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Abstract. An important component of human analysis of medical
images and their context is the ability to relate newly seen things to
related instances in our memory. In this paper we mimic this ability by
using multi-modal retrieval augmentation and apply it to several tasks
in chest X-ray analysis. By retrieving similar images and/or radiology
reports we expand and regularize the case at hand with additional knowl-
edge, while maintaining factual knowledge consistency. The method con-
sists of two components. First, vision and language modalities are aligned
using a pre-trained CLIP model. To enforce that the retrieval focus will
be on detailed disease-related content instead of global visual appearance
it is fine-tuned using disease class information. Subsequently, we con-
struct a non-parametric retrieval index, which reaches state-of-the-art
retrieval levels. We use this index in our downstream tasks to augment
image representations through multi-head attention for disease classifica-
tion and report retrieval. We show that retrieval augmentation gives con-
siderable improvements on these tasks. Our downstream report retrieval
even shows to be competitive with dedicated report generation methods,
paving the path for this method in medical imaging.

Keywords: Information Retrieval · Medical Image Classification ·
Multi-modal Learning

1 Introduction

The promise of automated deep learning systems to assist radiologists is enor-
mous. At the moment, important milestones, such as better consistency or
even better performance have been achieved on an increasing number of use-
cases [18,37]. A source of inspiration in further improvement of these efforts is
the way humans register and analyze images, which for deep learning has shown
to be effective in the past [17,37].

In any analysis, a doctor provides the memory and knowledge to place what
is currently seen in the context of what has been seen before. In principle this can
be compared to what implicitly happens at scale in any deep learning method. A
doctor’s analysis is not implicit though. Their analysis process can be described
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and verified. We wonder whether (medical) deep learning methods could benefit
from an explicit memory/knowledge infusion.

Making deep learning methods more explicit in terms of using past observa-
tions has already been studied in Natural Language Processing (NLP), in the
form of retrieval augmentation [14,21]. Supplementing data by retrieving rele-
vant retrieved information can lead to performance gains [4]. This process can
be thought of to work as both an enrichment and regularization process. A ben-
efit of retrieval augmentation is that context from a trusted knowledge source is
used as a supplement [13,29]. The versatility of retrieval augmentation, which
essentially provides a non-parametric memory expansion, is gaining traction in
the multi-modal field [4,28].

Multi-modal data modalities typically have different strengths leading to a
strong and a weak data modality [37]. For instance, radiology reports generally
contain richer and more complete information than X-rays, since the report is
essentially a clinician’s annotation [24]. With retrieval augmentation information
can be transferred explicitly from the strong to the weak modality.

A reason retrieval augmentation methods are not yet adopted for medical
applications lies in the weakness of retrieval methods for the medical domain.
Retrieval in the general domain is focused on global image regions [8,16] whereas
in medical images global features, such as body/organ structure are similar across
patients. Meanwhile more fine-grained aspects are more discriminating as disease
indicators, but are easily overlooked. The need for fine-grained results makes
medical image retrieval magnitudes more complex.

We propose X-Ray Task Retrieval Augmentation (X-TRA), a framework for
retrieval augmentation in a multi-modal medical setting, specifically designed
for X-ray and radiology report analysis. To do so we introduce a cross-modal
retrieval model and retrieval augmentation method. We make the following con-
tributions.

– We propose a CLIP-based multi-modal retrieval framework with a dedicated
fine-tuning component for efficient content alignment of medical information
which improves state-of-the-art results in multi- and single-modal retrieval
on radiology images and reports.

– We introduce a multi-modal retrieval augmentation component for disease
classification and report retrieval pipelines.

– We show that our method (1) reaches state-of-the-art performance both in
multi-label disease classification and report retrieval. (2) Our report retrieval
is competitive with dedicated report generation methodologies. (3) We show
the cross-dataset versatility and the limitations of our method.

2 Related Work

Multi-modal Alignment. The introduction of Transformers for natural language
processing (NLP) accelerated the development of integrated vision-language
(VL) alignment models suitable for various VL-tasks, such as ViLBERT [19],
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LXMERT [30] and SimVLM [33]. These methods provide alignment on region
to sentence- or word-level scale. The next step in multi-modal alignment was
made by methods using contrastive learning combined with substantially larger
datasets. Examples are CLIP [27] and ALIGN [10] which significantly outper-
form existing methods by using datasets for training consisting of 400M and 1.8B
VL-pairs respectively. Domain-specific versions of CLIP, which is open-source,
have been fine-tuned with additional data, such as PubMedCLIP [3].

Retrieval Augmentation. The origin of retrieval augmentation lies in the NLP
field. It was created to fully utilise the power of large datasets. With retrieval
augmentation we are not only dependent on a parametric model, but can also
supplement data as a non-parametric component. Previous methods have shown
the simple yet effective and versatility working of retrieval augmentation in a
number of applications [5,13,29].

Retrieval in Medical Imaging. Up until recently the only retrieval methods in
medical imaging were tailored hand-crafted methods [16]. With access to large
datasets and pre-trained methods the balance shifted towards making automated
retrieval methods [6,26]. Especially in the histopathology and radiology domain
major strides were made with retrieval methods [2,8]. The use of text to improve
image retrieval has been adopted for improving chest X-ray retrieval. Yu et al.
[35] use CNN and word2vec features for multi-modal alignment and retrieval.
Zhang et al. [36] approach this problem with a hash-based retrieval method.

Retrieval for Chest X-ray Analysis. Common tasks in chest X-ray analysis are
disease classification and report generation [1,11,15]. Using retrieval for report
generation has been a common approach. The approaches often entail the use of
retrieved information as an input or template for a decoder which crafts a custom
report [23,32,34]. Augmentation of chest X-ray tasks with synthetically gener-
ated diffusion-based images was shown to be possible [1], however the clinical
use of non-genuine images can lead to complications and is not undisputed [37].

3 Methods

Our method is composed of two separate parts (Fig. 1). The first part is the
alignment of the two modalities and construction of the retrieval model. The
second part uses the output of the retriever as a non-parametric component in
(cross-modal) retrieval augmentation to enhance the downstream tasks.

We consider a dataset ΘN
{x,r} consisting of pairs containing an X-ray (xi)

and radiology report (ri). To align these modalities we make use of the powerful
CLIP vision-language aligner. Our objective is to minimize the distance between
x and r, to make cross-modal tasks possible. These aligned features will be used
for retrieval augmentation to do multi-label classification and report retrieval as
downstream tasks.
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Fig. 1. Architecture overview of X-TRA.

3.1 Stage I: Multi-modal Content Alignment

We leverage the pre-trained features from CLIP for initial feature representa-
tions. However, there is a domain shift between the natural image data CLIP is
trained on and medical images we want to use in our method. Medical images
can be visually very similar, while holding drastically different information. Small
localized markers can be indicators for disease. In natural images global repre-
sentations are more decisive and thus more suitable for unsupervised contrastive
alignment. Alignment in CLIP goes as follows [27],

LCLIP = − 1
N

∑

z∈Z

N∑

i=1

log
e(sim(z0

i ,z1
i )/τ)

∑N
j=1 e(sim(z0

i ,z1
j )/τ)

with Z = {(x, r), (r,x)}. (1)

We need to overcome the obvious domain shift between medical images and
the natural images on which CLIP is trained. Therefore, we require a more spe-
cific type of fine-tuning that is especially geared towards content-based extrac-
tion. We introduce the following loss, requiring a global class label for each
dataset. With this fine-tuning step we are creating a supervised content-based
alignment method with content classifier C:

Lours = − 1
N

∑

z∈Z

N∑

i=1

yiloge(̂C(zi)) with Z = {x, r, (x, r)}. (2)

This content based alignment loss should improve the alignment of detailed
content-level details over the global visual appearance of the image.

Creating a Retrieval Index. At retrieval time we need to retrieve images
that have a high similarity with query images. To efficiently do so we make
use of Facebook AI Similarity Search (FAISS) [12]. This retrieval tool efficiently
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performs nearest-neighbour similarity search. After multi-modal alignment we
encode our data to a FAISS index I conditioned on the training dataset. We can
construct indices that only retrieve images (Ix), only reports (Ir), or both (Ixr).

Given a query Qs in source modality s, we can obtain its k neighbours of
target modality t through:

N k
s �t = It(Qs, k), (3)

this can be either x, r or both. Once retrieval index I is trained based on the
newly aligned training dataset we can consider the retriever as a non-parametric
component which retrieves information from a fixed dataset in the subsequent
retrieval augmentation steps. Note that during testing time, a query from the
test set will be used to retrieve neighbours from the training set.

3.2 Stage II: Retrieval Augmentation

The purpose of retrieval augmentation is to effectively leverage similar represen-
tations to adopt a more informative representation of a given input, with our
already trained retrieval index we retrieve similar representations.

To obtain a richer representation of xi, we retrieve intra- N k
x �x and inter-

modal neighbours N k
x �r from Ix and Ir respectively. To integrate the retrieved

neighbouring samples, we can use various fusion methods [25]. The simplest
one is concatenation: (xi,N k

x �x,N k
x �r). A more suitable method is multi-head

attention (MHA) which is able to capture the long range dependencies between
the original image and the retrieved information [31]:

xTRA
i = (xi,MHA(N k

x �x,xi),MHA(N k
x �r,xi)). (4)

3.3 Downstream Tasks

We are tackling two common tasks in chest X-ray analysis. These are multi-label
disease classification and report retrieval. For this last task our objective is to
show how well a retriever can perform on the report generation task. We measure
performance by comparing task performance of xTRA in comparison to x.

A useful property of our retrieval index would be usability of an pre-trained
model across datasets. Three clinically relevant scenarios for this are: From
scratch training on the new dataset, frozen usage of the trained retrieval model
and fine-tuning of the existing retrieval model with another image-report dataset.

3.4 Datasets

The primary dataset to which our method is applied is MIMIC-CXR (200k
image-report pairs) [11]. Disease labels for each pair are extracted from the
report through a rule-based extraction method [9]. To evaluate the versatility
and cross-domain capabilities of our method, we use the small openI (4k image-
report pairs) [20] and image-only CheXpert (200k images) [9] datasets. Official
train-test splits are used.
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3.5 Experimental Setup

As pre-processing step, the X-ray images are normalized and standardized by
rescaling with center-cropping to scale 256 × 256, from which images of size
224 × 224 are sampled. The maximum number of tokens for representing radi-
ology reports in the text encoder is set to 256. Three different VL models are
used as encoders. At first a CNN-BERT model, composed of a DenseNet121
image encoder and a ClinicalBERT [7] text encoder. Given the strong perfor-
mance of large vision-language models we also use CLIP (ViT-32 image encoder
and text encoder) [27] and its medically fine-tuned equivalent PubMedCLIP [3].
This model is fine-tuned using the Radiology Objects in COntext (ROCO)
dataset [22].

Multi-modal alignment is implemented as a single pass through a two-layer
ReLu activated MLP, with dimension zenc, a dropout rate of 0.5, and layer
normalization. zenc is the output dimension of the encoder. We implement C as
a three layer classifier head with dimensions {zenc, 256, 14}. During retrieval we
make use of k = 10 retrieved neighbours. To prevent overfitting, early stopping
with a tolerance of 3 is applied to all training operations.

4 Results

4.1 Cross-Modal Retrieval

We are comparing the performance of our retrieval method against previous
methods in Table 1 in terms of class-based mean average precision (mAP). Due
to the powerful alignment of CLIP and tailor made fine-tuning we are outper-
forming all existing retrieval approaches for radiology images and/or reports by
a large margin. The performance difference with similarly fine-tuned encoder-
decoder combination DenseNet121 and ClinicalBERT further underwrites the
power of CLIP in building a strong retrieval method, specifically on cross-
domain retrieval. Interestingly, we observe that PubMedCLIP is not outperform-
ing CLIP. This can be explained by a domain shift between MIMIC-CXR and
ROCO, together with the ability of CLIP to generalize well out-of-domain [27].
In our downstream tasks image-based retrieval is most important, which is per-
forming similar on inter- and intra-modal retrieval tasks.

4.2 Multi-label Disease Classification

Disease classification results in terms of AUC in Table 2 show that retrieval aug-
mentation gives a clear improvement across different disease classes. It is inter-
esting to see that we find a positive, albeit weak, correlation (R≈0.60) between
the increase in class AUC performance and retrieval mAP. Moreover, the perfor-
mance gain from retrieval augmentation (0.80 → 0.85) is similar to additional
training with synthetic diffusion-generated X-rays (0.80 → 0.84) [1]. The benefit
of our method is that the supplemented information originates from the trusted
dataset itself and is not synthetically generated.
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Table 1. Class-based retrieval performance (source → target) for images (x) and
reports (r) in terms of mAP on MIMIC-CXR on our content alignment method, com-
pared against other methods.

Table 2. Chest X-ray classification on MIMIC-CXR with and without retrieval aug-
mentation. The results show the beneficial effect of retrieval augmentation on classifi-
cation performance.
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Table 3. Chest X-ray report retrieval on MIMIC-CXR with and without X-TRA
retrieval augmentation. Compared to dedicated report generation methods.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR BERTScore

Report generation Pino et al. [23] – – – .094 .185 – –

Wang et al. [32] .344 .215 .146 .105 .279 .138 –

Yang et al. [34] .438 .297 .216 .164 .332 – –

Li et al. [15] .467 .334 .261 .215 .415 .201 –

Report retrieval Chambon et al. [1] – – – – – – .432

Yang et al. [34] .306 .179 .116 .076 .232 – –

CNN+BERT .268 (↑.025) .193 (↑.064) .106 (↑.036) .072 (↑.029) .288 (↑.042) .248 (↑.027) .572(↑.17)

PubmedCLIP .308 (↑.031) .206 (↑.021) .111 (↑.021) .074 (↑.006) .330 (↑.022) .286 (↑.025) .610(↑.29)

CLIP .318 (↑.041) .226 (↑.041) .121 (↑.024) .085 (↑.023) .339 (↑.044) .296 (↑.055) .617(↑.31)

4.3 Report Generation

In retrieval augmented report retrieval we show interesting performance on the
report generation metrics compared to a selection of previous methods. While it
should not be expected that simple retrieval outperforms dedicated report gener-
ation methods we are able to provide a result that can be considered competitive
(Table 3). On the METEOR and ROUGE metric we are even outperforming most
existing methods. The metrics reflect that the strength of report retrieval is in
the global representation of the report. Our retriever is fine-tuned to retrieve
samples with equivalent label spaces, hence good results on metrics that reward
global similarity. An interesting outlook is the application of this method in a
dedicated report generation framework which could boost performance further.

4.4 Cross-Dataset

By evaluating the cross-dataset scenarios (Table 4) with the CheXpert and openI
datasets we can conclude that transferability to images from other domains is
limited. However we do see that if retrieval augmentation is not useful, it can be
ignored by the model and will not be detrimental for performance. The domain
shift between different chest X-rays is a remaining problem [24]. Currently the
most practical solution for this problem is the addition of a fine-tuning step.

Cross-domain results on open-I show that learning across modalities is pos-
sible with fine-tuning. When adding the openI dataset to the existing retrieval
index, we can integrate the existing index with this new dataset. We can see
that X-TRA benefits openI in this setting. In the updated retrieval index 23%
of the retrieved information originates from openI and 77% from MIMIC-CXR.

4.5 Ablation Studies

We study the effect of the components in our retrieval augmentation method
in Fig. 2. Specifically we look at the influence of each component in content-
and CLIP based alignment. Interestingly, the composition of data modalities in
retrieval augmentation does not have a big effect, since the retriever has similar
results in inter- and intra-modal retrieval. In case randomly selected data is used
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Table 4. Cross-domain result on downstream tasks: Report retrieval (RR) and multi-
label classification (MLC) with and without X-TRA.

Target ↓ dataset Retrieval source→ Target MIMIC-CXR MIMIC-CXR

Setting→ From scratch Frozen Finetuning

RR MLC RR MLC RR MLC

CheXpert CNN+BERT – – – .81(↓.01) – –

PubmedCLIP – – – .82(↑.01) – –

CLIP – – – .81( .00) – –

OpenI CNN+BERT .31(↑.05) .88(↑.01) .31(↑.03) .87(↑.01) .33(↑.05) .90(↑.05)

PubmedCLIP .26(↑.05) .86(↓.01) .34(↑.04) .89(↑.03) .38(↑.05) .91(↑.05)

CLIP .29(↑.04) .90(↑.04) .35(↑.02) .90(↑.02) .38(↑.07) .93(↑.05)

instead of retrieved information, we achieve comparable results compared to our
method without X-TRA. This is in accordance with cross-modal results, showing
that if X-TRA supplemented information is not useful, it can be ignored. Using
a partial retrieval index we can conclude that X-TRA can be useful with a small
retrieval index, however performance reaches optimal levels when N > 100k.

4.6 Insight and Limitations

Qualitative results from our retrieval method for 2 different query images is
shown in Fig. 3. We retrieve from the image index and report index. The retrieved

Fig. 2. Ablation studies on X-TRA on disease classification, for five different random
seeds, with (a) different compositions of the retrieval index for LCLIP and Lours and
(b) partial usage of the retrieval index.
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Fig. 3. Examples of image-image and image-text retrieval including disease class labels.
A green outline means a correct retrieval, orange or dashed means a missed or extra
disease label respectively. (Color figure online)

images match well in terms of labels attributed to them, showing that our fine-
tuning is preventing the retrieval of images that are only globally similar.

Fine-tuning of the entire CLIP model to domain-specific data is an interesting
prospective. Potentially this can further improve the performance of our retrieval
model. However, as we have shown in this paper regarding the performance of
CLIP against PubMedCLIP, the loss of generalization can also be detrimental.
In future studies this an promising avenue to explore.

5 Conclusion

In this work we present X-TRA, a simple yet effective method to improve mul-
tiple tasks on radiology images. Our method is composed of a content align-
ment and a retrieval augmentation step. With a new label-based alignment loss
we are able to leverage pre-trained CLIP features to create a powerful cross-
modal retrieval model. The general CLIP model appears to be more useful for
our retrieval model than the slightly out-of-domain medically fine-tuned Pub-
MedCLIP. We use this retrieval model to improve chest X-ray analysis through
retrieval augmentation. With this we are adding an enrichment and regulariza-
tion component that improves both multi-label disease classification and report
retrieval by up to over 5%. On this last task we are even showing to be com-
petitive with dedicated report retrieval methods. It opens up possibilities for
retrieval augmentation as a generic tool in medical imaging.
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