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Abstract. Deep learning based models for registration predict a transformation
directly from moving and fixed image appearances. These models have revolu-
tionized the field of medical image registration, achieving accuracy on-par with
classical registration methods at a fraction of the computation time. Unfortu-
nately, most deep learning based registration methods have focused on scalar
imaging modalities such as T1/T2 MRI and CT, with less attention given to more
complex modalities such as diffusion MRI. In this paper, to the best of our knowl-
edge, we present the first end-to-end geometric deep learning based model for the
non-rigid registration of fiber orientation distribution fields (fODF) derived from
diffusion MRI (dMRI). Our method can be trained in a fully-unsupervised fash-
ion using only input fODF image pairs, i.e. without ground truth deformation
fields. Our model introduces several novel differentiable layers for local Jacobian
estimation and reorientation that can be seamlessly integrated into the recently
introduced manifold-valued convolutional network in literature. The results of
this work are accurate deformable registration algorithms for dMRI data that can
execute in the order of seconds, as opposed to dozens of minutes to hours con-
sumed by their classical counterparts.
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1 Introduction

Image registration is a fundamental operation in medical image analysis. Broadly
speaking, the image registration problem involves finding the correspondence (match)
between images in different coordinate systems. This correspondence can be estab-
lished by finding an appropriate geometric transformation between the coordinate sys-
tems. The nature of this transformation can vary from a simple global affine transforma-
tion to a full non-rigid transformation yielding a dense deformation field. In this paper,
we develop the first end-to-end deep learning based model for full-deformable registra-
tion of fiber orientation distribution function (fODF) fields derived from diffusion MRI
(dMRI) data. Our method can be easily ported (after some simple modifications) to
other commonly used derived representations from dMRI such as, the diffusion tensor
(DT) or the ensemble average propagator (EAP) fields.
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This paper firstly builds in novel ways on the existing manifold valued convolu-
tion operations presented in [5] and then develops a novel architecture suitable for the
non-rigid registration of fODFs derived from dMRI. Our novel contributions include:
1) An efficient CUDA implementation of the core operations presented in [5] 2) Several
differentiable layers required for diffusion MRI registration (Jacobian estimation layer,
reorientation layer) 3) Design and implementation of end-to-end deformable dMRI reg-
istration networks 4) A detailed experimental analysis of these models.

1.1 Prior Work: Classical dMRI Registration

Image registration is a fundamental problem in medical image analysis with numer-
ous applications. We now present a brief note on dMRI registration applied to derived
representations such as: diffusion tensor images (DTI), ensemble average propagator
(EAP) fields or fiber orientation density function (fODF) fields. All of these images are
manifold-valued images in that, at each voxel, we have a manifold-valued ’object’. In
the case of DTI, this object is an element of the manifold of (n, n) symmetric positive
definite matrices denoted by Pn, for EAP (fODF) fields/images, it is the manifold of
probability density functions.

Early work on DTI registration used a registration cost function based on either
fractional anisotropy (FA) or some rotation invariant features computed from the DTs
[14,26] These methods are however not applicable to higher order tensor field repre-
sentation which might be needed to cope with crossing fibers in the data. In this con-
text, groupwise registration of fourth order tensor representations of dMRI data was
presented in [3]. In [29], a non-rigid registration and reorientation algorithm applied
directly to the raw dMRI data was presented. Their algorithm performs the reorienta-
tion via the use of pre-specified fiber basis functions.

Several approaches to register the EAP (fODF) fields have been proposed in lit-
erature. These methods first compute EAPs (fODFs) at each voxel and then register
these derived manifold-valued fields/images [7,17]. For an extensive literature review,
we refer the reader to [10].

1.2 Prior Work: Deep Learning Based Registration

Modern classical registration algorithms are relatively accurate, but require substan-
tial computation time due to their iterative nature. It is not uncommon for even well-
optimized software such as ANTs [1] to take upwards of 30min to register a pair of
high-resolution brain MRI volumes. With the introduction of deep learning based regis-
tration methods the possibility of registration with accuracy on-par with classical meth-
ods, but with a runtime on the order of seconds is within reach.

The first deep learning based registration methods [27] required ground truth defor-
mation fields and processed image patches instead of full images. Later methods
used fully unsupervised methods for training but still using a path-based approach
[16,23]/With the introduction of the VoxelMorph architecture [2], Balakrishnan et al.
showed that full-resolution image registration is possible within a deep network. Further
work has extended the VoxelMorph architecture to guarantee diffeormorphic registra-
tions [8] and learning contrast-invariant registrations [11]. These recent models achieve
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accuracy on-par with classical registration algorithms, with several orders of magnitude
improvements in runtime. All the above methods are however designed for registration
of scalar-valued images.

In this paper, we focus on the task of dMRI registration. Registration of dMRI data
is more challenging than traditional modalities for several reasons. First, because dMRI
contains directional information, a reorientation step must follow the application of a
deformation field. Second, dMRI data has substantially more information at each voxel
than most other modalities, and thus requires more memory and computation to process.
Finally, in the context of deep learning based methods, there has been little attention
given to developing network architectures that respect the manifold geometry of the
dMRI derived image representations such as DTI, fODF images etc., which form the
input to the network or can be estimated within the network.

To the best of our knowledge, the only existing deep-learning based dMRI reg-
istration method in literature is DDMReg [28]. This model extracts FA images and
several tract orientation maps (TOMs) from the dMRI data. Each FA and TOM image
is passed through a separate registration subnetwork (each of which is a VoxelMorph
style architecture [2]). Each subnetwork outputs a proposal deformation field, and a
multi-deformation fusion subnetwork combines these fields to generate a final predicted
deformation field. This approach has a few pitfalls. First, the registration subnetworks
and fusion subnetworks are all trained separately, thus not achieving the performance of
end-to-end trained models. Second, the FA and TOM inputs are hand-crafted features
extracted from the dMRI data which consumes preprocessing time during inference.
Further, we show that we can achieve improved performance by building a model that
can directly process dMRI derived (fODF) data in a way that respects the underlying
geometry.

1.3 Paper Organization

In Sect. 2 we briefly review the Manifold Valued Convolution (MVC) and Manifold
Valued Volterra Series (MVVS) operations, the core layers used to process the fODF
fields derived from dMRI. In Sect. 3, we present efficient CUDA implementations of
the MVC and MVVS operations. Section 4 contains a description of our deep network
architectures for deformable registration, including a differentiable implementation of
a dMRI reorientation method. Finally, Sect. 5 contains an extensive set of experimental
results demonstrating the performance of our geometric deep network.

2 Manifold Valued Volterra Series

We will now very briefly review the manifold valued convolution (MVC) and manifold
valued Volterra series (MVVS) operations introduced in [5]. A manifold-valued image
is a map F : Zn → M and this image modality naturally arises in various dMRI data
representations. Recall that for x1, x2 ∈ R

n, the Hadamard product of x1 and x2 is
x1 � x2 = [x11x21, . . . , x1nx2n]. The N th order Volterra series for g : Rn → R and
f : R → R is given by h(x) =

∑N
n=1

∫ · · · ∫ gn(x − τ1, . . . , x − τn)
∏n

i=1 f(τi)dτi.
In this work, we only consider the first and second order MVVS, which are defined

by
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MV C(F,w)(y) = Expm(y)

(
K∑

z=1

w(z − y)Logm(y)F (z)

)

MV V S(F,w1, w2)(y) = Expm(y)

[
K∑

z=1

w1(z − y)Logm(y)F (z)

+
K∑

z1,z2=1

w2(z1 − y, z2 − y)
(
Logm(y)F (z1)

)
�

(
Logm(y)F (z2)

)
]

where F : Z
d → M is a manifold-valued image and wj : (Zd)j → R is the j-th

kernel with size K. For y ∈ Zd where m(y) = FM(F (z)) where each z ranges over
the support of the Volterra masks wj centered at y and FM is the unweighted Frechet
mean. TheN -th order MVVS is a straightforward generalization and we refer the reader
to [5].

In [4], it was reported that using the sample in the middle voxel of the moving
window gives similar performance to using the Frechet mean. This modification signif-
icantly improves performance and ease of implementation, thus we opt to use the mid
point of the moving window as the base point throughout this paper. In the interest of
computational and parameter efficiency, we only use MVC and second-order MVVS
layers in our experiments.

3 Implementation

In this section, we present a novel CUDA implementation of the MVVS layer. This
implementation allows us to build networks for processing the fODF field derived from
the full dMRI volume.

3.1 Data of Interest

In this work we limit our focus to the fODF representation of dMRI data [18]. An fODF
describes the distribution of fiber orientations in a voxel. The diffusion signal is mod-
eled as the convolution of the fODF and the response function characterizing diffusion
along coherent fiber bundles. Thus, given the diffusion signal and the response func-
tion, the fODF can be solved for via deconvolution [20]. The space of all fODFs can be

defined by the set Φ:
{

φ : û ∈ S2 → R+
0

∣
∣
∣ φ(û) ≥ 0,

∫
S2 φ(û)dû = 1

}
where, R+

0 is

the set of nonnegative reals. Using a square root density parameterization, this distribu-
tion can be identified with a point on the unit Hilbert sphere, a Riemannian manifold
whose geometry is fully known, and has been used in literature for EAP (fODF) esti-
mation [22]. We represent a sampled fODF as a point on the unit hypersphere SM fol-
lowing the convention in [5], where M is the number of sample points. The unit hyper-
sphere is a Riemannian manifold, thus this representation fits well into theMVC/MVVS
framework. By virtue of the fact that this representation of fODF leads to elements in
the space of probability distributions, unlike the spherical harmonic representation of
fODFs, it does not require explicit enforcement of non-negativity and integration to one
constraints.
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3.2 CUDA Implementation

We now present an optimized CUDA implementation of the MVC operation. This
allows us for the first time to use these operations at the scale of full dMRI volumes,
unlike the original MVC work presented in [5]. For clarity, we first present a naive
CUDA implementation and then briefly describe several optimizations added to the
naive implementation. We only present the MVC operation details in this section, but
we also implemented forward and backward passes for the MVVS operation. The code
is made public.

The input manifold-valued image will be represented by a tensor of shape C ×D ×
W ×H ×M , where C, D, W , H are the channels, depth, width and height respectively.
The output manifold-valued image will be a tensor of shape Cout × S(D) × S(W ) ×
S(H) × M where S(x) = x−K

T + 1, K is the filter size and T the stride. The data at
each voxel is a point on the hypersphere embedded in Euclidean space, SM−1 ⊂ R

M ,
and is thus an M dimensional vector. The weight filter will be represented as a tensor
of shape C ×Cout ×K3 where Cout is the number of output channels and K is the filter
size.

In the naive CUDA implementation, each CUDA thread will compute one output
voxel. Suppose a thread is assigned to compute voxel v = [c, d, w, h] in the output
image. It will perform the following steps:

1. Compute the input voxels coordinates in the receptive field of the output voxel v.
Let Ri(v) denote the ith voxel in the receptive field of v.

2. Compute the Riemannian Log of each voxel value in the receptive field with base
point set to the midpoint of the receptive field. LogRm(v)(Ri(v)) for i = 1, . . . ,K3

where m is the index of the midpoint.

3. Perform the following weighted sum, T =
∑K3

i=1 wiLogRm(v)(Ri(v))where wi are
the weight filter values.

4. Perform the Riemannian exponential ExpRm(v)(T ) and write it to the output
manifold-valued image at voxel coordinate v.

The closed form expressions for the Log and Exp maps on the sphere are given by
the following expression, where U = X − 〈X,Y 〉Y [19]. ExpY (X) = cos(‖X‖)Y +
sin(‖X‖) X

‖X‖ and, LogY (X) = U cos−1(〈X,Y 〉)/〈U,U〉.
We optimize the naive CUDA implementation with two strategies: 1) remove tem-

porary memory allocations by performing the Riemannian Log, weighted sum and Rie-
mannian Exp in-place (steps 2–4). 2) Use tiling [25] to reduce redundant global memory
reads by using shared memory to do spatial caching.

Performance Analysis. We perform a benchmark analysis of the following imple-
mentations of the MVC operation: 1. PyTorch CPU Implementation 2. PyTorch GPU
Implementation 3. Naive CUDA Implementation 4. Memory Optimized CUDA Imple-
mentation 5. Tiled CUDA Implementation. The metrics of interest are runtime and peak
global GPU memory usage. All experiments are run on an RTX 2080 Ti GPU with
CUDA version 11.1. A random S

M−1-valued image was generated with spatial dimen-
sions 803 and M = 45. A random weight kernel was generated with kernel size K = 3.
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The input and output channels are both 1. A CUDA thread block size of 53 is used. All
reported metrics are averaged over 10 runs.

Table 1. Performance of tested MVC Implementations. Mem-
ory usage is measured as peak GPU global memory usage.

Method Runtime (s) Memory Usage (MB)

PyTorch CPU 15.646 N/A

PyTorch GPU 0.378 9627

Naive CUDA 0.162 452

Memory-Efficient (M-E) CUDA 0.154 187

Tiled M-E CUDA 0.129 187

Results are reported in
Table 1. We can see that
even the naive CUDA imple-
mentation offers a substan-
tial improvement in both
runtime and memory usage.
Beyond this, the memory
efficient CUDA implemen-
tation achieves the goal
of peak memory usage no
greater than that required to

store the input and output tensors. Finally, the tiled memory efficient CUDA imple-
mentation further improves runtime. For all experiments we utilize the tiled memory
efficient CUDA implementation.

4 An MVC/MVVS Architecture for Deformable Diffusion MRI
Registration

Moving 
fODF 

Fixed 
fODF

MVC/MVVS Based
U-Net

Manifold 
FC

CNN Based U-
Net

Deformation
Field

Jacobian
Estimator

Spatial
Transformer

PSF
Reorientation

Warped 
fODFLoss

Fig. 1. Deformable registration network architec-
ture.

We now present architectures for
unsupervised registration of dMRI
data represented using fODF images
(fODFs at each voxel). We present
architectures for deformable (non-
rigid) registration tasks. Several lay-
ers must be introduced. The first is the
previously presented MVC/MVVS
layer, which extract features from the
fODF images. The second is a differ-
entiable estimator of the local Jaco-
bian of the deformation field. The
third is a differentiable point spread
function fODF (defined subsequently)

reorientation layer. Finally, we utilize the spatial transformer [12] layer for resampling
of the fODF field. By using differentiable versions of the Jacobian estimation, reorienta-
tion and resampling operations we can perform the transformation of the moving fODF
image inside the network, and compute a loss directly between the input fixed image
and output warped image. This allows us to train in a fully unsupervised manner. This
strategy has been used in several other methods for neural network based registration
(e.g. [2,28]). We release all of the code required for inference and training using these
models.
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4.1 Differentiable Jacobian Estimator

When registering fODF images, a vital step is reorientation. When a deformation field
is applied to an fODF image, the underlying spatial grid will be warped. Since the fODF
functions at each voxel represent directional information, they must be transformed in
accordance with the deformation field. We implement the reorientation method utilized
in [17], which uses the local Jacobian of the deformation field to reorient the fODF
functions.

Our model will be trained in an unsupervised manner, with the deformation and
reorientation of the moving fODF image occurring inside the network during the train-
ing stage. Thus, we must compute the local Jacobian of the deformation field during
training. To this end, we implement an efficient second order central difference based
approximator for computing the Jacobian of the deformation field at each voxel. The 3D
deformation field is represented as a tensor of shape B ×D×W ×H ×3, where B, D,
W , and H are the batch, depth, width and height respectively. The Jacobian estimator
computes a second order central difference estimation of the partial derivatives along
each direction of the deformation vectors to output a B × D × W × H × 3× 3 tensor,
i.e. a field of local Jacobian matrices.

4.2 Differentiable PSF Reorientation

Given the local Jacobian of the deformation field at every voxel, the next step is to
reorient the fODF. Recall that the fODF at each voxel is represented as a density func-
tion on the sphere f : S2 → R. But we sample the fODF density along M sample
points on the sphere to represent it as an M -dimensional probability vector. Thus our
reorientation method must operate on this representation. We opt to implement a differ-
entiable version of the method presented in [17]. In short, this method approximates the
fODF function as a weighted sum of spherical point spread functions (PSFs), reorients
the PSFs, and then resamples the weighted sum of the reoriented PSFs to return to the
original representation, an M -directional probability vector. This method was shown to
give improved results for fODF reorientation relative to previous methods, and satis-
fies some useful properties (e.g. the fODF integral and the partial volume fractions are
guaranteed to be preserved).

We implement an efficient, batch-mode, differentiable version of this operation in
PyTorch which can run on GPUs. To the best of our knowledge, this is the first differ-
entiable implementation of an fODF reorientation method.

4.3 Registration Architecture

We now have all the building blocks for an fODF registration network. A schematic
of the proposed architecture is presented in Fig. 1. The moving and fixed images are
concatenated along a channel axis and passed through a feature extraction head which
consists of an MVC or MVVS based UNet, a ManifoldFC block and a traditional CNN
based UNet. The ManifoldFC operation, originally introduced in [6], allows us to map
manifold-valued features to scalar-valued features.
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The output of the UNet heads is a deformation field (deformation vectors are stored
across the channel dimension as in e.g. [2]). This deformation field is used to resam-
ple the input moving image. Simultaneously, the deformation field is passed through a
Jacobian estimator block. The Jacobian matrices are then used to reorient the resampled
moving image.

The MVC/MVVS UNet block consist of 4 layers mapping across the following
channel sizes: 2 → 8 → 16 → 32 → 32, each layer with a kernel size of 3. The
traditional U-Net block consists of 3 encoder and 3 decoder layers, with a maximum of
1024 channels and skip connections between encoder and decoder layers.

In the deformable registration network a loss function is applied to the output
warped image, with the input fixed image as the target as in [2]. By performing the
resampling and reorientation inside the network, we can train in a fully unsupervised
manner, in contrast to previous approaches such as [27] which required ground truth
deformation fields to train.

5 Experiments

We now present several experiments demonstrating the performance of our MVC and
MVVS registration networks on deformable registration tasks.

5.1 Dataset

We train and evaluate on dMRI data from the Human Connectome Project (HCP) Young
Adult dataset. HCP consists of dMRI scans of the brain for 1200 subjects aged 22–35.
For details about acquisition parameters, subject criteria, preprocessing etc. we refer the
reader to the HCP study [21]. We randomly selected 400 subjects from the HCP dataset
and run them through an fODF generation pipeline which consists of response function
estimation using the technique in [9] to generate subject specific white matter, grey
matter and CSF response functions. We then use multi-shell multi-tissue constrained
spherical deconvolution [13] to reconstruct the white-matter fODF functions from the
diffusion signal and estimated response function.

5.2 Evaluation Strategy

We evaluate registration accuracy by computing the DICE score between known fixed
and warped structures. We limit our evaluation to white matter tracts, since this is a
structure well captured by dMRI. Optimally, one would use expert labeled segmenta-
tion’s of white matter tracts to perform the registration evaluation, but no such segmen-
tation’s exist for the HCP dataset. Instead, we opt to use a well-validated automatic
segmentation algorithm to generate segmentation masks for white matter tracts in the
moving and fixed image. Specifically, we utilize the TractSeg segmentation model [24].
A total of 72 white matter tracts were segmented. For subjects in the validation set,
segmentation accuracy was visually reviewed and poor segmentation’s were discarded.
At evaluation time, a moving and fixed image pair are registered. The transformation
is then used to transform each of the moving image white matter tract segmentation
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Fig. 2. Comparison of deformable fODF registration methods on a subset of white matter tracts.
The shortened tract names correspond to the following structures. ST PREC: Striato-precentral.
ST PREM: Striato-premotor. T POSTC: Thalamo-postcentral. T PREC: Thalamo-precentral. CG:
Cingulum left. CST: Corticospinal. FPT: Fronto-pontine. STR: Superior Thalamic Radiation. ST
FO: Striato-fronto-orbital

masks. Finally, the DICE score is computed between the warped tract segmentation
map and fixed tract segmentation mask.

For deformable registration, we focus on a template registration task. A randomly
chosen subject from our 400 subject dataset is selected as a reference fixed image. All
other samples from the dataset will be registered to this subject. Thus we have a dataset
of 399 moving, fixed image pairs where the fixed image is the same for all samples.
We split this dataset into 349 training samples, 25 validation samples and 25 test sam-
ples. Deformable registration algorithms generally require an accurate initialization to
perform well. Thus, moving and fixed image pairs are first pre-aligned using an affine
registration algorithm.

For this experiment, we take the additional step of downsampling the moving and
fixed fODF images by a scale factor of 1/2 to obtain images of spatial dimensions
64×40×64. In spite of the optimizations made in Sect. 2, fODF registration is a memory
intensive task, thus downsampling was necessary to allow our registration networks to
run on a single GPU. Future advances in hardware and algorithms will allow us to run
our method on full resolution images.
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We train for 1000 epochs using Adam optimizer with an initial learning rate of
0.0001 with the mean square error loss function. We select the model parameters at the
epoch with the best validation set loss and use it for our evaluation.

Our set of comparison methods includes classical and deep learning based
approaches. We start with a classical deformable registration approach. For this we use
Symmetric Normalization (SyN) based deformable registration, which has been shown
to be the state of the art across a variety of registration tasks [15]. We use the mrtrix3
implementation of SyN designed for fODF registration [18] We configure the SyN reg-
istration algorithm to use a multi-resolution pyramid with 4 levels at scale factors of
1/8, 1/4, 1/2, and 1. We use a maximum number of iterations of 1000, 1000, 1000
and 100 at each level respectively, although an early stoppage criteria usually stops
the registration before the maximum number of iterations. We also evaluate a Voxel-
Morph style UNet FA registration model which can be obtained by removing the ini-
tial MVC/MVVS encoder head from the deformable registration architecture presented
previously. We also test DDMReg, a deep learning based diffusion MRI registration
method [28].

Table 2. Performance of tested deformable registration meth-
ods.

Method DICE Runtime (s) % Voxels det(J) ≤ 0

FA Voxelmorph 0.7126 0.9 0.007%

fODF Classical 0.7601 839 0.012%

fODF MVVS 0.7493 2.6 0.006%

fODF MVC 0.7317 2.1 0.005%

fODF DDMReg 0.7417 12.2 0.003%

We measure the per-
centage of voxels in the
deformation field with non-
positive Jacobian determi-
nants to determine regions
where the deformation field
is non-diffeomorphic. We
found that for our meth-
ods, explicit regularization
of generated deformation
fields with a loss function

penalty term was not necessary. Indeed, our model achieves a very low percentage of
voxels with non-positive Jacobians without an explicit regularization term.

5.3 Results

All evaluation results are computed across test sets unseen during training and not used
for model checkpoint selection or hyperparameter optimization.

The deformable registration experiment results are presented in Table 2. Figure 2
shows the DICE performance of all compared methods on a subset of the 72 white mat-
ter tract structures. Again, DICE scores are averaged over all 72white matter tract struc-
tures generated in our evaluation pipeline. Among the learning based (non-classical)
techniques we again see the MVVS based model achieving the best DICE overlap score.
The FA based VoxelMorph style model still lags behind all methods which use the full
fODF. The MVVS based model again outperforms the MVC based model. The DDM-
Reg based model is not trained end-to-end, instead opting for independently training
several registration proposal networks and a registration fusion head. It also does not
take the fODF as input directly, instead extracting hand-engineered features from the
fODF image and inputting those features into the network (see Sect. 1.2 for details).
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Optimally, the network should have the capacity to learn features useful for the registra-
tion task internally. We attribute the improved performance of our MVVS based model
relative to the DDMReg model to these limitations of the DDMReg model, which are
not present in our MVVS based fODF registration technique. Again, we approach the
accuracy of the classical registration method at just 0.3% of the runtime. We see that the
MVVS based model also outperforms DDMReg on registration time, in large part due
to the optimizations made in our custom CUDA implementation of the MVVS layer
Sect. 2. The runtime results in this table does not include preprocessing time required to
generate the FA and TOM features required for DDMReg, which can take several addi-
tional minutes [28], thus our results underestimate the true runtime improvement of our
MVVS based model over DDMReg. Finally, all methods achieve a very small percent-
age of deformation field voxels with non-positive Jacobian, indicating that generated
deformation fields are close to being diffeomorphic.

6 Conclusions

In this paper we presented a novel geometric deep neural network for registration of
fODF images. We presented a registration model that respects the underlying geometry
of fODF (manifold-valued) images. We also presented an efficient CUDA implementa-
tion of the vital manifold-valued image processing layer (MVC/MVVS) and introduced
a novel Jacobian estimation and reorientation layer. Overall, our method is the first end-
to-end trained model for fODF (dMRI) image registration. Finally, we presented several
experiments demonstrating that our MVVS (MVC) for deformable registration achieve
accuracy in par with classical methods but at a fraction of the processing time.
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