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Abstract. Patient motion during PET is inevitable. Its long acquisition
time not only increases the motion and the associated artifacts but also
the patient’s discomfort, thus PET acceleration is desirable. However,
accelerating PET acquisition will result in reconstructed images with low
SNR, and the image quality will still be degraded by motion-induced arti-
facts. Most of the previous PET motion correction methods are motion
type specific that require motion modeling, thus may fail when multiple
types of motion present together. Also, those methods are customized for
standard long acquisition and could not be directly applied to accelerated
PET. To this end, modeling-free universal motion correction reconstruc-
tion for accelerated PET is still highly under-explored. In this work, we
propose a novel deep learning-aided motion correction and reconstruc-
tion framework for accelerated PET, called Fast-MC-PET. Our frame-
work consists of a universal motion correction (UMC) and a short-to-
long acquisition reconstruction (SL-Reon) module. The UMC enables
modeling-free motion correction by estimating quasi-continuous motion
from ultra-short frame reconstructions and using this information for
motion-compensated reconstruction. Then, the SL-Recon converts the
accelerated UMC image with low counts to a high-quality image with
high counts for our final reconstruction output. Our experimental results
on human studies show that our Fast-MC-PET can enable 7-fold acceler-
ation and use only 2 min acquisition to generate high-quality reconstruc-
tion images that outperform/match previous motion correction recon-
struction methods using standard 15 min long acquisition data.
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1 Introduction

Positron Emission Tomography (PET) is a commonly used functional imaging
modality with wide applications in oncology, cardiology, neurology, and biomed-
ical research. However, patient motion during the PET scan, including both
involuntary motions (i.e. respiratory, cardiac, and bowel motions) and voluntary
motions (i.e. body and head motions), can lead to significant motion artifacts,
degrading the downstream clinical tasks. Moreover, the long acquisition time
that easily exceeds 15min, will lead to increased patient motion, patient dis-
comfort, and low patient throughput.

In previous works of PET motion correction (MC), a variety of external
device-aided and data-driven MC methods have been developed for correcting
specific motion types. For example, in respiratory MC, Chan et al. [4] developed
a non-rigid event-by-event continuous MC list-mode reconstruction method. Lu
et al. [10] further improved their method by generating matched attenuation-
corrected gate PET for respiratory motion estimation. In body MC, Andersson
et al. [1] proposed to divide the PET list-mode data into predefined temporal
frames for reconstructions, where the reconstructions of each frame are regis-
tered to a reference frame for body MC. Later, Lu et al. [11] further developed a
reconstruction-free center-of-distribution-based body motion detection and cor-
rection method. In cardiac MC, cardiac cycle tracking/gating using electrocar-
diography (ECG) is still the gold-standard [12]. While providing efficient MC
solutions to reduce motion artifacts for different motion types, these methods
usually require prior knowledge of the motion type and need motion-type-specific
modeling. Thus, these previous MC methods may lead to sub-optimal image
quality or fail when multiple motion types are present simultaneously. There are
also recent attempts in using ultra-fast list-mode reconstruction of short PET
frames to estimate motion during the PET scan [18,21]. However, these meth-
ods may not adapt well to many motion types with non-rigid motion [18], and
extending to non-rigid motion is computationally infeasible, i.e. requiring non-
rigid registration of thousands of frames for a single scan using traditional regis-
tration algorithms [21]. In addition, it still requires the standard long acquisition
to collect sufficient events to achieve a reasonable signal-to-noise ratio (SNR) in
the final reconstruction. On the other hand, previous works have also investi-
gated the feasibility of reducing the PET acquisition time. Lindemann et al. [9]
and Lasnon et al. [8] found that one can reasonably maintain the PET image
quality and lesion detectability with two-fold acquisition time reduction using
traditional reconstructions. Weyts et al. [19] show that a deep learning-based
denoising model can enable two-fold PET acquisition time reduction and pro-
vide image quality that matches with the full acquisition. However, these works
only show the feasibility of a 2-fold time reduction and did not consider the
residual motions during the accelerated acquisition.

In this work, we aim to address these challenges by developing a PET recon-
struction framework that can 1) reduce the acquisition time, i.e. 7-fold accel-
eration, and 2) correct the residual motion, regardless of the motion type, in
the accelerated acquisition. Specifically, we propose a novel deep learning-aided
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data-driven motion reduction and accelerated PET reconstruction framework,
called Fast-MC-PET. In the Fast-MC-PET, we first design a universal motion
correction method aided by deep learning to reconstruct a motion-reduced image
from the short acquisition. While reducing the motion artifacts given the acceler-
ated acquisition and our motion correction, the reconstructed image still suffers
from high noise levels due to low event counts. Thus, in the second step of Fast-
MC-PET, we also deploy a deep generative network to convert the low-counts
images to high-counts images. Our experimental results on real human data
demonstrate the Fast-MC-PET can generate high-quality images with reduced
motion-induced errors while enabling 7-fold accelerated PET acquisition.

2 Methods

Our Fast-MC-PET consists of two key components, including a universal motion
correction (UMC) module and a short-to-long acquisition reconstruction (SL-
Recon) module. In UMC, we first partition the list-mode data into ultra-short
list-mode data, i.e. every 500ms, and estimate a quasi-continuous motion over
the short acquisition. Given the motion and the original list-mode data, a motion-
corrected short-acquisition image is then reconstructed by a motion-compensated
OSEM list-mode reconstruction. Finally, a deep generative model is devised to
transform the motion-corrected short-acquisition image into a high-count long-
acquisition image, thus providing a motion-corrected high-count image using
only accelerated short-acquisition. In the following sections, we will describe
these steps in detail (Fig. 1).

2.1 Universal Motion Correction

With the short acquisition data, the UMC aims to generate a motion reduced
low-count reconstruction. The UMC consists of three steps, including point cloud
image (PCI) & paired gated image generation, quasi-continuous motion estima-
tion, and motion-compensated OSEM list-mode reconstruction.

Point Cloud and Paired Gated Image Generation. To estimate a continu-
ous motion, the list-mode data is first partitioned into a series of ultra-short list-
mode data, i.e. every 500ms. For every 500ms list-mode data, we back-project
the Line-of-Response (LOR) of each event within the time-of-flight (TOF) bin,
and all the back-projected LORs form a PCI for this short time frame. The PCI
reconstruction can be formulated as

Pj,t =
∑

i

ci,j,tLi,t

Qj
, (1)

where ci,j,t is the system matrix that represents the contribution of an annihila-
tion originating from pixel j being detected on LOR i at time t, accounting for
geometry, resolution, and solid angle effects. Li,t is the decay correction factor.
Qj is the sensitivity of voxel j that is pre-computed via Qj =

∑
i ci,j , and Pj,t

is the back-projected value of voxel j at time t with sensitivity correction.
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Fig. 1. The overall pipeline of Fast-MC-PET. The Universal Motion Correction (UMC)
module (grey box) reconstructs motion-reduced image from the short acquisition data.
The Short-to-Long Acquisition Reconstruction (SL-Recon) module (pink box) converts
the UMC image from short acquisition to long acquisition. (Color figure online)

Due to the ultra-low-counts level, the signal-to-noise ratio (SNR) of PCI is
low and is unsuitable for motion estimation tasks, as demonstrated in Fig. 2’s 1st
row. Thus, we deploy a deep learning-based denoising network, i.e. UNet [16],
that aims to convert PCIs to gated OSEM images with high SNR. To train the
denoising network, we first reconstruct the amplitude-based respiratory gated
OSEM images [15] using the body motion free list-mode data, extracted by
the Centroid-Of-Distribution (COD)-based body motion detection method [11].
Then, within each gate, we randomly extract 10% PCIs to construct the training
pairs of PCI and the corresponding gated image. L2 loss is used for the network
training, and can be formulated as

Ldn = ||γg − fdn(Pg)||22 (2)

where γg is the gated OSEM image and Pg is the randomly extracted PCI that
lies in the same gate. With a trained denoising model fdn(·), the series of PCIs
can then be converted to a series of high-quality denoised PCI (dPCI) via:

γt = fdn(Pt) (3)

where γt is the denoised images with t = (0 ∼ Δt,Δt ∼ 2Δt, ..., T − Δt ∼ T ).
Here, we set Δt = 0.5s and T = 120s here, thus generating 240 3D images.
Examples of dPCIs are illustrated in Fig. 2’s 2nd row.
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Quasi-Continuous Motion Estimation. A quasi-continuous motion can be
estimated using the series of dPCIs from the previous step. Within the first 5 s,
the dPCI in the expiration phase, i.e. with the highest COD coordinates in the z-
direction, is chosen as the reference frame γref for all the other frames γt, resulted
in 239 dPCI pairs requiring registration. Conventional registration methods [14,
20] are time-consuming, and it is prohibitively long to register hundreds of 3D
pairs here. Thus, we propose to use a deep learning-based registration method
for fast motion estimation [3] in our framework. Given the reference dPCI image
γref and the source dPCI image γt, we use a motion estimation network, i.e.
UNet [16], to predict the motion deformation Mt = fm(γref , γt). The network
is trained by optimizing the following loss function:

Lm = ||γref − Mt ◦ γt||22 + β||∇Mt||22 (4)

where the first term measures the image similarity after applying the motion
prediction Mt, and the second term is a deformation regularization that adopts
a L2-norm of the gradient of the deformation. The regularization’s weight is set
as β = 0.001. During training, γref and γt are randomly selected from the gated
images. With a trained motion estimation network fm(·), we can then estimate
the quasi-continuous motion using Mt = fm(γref , γt) with t = (0 ∼ Δt,Δt ∼
2Δt, ..., T − Δt ∼ T ).

Motion-compensated OSEM List-mode Reconstruction. To reconstruct
a single image λ at the reference location γref using all the coincidence events, we
can deform the system matrix at each time t to the reference location, generating
new deformed system matrixs ct→ref

i,j using Mt from the previous step. Deforming
the system matrix can be seen as "bending" the LORs into curves of response
(CORs), where both forward and back-projections are traced along the CORs.
In list-mode notation, for event k occurring on LOR i(k) at time t(k), we replace
indexes i by k, and substitute ck,j in the previous TOF-MOLAR [6] by ct→ref

k,j,τk
.

The OSEM updating equation can thus be formulated as:

λn+1
j =

λn
j

Qj

K∑

k=1

ct→ref
k,j,τk

LkAkNk

T (
∑

j′ ct→ref
k,j′,τk

LkAkNkλn
j′ + Rk,τk

+ Sk,τk
)

(5)

Qj =
1

nT

nT∑

t′=1

I∑

i=1

nτ∑

τ=1

ct→ref
i,j,t′,τLi,t′Ai,t′Ni (6)

where n is the number of iteration, k is the index of each detected event, ct→ref
k,j,τk

is
the deformed system matrix element with τk denoting the TOF bin for event k.
Lk is the decay factor and Ak is the attenuation factor derived from CT. Nk is the
sensitivity term, Rk,τk

is the randoms rate estimate, and Sk,τk
is the scatter rate

estimate in counts per second in TOF bin τk. The random events are estimated
from the product of the singles rates of the two detectors for each LOR, and then
uniformly distributed across all TOF bins. Here, Q is the sensitivity image that
is pre-computed by back-projecting randomly sampled events along the CORs to
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account for the motion on voxel sensitivity. When calculating Q, each time frame
of duration T is divided into nT short time bins, i.e. t′. Moreover, nτ denotes the
total number of TOF bins (nτ = 13 for the Siemens mCT PET scanner used in
this study). Here, we set the number of iteration to 2 and the number of subsets
to 21 for our UMC reconstructions.

Fig. 2. Examples of the Point Cloud Images (PCIs), the denoised PCIs (dPCIs), and
the deformed dPCIs using estimated motion fields.

2.2 Short-to-Long Acquisition Reconstruction

Even though the UMC reduces the motion effects in the reconstruction, the
UMC image still suffers from low SNR due to the limited counts from the short
acquisition, as compared to the long acquisition. Thus, we propose to use a
short-to-long acquisition reconstruction (SL-Recon) to convert the UMC image
from a short-acquisition to a long-acquisition one. Here, we use a conditional
generative adversarial network for this reconstruction. Given a UMC image λs

from the short acquisition, we can use a generative network, i.e. UNet [16], that
directly predicts the UMC image λl from a long acquisition from it. The SL-
Recon network is trained using both a pixel-wise L2 loss and an adversarial loss
defined as:

L2 = ||G(λs) − λl||22 (7)

Ladv = −log(Dgan(λl|λs)) − log(1 − Dgan(G(λs)|λs)) (8)

where G is the SL-Recon generative network and D is the discriminator network.
Here, we simply use OSEM reconstructions from long acquisitions (15min),
paired with OSEM reconstructions from short acquisitions (2min in the cen-
ter period), for the network’s training.

2.3 Evaluation on Human Data

We included 26 pancreatic 18F-FPDTBZ [13] PET/CT patient studies. All PET
data were obtained in list mode using the 4-ring Siemens Biograph mCT scanners



Deep Learning-Aided Accelerated PET Reconstruction 529

equipped with the AZ-733V respiratory gating system (Anzai Medical, Tokyo,
Japan). The Anzai respiratory trace was recorded 40Hz for all subjects. The
average dose administered to the patients is 9.13±1.37 mCi. 15 min of the list-
mode acquisition were used for each patient study. We used 23 patients to gener-
ate the training data for the PCI denoising model, the motion estimation model,
and the SL-Recon model. Extensive evaluations were performed on the remain-
ing 3 patients with different motion types. For training the PCI denoising model
and the motion estimation model, we generated 5 gated images for each patient
using OSEM (21 subsets and 2 iterations). For training the SL-Recon model,
the training pairs of long/short acquisition images were reconstructed using the
same OSEM protocol without gating. All the images were reconstructed into
200 × 200 × 109 3D volumes with a voxel size of 2.032 × 2.032 × 2.027 mm3.

2.4 Implementation Details

We implemented our deep learning modules using Pytorch. We used the ADAM
optimizer [7] with a learning rate of 10−4 for training the PCI denoising network,
motion estimation network, and the SL-Recon network. We set the batch size to
3 for all networks’ training. All of our models were trained on an NVIDIA Quadro
RTX 8000 GPU. The PCI denoising network was trained for 200 epochs, and then
fine-tuned for 10 epochs on the patient-specific gated images of the test patient
during the test time. The motion estimation network was trained for 250 epochs,
and the SL-Recon network was trained for 200 epochs. To prevent overfitting, we
also implemented ’on-the-fly’ data augmentation for the PCI denoising and SL-
Recon networks. During training, we performed 64 × 64 × 64 random cropping,
and then randomly flip the cropped volumes along the x, y, and z-axis.

3 Results

The qualitative comparison of Fast-MC-PET reconstructions is shown in Fig. 3.
As we can observe, the 2min reconstruction with no motion correction (NMC)
suffers from both motion blurring and high-noise levels due to low counts. The
first patient has both body/torso motion and respiratory motion during the 2min
PET scan, thus introducing heavy blurring for major organ boundaries, i.e. liver
and kidneys. The 2min UMC image recovers the sharp organ boundaries by
correcting those motions during the short acquisition. Based on the UMC image
from 2min acquisition, the final Fast-MC-PET image further reduces the noise
thus providing a near motion-free and high-count image, matching the 15min
UMC image quality. The second patient with respiratory and bowel motion intro-
duces significant image blurring for the pancreas (view 1) and intestines (view
2). The 2min UMC image can recover the diminished details inside these organ
regions. The final Fast-MC-PET image further reduces the noise, thus generat-
ing a high-quality image with motion correction and high counts. On the other
hand, by reducing the acquisition time from 15min to 2min, we can see that the
diminished organ structures, especially the intestine structure (view 2) in 15min
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Fig. 3. Visualization of Fast-MC-PET reconstructions. The 2min UMC images (2nd
column) contain less motion blurring, as compared to the no motion correction (NMC)
images (1st column). The virtual 15 min UMC images (3rd column) predicted from
2 min UMC images (2nd column) provide image-quality that match the true 15 min
images (last column).

NMC, can be preliminarily restored in 2min NMC. Complex motion, e.g. bowel
motion, in a 15min long acquisition is extremely challenging to correct even with
UMC. Thus, based on 2min acquisition, the Fast-MC-PET here shows better
reconstruction quality with better structural recovery. Similar observations can
be found for the third patient with respiratory and bowel motion, where the
2min-based Fast-MC-PET provides reconstruction quality matched the 15min
UMC reconstruction.

We compared our 2min-based Fast-MC-PET reconstructions to previous cor-
rection methods that are long acquisition based, i.e. 15min. The visual compar-
ison is shown in Fig. 4. First, we compared with the classic respiratory motion
correction method [2] that reduces the motion and noise by averaging the aligned
amplitude-gated images, where non-rigid registration [14] is used for alignments.
Then, we compared our method with the NR-INTEX [4] that compensates for
the respiratory motion by estimating the continuous deformation field using
internal-external motion correlation which is considered the current state-of-the-
art method. Both previous methods require specific motion-type modeling, and
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Fig. 4. Comparisons to previous motion correction methods. Our Fast-MC-PET with
2 min acquisition show improved structural details recovery (orange arrows), as com-
pared to previous methods with 15 min acquisition.

thus fail when additional motion types are present, e.g. body motion (Patient
1) and bowel motion (Patient 3). The UMC module in the Fast-MC-PET is
not specific to any motion type and thus can correct different types of motion
together. Therefore, our Fast-MC-PET can provide consistently better results
when multiple types of motion co-exist (Patients 1 and 3), and generate compa-
rable reconstruction quality when respiratory motion is dominating (Patient 2).

Fig. 5. Comparison of the gradient of reconstructions. Left: quantitative evaluation
using the mean gradient value. Right: visual comparison of the reconstruction and the
gradient.

For quantitative evaluation, we computed the mean normalized gradient of
the reconstructions, where better reconstruction with sharper structure will have
higher gradient values. The results are summarized in Fig. 5. The normalized
gradient values of Fast-MC-PET are 0.159, 0.154, and 0.132 for Patients 1, 2,
and 3, respectively, which are consistently higher than all previous methods. A
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comparison example from Patient 2 is shown on the right. The gradient image of
the Fast-MC-PET using only 2min acquisition shows higher gradient values and
more continuous structure patterns when compared to previous methods based
on 15min acquisition.

Fig. 6. The difference of COD trace between the reference frame and the current frame
(ΔCOD) over the 2 min acquisition. The ΔCOD before (red) and after (blue) UMC
correction are plotted for all three patients. The mean ΔCODs are reported in the
plots. (Color figure online)

Ablative evaluation of motion correction is shown in Fig. 6. The difference
of COD between the reference frame and the current frame (ΔCOD) over the
2min acquisition is visualized. For Patient 1 with body motion and irregular
breathing pattern, the ΔCOD curve before correction contains irregular steep
changes leading to a mean ΔCOD of 0.141 ± 0.086. With the UMC in our
Fast-MC-PET, the curve after correction is much more stable with a reduced
mean ΔCOD of 0.031 ± 0.041 with significance (p < 0.001). For Patients 2
and 3 with more stable and regular motion patterns, the UMC can also reduce
the mean ΔCOD from 0.135 ± 0.132 to 0.048 ± 0.059 and from 0.065 ± 0.048
to 0.028 ± 0.030, respectively. Both with significance (p < 0.001). A patient
example of PCIs over the 2min acquisition before and after applying the UMC
correction is shown in Fig. 2.

4 Discussion

In this work, we propose a novel deep learning-aided data-driven motion correc-
tion and reconstruction framework for accelerated PET (Fast-MC-PET). The
proposed method can accelerate the PET acquisition by nearly 7-fold and use
only 2min acquisition while providing high-quality reconstruction with motion
correction. In this framework, we first devise a UMC module that estimates con-
tinuous motion based on PCIs and use this information to reconstruct motion-
compensated images. Instead of using 15min long acquisition that 1) inherits
more motion due to long scanning time and 2) requires registrations of 1800
PCI pairs in UMC, we use 2min accelerated acquisition with less motion and
only requires registrations of 240 PCI pairs. The averaged registration inference
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time for one pair is 0.41s, thus needing about 98.5s for all registration in UMC
which is more manageable. The UMC reconstruction from accelerated acquisition
can then be inputted into the SL-Recon module to directly generate the 15min
long acquisition motion-corrected reconstruction. With this simple yet efficient
pipeline, we can generate high-quality motion corrected accelerated PET recon-
struction that potentially outperforms previous methods with the standard long
acquisition.

There are a few limitations and opportunities that are the subject of our ongo-
ing work. First, our pilot study only tested on 18F-FPDTBZ patients who were
all scanned using Siemens mCT. The trained model may not directly generalize
well to a different PET tracer/scanner. However, if the training data of different
tracers/scanners is available, the Fast-MC-PET can be fine-tuned and poten-
tially adapted to these distributions. Multi-institutional federated learning [22]
may also be used to improve the adaptation. In the future, we will further evalu-
ate the performance using patients scanned with different PET tracers/scanners.
Second, we used a temporal resolution of 500 ms for PCI in UMC with a focus
on abdominal region motion correction in this work. A higher temporal reso-
lution, e.g. 100ms, may be needed for cardiac motion correction in the chest
region, which is an important direction in our future investigation. Third, the
UMC correction performance is still not perfect, as shown in Fig. 6 blue curves,
where the ΔCOD values are non-zero. The current implementation uses a sim-
ple 3-level UNet for motion prediction. Deploying a more advanced registration
network, e.g. transformer-based network [5] and temporal registration networks
[23], may potentially further reduce the registration error and improve the final
reconstruction quality. Lastly, the PCI denoising step requires supervised train-
ing from paired gated images, which is time-consuming to prepare. In the future,
we will also investigate self-supervised denoising methods, e.g. Noise2Void [17],
for PCI denoising in our Fast-MC-PET.

5 Conclusion

This paper presents a deep learning-aided motion correction and reconstruction
framework for accelerated PET, called Fast-MC-PET. The Fast-MC-PET con-
sisting of UMC and SL-Recon, uses only 2min accelerated PET acquisition data
for high-quality reconstruction. The UMC reconstructs motion-corrected short
acquisition image, regardless of the motion type in the abdominal region. The
SL-Recon then converts the 2min UMC image into virtual 15min UMC image.
The experimental results demonstrate that our proposed method can accelerate
acquisition by nearly 7-fold and generate high-quality motion-corrected recon-
struction for patients with different motions.
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