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Abstract. The Gamma index Passing Rate (GPR) is considered the
preferred metric to evaluate dose distributions in order to deliver safe
radiotherapy treatments. For this reason, in the context of accelerat-
ing Monte-Carlo dose simulations using deep neural networks, the GPR
remains the default clinical metric used to validate the predictions of
the models. However, the optimization criterion that is used for train-
ing these neural networks is based on loss functions that are different
than GPR. To address this important issue, in this work we introduce
a new class of GPR-based loss functions for deep learning. These func-
tions allow us to successfully train neural networks that can directly yield
the best dose predictions from a clinical standpoint. Our approach over-
comes the mathematical non-differentiability of the GPR, thus allowing
a successful application of gradient descent. Moreover, it brings the GPR
computation time down to milliseconds, therefore enabling fast trainings.
We demonstrate that models trained with our GPR-based loss functions
outperform models trained with other commonly used loss functions with
respect to several metrics and display a 15% improvement of the GPR
over the test data. Code is available at https://rb.gy/vf5jwv.

Keywords: Deep Learning · Gamma index · Monte-Carlo ·
Radiotherapy

1 Introduction

In photon radiation therapy, accurate dose modeling is paramount to ensure
treatment plans safely target the tumour. Existing algorithms such as Collapsed
Cone Convolution algorithm [1] or Pencil Beam [11] fail to match the Monte-
Carlo (MC) radiation transport calculations in terms of precision of the deposited
dose [4,6]. Yet, MC generation of radiotherapy dose distributions remains too
time-consuming for clinical adoption. Recent deep learning accelerated MC dose
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calculation methods [12,16] offer a solution for this problem, utilizing common
computer vision loss functions. Even if such methods provide a good trade-
off between time and performance, training on such loss functions amounts to
solving a proxy problem, with no strict assurance to conjointly optimize the
clinical validation of the generated dose, which is performed using the Gamma
index Passing Rate (GPR).

The GPR is one of the most essential and commonly used clinical evaluation
metric for verification of complex radiotherapy dose delivery such as Intensity
Modulated Radiation Therapy or Volumetric Modulated Arc Therapy (VMAT)
[13]. As such, the GPR provides a clinical criterion to assess the quality of
the model’s predictions. Therefore, training directly with the GPR as primary
objective would yield more accurate training from a clinical standpoint. However,
the GPR has two main limitations that deter from using it as loss function.
First, training neural networks in a supervised setting requires a differentiable
loss function to allow backpropagation. Yet, the GPR is non-differentiable , thus
jeopardizing gradient descent. Secondly, despite efforts to bridge the gap, current
Gamma index and GPR computations remain time-consuming, especially when
comparing high dimensional dose distributions.

By taking a medical imaging perspective, we circumvent these challenges to
incorporate the GPR as an optimization criterion during training of neural net-
works. According to our knowledge, this is the first study to create a new class of
loss functions based on the GPR and to bring the speed of gamma index compu-
tations down to milliseconds, both for 2D and 3D dose distributions. We provide
a proof-of-concept showcasing deep learning acceleration of MC dose simula-
tions with models trained to optimize the presented GPR-based loss functions.
Finally, we study the behavior of the GPR-based loss functions and benchmark
them against the Structural Similarity Index Measure (SSIM), the Mean Abso-
lute Error (MAE), and the Mean Squared Error (MSE). Our code and models
will be publicly released.

2 Related Work

Loss Functions: When training a neural network on a task, the choice of the
loss function is crucial. Loss functions such as the Dice Loss [15], the Focal Loss
[7], or the Structural Similarity Index Measure (SSIM) [17] have revolutionized,
respectively, segmentation, object detection, and image processing tasks. More-
over, all loss functions do not yield the same impact on the training and inference,
as explained in the study introducing the Multiscale-SSIM [19].

This problem becomes even more evident in the medical field, in which models
need to ensure reliable performance. For this reason, integrating mathematical
objectives that train the models to optimize clinically relevant properties is of
utmost importance for their integration into clinical practice.

In light of these considerations, we overcome the mathematical challenge
of the GPR and turn this clinical metric into a viable loss function for our
task of accelerating the simulation of MC radiotherapy dose distributions. We
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provide a family of GPR-based criteria that are therefore in adequacy with
clinical requirements.

Gamma Index: The main challenges of computing the gamma index matrix
reside in the pixel-wise computation of gamma index values that can be time-
consuming proportionally to the dimensionality of the evaluated dose distribu-
tion. Prohibitive calculation time hinders the potential of the GPR as loss func-
tion. Many works propose ways to decrease the computation complexity, either
by changing the mathematical formalism or accelerating the calculations. In [5],
Gu et al. use a geometric method with a GPU-accelerated radial pre-sorting
technique to speed up calculations. Chen et al. [3] consider reducing the search
distance by using a fast Euclidean distance transform.

In this paper, we present an acceleration approach adequate for deep learn-
ing frameworks that significantly reduces the calculation speed and enables fast
training with our GPR-based loss functions.

3 Methods

3.1 The Gamma Passing Rate

Gamma Index: Let Dr and De be two dose distributions (Rk → R), respec-
tively the reference and the evaluated. In our case, the evaluated dose distribu-
tion is the model’s prediction. To each of them corresponds a grid of points in
which each point, Pr of Dr, and Pe of De has a coordinate vector, respectively
�d(Pr) and �d(Pe), and a dose value, Dr(Pr) and De(Pe).

Let us consider a point Pr in Dr and the points Pe in a vicinity V (Pr) around
Pr. Then the gamma index Γ is defined as a function of real values such that
for all Pr ∈ Dr, Γ (Pr) writes as follows:

Γ (Pr) = min
Pe∈V (Pr)

√
||�d(Pe) − �d(Pr)||2

DTA2
+

(De(Pe) − Dr(Pr))2

Δ2
(1)

where DTA is the tolerance on the Distance-To-Agreement (DTA), commonly
in mm, and Δ is the tolerance on the relative dose difference expressed as a per-
centage of the reference dose value Dr(Pr). This definition entails that each point
Pr has its own gamma index value in Γ , which indicates how close neighbouring
points Pe are, both spatially and dose-wise.

GPR: Let us introduce a dose threshold δ and consider a point Pr of the refer-
ence distribution such that Dr(Pr) ≥ δ. Then, given a DTA and dose tolerance
Δ, the evaluated distribution matches the reference at Pr, if the passing criterion
is satisfied, i.e. if:

Passing criterion: Γ (Pr) ≤ 1 (2)

The GPR is defined as the percentage of points Pr that satisfy the condition in
Eq. 2 while Dr(Pr) ≥ δ.
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Let 1Dr≥δ and 1Γ≤1 be the indicator functions defined such that:

1Dr≥δ(Pr) =
{

1 if Dr(Pr) ≥ δ.
0 otherwise. 1Γ≤1(Pr) =

{
1 if Γ (Pr) ≤ 1.
0 otherwise. (3)

Then we can write the GPR as follows:

GPR(Dr,De) =

∑
Pr∈Dr

1Dr≥δ(Pr) · 1Γ≤1(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(4)

Minimization Problem: With the GPR formulation in Eq. 4, maximizing the
GPR amounts to minimizing the corresponding loss function Lδ

GPR which draws
values in [0, 1]:

Lδ
GPR(Dr,De) = 1 −

∑
Pr∈Dr

1Dr≥δ(Pr) · 1Γ≤1(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
= 1 − GPR (5)

Due to the fact that the indicator function 1Dr≥δ does not depend on Γ , the
gradient of Lδ

GPR (with respect to the trainable parameters) can be written as
follows:

∂Lδ
GPR

∂w
=

1∑
Pr∈Dr

1Dr≥δ(Pr)
·

∑
Pr∈Dr

1Dr≥δ(Pr)
∂1Γ≤1(Pr)

∂Γ

∂Γ (Pr)
∂w

, (6)

where w represents any of the trainable parameters of the neural network.
The problem with the above definition of Lδ

GPR is that it generates zero
gradients, which is a direct consequence of the fact that the indicator function
1Γ≤1(·) is stepwise constant with respect to Γ , preventing SGD training. To
address this issue, in the following we propose the use of a soft approximation
of the objective function Lδ

GPR with non-zero gradients.

3.2 Soft Counting with Sigmoid-GPR

To avoid the propagation of null gradients, we propose to use the sigmoid func-
tion, σ(x) =

(
1 + exp−βx

)−1, to approximate counting passing voxels. The slope
of the sigmoid depends on the value of its sharpness β that we consider as a
hyperparameter.

Moreover, we note that for all Pr ∈ Dr, it stands that:

lim
β→+∞

σ(β · (1 − Γ (Pr)) = 1Γ≤1(Pr) (7)

Hence, the asymptotic behaviour of the sigmoid function combined with shift-
ing the gamma index values can provide an estimate of the count of passing voxels
by summation over all points Pr. The accuracy of the estimation then depends
on the value of β: the bigger the β, the more precise the estimation will be.
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Thus, we approximate the loss Lδ
GPR in Eq. 5 with Lδ

σ−GPR defined using
the sigmoid function:

Lδ
σ−GPR = 1 −

∑
Pr∈Dr

σ(β · (1 − Γ (Pr)))1Dr≥δ(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(8)

Lδ
σ−GPR is differentiable everywhere and, provided the sharpness β is not too

high, gradients are non-zero and allow gradient descent to update the model’s
weights during backpropagation.

Given Eq. 7, we remark that Lδ
σ−GPR accurately approximates the true GPR

loss function, i.e., Lδ
σ−GPR → Lδ

GPR as β → +∞.

Annealing Schedule of β: In light of the equations above, we propose to con-
sider β as a hyperparameter. At the beginning of training, the model usually
predicts poorly and the majority of voxels fail to satisfy the gamma index pass-
ing criterion. This implies that the corresponding loss computed with Lδ

σ−GPR

generates zero gradients everywhere if the value of β is set too high. To avoid this
behaviour, we propose an annealing schedule for β that starts with low initial
values and progressively increases β over the training. Moreover, when β ∼ 0+,
the Taylor series expansion of the sigmoid function yields:

σ(β · (1 − Γ (Pr))) ∼ β · (1 − Γ (Pr)) (9)

Given Eq. 9, we can write the Taylor expansion of Lδ
σ−GPR when β ∼ 0+:

Lδ
σ−GPR ∼ 1 − β +

∑
Pr∈Dr

Γ (Pr)1Dr≥δ(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(10)

Consequently, we introduce the loss function Lδ
Γ (Dr,De) to model the linear

behaviour of Lδ
σ−GPR at the start of the annealing schedule:

Lδ
Γ (Dr,De) =

∑
Pr∈Dr

Γ (Pr) · 1Dr≥δ(Pr)∑
Pr∈Dr

1Dr≥δ(Pr)
(11)

As the training continues and the loss decreases, the annealing scheme pro-
ceeds in progressively increasing β in order to improve the approximation of the
GPR loss Lδ

GPR defined in Eq. 5. As β increases and is acquiring larger values,
minimizing the loss amounts to getting failing voxels (voxels with Γ > 1) to
satisfy the passing criterion.

To model the behaviour of Lδ
σ−GPR at this stage (i.e. as β is acquiring larger

values), we modify Lδ
Γ in Eq. 11 by introducing the loss function Lδ

Γ>1. To
prevent backpropagation of zero gradients with respect to 1Γ>1, we use the
stopgrad operation:

Lδ
Γ>1(Dr,De) =

∑
Pr∈Dr

Γ (Pr) · 1Dr≥δ(Pr) · stopgrad(1Γ>1(Pr))∑
Pr∈Dr

1Dr≥δ(Pr)
(12)

For the sake of characterizing the behaviour of Lδ
σ−GPR in Eq. 8, we also

study trainings that involve the use of loss functions Lδ
Γ and Lδ

Γ>1 in the fol-
lowing experiments.



490 S. Martinot et al.

3.3 Accelerating Gamma Index Matrix Computations

Having a differentiable GPR loss does not make it directly applicable for neu-
ral network training since, by definition, it requires iterating over all voxels in
the given distributions, therefore leading to prohibitive computation time when
considering high-resolution distributions. To deal with this issue, we propose an
accelerated version of GPR for faster calculations.

To avoid physical incoherence when computing gamma index values, we sam-
ple the evaluated and reference distributions to the resolution 1 mm3 with bilin-
ear interpolation. By the definition in Eq. 1, one can observe that the evaluated
voxels located farther than DTA mm from Pr automatically yield a gamma index
superior to 1. Thus we limit the search within an invariant vicinity defined by the
chosen DTA. More precisely, the gamma index value of a reference point then
stems from comparing gamma values computed with voxels in a cube comprising
(2 × DTA + 1)k voxels, in the case of k dimensional dose distributions. We then
use unfolding to extract sliding local blocks of the evaluated distribution gener-
ated by the model. This operation creates one channel per voxel in the vicinity
defined by the DTA. We then apply the minimum operation over the channel
dimension to get the minimal gamma index value.

The approach enables fast computation of the gamma index distribution Γ ,
which is necessary for the calculations of Lδ

σ−GPR, Lδ
Γ an Lδ

Γ>1 presented in Eq.
8, 11, 12. Computation times are discussed in Sect. 5.

4 Dataset and Experimental Design

Dataset: We carried out the experiments on the publicly available dataset
presented in [10] comprising 50 patients treated with VMAT plans. Each patient
has a reference dose distribution computed from 1 × 1011 particles and a low
precision simulation computed from 1 × 109 particles. The main goal of the
methods benchmarked on this task is to generate the high precision simulation
of the dose from the available low precision one. More details about the dataset
can be found in the original publication. For our experiments, we split patients
to 35-5-10 for respectively, the train, validation and test sets. The cases in the
dataset correspond to various anatomies and therefore, we split them as equally
as possible between sets to avoid biases.

Even though our approach enables training on 3D dose distributions, the
dataset comprises a small number of samples. Thus, we decided to carry out the
experiments in 2D to favour significant experiments and a relevant benchmark.
In this setting, a training sample corresponds to an axial slice of a patient’s
dose volume. The 2D training dataset therefore comprises around 11k training
samples, where a sample is a pair of corresponding slices of low precision and
high precision dose simulation.

Preprocessing: We normalized both low precision and reference distributions
using the average dose maximum computed over the reference dose volumes
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from the training set. We then applied the same normalization on the validation
and test sets. To enable batch training, we padded each training sample with
zeros in order to match a fixed size of 256 × 256. To further help the model
generate accurate dose predictions, we added the corresponding CT slice as
second input channel to incorporate the corresponding anatomy. We applied
minimax normalization to CT volumes so voxel values remain in [0, 1] range.

Model: In all experiments, the model is a standard UNet architecture [14] with
skip connections between the encoder and the decoder. The encoder part of the
model performs downsampling twice with convolutional layers using 4× 4 filters
and a stride of 2. Symmetrically, transposed convolutions upsample feature maps
in the decoder. Each stage of the UNet comprises two convolution blocks before
downsampling or upsampling. Much like the convolutional block presented by
Liu et al. in [8], a convolution block first applies a convolution with 7 × 7 filters
and 3×3 padding, and then two convolutions with 3×3 filters to further process
the features maps. Each convolution is followed by Gaussian Error Linear Units
(GELU) activation units. The block ends with a residual connection to keep
high frequency details from the block’s input. Overall, the model has around 10
million trainable parameters.

Optimization Set-Up: In all trainings, we trained the model using AdamW
optimizer [9]. We set the initial learning rate to 3e−4 and decreased it progres-
sively during the training when the validation loss stagnated. Weight decay was
set to 5e−4 and batch size to 16. We trained for 20k iterations on a NVidia
GeForce RTX 3090 GPU. The trainings were stopped when overfitting appeared
by adopting the early stopping strategy. With this training scheme, early stop-
ping occurred after around 15k iterations, when the validation loss fails to
decrease 2% after 500 iterations.

Loss Functions: To train with the GPR-based loss using sigmoid count
Lδ

σ−GPR presented in Eq. 8, we designed the following annealing schedule for
the sharpness parameter β. We set the inital value of β to 2 × 10−2 for the first
150 iterations. Then, β increased by a factor of 5% every 50 iterations until it
reached an intermediate value of 3 where updates slowed down to 5% every 100
iterations. Increasing updates stopped when β reached a chosen ceiling value
of βmax = 5. Setting βmax prevented the slope of the sigmoid from getting too
sharp and the loss from encountering a vanishing gradient problem, which would
stop the updates of gradient descent. Additional benchmarks with the approxi-
mating loss functions Lδ

Γ and Lδ
Γ>1 have been also conducted, in order to better

characterize the behaviour of Lδ
σ−GPR for small values of β.

For all GPR-based functions, we set the dose threshold δ to 20%. This means
that, while loss functions compute the gamma index distribution by considering
all voxels, the computed approximated GPR value takes into account only voxels
Pr for which the dose value is superior to 20% of the maximum dose of the
reference distribution, i.e. Dr(Pr) ≥ 20% · maxPr∈Dr

Dr(Pr).
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Table 1. Evaluation metrics over the dose distributions comprised in the test set.
Different benchmarks over the considered loss functions for different metrics are high-
lighted with their mean and standard deviation. With bold we indicate the best per-
forming methods per metric.

Loss function GPR 2%/2mm GPR 3%/2mm GPR 3%/3mm SSIM (%) MAE MSE

MAE 47.6 ± 7.6 53.8 ± 8.4 66.5 ± 10.0 83.3 ± 9.2 0.39 ± 0.10 0.51 ± 0.28

MSE 50.2 ± 7.8 56.7 ± 8.7 69.5 ± 10.3 83.9 ± 11.5 0.34 ± 0.09 0.43 ± 0.29

SSIM+MAE 46.3 ± 8.8 52.3 ± 9.8 64.6 ± 11.9 94.0 ± 8.8 0.35 ± 0.09 0.74 ± 0.36

SSIM+MSE 49.1 ± 10.0 55.3 ± 11.1 67.5 ± 13.2 93.3 ± 3.1 0.30 ± 0.07 0.30 ± 0.15

Lδ
Γ 57.7 ± 3.3 65.0 ± 3.5 79.2 ± 4.3 87.5 ± 7.6 0.28 ± 0.07 0.30 ± 0.23

Lδ
Γ>1 57.2 ± 3.9 64.6 ± 4.1 79.0 ± 4.4 86.7 ± 8.1 0.27 ± 0.07 0.25 ± 0.16

Lδ
σ−GPR 59.3 ± 3.3 66.8 ± 3.6 81.4 ± 4.0 88.2 ± 7.5 0.24 ± 0.06 0.22 ± 0.16

To benchmark against our proposed GPR-based loss functions, we consid-
ered several other loss functions commonly used in computer vision. The bench-
mark includes the MAE and the MSE for a comparison with pixel-wise errors.
Finally, we considered the combination of pixel-wise errors with the SSIM. More
precisely, the benchmark includes SSIM-MAE and SSIM-MSE, which are the
equally weighted sum of respectively the SSIM and MAE, and the SSIM and
MSE. For each training on the loss functions considered above, we used the
exact same model architecture and optimization strategy, in order to promote
the reliability and fairness of the comparison.

5 Results

5.1 Training with GPR-Based Loss Functions

Extensive quantitative comparison on the test set for each training, using the
MAE, MSE, SSIM and GPR with various values of DTA and dose tolerance δ
are summarised in Table 1. As the test set comprises 10 patients, we computed
the metrics over each slice of each patient’s volume, and then average over the
test set per considered metric. Results point out that models trained with GPR-
based loss functions tend to outperform others with respect to the GPR, the
MAE and MSE. In contrast, models trained with SSIM-MAE and SSIM-MSE
show the highest SSIM scores. With a closer look however, one can observe that
they report among the lowest performance for the rest of the metrics. This result
indicates that the SSIM may not be a well-suited metric to evaluate the quality
of dose distributions, since it seems to be biased.

To assert statistical significance of the results, we take an in-depth look at
each patient in the test set to explain the high standard deviation values observed
in Table 1. Boxplots a), b) and d) in Fig. 1 point out the presence of an outlier
patient case on which models tend to fail with respect to the GPR, SSIM and
MSE. In contrast with SSIM, MSE and MAE-trained models, we observe that
models trained with GPR-based loss functions not only display robustness to
this outlier, but also show smaller standard deviation over the whole test set.
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Fig. 1. Boxplots representing the evaluation metrics achieved by trained models for
each case in the test set depending on the loss function used for training. The y axis
indicates the values of the considered metric. The x axis spcifies the loss function with
which the corresponding model was trained.

Figure 1 also allows to compare discrepancies within the family of GPR-
based loss functions. While all of them produce better performing models with
respect to all evaluation metrics except the SSIM, the loss function with sigmoid
counting Lδ

σ−GPR outperforms Lδ
Γ and Lδ

Γ>1. We explain this behaviour by the
fact that both Lδ

Γ and Lδ
Γ>1 focus only on minimizing gamma index values, and

not directly maximizing the number of voxels satisfying the passing criterion. We
conclude that Lδ

σ−GPR yields better maximization of the GPR and is therefore
the better approximation of the true GPR loss function Lδ

GPR.
The MSE-trained model outperforms other models trained with non GPR-

based loss functions with respect to the GPR, so we chose to display its dose
prediction conjointly with the dose generated by the Lδ

σ−GPR trained model in
Fig. 2. Although both trainings achieved convergence, the prediction of the MSE-
trained model manifests important artefacts at the bottom of the generated dose.
Additionally, the dose itself seems to be smoother than the dose predicted with
the Lδ

σ−GPR training. Finally, the MSE-trained model appears to overestimate
the dose in low-dose regions to a greater extent than the Lδ

σ−GPR-trained model.

5.2 Speed-Up of GPR-Acceleration Approach

In an effort to promote the GPR-based loss functions as viable deep learning
optimization criteria that allow fast error computations and training, we had
to accelerate gamma index computations. To quantify the extent of our accel-
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Fig. 2. First row from left to right: a single slice of the 1e9 dose volume, predictions of
models trained with MSE and Lδ

σ−GPR, and reference 1e11 dose. Second row: gamma
index maps for the three different representations.

Table 2. Speed comparison of metrics
computed over 2D or 3D dose distribu-
tions.

Metric 3D dose

Time(ms)

2D dose

Time(ms)

MSE 0.14 ± 0.02 0.13 ± 0.03

MAE 0.23 ± 0.06 0.19 ± 0.04

SSIM 27.49 ± 7.73 5.06 ± 3.32

Lδ
σ−GP R,

Lδ
Γ >1, Lδ

Γ

30.54 ± 0.01 4.51 ± 0.00

Exhaustive 985 ± 515 8.01 ± 2.28

PyMedPhys > 1 second > 100 ms

Fig. 3. Boxplots of execution times of
the SSIM, our proposed approach and the
exhaustive search method on 3D dose dis-
tributions.

eration approach, we benchmark against two methods. The first one is a GPU-
accelerated exhaustive search approach in a limited vicinity of 3 mm3 around the
considered reference voxel. The second is an open-source tool from PyMedPhys
[2] which makes use of acceleration ideas from Wendling et al. [18] and executes
on CPU and is single-threaded. Regarding the latter, we limit the interpolation
ratio to 2 to have a fair comparison.

The time estimation was twofold. We timed each evaluation metric and GPR-
based loss functions on 3D or 2D distributions stemming from the MC dataset
used for the experiments. 3D dose distributions were interpolated to resolution
1 mm3 and of shape 128 × 200 × 200, comprising around 5 × 106 voxels. The 2D
dose distributions comprised axial slices of the 3D dose distributions and were
interpolated to a size 400 × 400. For the GPR calculations, we set the DTA and
Δ to respectively 2 mm and 2%. Execution times are displayed in Table 2.

Figure 3 and Table 2 highlight that our approach has equivalent speed to that
of the SSIM. Compared to the exhaustive search method, our approach improves
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the speed of gamma index computations by a factor of at least 30 in the case of
3D dose distributions and twofold for 2D distributions. Consistently with these
results, we note that trainings took around 24 h for SSIM-MAE, SSIM-MSE
and GPR-based loss function, whereas they lasted for 15 h for experiments with
the MAE and the MSE. Results therefore validate our GPR-based loss func-
tions to efficiently train deep neural networks. Nonetheless, our comparison is
limited to speed assessment and does not encompass RAM usage and precision
considerations. Although our approach highlights significant speed gain in the
computation of the GPR metric and, by extension, of the GPR-based loss func-
tions presented in this study, it comes at the price of an increased RAM usage
caused by the unfolding operation.

We make the remark that for all loss functions, the obtained GPRs do not
meet the 95% GPR threshold indicating clinical validation. Nevertheless, the goal
of the experiments was to show the benefits of optimizing directly the clinical
metric during training and results support that statement.

6 Conclusion

Adopting the correct optimization criterion is essential to train deep learning
models adequately with the task they are designed to solve. For the task of
accelerating MC radiotherapy dose simulation with deep learning, this work
proves that directly optimizing models with the clinical validation metric yields
significant improvement in predicted dose quality when compared to other loss
functions. We provide a fast computation of the GPR to enable such results.
Moreover, the GPR is a similarity metric for distributions in general, and may
be applied to other tasks such as radiotherapy dose generation or even find-
ing adversarial examples for generative adversarial networks. Future work will
focus on addressing the remaining limitations of our approach and assessing the
potential of our new class of loss functions in solving other deep learning tasks.
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