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Abstract. White matter (WM) tract segmentation is a crucial step for
brain connectivity studies. It is performed on diffusion magnetic reso-
nance imaging (dMRI), and deep neural networks (DNNs) have achieved
promising segmentation accuracy. Existing DNN-based methods use an
annotated dataset for model training. However, the performance of the
trained model on a different test dataset may not be optimal due to
distribution shift, and it is desirable to design WM tract segmentation
approaches that allow better generalization of the segmentation model
to arbitrary test datasets. In this work, we propose a WM tract seg-
mentation approach that improves the generalization with scaled resid-
ual bootstrap. The difference between dMRI scans in training and test
datasets is most noticeably caused by the different numbers of diffusion
gradients and noise levels. Since both of them lead to different signal-to-
noise ratios (SNRs) between the training and test data, we propose to
augment the training scans by adjusting the noise magnitude and develop
an adapted residual bootstrap strategy for the augmentation. First, with
a dictionary-based linear representation of diffusion signals, we compute
the signal residuals for the training dMRI scans, which can represent
samples drawn from the noise distribution. Then, we adapt the boot-
strap procedure by scaling the residuals that are randomly drawn with
replacement and adding the scaled residuals to the linear signal represen-
tation, where augmented dMRI scans with different SNRs are generated.
Finally, the augmented and original images are jointly included in model
training. Since it is difficult to know the SNR of the test data a pri-
ori, we choose to perform the residual scaling with multiple factors. To
validate the proposed approach, two dMRI datasets were used, and the
experimental results show that our method consistently improved the
generalization of WM tract segmentation under various settings.

Keywords: White matter tract segmentation · residual bootstrap ·
generalization

1 Introduction

White matter (WM) tract segmentation on diffusion magnetic resonance imag-
ing (dMRI) provides a valuable quantitative tool for various brain stud-
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ies [1,7,21,24]. Manually delineated WM tracts are generally considered the
gold standard segmentation, but the annotation process can be time-consuming
and requires the expertise of experienced radiologists. Therefore, automated
WM tract segmentation approaches are developed, which classify fiber stream-
lines [4,6] obtained with tractography [2,9] or directly provide voxelwise labeling
results [3,19,26]. In particular, methods based on deep neural networks (DNNs)
have substantially improved the accuracy of WM tract segmentation [15,25,27].
For example, Zhang et al. [27] group fiber streamlines into different WM tracts
with a DNN that takes the spatial coordinates of the points along a fiber stream-
line as input; in [25], fiber orientation maps extracted from dMRI scans are fed
into a U-net [20] to directly predict the existence of WM tracts at each voxel.

The DNN-based segmentation model is generally trained on a dataset where
both dMRI scans and WM tract annotations are available. However, the per-
formance of the model on an arbitrary test dataset that is different from the
training dataset may be degraded due to distribution shift, where the use of
different numbers of diffusion gradients and different noise levels are two major
contributing factors [18]. Since dMRI scans can be acquired with various proto-
cols, the improvement of the generalization of WM tract segmentation models
to arbitrary test data becomes an important research topic. Although domain
adaptation techniques [8] may be applied to improve the generalization, they
require access to the test data during model training, which is not guaranteed
when arbitrary test data is considered, and thus they are out of scope for this
work. To account for the different numbers of diffusion gradients between training
and test datasets, in [25] additional training scans are obtained by subsampling
the diffusion gradients of the training data, and this allows improved segmen-
tation accuracy on test data. However, the segmentation accuracy may still be
improved by taking the signal-to-noise ratio (SNR) into consideration during
model training.

In this work, we seek to further improve the generalization of WM tract
segmentation from the perspective of SNR.1 We focus on volumetric WM tract
segmentation that directly obtains volumes of WM tract labels without requiring
the tractography step. We assume that by producing diverse SNRs for training
data, the training data can better represent the test data, and the trained model
can better generalize to the test data. Therefore, we propose a scaled residual
bootstrap strategy that augments the training scans with adjusted noise mag-
nitude. First, we estimate a linear dictionary-based representation of diffusion
signals and compute the residuals of the representation. These residuals are con-
sidered samples drawn from the noise distribution [10]. Then, for each diffusion
gradient, the residual is drawn with replacement, and we adapt the standard
residual bootstrap by scaling the residual. The scaled residuals are added to
the linear representation of diffusion signals to generate augmented dMRI scans
with different SNRs. Finally, the augmented images are used together with the
original images for model training. Since it is difficult to know the SNR of the

1 Note that the use of different numbers of diffusion gradients implicitly leads to
different SNRs of measures derived from dMRI as well.
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test data a priori, we choose to perform the residual scaling with multiple fac-
tors. The proposed approach was evaluated on two brain dMRI datasets, where
various experimental settings of training and test scans were considered. The
results show that our method consistently improved the generalization of WM
tract segmentation under these various settings.

2 Methods

2.1 Problem Formulation

Suppose we are given a set of dMRI scans from a training dataset and the set of
their annotations of WM tracts. We seek to train a WM tract segmentation model
with good generalization, i.e., it performs well on an arbitrary test dataset. Like
existing volumetric WM tract segmentation approaches [14,25], the model input
is fiber orientation maps computed from dMRI. Two major factors that cause the
difference between the training and test dMRI data are the use of different num-
bers of diffusion gradients and different noise levels. Since increasing/decreasing
the number of diffusion gradients also leads to increased/decreased SNRs in the
fiber orientation maps, respectively, we assume that adjusting the SNR of the
dMRI scans for model training can effectively improve the generalization of the
trained model to other datasets. Although existing approaches have considered
SNR manipulation in the data augmentation operations of model training [25],
it is applied to the network input of fiber orientation maps. As fiber orientations
are orientations with unit lengths, adding realistic noise that is consistent with
imaging physics to them is nontrivial. Therefore, we seek to further explore data
augmentation with SNR adjustment in model training to improve the generaliza-
tion of WM tract segmentation models.

2.2 Model Training with Scaled Residual Bootstrap

To produce training data with diverse SNRs and realistic noise distributions, we
propose a scaled residual bootstrap strategy for model training. For convenience,
we denote the diffusion weighted signals at each voxel of a training dMRI scan
by a vector y, where y ∈ R

Nd and Nd is the number of diffusion gradients. It
has been shown that diffusion weighted signals can be linearly represented with
a properly designed dictionary [16,17]:

y = Dx + ε, (1)

where D ∈ R
Nd×Na is the dictionary with Na dictionary atoms, x ∈ R

Na is the
vector of dictionary coefficients, and ε ∈ R

Nd represents the noise.
If the distribution of ε is known, different levels of realistic noise can be added

to the noise-free linear representation to provide training data with different
SNRs. This motivates us to adopt a residual bootstrap strategy, which provides
a feasible way of approximating the noise distribution. Then, by modifying the
noise distribution, we achieve the goal of augmenting the SNR levels of training
data. There are two major steps in the proposed method, which are 1) residual
computation and 2) data generation with scaled residuals.
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Residual Computation. Like the standard residual bootstrap, we first esti-
mate x with the pseudoinverse of D:

x̂ = (DTD)−1DTy, (2)

where x̂ is the estimated coefficient vector. Then, the linear representation of
the diffusion weighted signals can be estimated as

ŷ = Dx̂ = D(DTD)−1DTy. (3)

The residuals ε̂ of the signal representation can be simply computed by sub-
tracting ŷ from y

ε̂ = y − ŷ = (I − D(DTD)−1DT)y. (4)

Then, to ensure that the variances of the residuals ε̂ are consistent with those of
the noise ε, the residuals are corrected with the following normalization [5,10]:

ε̂′
i =

ε̂i√
1 − hii

. (5)

Here, ε̂i is the i-th entry of ε̂, ε̂′
i is the corresponding corrected residual, and hii is

the i-th diagonal entry of H = D(DTD)−1DT. The set E = {ε̂′
i}Nd

i=1 of corrected
residuals is then used in the bootstrap procedure that provides training data
with diverse SNRs, and the procedure is described next.

Data Generation with Scaled Residuals. The corrected residuals E can
be viewed as samples drawn from the noise distribution [5], and in the standard
residual bootstrap, they are randomly drawn with replacement and added to the
linear representation ŷ. For our purpose of better generalization, we seek to gen-
erate samples with diverse SNRs. Therefore, the standard bootstrap procedure is
modified with a scaling operation. Specifically, for the i-th diffusion gradient, we
sample from E with replacement, and the sampled residual is denoted by ε̃i. The
vector comprising the sampled residuals for all diffusion gradients is represented
as ε̃ = (ε̃1, . . . , ε̃Nd). Then, a bootstrap signal ỹ is generated as

ỹ = ŷ + rε̃, (6)

where r is the scaling factor that controls the magnitude of noise. r is selected
from a predefined candidate set R. By repeating the scaled residual bootstrap
in Eq. (6) for each voxel, bootstrap diffusion weighted images can be generated.

Note that in dMRI acquisition, the b0 image without diffusion weighting is
also acquired, and when more than one b0 images are available, their SNR can
be adjusted as well. We denote the j-th b0 signal at each voxel by y0

j , and the
number of b0 images is denoted by N0. Then, the residual ε̂0j for the j-th b0
signal is calculated by

ε̂0j = y0
j − ȳ0, (7)
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where ȳ0 = 1
N0

∑N0
j=1 y0

j is the mean value of all b0 signals. These residuals form
a set E0. For each j, a sample is drawn from E0 with replacement, which is
denoted by ε̃0j , and the bootstrap b0 signal is generated as

ỹ0
j = ȳ0 + rε̃0j . (8)

Here, r has the same value as in Eq. (6). Equation (8) is repeated for each voxel
to obtain bootstrap b0 images.

After bootstrap b0 images and diffusion weighted images are generated, they
are combined to obtain new dMRI scans with different SNRs. These bootstrap
dMRI scans are used to train the segmentation model together with the original
dMRI scans based on the WM tract annotations.

2.3 Implementation Details

Our method is agnostic to the architecture of the segmentation model. For
demonstration, the state-of-the-art TractSeg architecture [25] is used as the
backbone network, but other network structures [13,14] may also be applied.
As in [25], we extract fiber orientation maps from dMRI scans with constrained
spherical deconvolution (CSD) [22] (for single-shell dMRI data) or multi-shell
multi-tissue CSD (MSMT-CSD) [11] (for multi-shell dMRI data), and use these
maps as network input. At most three fiber orientations are allowed, and all WM
tracts are jointly segmented [25].

We use the SHORE basis2 [17] for the linear representation of diffusion sig-
nals, which is a common choice. To generate bootstrap training data with diverse
SNRs, the set of candidate scaling factors is R = {2, 3, 4}. Since it is difficult
to predetermine the SNR of arbitrary test data, all values in R are used for
bootstrap, and each value is used once for each training scan.

For model training, following [25], we use the binary cross entropy loss func-
tion, which is minimized by Adamax [12] with a batch size of 56 and 300 training
epochs; the initial learning rate is set to 0.001. We select the model that has the
best segmentation accuracy on a validation dataset. Traditional data augmenta-
tion implemented online in TractSeg, such as intensity perturbation and spatial
transformation, is also applied online in the proposed method.

3 Results

3.1 Datasets and Experimental Settings

We used two dMRI datasets to evaluate our method. The first one is the publicly
available Human Connectome Project (HCP) dataset [23], and the second one is
an in-house dMRI dataset. A detailed description of the two datasets and their
experimental settings is given below.
2 The default setting given in https://dipy.org/documentation/1.4.1./reference/dipy.

reconst/#dipy.reconst.shore.ShoreModel is used.

https://dipy.org/documentation/1.4.1./reference/dipy.reconst/#dipy.reconst.shore.ShoreModel
https://dipy.org/documentation/1.4.1./reference/dipy.reconst/#dipy.reconst.shore.ShoreModel
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The HCP Dataset. The dMRI scans in the HCP dataset were acquired with
270 diffusion gradients (b = 1000, 2000, and 3000 s/mm2) and an isotropic image
resolution of 1.25mm. 18 b0 images were also acquired for each dMRI scan. 72
WM tracts were manually delineated for the HCP dataset3. We used 100 scans
in our experiments, where 55 and 15 scans were used as the training set and
validation set, respectively, and the remaining 30 scans were used for testing. To
improve the generalization of the segmentation model to different imaging pro-
tocols, in TractSeg [25], subsampling of diffusion gradients was performed on the
original training dMRI scans, where dMRI scans with 12 and 90 diffusion gradi-
ents associated with b = 1000 s/mm2 were generated for model training together
with the original dMRI scans.4 Here, we followed [25] and performed the sub-
sampling as well for the original and bootstrap training data for model training.
For convenience, the original HCP dataset is referred to as HCP_1.25mm_270,
and the subsampled datasets with 12 and 90 diffusion gradients are referred to
as HCP_1.25mm_12 and HCP_1.25mm_90, respectively.

To evaluate the performance of the proposed method on test scans that
were acquired with different protocols, we generated additional test sets from
the 30 original test scans. First, like the training data in HCP_1.25mm_12
and HCP_1.25mm_90, the 12 and 90 diffusion gradients associated with b =
1000 s/mm2 were selected from the 30 test scans, respectively. Second, 34 diffu-
sion gradients associated with b = 1000 s/mm2 were selected for the test scans,
so that their imaging protocol was different from the original and subsampled
training data, and the images associated with this subsampling are referred to
as HCP_1.25mm_34. Only three b0 images were kept for HCP_1.25mm_34.
Finally, another test set HCP_1.25mm_36 was generated from the test scans by
selecting 18 diffusion gradients associated with b = 1000 s/mm2 and 18 diffusion
gradients associated with b = 2000 s/mm2, which also produced dMRI scans that
used a different imaging protocol than the training data. Only one b0 image was
kept for HCP_1.25mm_36. A summary of these different datasets is listed in
Table 1.

In addition, to investigate the impact of the amount of training data on the
segmentation, three other experimental settings were considered, where 10, 20,
or 30 training subjects were used and the other settings were not changed.

The In-House Dataset. The segmentation models trained on the HCP dataset
were also applied to an in-house dataset for further evaluation. The dMRI scans
in the in-house dataset were acquired with 270 diffusion gradients (b = 1000,
2000, and 3000 s/mm2) and one b0 image. The spatial resolution is 1.7mm
isotropic. These scans were acquired on a scanner that is different from that
of the HCP dataset. Due to the annotation cost, only ten of the 72 anno-
tated WM tracts of the HCP dataset were manually delineated, and the delin-
eation was performed on 17 in-house dMRI scans. These annotations were used
only to evaluate the segmentation accuracy. This in-house dataset is referred to
3 The annotations can be downloaded at https://doi.org/10.5281/zenodo.1088277.
4 All b0 images were kept for these two cases.

https://doi.org/10.5281/zenodo.1088277
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Table 1. A summary of the datasets used in the experiments

Dataset Resolution Diffusion gradients Usage

HCP_1.25mm_270 1.25 mm 90 × b = 1000 s/mm2 Training & Test
90 × b = 2000 s/mm2

90 × b = 3000 s/mm2

18 × b = 0 s/mm2

HCP_1.25mm_12 1.25 mm 12 × b = 1000 s/mm2 Training & Test
18 × b = 0 s/mm2

HCP_1.25mm_90 1.25 mm 90 × b = 1000 s/mm2 Training & Test
18 × b = 0 s/mm2

HCP_1.25mm_34 1.25 mm 34 × b = 1000 s/mm2 Test
3 × b = 0 s/mm2

HCP_1.25mm_36 1.25 mm 18 × b = 1000 s/mm2 Test
18 × b = 2000 s/mm2

1 × b = 0 s/mm2

IH_1.7mm_270 1.7 mm 90 × b = 1000 s/mm2 Test
90 × b = 2000 s/mm2

90 × b = 3000 s/mm2

1 × b = 0 s/mm2

IH_1.7mm_36 1.7 mm 18 × b = 1000 s/mm2 Test
18 × b = 2000 s/mm2

1 × b = 0 s/mm2

as IH_1.7mm_270. We also synthesized another dataset IH_1.7mm_36 from
IH_1.7mm_270 for evaluation, where 18 diffusion gradients of b = 1000 s/mm2

and 18 diffusion gradients of b = 2000 s/mm2 were selected from the original
scans. These two datasets are also summarized in Table 1.

3.2 Evaluation of Segmentation Results on the HCP Dataset

We first present the evaluation of the segmentation results on the HCP dataset.
Our method was compared with TractSeg without using bootstrap (but with the
subsampling of diffusion gradients), which is referred to as the baseline method.

Examples of the segmentation results are shown in Fig. 1. For demonstration,
here we show the results of representative WM tracts on HCP_1.25mm_90,
HCP_1.25mm_36, and HCP_1.25mm_34 when 55 training subjects were used.
For reference, the gold standard (manual delineation) is also displayed. In Fig. 1,
cross-sectional views of the WM tracts are given, and regions are highlighted
with zoomed views for better comparison. It can be seen that the segmented
tracts of the proposed method have more similar spatial coverage to the gold
standard than the baseline method.
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Fig. 1. Representative segmentation results (red) for the HCP dataset, together with
the gold standard (manual annotation) for reference. The cross-sectional views of the
segmented tracts are shown, and they are overlaid on fractional anisotropy maps.
Zoomed views of the highlighted regions are also displayed for better comparison.
The image orientation is shown in the rightmost column. For the meaning of the tract
abbreviations, we refer readers to [25]. (Color figure online)

We then quantitatively evaluated the proposed method by computing the
Dice coefficient between the segmentation results and the gold standard. The
mean Dice coefficient of all 72 WM tracts for each test dataset and each number
of training subjects is shown in Table 2. As some WM tracts can be more chal-
lenging to segment [14] and the improvement of the segmentation of these tracts
is important, in Table 2 we also show the individual average Dice coefficients of
the three most challenging WM tracts, which are the anterior commissure (CA),
left fornix (FX_left), and right fornix (FX_right) [14,25]. Compared with the
baseline method, the proposed method can consistently improve the Dice coef-
ficients across the different cases, and the improvement is more prominent for
the three most challenging WM tracts. In addition, the Dice coefficients of the
proposed method were compared with those of the baseline method using paired
Student’s t-tests, and the p-values are listed in Table 2. It can be seen that the
improvement of the proposed method is statistically significant in all cases.
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Table 2. The mean Dice coefficient (%) of all 72 WM tracts and the individual average
Dice coefficients (%) of the three most challenging tracts for the HCP dataset across
different settings. The proposed method was compared with the baseline method using
paired Student’s t-tests, and asterisks indicate that the difference between the two
methods is statistically significant (***: p < 0.001).

Dataset Tract Method Number of training subjects
10 20 30 55

HCP_1.25mm_270 All Baseline 80.0 *** 81.8 *** 82.3 *** 83.4 ***
Proposed 80.9 83.1 83.5 84.0

CA Baseline 52.4 *** 61.6 *** 63.7 *** 67.3 ***
Proposed 56.6 65.7 68.0 69.4

FX_left Baseline 55.8 *** 67.6 *** 68.1 *** 70.7 ***
Proposed 65.0 73.6 73.9 73.7

FX_right Baseline 51.1 *** 59.5 *** 61.4 *** 64.9 ***
Proposed 55.3 68.0 68.3 69.5

HCP_1.25mm_90 All Baseline 79.0 *** 80.9 *** 81.4 *** 82.9 ***
Proposed 80.2 82.8 83.2 83.7

CA Baseline 51.0 *** 61.1 *** 63.6 *** 66.3 ***
Proposed 56.9 65.1 67.4 68.7

FX_left Baseline 55.6 *** 63.5 *** 65.9 *** 68.9 ***
Proposed 62.8 72.2 72.6 72.6

FX_right Baseline 47.8 *** 57.9 *** 57.1 *** 63.6 ***
Proposed 56.4 67.5 67.1 68.1

HCP_1.25mm_12 All Baseline 77.9 *** 80.2 *** 80.8 *** 82.2 ***
Proposed 79.7 82.4 82.8 83.4

CA Baseline 47.7 *** 59.2 *** 61.9 *** 64.8 ***
Proposed 56.2 64.1 66.8 68.0

FX_left Baseline 50.6 *** 61.8 *** 62.9 *** 65.5 ***
Proposed 58.5 71.6 71.9 72.3

FX_right Baseline 40.6 *** 54.2 *** 53.3 *** 59.6 ***
Proposed 51.4 66.1 65.6 66.5

HCP_1.25mm_36 All Baseline 79.2 *** 80.9 *** 81.5 *** 82.7 ***
Proposed 80.6 82.9 83.3 83.9

CA Baseline 48.6 *** 60.0 *** 61.6 *** 65.4 ***
Proposed 55.2 65.2 67.4 68.7

FX_left Baseline 53.9 *** 66.3 *** 65.9 *** 68.4 ***
Proposed 63.5 72.9 73.2 73.5

FX_right Baseline 46.3 *** 56.7 *** 58.8 *** 62.6 ***
Proposed 52.3 66.9 67.3 68.5

HCP_1.25mm_34 All Baseline 78.4 *** 80.6 *** 81.1 *** 82.6 ***
Proposed 80.1 82.7 83.1 83.6

CA Baseline 49.3 *** 60.3 *** 63.3 *** 65.9 ***
Proposed 56.6 65.3 67.3 68.8

FX_left Baseline 51.6 *** 61.5 *** 64.3 *** 67.2 ***
Proposed 61.1 72.1 72.0 72.2

FX_right Baseline 43.9 *** 55.3 *** 54.6 *** 62.0 ***
Proposed 54.0 66.5 66.2 67.5
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Table 3. The mean Dice coefficient (%) of all ten annotated WM tracts and the indi-
vidual average Dice coefficients (%) of two challenging tracts for the in-house dataset
across different settings. The proposed method was compared with the baseline method
using paired Student’s t-tests, and asterisks indicate that the difference between the
two methods is statistically significant (***: p < 0.001, **: p < 0.01, *: p < 0.05, n.s.:
p ≥ 0.05).

Dataset Tract Method Number of training subjects
10 20 30 55

IH_1.7mm_270 All Baseline 58.7 n.s. 60.4 ** 61.2 ** 61.7 n.s.
Proposed 59.0 62.0 61.9 61.9

UF_left Baseline 48.4 *** 50.7 *** 53.1 ** 55.1 n.s.
Proposed 51.9 59.3 56.7 57.1

UF_right Baseline 52.9 n.s. 56.5 *** 57.3 *** 59.1 ***
Proposed 53.4 61.3 60.1 61.4

IH_1.7mm_36 All Baseline 57.2 ** 58.7 *** 59.3 *** 60.4 **
Proposed 57.8 61.5 61.5 61.3

UF_left Baseline 46.2 n.s. 46.3 *** 47.3 *** 51.6 **
Proposed 47.9 58.0 55.7 55.3

UF_right Baseline 48.9 *** 54.2 *** 53.6 *** 56.3 ***
Proposed 51.2 59.1 58.5 60.5

By comparing the results achieved with different numbers of training sub-
jects, we observe that the overall improvement of the proposed method tends to
be greater when the number is moderate (20 and 30) than when the number is
small (10) or large (55). Moreover, the Dice coefficients of the proposed method
obtained with 20 training subjects are comparable to or higher than the baseline
performance achieved with 55 training subjects. Also, when the number of train-
ing subjects increases from 20 to 30 or 55, the Dice coefficients of the proposed
method are relatively stable, whereas the Dice coefficients of the baseline method
can still increase. This is possibly because the proposed method augments the
training data and thus reduces the requirement for manual annotation.

3.3 Evaluation of Segmentation Results on the In-House Dataset

The proposed method was next applied to the in-house test datasets
IH_1.7mm_270 and IH_1.7mm_36, and the mean Dice coefficients of all ten
annotated WM tracts are summarized in Table 3. In addition, the individual
average Dice coefficients of two challenging tracts, the left uncinate fascicu-
lus (UF_left) and right uncinate fasciculus (UF_right) [14], are also shown in
Table 3.5 In each case, the proposed method achieves a higher Dice coefficient
than the baseline method, and the improvement is more prominent for the two
5 CA, FX_left, and FX_right were not annotated for the in-house dataset.
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challenging tracts and for IH_1.7mm_36 that has a smaller number of diffusion
gradients. We also performed paired Student’s t-tests to compare the two meth-
ods in Table 3, and the difference between the proposed and competing methods
is statistically significant in most cases.

Like the results on the HCP dataset, the improvement of the proposed
method over the baseline method is greater when the number of training subjects
is 20 or 30 than 10 or 55, and its performance becomes stable after the num-
ber of training subjects reaches 20. Also, the Dice coefficients of the proposed
method obtained with 20 training subjects are already better than the baseline
performance achieved with 55 training subjects.

4 Conclusion

We have proposed a WM tract segmentation approach that better generalizes
to arbitrary test datasets. In the proposed method a scaled residual bootstrap
strategy is developed, where the SNR levels of the training data are adjusted
based on the residuals of a linear signal representation. This reduces the discrep-
ancy between training and test data and thus improves the generalization of the
trained segmentation model. Our method was validated on public and in-house
datasets under various data settings, and the results show that it consistently
improved the segmentation accuracy in the different cases.

Acknowledgements. This work is supported by the Fundamental Research Funds
for the Central Universities.

References

1. Banihashemi, L., et al.: Opposing relationships of childhood threat and deprivation
with stria terminalis white matter. Hum. Brain Mapp. 42(8), 2445–2460 (2021)

2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber trac-
tography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

3. Bazin, P.L., et al.: Direct segmentation of the major white matter tracts in diffusion
tensor images. Neuroimage 58(2), 458–468 (2011)

4. Cook, P.A., et al.: An automated approach to connectivity-based partitioning of
brain structures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749,
pp. 164–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11566465_21

5. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application. No. 1,
Cambridge University Press (1997)

6. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global
streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)

7. Girard, G., et al.: On the cortical connectivity in the macaque brain: a comparison
of diffusion tractography and histological tracing data. Neuroimage 221, 117201
(2020)

8. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE
Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

9. Jeurissen, B., Descoteaux, M., Mori, S., Leemans, A.: Diffusion MRI fiber tractog-
raphy of the brain. NMR Biomed. 32(4), e3785 (2019)

https://doi.org/10.1007/11566465_21


640 W. Liu and C. Ye

10. Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic
fiber tracking using the residual bootstrap with constrained spherical deconvolu-
tion. Hum. Brain Mapp. 32(3), 461–479 (2011)

11. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue
constrained spherical deconvolution for improved analysis of multi-shell diffusion
MRI data. Neuroimage 103, 411–426 (2014)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Li, B., et al.: Neuro4Neuro: A neural network approach for neural tract segmenta-
tion using large-scale population-based diffusion imaging. Neuroimage 218, 116993
(2020)

14. Liu, W., et al.: Volumetric segmentation of white matter tracts with label embed-
ding. Neuroimage 250, 118934 (2022)

15. Lu, Q., Li, Y., Ye, C.: Volumetric white matter tract segmentation with nested self-
supervised learning using sequential pretext tasks. Med. Image Anal. 72, 102094
(2021)

16. Merlet, S., Caruyer, E., Deriche, R.: Parametric dictionary learning for modeling
EAP and ODF in diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori,
K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 10–17. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33454-2_2

17. Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation
via compressive sensing in diffusion MRI. Med. Image Anal. 17(5), 556–572 (2013)

18. Ning, L., et al.: Cross-scanner and cross-protocol multi-shell diffusion MRI data
harmonization: algorithms and results. Neuroimage 221, 117128 (2020)

19. Ratnarajah, N., Qiu, A.: Multi-label segmentation of white matter structures:
application to neonatal brains. Neuroimage 102, 913–922 (2014)

20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

21. Toescu, S.M., Hales, P.W., Kaden, E., Lacerda, L.M., Aquilina, K., Clark, C.A.:
Tractographic and microstructural analysis of the dentato-rubro-thalamo-cortical
tracts in children using diffusion MRI. Cereb. Cortex 31(5), 2595–2609 (2021)

22. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre ori-
entation distribution in diffusion MRI: non-negativity constrained super-resolved
spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

23. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugur-
bil, K.: Wu-Minn HCP consortium: the WU-Minn human connectome project: an
overview. Neuroimage 80, 62–79 (2013)

24. Veraart, J., Raven, E.P., Edwards, L.J., Weiskopf, N., Jones, D.K.: The variability
of MR axon radii estimates in the human white matter. Hum. Brain Mapp. 42(7),
2201–2213 (2021)

25. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg - fast and accurate white
matter tract segmentation. Neuroimage 183, 239–253 (2018)

26. Ye, C., Yang, Z., Ying, S.H., Prince, J.L.: Segmentation of the cerebellar peduncles
using a random forest classifier and a multi-object geometric deformable model:
Application to spinocerebellar ataxia type 6. Neuroinformatics 13(3), 367–381
(2015)

27. Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell,
L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography
segmentation. Med. Image Anal. 65, 101761 (2020)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-33454-2_2
https://doi.org/10.1007/978-3-319-24574-4_28

	Better Generalization of White Matter Tract Segmentation to Arbitrary Datasets with Scaled Residual Bootstrap
	1 Introduction
	2 Methods
	2.1 Problem Formulation
	2.2 Model Training with Scaled Residual Bootstrap
	2.3 Implementation Details

	3 Results
	3.1 Datasets and Experimental Settings
	3.2 Evaluation of Segmentation Results on the HCP Dataset
	3.3 Evaluation of Segmentation Results on the In-House Dataset

	4 Conclusion
	References




