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Abstract. This paper presents a novel predictive model, MetaMorph,
for metamorphic registration of images with appearance changes (i.e.,
caused by brain tumors). In contrast to previous learning-based registra-
tion methods that have little or no control over appearance-changes, our
model introduces a new regularization that can effectively suppress the
negative effects of appearance changing areas. In particular, we develop a
piecewise regularization on the tangent space of diffeomorphic transfor-
mations (also known as initial velocity fields) via learned segmentation
maps of abnormal regions. The geometric transformation and appear-
ance changes are treated as joint tasks that are mutually beneficial. Our
model MetaMorph is more robust and accurate when searching for an
optimal registration solution under the guidance of segmentation, which
in turn improves the segmentation performance by providing appropri-
ately augmented training labels. We validate MetaMorph on real 3D
human brain tumor magnetic resonance imaging (MRI) scans. Exper-
imental results show that our model outperforms the state-of-the-art
learning-based registration models. The proposed MetaMorph has great
potential in various image-guided clinical interventions, e.g., real-time
image-guided navigation systems for tumor removal surgery.

1 Introduction

Deformable image registration is an important tool in a variety of medical
image analysis tasks, such as multi-modality image alignment [12,18,25], sta-
tistical analysis for population image studies [26,32,35], atlas-guided image seg-
mentation or classification [27,30,33], and object tracking with anomaly detec-
tion [11,24]. In many clinical applications, it is desirable that the estimated trans-
formations are diffeomorphisms (i.e., bijective, smooth, and inverse smooth map-
pings) because they produce anatomically plausible images [7]. Despite recent
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achievements in treating the problem of diffeomorphic image registration as a
fast learning task, current approaches oftentimes have an assumption that the
topology of objects presented in images is intact [6,10,17,31]. Existing algo-
rithms fail badly in cases where appearance changes occur (e.g., missing data
caused by pathology, such as tumors, myocardial scars, multiple sclerosis, and
etc.) because they have little to no control over these unknown variables.

To address this issue, a few algorithms of image metamorphosis have been
developed to incorporate the modeling of appearance changes in registration
functions [8,14,16,21,23]. Existing metamorphic image registration methods
mainly fall into two categories: (i) exclude appearance changes via manually
delineated segmentations of abnormal regions [21,23], and (ii) treat the appear-
ance changes as unknown variables estimated out from images [8,14]. These
approaches either heavily depend on manually segmented labels of 3D volumet-
ric data that are time and labor-consuming, or struggle with balancing between
the effects of appearance vs. geometric changes. A recent work [8] has developed a
metamorphic autoencoder that estimates the deformation and appearance vari-
ations by decoupling the geometric and appearance representations in latent
spaces. However, such a model is highly sensitive to parameter-tuning due to
its difficulty in differentiating changes caused by geometric transformations vs.
appearances.

In this paper, we develop a novel learning-based model of metamorphic image
registration, named as MetaMorph, that provides more robust and accurate reg-
istration results in images with appearance changes. In contrast to previous
approaches [8,14,21,23], we incorporate a new appearance-aware regularization
in the network loss function that enforces a piecewise constraint on geomet-
ric transformation fields. Such a constraint will be learned simultaneously from
a jointly optimized segmentation task. In addition, we effectively augment the
segmentation labels by utilizing the learned transformations in the training pro-
cess. This not only substantially improves the segmentation performance, but
also reduces the requirement for massive ground truth segmentation labels. The
main contributions of our proposed MetaMorph are summarized in three folds:

– To the best of our knowledge, MetaMorph is the first predictive registration
algorithm that utilizes jointly learned segmentation maps to model appear-
ance changes.

– MetaMorph learns a new appearance-aware regularization that piecewisely
constrains the variations of image intensities caused by geometric transfor-
mations separately from appearance changes.

– The joint learning scheme of MetaMorph maximizes the mutual benefits of
metamorphic image registration and segmentation.

To demonstrate the effectiveness of our model, we validate MetaMorph on
real 3D human brain tumor MRIs. Experimental results show that MetaMorph
outperforms the state-of-the-art learning-based registration models [6,8] with
substantially increased accuracy. The developed MetaMorph has great poten-
tial in various image-guided clinical interventions, e.g., real-time image-guided
navigation systems for tumor removal surgery.
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2 Background: Diffeomorphic Image Registration

In this section, we briefly review the concept of the diffeomorphic image registra-
tion in the setting of large deformation diffeomorphic metric mapping (LDDMM)
with a geodesic shooting algorithm [7,20,29].

Let S be the source image and T be the target image defined on a d-
dimensional torus domain Γ = R

d/Zd (S(x), T (x) : Γ → R). The problem
of diffeomorphic image registration is to find the geodesic (a.k.a. shortest path)
to generate time-varying diffeomorphisms {ψt(x)} : t ∈ [0, 1] such that S ◦ ψ1 is
similar to T , where ◦ is an interpolation operation that deforms S by the smooth
deformation field ψ1. This is typically formulated as an optimization problem by
minimizing an explicit energy function over the transformation fields ψt as

E(vt) = Dist[S ◦ ψ1(vt), T ] + Reg[ψt(vt)], (1)

where the distance function Dist(·, ·) measures the image dissimilarity between
the source and the deformed image. Commonly used distance functions include
a sum-of-squared difference of image intensities [7], normalized cross correla-
tion [4], and mutual information [34,36]. The regularization term Reg(·) is a
constraint that enforces the spatial smoothness of transformations, arising from
a distance metric on the tangent space V of diffeomorphisms, i.e., an integral
over the norm of time-dependent velocity fields {vt(x)} ∈ V ,

Reg(ψt) =
∫ 1

0

(Lvt, vt) dt, with
dψt

dt
= −Dψt · vt, (2)

where L : V → V ∗ is a symmetric, positive-definite differential operator that
maps a tangent vector vt ∈ V into its dual space as a momentum vector mt ∈ V ∗.
We typically write mt = Lvt, or vt = Kmt, with K being an inverse operator of
L. The notation (·, ·) denotes the pairing of a momentum vector with a tangent
vector, which is similar to an inner product. Here, the operator D denotes a
Jacobian matrix and · represents element-wise matrix multiplication.

A geodesic curve with a fixed endpoint is characterized by an extremum of
the energy function (2) that satisfies the Euler-Poincaré differential (EPDiff)
equation [2,20],

∂vt

∂t
= −K

[
(Dvt)T · mt + Dmt · vt + mt · div vt

]
, (3)

where div is the divergence. This process in Eq. (3) is known as geodesic shooting,
stating that the geodesic path {ψt} can be uniquely determined by integrating
a given initial velocity v0 forward in time by using the rule (3).

Therefore, we rewrite the optimization of Eq. (1) equivalently as

E(v0) = Dist[S ◦ ψ1(v0), T ] + (Lv0, v0), s.t. Eq. (2)&Eq. (3). (4)
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3 Our Model: MetaMorph

The objective function of diffeomorphic image registration in Eq. (4) works well
under the condition that images are ideally of good quality with preserved topol-
ogy. This assumption breaks when corruptions such as appearance changes or
occlusions occur. In this section, we first define an objective function of the meta-
morphic image registration that considers the modeling of appearance changes.
An appearance-aware regularization is developed to effectively suppress the neg-
ative influences of appearance changes in typical diffeomorphic image registra-
tion algorithms. We then develop a joint learning framework that includes i) a
segmentation network for appearance change detection, and ii) a metamorphic
registration network incorporating the newly formulated objective function as
part of the network loss.

Appearance-Aware Regularization. The purpose of metamorphic image
registration is to find an optimal transformation ψ(v0, δ) that is composed of
two variables: the optimal initial velocity field v0, and the appearance change
δ. A recent work proposed to learn these variables via disentangled latent rep-
resentations in an encoder-decoder neural network [8]. However, it is extremely
challenging for this algorithm to differentiate the variations of image intensi-
ties caused by geometric transformations from appearance changes since they
unavoidably compensate for each other. The ambiguity introduced by optimiz-
ing two compensating variables without any guidance fails to search for accurate
registration solutions. Additionally, this makes the algorithm highly sensitive to
network parameters with an increased risk of poor convergence. To alleviate
this issue, we introduce an appearance-aware regularization in the registration
framework, guided by learned segmentations of the appearance-changing areas.

Assume U is a union of the learned segmentations of appearance-changing
areas from the source image S and the target image T . Analogous to Eq. (4),
we define the appearance-aware regularization Reg∗(·) in the space of initial
velocity fields. To suppress the effects of appearance variations, we piecewisely
constrain the initial velocity fields through a segmentation indicator, i.e.,

Reg∗(v0) = (L(v0 � (1 − U)), v0 � (1 − U)) , s.t. Eq. (3), (5)

where � represents an element-wise multiplication between a vector field and a
scalar field. For the purpose of notation simplicity, we define v̂0

Δ= v0 � (1 − U)
in the following sections.

With the newly defined regularization in Eq. (5), we arrive at the objective
function of metamorphic image registration as

E∗[ψ̂(v̂0)] = Dist∗[Ŝ ◦ ψ̂1(v̂0), T̂ ] + Reg∗(v̂0), (6)

where Ŝ and T̂ denotes the source and target images with appearance changes
masked out, i.e., Ŝ = S�(1−U), and T̂ = T �(1−U). Here, the Dist∗[·, ·] is the
image dissimilarity term that measures the dissimilarity between the consistent
area between the deformed image and target.
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3.1 Predictive Metamorphic Image Registration

We develop a deep learning framework to jointly learn the segmentation for
appearance change and the masked-out velocity field v̂0. An overview of our
proposed MetaMorph architecture is shown in Fig. 1.

Appearance change can be masked by a fixed foreground segmentation via
pre-running image segmentation algorithms [21,23]. However, performing man-
ual annotations of segmentation labels is time and labor-consuming. In this work,
instead of using a fixed mask, we treat the appearance change as a variable from
the segmentation network and jointly optimize with the optimal registration
solution. We utilize an encoder-decoder based neural network to learn the seg-
mentation masks and then apply them to the associate image pairs for masking
out the appearance change. Although we adopt UNet-based architecture for seg-
mentation in this work [28], other networks such as recurrent residual neural
networks [1], transformer-based networks [9,15] can also be easily plugged into
the proposed method.

With the developed segmentation network, now we are ready to formulate
the loss function of MetaMorph,

� = Dist∗[Ŝ ◦ ψ̂1(v̂0), T̂ ] + Reg∗(v̂0) + γ · �seg, s.t. Eq. (5). (7)

Here, γ is a weighting parameter that balances the segmentation and regis-
tration loss, �seg is a segmentation loss that maximizes the Sørensen-Dice coef-
ficient [13] between ground truth y and the predicted ŷ,

�seg = 1 − Dice(y, ŷ), (8)

where Dice(y, ŷ) = 2(|y| ∩ |ŷ|)/(|y| + |ŷ|).
We adopt an approximated region-based mutual information (RMI) [36],

which is a broadly-used distance metric for images from different domains. For
simplicity, we let Ŝψ denote the deformed image. Let f(Ŝψ) and f(T̂ ) denote the
probability density functions for the deformed image and target respectively, and
their joint probability density function is f(Ŝψ, T̂ ). The image dissimilarity with
RMI can be formulated as

Dist∗[Ŝψ, T̂ ] = RMI(Ŝψ, T̂ ) =
∫

Ŝψ

∫
T̂

f(Ŝψ, T̂ ) log
f(Ŝψ, T̂ )

f(Ŝψ)f(T̂ )

≈ lce(Ŝψ, T̂ ) − 1
B

B∑
b=1

Ib(T̂ ; Ŝψ), (9)

where Lce(·, ·) is a cross entropy loss between two images. The Ib(·; ·) is a batch-
wise lower bound that Ib(T̂ ; Ŝψ) = 1

2 log[det(ΣT̂ |Ŝψ
)], where ΣT̂ |Ŝψ

is the pos-

terior covariance matrix of T̂ (a symmetric positive semi-definite matrix), given
Ŝψ. Here B denotes the number of images in a mini-batch b. Please refer to [36]
for more derivation details.
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Fig. 1. An illustration of the network architecture for MetaMorph. Top left to right:
input a pair of images into a segmentation network, and apply predicted labels onto
images to mask out the appearance change. Bottom right to left: input a pair of images
(with masked-out appearance change) to the registration network and predict a piece-
wise velocity field, integrate geodesic constraints, and produce a deformed image and
transformation-propagated segmentation. The deformed images and labels are circu-
lated into the segmentation network as augmented data.

We develop an alternating optimization scheme [22] to minimize the network
loss defined in Eq. (7). All network parameters are optimized jointly by alter-
nating between the training of segmentation and image registration. A summary
of our joint learning of MetaMorph is in Algorithm 1.

4 Experimental Evaluation

To demonstrate the effectiveness of the proposed model, we compare both seg-
mentation and registration tasks with state-of-the-arts.

Data. For 3D brain tumor MRI scans with tumor segmentation labels, we
include 100 public T1-weighted brain scans of different subjects from Brain
Tumor Segmentation (BraTS) [5,19] challenge 2021. We also include 28 land-
marks (16 for brain ventricle and 12 for corpus callosum) that are annotated by
clinicians to better evaluate the image registration performance. All MRIs are
155×240×240, 1.25mm3 isotropic voxels. As a preprocessing step, we run affine
registration, intensity normalization, and bias field correction on all images.

Experiments. We compare our metamorphic image registration method with
two registration baselines, an unsupervised predictive diffeomorphic registration
method (VoxelMorph as VM) [6], and a metamorphic autoencoder (MAE) [8]
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Algorithm 1: Joint learning of MetaMorph.
Input : Source and target images, the number of iterations q.
Output: Segmentation labels, the deformed image, and the transformation.

1 for i = 1 to q do
/* Train image segmentation network */

2 Minimize the segmentation loss in Eq. (8);
3 Output the predicted segmentations and adopt both labels to mask

appearance change in images;
/* Train appearance-aware registration network */

4 Minimizing the metamorphic loss in Eq. (6) with appearance-aware geodesic
constraints;

5 Output the predicted velocity field and the deformed image;

6 end
7 Until convergence

that learns disentangled appearance and shape representations. To better visu-
alize the deformations, we show predicted transformation grids and deformed
images with transformation-propagated landmarks for all methods. Quantita-
tively, we compute the L2 distance of landmarks as registration error between
the propagated and the target frames over 60 pairs.

We evaluate the brain tumor segmentation via computing Dice score [13]
by comparing MetaMorph with three segmentation backbones, U-Net archi-
tecture [28], U-Net based on recurrent residual convolutional neural network
(R2-Unet) [1], and transformer-based Unet (UnetR) [15]. We also show the per-
formance of MetaMorph by replacing the segmentation module in our model
with all backbones (named MetaMorph:Unet, MetaMorph:R2-Unet, and Meta-
Morph:UnetR). We visualize the predicted segmentations overlaid with testing
images across all methods.

Parameter Settings. We set parameter α = 3 for the operator L, the number
of time steps for Euler integration in EPDiff (Eq. (3)) as 10. We set the weight
parameter γ = 0.5 and the batch size as 4. We use an adaptive cosine annealing
learning rate scheduler that starts from an initial value at η = 5e−4 for network
training. We run all models for 100 epochs with Adam optimizer and save the
networks with the best validation performance. The training and prediction pro-
cedure of all learning-based methods are performed on two Nvidia GTX 2070Ti
GPUs. We run five-fold cross validation and split the images by using 70% as
training images, 20% as validation images, and 10% as testing images.

Results. Figure 2 visualizes the image registration prediction of two 3D brain
MRIs of study across all methods. It shows MetaMorph significantly outper-
forms both VM and MAE. General diffeomorphic registration models (e.g., VM)
without an appearance-control mechanism may fail and produce less satisfied
deformed images without sufficient deformations. MAE offers accurate deforma-
tions to a certain level while it produces artifacts. By excluding the appearance
change, MetaMorph more accurately deforms all regions (e.g., ventricles and
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VM MAE MetaMorph

Source Target

Fig. 2. Image registration performance comparison for all methods. From left to right,
source, target, deformed images by VoxelMorph (VM), metamorphic autoencoder
(MAE), and our method. All images are overlaid with annotated landmarks (red circle
for ventricle and blue cross for corpus callosum). (Color figure online)

corpus callosum). It also shows that our propagated landmarks align best with
the target.

Figure 3 shows two examples of image segmentation performance compari-
son for all methods. It indicates that MetaMorph-based models predict better
segmentation labels (closer to ground truth) than original backbones. The pre-
dicted labels by MetaMorph have slightly better segmentations of the brain
tumor boundary. This is because we use deformed images and labels that are
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Unet
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Unet R2-Unet
MetaMorph:

R2-Unet UnetR
MetaMorph:

UnetR

Fig. 3. Image segmentation visualization for all methods. Left to right: overlaid seg-
mentation map comparison between the predicted label (red) and the ground truth
(blue) for Unet, MetaMorph: Unet, R2-Unet, MetaMorph: R2-Unet, UnetR and Meta-
Morph: UnetR. (Color figure online)
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Fig. 4. Left: Dice comparison on brain tumor segmentation across all methods over
images. The means of baseline vs. our method are 0.815/0.834, 0.835/0.856,
0.861/0.874; Right: registration error (computed on L2 distance) of two anatomical
landmarks for 60 brain pairs. The means of errors for VM vs. MAE vs. our method
are 15.02/10.53/4.64, 16.48/13.59/4.10.

produced by a joint registration framework as augmented data for each subject;
thus learning a broader spectrum for appearance variation in data and offering
more accurate prediction when new testing data arrives.

Figure 4 (left panel) statistical reports the Dice coefficient comparison. It
shows that MetaMorph consistently achieves a higher segmentation accuracy
than backbones. Transformer-based methods (UnetR-based) produce the highest
Dice for all methods. Figure 4 (right panel) reports the landmark-based registra-
tion error between the target image and the deformed image. MetaMorph out-
performs other methods with the lowest error, indicating our proposed method
finishes the metamorphic image registration task with higher accuracy.
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5 Conclusion

We present a predictive metamorphic image registration model, MetaMorph,
via deep neural networks in this paper. Different from existing models that have
limited control over appearance change, we develop a joint learning framework
that adopts a segmentation module to accurately guide the registration network
to learn diffeomorphic transformation fields. The developed segmentation mod-
ule maximally excludes the disadvantageous effect caused by appearance change
for learned deformations; thus enabling more precise correspondence alignment
between deformed and target frames. Experimental results on 3D brain MRIs
with real tumors show that our proposed framework yields a better registration
as well as a segmentation model. While our algorithm is presented in the set-
ting of LDDMM with geodesic shooting, the theoretical development is generic to
other deformation models, e.g., stationary velocity fields [3]. Our model has great
clinical potential on solving one of the most challenging registration problems,
e.g., real-time brain shift estimation between preoperative and intraoperative
MRI scans with missing data values. Interesting future works of MetaMorph
will be i) building a probabilistic model to quantify the registration uncertainty
along the boundary of tumor areas and ii) extending the proposed method to
more advanced clinical scenarios that appearance changes are difficult to detect,
e.g., real-time automated image registration for ultrasound images.
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Q. Appl. Math. 67(4), 661–685 (2009)

17. Kim, B., Han, I., Ye, J.C.: DiffuseMorph: unsupervised deformable image reg-
istration along continuous trajectory using diffusion models. arXiv preprint
arXiv:2112.05149 (2021)

18. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal-
ity image registration by maximization of mutual information. IEEE Trans. Med.
Imaging 16(2), 187–198 (1997)

19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
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