promising,
conventional ways to train models with weaker forms of supervision, given a large
amount of unlabeled data. Existing SSL methods include adversarial training
[12,28,32,33,37], deep co-training [21,38], mean teacher schemes [23,36], multi-
task learning [4,11,16,31], and contrastive learning [3,9,29,30,34,35].

Among the aforementioned methods, contrastive learning [5,8] has recently
prevailed for DNNs to rich visual representations from unlabeled data. The
predominant promise of label-free learning is to capture the similar semantic
relationship and anatomical structure between neighboring pixels from massive
unannotated data. However, going to realistic clinical scenarios will have the
following shortcomings. First, different medical images share similar anatomi-
cal structures, but prior methods follow the standard contrastive learning [5,8]
in comparing positive and negative pairs by binary supervision. That naturally
leads to the issues of false negatives in representation learning [10,24], which
would hurt segmentation performance. Second, the underlying class distribu-
tion of medical image data is highly imbalanced, as illustrated in Fig. 1. It is
well known that such imbalanced distribution will severely hurt the segmenta-
tion quality [14], which may result in blurry contours and mis-classify minority
classes due to the occurrence frequencies [39]. That naturally questions whether
contrastive learning can still work well in those imbalance scenarios.

In this work, we present a principled framework called Anatomical-aware
ConTrastive dIstillatiON (ACTION), for multi-class medical image segmen-
tation. In contrast to prior work [3,9,35] which directly distinguish two image
samples of the similar anatomical features that are in the negative pairs, the
key innovation in ACTION is to actively learn more balanced representations
by dynamically selecting samples that are semantically similar to the queries,
and contrasting the model’s anatomical-level features with the target model’s
in imbalanced and unlabeled clinical scenarios. Specifically, we introduce two
strategies to improve overall segmentation quality: (1) we believe that all neg-
ative samples are not equally negative. Thus, we propose relaxed contrastive
learning by using soft labeling on the negatives. In other words, we randomly
sample a set of image samples as anchor points to ensure diversity in the set of
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Fig. 2. Overview of the ACTION framework including three stages: (1) global con-
trastive distillation pre-training used in existing works, (2) our proposed local con-
trastive distillation pre-training, and (3) our proposed anatomical contrast fine-tuning.

sampled examples. Then the teacher model predicts the underlying probability
distribution over neighboring samples by computing the anatomical similarities
between the query and the anchor points in the memory bank, and the student
model tries to learn from the teacher model. Such a strategy is much more reg-
ularized by mincing the same neighborhood anatomical similarity to improve
the quality of the anatomical features; (2) to create strong contrastive views on
anatomical features, we introduce AnCo, another new contrastive loss designed
at the anatomical level, by sampling a set of pixel-level representation as queries,
and pulling them closer to the mean feature of all representations in a class (pos-
itive keys), and pulling other representations apart from other class (negative
keys). In addition to reducing the high memory footprint and computation com-
plexity, we use active sampling to dynamically select a sparse set of queries and
keys during the training. We apply ACTION on two benchmark datasets under
different unlabeled settings. Our experiments show that ACTION can dramati-
cally outperform the state-of-the-art SSL methods. We believe that our proposed
ACTION can be a strong baseline for the related medical image analysis tasks
in the future.

2 Method

Framework Overview. The workflow of our proposed ACTION is illustrated in
Fig. 2. By default, ACTION is built on the BYOL pipeline [7] which is originally
designed for image classification tasks, and for a fair comparison, we also follow
the setting in [3] such as using 2D U-Net [22] as the backbone and non-linear
projection heads H. The main differences between our proposed ACTION
and [3,9] are as follows: (1) the addition of a predictor g(·) to the student net-
work to avoid collapsed solutions; (2) the utilization of a slow-moving average
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of the student network as the teacher network for more semantically compact
representations; (3) the use of the output probability rather than logits effec-
tively and semantically constrains the distance between the anatomical features
from the imbalanced data (i.e., multi-class label imbalance cases); (4) we pro-
pose to contrast the query image features with other random image features at
the global and local level, rather than only two augmented versions of the same
image features; and (5) we design a novel unsupervised anatomical contrastive
loss to provide additional supervision on hard pixels.

Let (X,Y ) be a training dataset including N labeled image slices and M
unlabeled image slices, with training images X = {xi}N+M

i=1 and the C-class
segmentation labels Y = {yi}Ni=1. Our backbone F (·) (2D U-Net) consists of an
encoder network E(·) and a decoder network D(·). The training procedure of
ACTION includes three stages: (i) global contrastive distillation pre-training,
(ii) local contrastive distillation pre-training, and (iii) anatomical contrast fine-
tuning. In the first two stages, we use global contrastive distillation to train E on
unlabeled data to learn global-level features, and use local contrastive distillation
to train E and D on labeled and unlabeled data to learn local-level features.

Global Contrastive Distillation Pre-training. We follow a similar setting
in [24]. Given an input query image q ∈ {xi}N+M

i=N+1 with the spatial size h × w,
we first apply two different augmentations to obtain qt and qs, and randomly
sample a set of augmented images {xj}nj=1 from a set of unlabeled image slices
{xi}N+M

i=N+1. We believe that such relaxation enables the model to capture more
rich semantic relationships and anatomical features from its neighboring images
instead of only learning from the different version of the same query image.
We then feed {xj}nj=1 to the teacher encoder Et, and followed by the nonlinear
projection head Hg

t to generate their projection embeddings {Hg
t (Et(xj))}nj=1 as

anchor points, and also feed qt and qs to the teacher and student (i.e., E and H),
creating zt = Hg

t (Et(qt)) and zs = Hg
s (Es(qs)). Here we utilize the probabilities

after SoftMax instead of the feature embedding:

pt(j) = −log
exp

(
sim

(
zt, aj

)
/τt

)

∑n
i=1 exp

(
sim

(
zt, ai

)
/τt

) , (1)

where τt is a temperature hyperparameter of the teacher, and sim(·, ·) is the
cosine similarity. Then inspired by [7], in order to avoid collapsed solutions in
an unsupervised scenario, we use a shallow multi-layer perceptron (MLP) pre-
dictor Hg

p (·) to obtain the prediction z∗
s = Hg

p (zs). Of note, {ai}ni=1, zt, zs, z∗
s

can be generated embedding from a set of randomly chosen augmented images,
teacher’s projection embeddings, student’s projection embeddings, and student’s
prediction embeddings in either Stage-i or ii. Therefore, we can calculate the sim-
ilarity distance between the student’s prediction and the anchor embeddings by
converting them to probability distribution.

ps(j) = −log
exp

(
sim

(
z∗
s , aj

)
/τs

)

∑n
i=1 exp

(
sim

(
z∗
s , ai

)
/τs

) , (2)
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where τs refers to a temperature hyperparameter of the student. The unsuper-
vised contrastive loss is computed as follows:

Lcontrast = KL(pt||ps). (3)

Local Contrastive Distillation Pre-training. After training the teacher’s
and student’s encoder to learn global-level image features, we attach the decoders
and tune the entire models to perform pixel-level contrastive learning in a semi-
supervised manner. The distinction in the training strategy between ours
and [9] lies in Stage-ii and iii: [9] only use labeled data in training, while we use
both labeled and unlabeled data in training. Considering the training procedure
of Stage-ii is similar to Stage-iii, we briefly describe it here as illustrated in
Fig. 2. For the labeled data, we train our model by minimizing the supervised
loss (the linear combination of cross-entropy loss and dice loss) in Stage-ii and
Stage-iii. As for the unlabeled input images q and {xj}nj=1, we first apply two
different augmentations to q, creating two different versions [qlt, q

l
s], and then feed

them to Ft and Fs, and their output features [ft, fs] are fed into H l
t and H l

t .
The student’s projection embedding is subsequently fed into H l

p to obtain the
student’s prediction embedding to enforce the similarity between the teacher
and the student under the same loss as Eq. 3. We also include the randomly
selected images to enforce such similarity because intuitively, it may be beneficial
to ensure diversity in the set of sampled examples. It is important to note
that ACTION will re-use the well-trained weight of the models Ft and Fs as
initialization for Stage-iii.

Anatomical Contrast Fine-Tuning. Broadly speaking, in medical images,
the same tissue types may share similar anatomical information in different
patients, but different tissue types often show different class, appearance, and
spatial distributions, which can be described as a complicated form of imbal-
ance and uncertainty in real clinical data, as shown in Fig. 1. This motivates
us to efficiently incorporate more useful features so the representations can be
more balanced and better discriminated in such multi-class label imbalanced sce-
narios. Inspired by [15], we propose AnCo, a new unsupervised contrastive loss
designed at the anatomical level. Specifically, we additionally attach a representa-
tion decoder head Hr to the student network, parallel to the segmentation head,
to decode the multi-layer hidden features by first using multiple up-sampling lay-
ers for outputting dense features with the same spatial resolution as the query
image and then mapping them into high m-dimensional query, positive key, and
negative key embeddings: rq, r

+
k , r−

k . The AnCo loss is then defined as:

Lanco =
∑

c∈C

∑

rq∼Rc
q

− log
exp(rq · rc,+k /τan)

exp(rq · rc,+k /τan) +
∑

r−k ∼Rc
k
exp(rq · r−

k /τan)
, (4)

where C is a set of all available classes in a mini-batch, and τan denotes a temper-
ature hyperparameter for AnCo loss. Rc

q and rc,+k are a set of query embeddings
in class c and the positive key embedding, which is the mean representation of



646 C. You et al.

class c, respectively. Rc
k is a set of negative key embeddings which are not in class

c. Suppose P is a set including all pixel coordinates with the same resolution
with xi, these queries and keys are then defined as:

Rc
q =

⋃

[m,n]∈P
1(y[m,n] =c) r[m,n], Rc

k =
⋃

[m,n]∈P
1(y[m,n] �=c) r[m,n], rc,+k =

1

|Rc
q|

∑

rq∈Rc
q

rq.

(5)
In addition, we note that contrastive learning usually benefits from a large col-
lection of positive and negative pairs, but it is usually bounded by the size of
GPU memory. Therefore, we introduce two novel active hard sampling methods.
To address the uncertainty on the most challenging pixels among all available
classes (i.e., close anatomical or semantic relationship), we non-uniformly sam-
ple negative keys based on relative similarity distance between the query class
and each negative key class. For each mini-batch, we build a graph G to measure
the pair-wise class relationship to dynamically update G.

G[p, q] =
(
rp,+k · rq,+k

)
, ∀p, q ∈ C, and p �= q, (6)

where G ∈ R
|C|×|C|. Note that this process may be hard to allocate more samples.

Thus, to learn a more accurate decision boundary, we first apply SoftMax func-
tion by normalizing the pair-wise relationships among all negative classes n from
each query class c, yielding a distribution: exp(G[c, v])/

∑
n∈C,n �=c exp(G[c, n]).

Then we adaptively sample negative keys from each class v to help learn the
corresponding query class c. To alleviate the imbalance issue, we sample hard
queries based on a defined threshold, to better discriminate the rare classes. The
easy and hard queries are computed as follows:

Rc, easy
q =

⋃

rq∈Rc
q

1(ŷq > θs)rq, Rc, hard
q =

⋃

rq∈Rc
q

1(ŷq ≤ θs)rq, (7)

where ŷq is the predicted confidence of label c corresponding to rq after SoftMax
function, and θs is the user-defined confidence threshold.

3 Experiments

Experimental Setup. We experiment on two benchmark datasets: ACDC 2017
dataset [1] and MICCAI 2017 Liver Tumor Segmentation Challenge (LiTS) [2].

The ACDC dataset includes 200 cardiac cine MRI scans from 100 patients
with annotations including three segmentation classes (i.e., left ventricle (LV),
myocardium (Myo), and right ventricle (RV)). Following [16,27], we use 140, 20,
and 60 scans for training, validation, and testing, respectively.

The LiTS dataset includes 131 contrast-enhanced 3D abdominal CT volumes
with annotations of two segmentation classes (i.e., liver and tumor). Following
[13], we use the first 100 volumes for training, and the rest 31 for testing. For pre-
processing, we follow the setting in [3] to normalize the intensity of each 3D scans,
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Table 1. Comparison of segmentation performance (DSC[%]/ASD[voxel]) on ACDC
under two unlabeled settings (3 or 7 labeled). The best results are indicated in bold.

3 Labeled 7 Labeled

Method Average RV Myo LV Average RV Myo LV

UNet-F [22] 91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44 91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44

UNet-L 51.7/13.1 36.9/30.1 54.9/4.27 63.4/5.11 79.5/2.73 65.9/0.892 82.9/2.70 89.6/4.60

EM [26] 59.8/5.64 44.2/11.1 63.2/3.23 71.9/2.57 75.7/2.73 68.0/0.892 76.5/2.70 82.7/4.60

CCT [18] 59.1/10.1 44.6/19.8 63.2/6.04 69.4/4.32 75.9/3.60 67.2/2.90 77.5/3.32 82.9/0.734

DAN [37] 56.4/15.1 47.1/21.7 58.1/11.6 63.9/11.9 76.5/3.01 75.7/2.61 73.3/3.11 80.5/3.31

URPC [17] 58.9/8.14 50.1/12.6 60.8/4.10 65.8/7.71 73.2/2.68 67.0/0.742 72.2/0.505 80.4/6.79

DCT [21] 58.5/10.8 41.2/21.4 63.9/5.01 70.5/6.05 78.1/2.64 70.7/1.75 77.7/2.90 85.8/3.26

ICT [25] 59.0/6.59 48.8/11.4 61.4/4.59 66.6/3.82 80.6/1.64 75.1/0.898 80.2/1.53 86.6/2.48

MT [23] 58.3/11.2 39.0/21.5 58.7/7.47 77.3/4.72 80.1/2.33 75.2/1.22 79.2/2.32 86.0/3.45

UAMT [36] 61.0/7.03 47.8/15.9 65.0/2.38 70.1/2.83 77.6/3.15 70.5/0.81 78.4/4.36 83.9/4.29

CPS [6] 61.0/2.92 43.8/2.95 64.5/2.84 74.8/2.95 78.8/3.41 74.0/1.95 78.1/3.11 84.5/5.18

GCL [3] 70.6/2.24 56.5/1.99 70.7/1.67 84.8/3.05 87.0/0.751 86.9/0.584 81.8/0.821 92.5/0.849

SCS [9] 73.6/5.37 63.5/6.23 76.6/2.42 80.7/7.45 84.2/2.01 81.4/0.850 83.0/2.03 88.2/3.12

• ACTION (ours) 87.5/1.12 85.4/0.915 85.8/0.784 91.2/1.66 89.7/0.736 89.8/0.589 86.7/0.813 92.7/0.804

Fig. 3. Visualization of segmentation results on ACDC with 3 labeled data. As is
shown, ACTION consistently produces sharper object boundaries and more accurate
predictions across all methods. Different structure categories are shown in different
colors. (Color figure online)

resample all 2D slices and the corresponding segmentation maps to a fixed spatial
resolution (i.e., 256 × 256 pixels). To quantitatively assess the performance of
our proposed method, we report two popular metrics: Dice coefficient (DSC) and
Average Surface Distance (ASD) for 3D segmentation results.

Implementation Details. All our models are implemented in PyTorch [19].
We train all methods with SGD optimizer (learning rate = 0.01, momentum
= 0.9, weight decay = 0.0001, batch size = 6). All models are trained with
two NVIDIA GeForce RTX 3090 GPUs. Stage-i and ii are trained with 100
epochs, and Stage-iii is with 200 epochs. We use the temperature of teacher and
student as τt = 0.01 and τs = 0.1. The teacher is updated using the following
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Table 2. Comparison of segmentation performance (DSC [%]/ASD [voxel]) on LiTS
under two unlabeled settings (5% or 10% labeled ratio). The best results are in bold.

5% Labeled 10% Labeled

Method Average Liver Tumor Average Liver Tumor

UNet-F [22] 68.2/16.9 90.6/8.14 45.8/25.6 68.2/16.9 90.6/8.14 45.8/25.6

UNet-L 60.4/30.4 87.5/9.84 33.3/50.9 61.6/28.3 85.4/18.6 37.9/37.9

EM [26] 61.2/33.3 87.7/9.47 34.7/57.1 62.9/38.5 87.4/21.3 38.3/55.7

CCT [18] 60.6/48.7 85.5/27.9 35.6/69.4 63.8/31.2 90.3/7.25 37.2/55.1

DAN [37] 62.3/25.8 88.6/9.64 36.1/42.1 63.2/30.7 87.3/15.4 39.1/46.1

URPC [17] 62.4/37.8 86.7/21.6 38.0/54.0 63.0/43.1 88.1/24.3 38.9/61.9

DCT [21] 60.8/34.4 89.2/12.6 32.5/56.2 61.9/31.7 86.2/19.3 37.5/44.1

ICT [25] 60.1/39.1 86.8/12.6 33.3/65.6 62.5/32.4 88.1/16.7 36.9/48.2

MT [23] 61.9/40.0 86.7/21.6 37.2/58.4 63.3/26.2 89.7/11.6 36.9/40.8

UAMT [36] 61.0/47.0 86.9/22.1 35.2/71.8 62.3/26.0 87.4/7.55 37.3/44.4

CPS [6] 62.1/36.0 87.3/17.9 36.8/54.0 64.0/23.6 90.2/10.6 37.8/36.7

GCL [3] 63.3/20.1 90.7/9.46 35.9/30.8 65.0/37.2 91.3/10.0 38.7/64.3

SCS [9] 61.5/28.8 92.6/7.21 30.4/50.3 64.6/33.9 91.6/5.72 37.6/62.0

• ACTION (ours) 66.8/17.7 93.0/6.04 40.5/29.4 67.7/20.4 92.8/5.08 42.6/35.8

Fig. 4. Visualization of segmentation results on LiTS with 5% labeled ratio. As is
shown, ACTION achieves consistently sharp and accurate object boundaries compared
to other SSL methods. Different structure categories are shown in different colors.
(Color figure online)

rule θt ← mθt + (1 − m)θs, where θ refers to the model’s parameters and the
momentum hyperparameter m is 0.99. The memory bank size is 36. We follow
the standard augmentation strategies in [7]. In Stage-i, we train Es, Et, Hg

t ,
Hg

s , and Hg
p on the unlabeled data with global-level Lcontrast in Eq. 3. We follow

[9] to use a MLP as heads, and the setting of the predictors is similar to [7],
which has a feature dimension of 512. In Stage-ii, we train Fs, Ft, H l

t , H l
s, and

H l
p on the labeled and unlabeled data. We train with the supervised loss [36]

on labeled data, and local-level Lcontrast in Eq. 3 on unlabeled data. Given the
logits output ŷ ∈ R

C×h×w, we use the 1 × 1 convolutional layer to project all
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pixels into the latent space with the feature dimension of 512, and the output
feature dimension of G is also 512. As for Stage-iii, we train Fs, Ft, Ht, Hs,
and Hr on the labeled and unlabeled data. We use the supervised segmentation
loss on labeled data, unsupervised cross-entropy loss (on pseudo-labels generated
by a confidence threshold θs), and Lanco in Eq. 4 on unlabeled data. We then
adaptively sample 256 query samples and 512 key samples for each mini-batch,
and temperature for the student and confidence thresholds are set to τs = 0.5
and θs = 0.97, respectively. Of note, the projection heads, the predictor, and
the representation decoder head are only utilized during the training, and will
be removed during the inference.

Main Results. We compare our proposed method to previous state-of-the-
art SSL methods using 2D Unet [22] as backbone, including UNet trained
with full/limited supervisions (UNet-F/UNet-L), EM [26], CCT [18], DAN [37],
URPC [17], DCT [21], ICT [25], MT [23], UAMT [36], CPS [6], SCS [9], and
GCL [3]. Table 1 shows the evaluation results on ACDC dataset under two unla-
beled settings (3 or 7 labeled cases). ACTION can substantially improve results
on two unlabeled settings, greatly outperforming the previous state-of-the-art
SSL methods. Specifically, our ACTION, trained on 3 labeled cases, dramati-
cally improves the previous best averaged Dice score from 73.6% to 87.5% by
a large margin, and even matches previous SSL methods using 7 labeled cases.
When using 7 labeled cases, ACTION further pushes the state-of-the-art results
to 89.7% in Dice. We observe that the gains are more pronounced on the two
categories (i.e., RV and Myo), and our ACTION achieves 89.8% and 86.7% in
terms of Dice, performing competitive or even better than the supervised base-
line (89.2% and 86.7%). As shown in Fig. 3, we can see the clear advantage of
ACTION, where the boundaries of different regions are clearly sharper and more
accurate such as RV and Myo regions. Table 2 also shows the evaluation results
on LiTS dataset under two unlabeled settings (5% or 10% labeled cases). On
both two labeled settings, ACTION significantly outperforms all the state-of-
the-art methods by a significant margin. As shown in Fig. 4, ACTION achieves
consistently sharp and accurate object boundaries compared to other SSL meth-
ods.

Ablation on Different Components. We investigate the impact of different
components in ACTION. All reported results in this section are based on the
ACDC dataset under the 3 labeled setting. Table 3 shows the ablation result
of our model. Upon our choice of architecture, we first consider a näıve base-
line (BYOL) without any random sampled images (RSI), stage-ii, and stage-iii,
denoted by (1) Vanilla. Then, we consider a wide range of different settings
for improved representation learning: (2) incorporating other random sampled
images; (3) no stage-ii; (4) no other random sampled images and stage-ii; (5)
no stage-iii; since stage-iii includes two losses, (6) no Lanco, (7) no Lunsup, and
(8) our proposed ACTION. As shown in Table 3, it is notable that ACTION
performs generally better than other evaluated baselines. We find that only
applying any single component of ACTION often comes at the cost of per-
formance degradation. The intuitions behind are as follows: (1) incorporating
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Table 3. Ablation on (a) model component: w/o Random Sampled Images (RSI);
w/o Local Contrastive Distillation (Stage-ii); w/o Anatomical Contrast Fine-tuning
(Stage-iii); (b) loss formulation: w/o Lanco; w/o Lunsup;, compared to the Vanilla and
our proposed ACTION. Note that Lunsup denotes cross-entropy loss (on pseudo-labels
generated by a confidence threshold θs) together with Lanco used in Stage-iii.

Method Metrics

Dice [%] ASD [voxel]

Vanilla 60.6 6.64

ACTION (ours) 87.5 1.12

(a) w/o RSI 82.7 6.66

w/o Stage-ii 86.4 1.69

w/o RSI + Stage-ii 82.6 1.77

w/o Stage-iii 76.7 2.91

(b) w/o Lanco 86.5 1.30

w/o Lunsup 83.7 2.51

Table 4. Ablation on augmentation strategies.

Method
Student Teacher Metrics

Aug. Aug. Dice[%] ASD[voxel]

ACTION Weak Weak 84.6 1.78

ACTION Strong Weak 87.5 1.12

ACTION Weak Strong 85.4 2.12

ACTION Strong Strong 86.5 1.89

other random sampled images will enforce the diversity of the sampled data,
preventing redundant anatomically and semantically similar samples; (2) using
stage-ii leads to worse performance without considering local context; (3) using
stage-iii enables a robust segmentation model to learn better representations
with few human annotations. Using the above components confers a significant
advantage at representation learning, and further illustrates the benefit of each
component.

Ablation on Different Augmentations. We investigate the impact of using
weak or strong augmentations for ACTION on the ACDC dataset under 3 labeled
setting. We summarize the effects of different data augmentation strategies in
Table 4. We apply weak augmentation to the teacher’s input, including rota-
tion, cropping, flipping, and strong augmentation to the student’s input, includ-
ing rotation, cropping, flipping, random contrast, and brightness changes [20].
Empirically, we find that when using weak and strong augmentation strategies
on the teacher and student network, the network performance is optimal.
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4 Conclusion and Limitations

In this work, we have presented ACTION, a novel anatomical-aware contrastive
distillation framework with active sampling, designed specifically for medical
image segmentation. Our method is motivated by two observations that all
negative samples are not equally negative, and the underlying class distribu-
tion of medical images is highly unlabeled and imbalanced. Through extensive
experiments across two benchmark datasets and unlabeled settings, we show
that ACTION can significantly improve segmentation performance with minimal
additional memory requirements, outperforming the previous state-of-the-art by
a large margin. For future work, we plan to explore a more advanced contrastive
learning approach for better performance when the medical data is unlabeled
and imbalanced.
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