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Abstract. Medical Visual Question Answering (VQA) systems play a
supporting role to understand clinic-relevant information carried by med-
ical images. The questions to a medical image include two categories:
close-end (such as Yes/No question) and open-end. To obtain answers,
the majority of the existing medical VQA methods rely on classification
approaches, while a few works attempt to use generation approaches
or a mixture of the two to process the two kinds of questions sepa-
rately (classification for the close-end and generation for the open-end).
The classification approaches are relatively simple but perform poorly
on long open-end questions, while the generation approaches face the
challenge of generating many non-existent answers, resulting in low accu-
racy rates. To bridge this gap, in this paper, we propose a new Trans-
former based framework for medical VQA (named as Q2ATransformer),
which integrates the advantages of both the classification and the gen-
eration approaches and provides a unified treatment for the close-end
and open-end questions. Specifically, we introduce an additional Trans-
former decoder with a set of learnable candidate answer embeddings to
query the existence of each answer class to a given image-question pair.
Through the Transformer attention, the candidate answer embeddings
interact with the fused features of the image-question pair to make the
decision. In this way, despite being a classification-based approach, our
method provides a mechanism to interact with the answer information
for prediction like the generation-based approaches. On the other hand,
by classification, we mitigate the task difficulty by reducing the search
space of answers. Our method achieves new state-of-the-art performance
on two medical VQA benchmarks. Especially, for the open-end questions,
we achieve 79.19% on VQA-RAD and 54.85% on PathVQA, with 16.09%
and 41.45% absolute improvements, respectively.
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1 Introduction

Visual question answering (VQA) is known to be a challenging AI task that
answers image-related questions based on image content. This process involves
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both image and natural language processing techniques and usually comprises
of four key components: extracting image features, extracting question features,
integrating features, and answering. Recent years have witnessed significant
progress in this field [8,15]. Medical VQA is a natural extension of VQA to
medical images accompanied by clinic-relevant questions. Through questioning
and answering, it offers a user-friendly way to assist clinic decisions. The ques-
tions in medical VQA could be either close-end, such as Yes/No questions, or
open-end.

Medical VQA is still in its early stage of development and the current per-
formance is far from being satisfying. Most existing methods [4–7,13] could be
referred to as closed-type approaches, as illustrated in Fig. 1(a), which treat
each answer as a class and apply a classification model directly to the fused
features of the input image-question pair to predict answers. The advantage of
such approaches is that by treating VQA as classification tasks, they reduce the
complexity of the task and make the answer search space smaller. Despite the
good performance on Yes/No questions, closed-type approaches are difficult to
accurately predict the answer for open-end questions that are much longer and
more varied than the close-end ones. On the other hand, a few works [2,9] treat
VQA as a generation task and employ generation-based approaches to produce
answers word by word. They are referred to as the open-type approaches in
Fig. 1(b). In these approaches, current word generation usually depends on pre-
vious words of the answer. Therefore, these approaches allow the image-question
features to interact with the answer information for the prediction, potentially
improving the long answer prediction. However, due to the tremendous search
space of the generated answers, these approaches tend to produce many non-
existent answers, leading to low accuracy rates, therefore are not currently the
mainstream of medical VQA. Although there are attempts to combine these
two types of approaches [14], they straightforwardly treat close-end and open-
end questions separately, e.g., classification for close-end ones and generation for
open-end ones.

To bridge the research gap and promote medical VQA, we introduce a new
model framework Q2ATransformer and refer it to as semi-open type, as shown
in Fig. 1(c). By semi-open, we keep adopting classification-based approaches
to make the answer search space small, and at the same time introduce the
learning of answer semantics so that the fused image-question features and the
answer semantics could interact for better prediction, like the generation-based
approaches. Our model mitigates the shortcomings of the classification-based
closed-type framework while enjoying the advantages of the generation-based
open-type framework. To achieve this, we introduce a set of learnable candidate
answer embeddings and let the image-question feature interact with the candi-
date answer embeddings by sending them through a transformer decoder. In the
decoder, the candidate answer embeddings work as a query to calculate their
relationships with the fused image-question features to decide the existence of
the answer classes. By this, our classification considers the interaction of answer
information and the fused image-question features, which is different from the
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Fig. 1. Paradigms for medical VQA frameworks. (a) Closed-type framework treats
VQA as predicting answer classes, where a classifier is built directly on top of the fused
image-question features. (b) Open-type framework is generation-based, where the fused
image-question features interact with the previous words of the answer to generate the
next word of the answer through a text decoder. (c) Our proposed semi-open framework
learns candidate answer embeddings through a decoder, where they interact with the
fused image-question features to improve the prediction of answer classes.

existing classification-based approaches. Compared with the generation-based
open-type approaches, our model reduces the task difficulty and significantly
improves the accuracy rates.

Last but not the least, our model provides a uniform treatment for both the
close-end and the open-end questions.

The main contribution of this paper could be summarized as follows.
First, we proposed a framework of semi-open type for medical VQA, which

bridges the advantages of both the classification-based closed-type framework
and the generation-based open-type frameworks in medical VQA literature. This
is achieved by a designed mechanism to learn and make use of candidate answer
embedding through a transformer decoder while limiting the search scope of
answers through classification.

Second, we proposed a Cross-modality Fusion Network (CMAN) to effectively
fuse the image and question features. It directly concatenates the two modal
features instead of conducting matrix multiplication or summation for feature
fusion to mitigate information loss. Then the relations between the image and
question features are captured through computing self-attention on the concate-
nated features to produce the fused features. CMAN outperforms the commonly
used image-question fusion methods in medical VQA as shown in our ablation
study.

Third, our model demonstrates superior performance on two large medical
VQA benchmarks for both close-end and open-end questions. Especially, our
improvement on open-end question answering is overwhelming, with 16% and
41% absolute improvements on VQA-RAD and PathVQA, respectively, verifying
the effectiveness of our proposed semi-open framework.
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2 Method

In this section, we present Q2ATransformer, a semi-open structured model for
medical VQA. We first give an overview of our model, and then describe our
Visual-Question Encoder in Sect. 3.1 and Answer Querying Decoder in Sect. 3.2.

An overview of our proposed Q2ATransformer model is given in Fig. 2. It
follows the majority of medical VQA methods to predict answer classes but
exploits candidate answer embeddings for the prediction. Q2ATransformer con-
sists of a Visual-Question Encoder and an Answer-Querying Decoder. The
Visual-Question Encoder takes a medical image and a clinic-relevant question
as the input and outputs a fused feature with both image and question informa-
tion. It consists of three parts: vision encoder, question encoder, and fusion net-
work. We use Swin transformer as our vision encoder and BERT as the question
encoder. For the fusion network, we propose a Cross-modality Attention Net-
work (CMAN) to integrate image and question features. The Answer Querying
Decoder takes the fused image-question feature and learnable candidate answer
embeddings as the input and outputs the probability of each candidate answer.
Our Answer Querying Decoder consists of two layers of transformer decoders
and a classifier to make predictions.

2.1 Visual-Question Encoder

The Visual-Question Encoder consists of an image encoder, a question encoder,
and a feature fusion module, elaborated as follows.

Image Encoder. Our encoder uses the Swin Transformer [12] rather than CNN-
based model as our image feature extractor. The advantages of Swin Transformer
are three-fold. First, Swin Transformer makes a vision transformer to a hierar-
chical structure as CNN, which can make the vision transformer more flexible at
various scales and has linear computational complexity with the increase of image
size. Second, Swin Transformer considers cross-window connection through win-
dow shift to obtain long-range dependencies, which introduces more interactions
between grids. Therefore, it can provide more regional features and interactions
compared with CNN, which is more suitable for the fine-grained nature of med-
ical images. Third, Swin Transformer was pretrained on a large dataset, so it is
a very robust feature extractor. Based on these characteristics, we choose Swin
Transformer to encode our input image.

Given an input image I ∈ R
H×W×C , where C is the number of channels and

H and W stand for image height and width, respectively, the image embeddings
Fi ∈ R

N×Df can be expressed as Fi = Wi×SwinTransformer(I)+bi, where Wi

and bi are learnable parameters to project the output of Swin Transformer into
the same dimension Df as the question embeddings. They also provide certain
flexibility to adapt Swin Transformer to the datasets in our task. Here N is the
number of the extracted image regional features.

Question Encoder. For the input question, we use the pre-trained BERT
model [3] as the encoder to extract text features.
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Fig. 2. Overview of Q2ATransformer. The input image-question pair is sent to a Visual-
Question Encoder to extract and fuse image and question features. The Visual-Question
Encoder consists of a Swin-Transformer-based vision encoder, a BERT-based question
encoder, and a proposed Cross-modality Attention Network for feature fusion. The
fused feature proceeds to the Answer-Querying Decoder, where the input learnable
candidate answer embeddings are utilized as the query to compute the attention map
and refined according to the attended fused image-question features to predict the
presence of the queried answers.

BERT [3] is a successful NLP model. It incorporates context from both direc-
tions of a sentence when embedding questions. It has been applied to question
answering tasks with the state-of-the-art results, and is therefore chosen in our
task as the question encoder. The question embeddings Fq ∈ R

M×Df is obtained
by Fq = BERT(Qe), where Qe denotes the input question and M is the question
feature number and Df the question feature dimension.

Feature Fusion Mechanism. After the image and question features are
extracted, respectively, we propose the Cross-modality Attention Network
(CMAN) to fuse the information from these two modalities. As medical images
are fine-grained and the visual differences of clinical importance are often subtle,
we explore a sophisticated way for feature fusion by investigating the interac-
tions between image regional features and question features. In our proposed
fusion module CMAN, we first integrate the image features Fi and the ques-
tion features Fq by concatenating them together. Compared with the commonly
used matrix multiplication or summation for feature fusion, concatenation could
mitigate information loss and facilitate the subsequent computation of image-
question interaction in our module. After that, the concatenated features are
passed to two transformer encoder layers to calculate the relationship between
every pair of image question features through the self-attention mechanism of
the Transformer. In this way, we could obtain the fused feature carrying the rela-
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tion of image question features with minimal information loss. Mathematically,
the fused feature Ff is obtained as follows.

Fc = [Fi;Fq]
QFc

= WqFc, KFc
= WkFc, VFc

= WvFc

Fatt = Att(QFc ,KFc ,VFc) = softmax(
QFcK

T
Fc√

dk

)VFc

Ff = WfFatt + bf

(1)

Here Wq, Wk, Wv, Wf , and bf are learnable parameters, and “;" indicates
the concatenation operation. The matrices QFc

, KFc
, VFc

are known as the
query, key, and value in self-attention calculation, and here they are the linear
transformation of the concatenated feature Fc.

2.2 Answer Querying Decoder

Given an input image question pair, among a set of answers of interest, our
Answer Querying Decoder predicts whether each candidate answer matches the
corresponding image question pair and uses the candidate with the highest prob-
ability as the final answer. For this purpose, we employ a two-layer transformer
decoder followed by a linear projector as our classifier, and introduce a set of
learnable candidate answer embeddings together with the fused image-question
feature Ff as the input of the decoder. Assuming there are C answer classes
in total, we need C candidate answer embeddings with one-to-one correspon-
dence to the C answer classes. These answer embeddings, collectively represented
by a matrix A, are randomly initialised and will be updated during training
through a self-attention module, a cross-attention module, and a feed-forward
network(FFN) in order. Both the self-attention module and the cross-attention
module implement the multi-head self-attention (MSA(query, key, value)) but
with different key, query, and value. The self-attention module computes the
relation between different answer embeddings by using A to construct all the
key, query, and value matrices. The cross-attention module cares about the rela-
tion between the answer embeddings A and the fused image-question feature
Ff . It thus uses the answer embedding A as the query and the fused image-
question feature Ff as the key and value to compute the attention and further
updates the answer embeddings by combining the attended image-question fea-
tures. Mathematically, denoting the answer embeddings at the l-th layer as Al,
it will be updated from the output of the previous layer Al−1 as follows:

Al = MSA(Al−1,Al−1,Al−1) (2)
Al = MSA(Al,Ff ,Ff )
Al = FFN(Al),

where l = 1 · · · L and L is the number of Transformer decoder layers. Through
this process, the image-question features are injected into the answer embeddings
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and used to refine the latter. The refined C answer embeddings are sent to the
final linear projection layer followed by a sigmoid function σ(·) to predict the
probabilities of answer classes. That is:

p = σ(WAAL + b), (3)

where WA and b are learnable parameters, and p is a vector comprising of
C probabilities corresponding to C answer classes. The answer class with the
highest probability is chosen as the predicted answer.

2.3 Loss Function

Medical VQA faces a significant class imbalance problem: Yes/No answer classes
are much larger than long open answer classes. In order to address the sam-
ple imbalance problem more effectively, we choose a simplified asymmetric loss,
which is a variant of focal loss while the hyper-parameter γ is set differently for
positive and negative classes, as shown in Eq. 4:

L =
1
C

C∑

c=1

{
(1 − pc)

γ+ log (pc) , yc = 1
(pc)

γ− log (1 − pc) , yc = 0
(4)

where yc is the ground-truth binary label, indicating if the input image-question
pair has the answer class c, while pc is the predicted probability for the class c.
The total loss is computed by averaging this loss over all samples in the training
data set. We set the hyper-parameters γ+ = 1 andγ− = 4 by default.

3 Experiments and Results

3.1 Datasets

We conduct our experiments on two medical VQA benchmarks: VQA-RAD [11]
and PathVQA [7], which are described as follows.

VQA-RAD is the most commonly used radiology dataset seen to date,
containing 315 images and 3515 question-answer pairs, each corresponding to
at least one question-answer pair. The types of questions include 11 categories:
“anomalies”, “properties”, “color”, “number”, “morphology”, “organ type”, “other”,
and “section”. 58% of the questions are close-end questions and the rest are open-
end questions. The images are of the body’s head, chest, and abdomen. Manual
division of the training and test sets is required. For comparability, we divide
the data set according to the MMQ method [4].

PathVQA is a dataset for exploring pathology VQA. Images with captions
were extracted from digital resources (electronic textbooks and online libraries).
Open-end questions account for 50.2% of all questions. For the closed-end yes/no
questions, the answers are balanced with 8,145 yes and 8,189 no questions.
PathVQA consists of 32,799 question-answer pairs, 1,670 pathology images col-
lected from two pathology textbooks, and 3,328 pathology images collected from
the PEIR digital library [1]. For comparability, we also divide the data set accord-
ing to the MMQ method [4].
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3.2 Comparison with the State-of-the-Art Methods

We compare our proposed model with 7 state-of-the-art (SOTA) Medical VQA
approaches, including StAn [7], BiAn [7], MAML [6], MEVF [13], MMQ [4], Pub-
MedCLIP [5], and MMBERT [9]. The first 6 methods are classification-based
approaches. They are chosen because they are among the best performers on
the two benchmarks VQA-RAD and PathVQA. The last method MMBERT [9]
is chosen as a representative of generation-based approaches, which has the
reported performance on VQA-RAD. Except PubMedCLIP [5] and MMBERT [9]
whose results are quoted from their original papers, the results of other meth-
ods are quoted from MMQ [4]. It is noted that same as our Q2ATransformer,
PubMedCLIP [5] and MMBERT [9] employ the same data split as MMQ [4].
Therefore these results are strictly comparable.

As shown in Table 1, on both datasets, our Q2ATransformer consistently
outperforms the compared models. Specifically, compared with the second best
performer, on VQA-RAD, we achieve an accuracy of 79.19% (16.09% absolute
improvement) on Open-end questions, 81.2% (1.2% absolute improvement) on
close-end questions, and 80.48% (8.48% absolute improvemen) across all ques-
tions; on PathVQA, we achieve an accuracy of 54.85% (41.45% absolute improve-
ment) on open-end questions, 88.85% (4.85% absolute improvement) on Yes/No
questions, and 74.61% (25.81% absolute improvement) across all questions. The
results could be even better if we increase the dimension of the candidate answer
embeddings, as shown in our ablation experiments. From these results, we can see
our Q2ATransformer demonstrates overwhelming advantages on open-end ques-
tions, which supports our analysis that by interacting answer information with
fused image-question features, our model could better tackle long answer ques-
tions. Our model also outperforms the generation-based method MMBERT [9],
since we reduce the search space of answers while MMBERT [9] could generate
non-existent answers.

Table 1. Performance comparison of different methods. † and ‡ indicate the methods
are classification-based(closed-type) or generation-based(open-type), respectively.

References Methods Fusion Methods PathVQA VQA-RAD
Free-form Yes/No Over-all Open-ended Close-ended Over-all

StAn† [7] SAN 1.6 59.4 30.5 24.2 57.2 44.2
BiAn† [7] BAN 2.9 68.2 35.6 28.4 67.9 52.3
MAML† [6] SAN 5.4 75.3 40.5 38.2 69.7 57.1

BAN 5.9 79.5 42.9 40.1 72.4 59.6
MEVF† [13] SAN 6.0 81.0 43.6 40.7 74.1 60.7

BAN 8.1 81.4 44.8 43.9 75.1 62.7
MMQ† [4] SAN 11.2 82.7 47.1 46.3 75.7 64.0

BAN 13.4 84.0 48.8 53.7 75.8 67.0
PubMedCLIP† [5] - - - - 60.1 80 72.1
MMBERT‡ [9] - - - - 63.1 77.9 72.0
Ours 54.85 88.85 74.61 79.19 81.2 80.48
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Table 2. Ablation Studies. BAN, SAN, and CMAN stand for Bilinear Attention Net-
work [10], Stacked Attention Network [16] and ours Cross-modality Attention Network,
respectively; Decoder refers to our Answer-Querying Decoder.

# BAN SAN CMAN Decoder VQA-RAD PathVQA
open closed overall free-form yes/no overall

1 � 43.62 75.56 64.1 15.03 78.24 51.69
2 � � 54.36 80.07 70.84 44.78 88.29 70.09
3 � 61.07 77.07 71.33 44.58 86.29 68.88
4 � � 73.83 80.08 77.83 52.88 88.44 73.51
5 � 69.13 76.32 73.73 47.53 86.73 70.31
6 � � 79.19 81.2 80.48 54.85 88.85 74.61

3.3 Ablation Study

To investigate the contributions of our proposed feature fusion module CMAN
and the decoder for answer querying, we conduct extensive ablation studies to
compare different configurations of our model, as presented in Table 2. Here
BAN, SAN, and CMAN are three attention networks to fuse image and ques-
tion features, representing Bilinear Attention Network [10], Stacked Attention
Network [16] and ours Cross-modality Attention Network, respectively; Decoder
represents our Answer-Querying Decoder. The symbol� indicates the inclusion
of the corresponding component. All the experiments in Table 2 are performed
based on the same image and question encoders.

Impact of the CMAN. The benefit of using CMAN can be well reflected
by the improvement from #1 to #5 or from #3 to #5 in Table 2, indicating
the effectiveness of our proposed CMAN over BAN and SAN for image and
question feature fusion. This is because compared with BAN which multiplies
the image and question features or SAN which does a direct matrix summation
for fusion, our CMAN directly concatenates the two channels of features together
and then calculates attention for fusion. Through this, our CMAN mitigates the
information loss due to the multiplication or summation operation during feature
fusion in BAN or SAN.

Contribution of the Decoder. As shown, the inclusion of our answer querying
decoder could boost the model performance. To verify the robustness of our
decoder, we incorporate it with three different attention modules shown in #2,
#4 and #6. By comparing #2 to #1, #4 to #3, or #6 to #5, it can be observed
that our answer querying decoder can bring significant performance gain with
all three attention mechanisms. Especially, when combining our CMAN and
decoder, we can achieve the new SOTA results.

Impact of Answer Embedding Size. The experimental results in Fig. 3 show
that as the dimension of answer embedding increases, the model’s performance
improves while the best result is obtained when the embedding size is around
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Fig. 3. Ablation study about different dimensions of answer embeddings.

2048. However, increasing the embedding size will also increase the computa-
tional cost, while the performance improvement becomes saturated. As a trade-
off, our model adopts 1024-dimensional answer embeddings.

3.4 Qualitative Results

Example results from PathVQA and VQA-RAD datasets are given in Fig. 4 and
Fig. 5, respectively. As can be seen, for these examples where MMQ using BAN
for feature fusion fails, our Q2ATransformer w/o decoder has been able to cor-
rect most of them using the proposed CMAN fusion module. The performance
could be further improved with our Answer Querying Decoder by learning candi-
date answer embedding through their interactions with the fused image-question
features.

Fig. 4. Example results from PathVQA dataset.
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Fig. 5. Example results from VQA-RAD dataset.

3.5 Limitation and Discussion

As described in Sect. 2, we treat each answer as a learnable embedding and use all
embeddings as the query to compute the attention map in our decoder. Since we
compute the global self-attention, this may increase computation overhead when
the number of answer classes is very large. This problem has been encountered
in NLP when processing long sequences. Some solutions have been proposed,
such as dynamically computing sparse attention , which can significantly reduce
computational overhead and will be explored in our future work.

4 Conclusion

In this paper, we propose a semi-open framework for medical VQA, which suc-
cessfully enrolls answer semantic information into the answer class prediction
process through our designed mechanism to correlate the answering embeddings
with the fused image-question features, which improves the accuracy signifi-
cantly. It enriches the existing closed-type and open-type medical VQA frame-
works and refreshes the SOTA performance on the two benchmarks, especially
for the open-end questions.
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