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Abstract. Super-resolution reconstruction (SRR) of fetal brain MRI
from motion-corrupted thick-slice stacks can provide high-resolution
isotropic 3D images that are vital for prenatal examination and quantifica-
tion of brain development. Existing fetal brain SRR methods generally rely
on a two-stage optimization procedure by performing rigid slice-to-volume
registration and volumetric reconstruction in an alternating manner.
Despite their advantages, these methods have not considered additional
guidance from external anatomical priors, resulting in unsatisfactory per-
formance in various challenging cases. To address this issue, we propose a
novel Prior Anatomical Knowledge guided fetal brain Super-Resolution
Reconstruction method, namely PAK-SRR. In PAK-SRR, we consider
two key kinds of prior anatomical information. First, we integrate the
anatomical prior provided by tissue segmentation into both the slice-to-
volume registration and volumetric reconstruction to enforce registration
consistency on boundaries, effectively alleviating misregistration caused
by blurry tissue boundaries of brain. Second, to enrich the structural
details of the reconstructed images, we further employ longitudinal fetal
brain atlases to guide volumetric reconstruction. Extensive experiments on
multi-site clinical datasets demonstrate that our PAK-SRR significantly
outperforms the state-of-the-art SRR methods for fetal brain MRI, quan-
titatively and qualitatively. Our code is publicly available at https://git
hub.com/sj-huang/PAK-SRR for reproducibility and further research.
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1 Introduction

Acquiring isotropic high-resolution (HR) magnetic resonance (MR) images from
fetal brain is essential for prenatal examination and brain development studies.
However, it is clinically difficult to acquire such isotropic HR volumetric images
due to large irregular motion of fetal subjects. In this way, fetal brains are
often scanned in a short time with fast imaging protocols (e.g., SSFSE: single-
shot fast spin echo [4]), which acquire multiple thick-slice stacks from different
views, as shown in Fig. 1. These different-view stacks are further integrated using
super-resolution reconstruction (SRR) techniques at the post-acquisition stage
to obtain desired isotropic HR volumetric images. However, it is challenging to
conduct fetal brain SRR due to 1) poor slice image quality caused by large
irregular motion, 2) misalignment among intra- and inter-stack slices, and 3)
large variation of fetal brains in the acquired MR images [13].

To tackle these challenges, Rousseau et al. [13] proposed an approach to
reconstruct 3D isotropic HR volumetric images for fetal brain from multi-
view (direction) and multi-resolution 2D slices, by iteratively performing slice-
to-volume registration and volumetric reconstruction, after preprocessing of
acquired data. Kuklisova-Murgasova et al. [9] used expectation-maximization
statistics to discard the potential outliers for more robust SRR. Moreover,
they applied intensity matching to compensate for the inconsistency of multi-
slices. Rousseau et al. [14] later improved the regularization procedure associated
with SRR to preserve better boundaries. However, these approaches are semi-
automatic since fetal brain region needs to be predefined [2]. To resolve this
issue, Ebner et al. [2] proposed an automatic approach to integrate localization,
segmentation, and SRR into a unified framework. Besides, deep learning has
been employed to improve the performance of fetal brain SRR [7,15,18]. How-
ever, deep learning-based methods rely on large-scale high-quality training data,
and suffer from generalization issues, thus limiting their practical applications.
Despite the progress of existing methods [2,5,9,13,14,19], they all ignore the use
of anatomical prior, which can provide vital information to improve the SRR of
fetal brain MRI. This leads to unsatisfactory performance for various challenging
cases with large irregular motions and low image quality, as shown in Fig. 1.

To this end, we propose a novel method, namely PAK-SRR, to employ rich
prior anatomical knowledge (PAK), including tissue segmentation maps (i.e., seg-
priors) and longitudinal fetal brain atlases (i.e., atlas-priors), as strong guidance
to improve the SRR of fetal brain MRI (Fig. 1). Specifically, we employ seg-priors
from tissue segmentation maps to guide more accurate slice-to-volume registra-
tion, which can improve the quality of reconstructed HR volumetric images.
Furthermore, we employ atlas-priors (with rich anatomical priors) to address
image degradation caused by motion artifacts and thick-slice acquisition. These
two kinds of prior anatomical information are integrated into a unified regular-
ization framework, which is optimized by an effective linear least-squares solver,
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Fig. 1. Comparison of the existing framework (right top) [2] with our PAK-SRR (right
bottom).

called LSMR [3]. Experimental results on multi-site clinical datasets demonstrate
that our PAK-SRR achieves state-of-the-art reconstruction performance along
with strong robustness against motion artifacts.

2 Background

The SRR of fetal brain MRI utilizes stacks of acquired 2D slices to reconstruct
3D super-resolution image and is usually formulated by the slice acquisition
model [5] as below:

yk = Ak(x) + ek, (1)

where yk is the acquired kth slice and x is the tentative 3D HR image. Ak is
an operator including slice-to-volume transformation T k and blurring operator
B (based on a certain point spread function (PSF) [11]). Generally, we can for-
mulate Ak(·) := [T k ◦B(·)]k, where the symbol ◦ denotes resampling operation,
and [·]k indicates the corresponding plane of the slice yk in the 3D image. The
vector ek represents an additive noise.

Due to the ill-posedness of the above problem in Eq. (1), the commonly
used methods for SRR of fetal brain MRI are based on a two-stage iterative
registration-reconstruction framework, including 1) slice-to-volume registration
and 2) volumetric reconstruction. In each iteration i, slice-to-volume registration
is performed to align each slice yk with the tentatively reconstructed volumetric
image x usually by minimizing the following objective function:

T
(i)
k = argmin

T k

(
S(x(i−1),yk;T k) + RT (T k)

)
, (2)

where S represents the similarity measure between slice yk and the transformed
volume x, and RT (·) is the regularization term for the transformation T k. It
should be noted that transformation is usually applied on volume x instead
of slice yk, since resampling a 2D slice in 3D space is not as well defined as
sampling a volume. Rigid transformation is usually employed for registration
[2,9,13,14], which includes six Degrees of Freedom (DoF) for each individual
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Fig. 2. Overview of our proposed PAK-SRR for fetal brain MRI. (I) Extracting brain
tissue maps and the corresponding seg-priors (i.e., {wk}K

k=1). (II) Aligning multi-view
stacks (i.e., {yk}K

k=1) into the same space for obtaining an initial coarse HR volumet-
ric image. (III) The two-stage iterative registration-reconstruction stage, including a
seg-priors guided slice-to-volume registration for updating {T

(i)
k }K

k=1 and a seg-priors
and atlas-priors jointly guided (with {wk}K

k=1 and ∇x
(i)
a ) volumetric reconstruction

for updating x(i). (IV) Reorienting the final reconstructed 3D image into standard
anatomical space defined by longitudinal atlases.

slice. Mathematically, we omit subscript k for clarity and can formulate the

transformation as a 4×4 matrix T =
[

R(θ) d
0 1

]
, where R(θ) denotes a rotation

matrix parameterized by three rotational parameters θ = (θu, θv, θw)T , and
d = (du, dv, dw)T is a vector of three translation parameters in the 3D space.

Volumetric reconstruction is performed when the transformations {T
(i)
k }K

k=1

are updated in each iteration. Assuming ek being an additive white Gaussian
noise, the image x can be updated as below:

x(i) = argmin
x

(∑
k

1
2

∥∥∥yk − A(i)
k (x)

∥∥∥
2

2
+ Rx(x)

)
, (3)

where Rx(·) regularizes the solution space of the latent 3D image x. The opti-
mization problem can be solved by popularly used least-square solver. The above-
described two-stage framework performs alternating update of transformations
{T

(i)
k }K

k=1 and 3D image x(i) until convergence.

3 Method

An overview of our proposed PAK-SRR is shown in Fig. 2. Different from the
existing methods for SRR of fetal brain MRI, we consider two key kinds of prior
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Fig. 3. Demonstration of the stages for calculation of the seg-priors. (a) Brain image;
(b) Segmented white matter; (c) Color-coded SDM for white matter; (d) Color-coded
seg-priors for white matter. (Color figure online)

anatomical information from 1) tissue segmentation maps (seg-priors) and 2)
longitudinal fetal brain atlases (atlas-priors), and integrate them into the two-
stage iterative registration-reconstruction framework for improving the registra-
tion accuracy and reconstruction performance. The effectiveness of our seg-priors
and atlas-priors will be demonstrated in Sect. 4.

3.1 Slice-to-Volume Registration Guided by Seg-priors

The slice-to-volume registration stage aligns multi-resolution and multi-view
input slices with the tentatively-reconstructed volume by rigid registration. How-
ever, accurate registration is challenging due to large irregular motion and blurry
tissue boundaries in the input stacks, which may cause misalignment and result
in unsatisfactory SRR. To resolve this issue, we perform tissue segmentation
and employ the seg-priors to assist the slice-to-volume registration. Specially,
we perform segmentation for six types of tissues, including cerebrospinal fluid,
grey matter, white matter, ventricles, cerebellum, and brainstem. Based on the
segmentation results, we calculate the individual Signed Distance Map (SDM)
[1] for each of six types of tissues, and then calculate the mean of six SDMs
(N = 6) as the seg-priors {wk}K

k=1 as follows:

wk =
1
N

N∑
t=1

c

−|SDM
(t)
k |

‖SDM
(t)
k ‖∞ , (4)

where c is a constant used to control the contrast of the map (the larger c, the
larger the contrast), and in the experiments, we set c = 1e3. The operators |·| and
‖·‖∞ calculate the absolute value and �∞-norm, respectively. The calculation of
seg-priors for white matter is demonstrated in Fig. 3.

We incorporate the seg-priors {wk}K
k=1 into the calculation of similarity mea-

sure, i.e., normalized cross-correlation coefficient (NCC), and obtain our pro-
posed weighted NCC as

NCCw(I1, I2) :=

∑
j w

(j)
(
I
(j)
1 − Ī1

) (
I
(j)
2 − Ī2

)
√∑

j

(
I
(j)
1 − Ī1

)2
√∑

j

(
I
(j)
2 − Ī2

)2
, (5)
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Fig. 4. Visualization of the reconstructed volume (x(i)), the registered atlas (x(i)
a ), and

the corresponding gradient maps (∇x(i) and ∇x
(i)
a ) by both methods (shown in first

two rows for PAR-SRR, and third row for NiftyMIC) at three update iterations (shown
horizontally with two columns for each iteration).

where I1 and I2 denote the vectorized images and w is the vectorized seg-priors.
The index j denotes the jth element of the vector. Therefore, we can update the
transformation T

(i)
k of the kth slice at iteration i with

T
(i)
k = argmin

T k

(
−NCCwk

(yk, [T k ◦ B(x(i−1))]k)
)

. (6)

In this way, we penalize more on boundary misalignment, and can obtain
improved registration performance on boundary areas, which usually convey
more structural information and are thus critical for downstream applications.

3.2 Volumetric Reconstruction Jointly Guided by Seg-priors
and Atlas-priors

The volumetric reconstruction stage aims to reconstruct a super-resolution vol-
umetric image based on the aligned thick-slice stacks. In this stage, we intend
to employ the seg-priors and atlas-priors jointly. First, we integrate the calcu-
lated seg-priors {wk}K

k=1 into the maximum a posteriori (MAP)-based volumet-
ric reconstruction stage:

x(i) = argmin
x

⎛
⎜⎝

∑

k∈K
(i)

δ

1
2

∥∥∥yk − A(i)
k (x)

∥∥∥
2

wk

+
α

2
‖∇x‖22

⎞
⎟⎠ , (7)

where ‖·‖2wk
represents the weighted �2-norm with the weights wk being diagonal

matrix for the kth slice. Following the work of [2], we eliminate the outlier slices
which are severely corrupted by large motion according to the following rule:
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K
(i)

δ :=
{
1 ≤ k ≤ K : NCC(yk,A(i)

k (x(i−1))) ≥ δ
}

, (8)

where K
(i)

δ denotes a set of indices of inlier slices. NCC(·) measures the slice
similarity such that the slices with similarity less than a predefined threshold δ
are considered as outliers and will be discarded in the volumetric reconstruction
stage.

Second, to compensate for the information loss due to motion artifacts, we
resort to longitudinal fetal brain atlases and use gradient maps of certain time-
point atlases as auxiliary information for volumetric reconstruction. In Fig. 4, we
demonstrate the gradient maps of a reconstructed volumetric image and the atlas
[6]. As can be observed, the atlas usually has sharper boundaries and sharper gra-
dient maps than the initially reconstructed volumetric image, implying that atlas
information can be utilized to compensate for blurry boundaries and improve
quality of the reconstructed images. Therefore, we register the atlas to the ten-
tatively reconstructed volumetric image, denoted as xa, and impose similarity
match between the gradient of the volume ∇x and the corresponding one of the
atlas-priors (i.e., ∇xa) to obtain clearer boundaries in the reconstructed images.
Mathematically, we can use the following formulation:

x(i) = argmin
x

( ∑

k∈K
(i)

δ

1
2

∥∥∥yk − A(i)
k (x)

∥∥∥
2

wk

+
α

2
‖∇x − ε∇xa‖22

)
, (9)

where ε and α are scalar parameters. The prior knowledge from the atlases can
effectively guide the volumetric reconstruction from low-quality slices. Those
slices with severe quality degradation usually decrease reconstruction perfor-
mance. It is worth noting that, when introducing atlas-priors into the regular-
ization, the overall intensities of the reconstructed volumetric image x might
slightly deviate from the input slices during the optimization, as shown in Fig. 4.
To alleviate this effect, we perform histogram matching between the tentatively
reconstructed volumetric image and its corresponding input stacks during slice-
to-volume registration in each iteration.

4 Experiments

4.1 Dataset

We have evaluated our proposed PAK-SRR on fetal brain MRI of 66 subjects cov-
ering 20 to 38 gestational weeks (GWs) from multi-site clinic centers, with totally
213 stacks. Each subject was scanned under at least three different-view (direc-
tion) stacks by the SSFSE sequence with different spatial resolutions including
1.3 × 1.3 × 5, 1.5 × 1.5 × 4.2, 0.625 × 0.625 × 3, and 0.55 × 0.55 × 4.4 mm. We
use bias field correction [8] to preprocess all different-view stacks.

4.2 Experimental Settings

We do the following settings for our experiments. 1) For selecting a target stack
used initially to build a tentative HR 3D MR image of each fetal brain, we first
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Table 1. Quantitative comparison between PAK-SRR and other methods on multi-site
datasets of 66 subjects. The best results are in bold.

Rousseau et al. [13] SVRTK [9] BTK [14] NiftyMIC [2] PAK-SRR

PSNR 18.68 ± 3.81 19.42 ± 4.55 19.65 ± 4.31 22.88 ± 5.44 24.60±5.19
SSIM 0.7303 ± 0.1909 0.7074 ± 0.1907 0.7527 ± 0.1950 0.7935 ± 0.2027 0.8401±0.1412
NCC 0.78 ± 0.24 0.78 ± 0.24 0.80 ± 0.24 0.85 ± 0.23 0.91±0.09

Fig. 5. Qualitative results by NiftyMIC and PAK-SRR for subjects at 20, 24, 27, 30,
35, and 38 GWs, shown in 6 columns, respectively.

use U-Net to segment brain tissue map for each different-view stack, and then
convert them to seg-priors as shown in Fig. 3. Next, we calculate an overlap
ratio for each stack with all other stacks according to their respective brain
tissue maps. In this way, we can select a stack with the maximum overlap ratio
with all other stacks. Finally, by using this selected stack as a target space and
aligning all other stacks to it, we can build a tentative HR 3D MR image (for
each fetal brain). 2) For parameters used in Eq. 9, we set the outlier-threshold
δ as 0.6, 0.7, and 0.8, as well as the hyper-parameter ε as 0.8, 0.7, and 0.6,
for the three iterations (for our case of using three iterations), respectively. We
set the regularization parameter α to 0.01 for all iterations. 3) The isotropic
resolution for the final HR MR image can be set to a range of 0.5mm to 1.0mm.
We choose 0.8mm since the resolution of our employed longitudinal atlases is
0.8mm (Fig. 5).

4.3 Implementation Details

The following pipeline is conducted for all the experiments. 1) Intensity correc-
tion: following the work in [2], we employ linear regression to make intensities
of all other stacks consistent with the intensities of the selected target stack. 2)
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Table 2. Quantitative results by NiftyMIC and PAK-SRR for normal (N) and abnor-
mal (ABN) subjects from 20 to 38 GWs.

GWs # Subjects NiftyMIC PAK-SRR
N:ABN PSNR SSIM NCC PSNR SSIM NCC

20 1 : 0 20.76 ± 5.10 0.7778 ± 0.2013 0.84 ± 0.20 24.80±5.12 0.9201±0.0467 0.96±0.03
24 2 : 0 21.87 ± 5.80 0.8001 ± 0.2062 0.87 ± 0.20 26.07±3.61 0.9226±0.0624 0.97±0.02
27 2 : 0 21.86 ± 5.26 0.7975 ± 0.2125 0.83 ± 0.25 23.08±4.90 0.8658±0.0909 0.93±0.06
30 8 : 1 22.39 ± 5.67 0.7922 ± 0.2025 0.82 ± 0.24 23.87±5.49 0.8536±0.1201 0.91±0.10
31 11 : 1 20.29 ± 6.13 0.7197 ± 0.2383 0.77 ± 0.29 22.90±4.30 0.8166±0.1361 0.91±0.10
32 4 : 1 24.32 ± 3.87 0.8691 ± 0.1000 0.90 ± 0.16 25.02±5.11 0.8700±0.1078 0.92±0.08
33 2 : 2 23.06 ± 5.47 0.8094 ± 0.1853 0.85 ± 0.23 24.78±4.89 0.8709±0.1076 0.93±0.07
34 4 : 2 23.24 ± 5.48 0.8072 ± 0.1985 0.84 ± 0.25 23.39±4.91 0.8333±0.1282 0.90±0.09
35 4 : 3 23.90 ± 4.57 0.8342 ± 0.1566 0.87 ± 0.20 24.36±5.39 0.8455±0.1331 0.90±0.11
36 7 : 4 23.26 ± 5.19 0.7618 ± 0.2340 0.86 ± 0.21 23.80±5.54 0.8006±0.1979 0.89±0.12
37 2 : 2 26.22 ± 3.39 0.8761 ± 0.1062 0.92 ± 0.14 27.25±4.26 0.8988±0.0751 0.95±0.04
38 1 : 2 23.88 ± 5.44 0.8106 ± 0.1605 0.86 ± 0.21 24.00±6.08 0.8124±0.1479 0.88±0.10

Volume-to-volume rigid registration: we employ the symmetric block-matching
algorithm REGALADIN [12] to align all stacks with the target stack. 3) Initial HR
volume Estimation: we apply the scattered data approximation approach [2] on
the aligned stacks to obtain an initial coarse HR volume. 4) Slice-to-volume reg-
istration: our proposed seg-priors guided slice-to-volume registration algorithm
(as described in Sect. 3.1) is used to improve registration accuracy (especially
in challenging areas) by introducing tissue seg-priors. 5) Volumetric reconstruc-
tion: we employ the longitudinal atlases from Gholipour et al. [6] and register the
corresponding time-point atlas (according to GWs) to the tentatively-estimated
HR volume. Based on the guidance of atlas-priors (as described in Sect. 3.2),
we update the reconstructed HR volume using LSMR algorithm [3]. 6) Alter-
natingly optimizing 4) and 5) until convergence: the above-described two-stage
framework performs the alternating update of transformation T

(i)
k and 3D image

x(i) until convergence. 7) Reorienting HR image: the reconstructed HR volumet-
ric image is further reoriented into the standard anatomical space (defined by
longitudinal atlases) for downstream analysis.

4.4 Experimental Results

We compare our PAK-SRR with four state-of-the-art methods [2,9,13,14] in
terms of peak-signal-to-noise ratio (PSNR), structural similarity index measure
[17] (SSIM), and NCC. As shown in Table 1, our PAK-SRR obtains the best
mean performance and the best standard deviation in SSIM and NCC. The
second-best method, NiftyMIC, outperforms the other three methods also by
a large margin. Therefore, in the following experiments, we will focus on the
comparison between our PAK-SRR and NiftyMIC.

Table 2 summarizes the statistical results of different GWs for all 66 subjects.
We divide the data into normal (clinically defined normal fetal brain growth and
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Table 3. Quantitative results of NiftyMIC and PAK-SRR for a normal 31 GWs subject
under different combinations of input stacks. Note that A, C, and S denote stacks that
are acquired with high-resolution in axial, coronal, and sagittal views, respectively.

Stacks NiftyMIC PAK-SRR
PSNR SSIM NCC PSNR SSIM NCC

3A 15.34 ± 4.96 0.5618 ± 0.2598 0.55 ± 0.31 20.72±3.96 0.7341±0.1506 0.77±0.12
3A+2C 16.22 ± 4.80 0.5832 ± 0.2358 0.62 ± 0.31 20.80±3.19 0.7485±0.1367 0.80±0.10
1A+1C+1S 18.19 ± 4.95 0.6966 ± 0.2094 0.75 ± 0.24 21.56±3.23 0.7941±0.1088 0.84±0.12
3A+2C+2S 15.58 ± 4.47 0.5481 ± 0.3114 0.59 ± 0.31 20.50±2.78 0.7358±0.1284 0.79±0.09

Fig. 6. Qualitative results by NiftyMIC and PAK-SRR on 31-GWs subject. A, C, and
S denote stacks that are acquired with high-resolution in axial, coronal, and sagittal
views, respectively.

development, with appearance close to the atlases) and abnormal (as opposed)
cases for better evaluation. As can be observed, for all the cases, our PAK-
SRR achieves promising performance in all the evaluation metrics. For the cases
mainly containing normal subjects, our proposed PAK-SRR obtains significant
improvement over NiftyMIC, especially in SSIM and NCC, which is attributed
to the use of additional information from the atlas-priors.

For in-depth analysis, we employ different combinations of axial (A), coronal
(C), and sagittal (S) views as input to evaluate the effectiveness of our proposed
methods. The qualitative performance is illustrated in Fig. 6. It can be seen
that NiftyMIC generates blurring boundaries and gets worse when the num-
ber of input views reduces. In contrast, PAK-SRR obtains high-quality isotropic
images, even using only the axial view from three angles (3A). In fact, in Table 3,
we show that, using only 3A views, PAK-SRR generates much better quantitative
performance than NiftyMIC using the combinations of all views. Interestingly,
the result of 1A+1C+1S outperforms 3A+2C+2S for both methods, indicating
that the redundant or possibly-damaged inlier slices may degrade the perfor-
mance due to misregistration, and another reason might be that the use of more
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Table 4. Ablation study of key components of our PAK-SRR, (P) denotes the paired
t-test p-values for comparison of group means before and after intervention.

NiftyMIC SP-SRR (P) AP-SRR (P) PAK-SRR (P)

PSNR 22.88 ± 5.44 24.26 ± 5.51 (2.8e–8) 24.18 ± 5.35 (3.7e–8) 24.60±5.19 (1.5e–8)
SSIM 0.7935 ± 0.2027 0.8386 ± 0.1442 (7.8e–8) 0.8391 ± 0.1434 (6.2e–8) 0.8401±0.1412 (5.1e–8)
NCC 0.85 ± 0.23 0.89 ± 0.12 (1.3e–6) 0.89 ± 0.12 (1.2e–6) 0.91±0.09 (1.1e–6)

Fig. 7. Qualitative performance of NiftyMIC and SP-SRR with the assistance of tissue
segmentation in two cases (Left: 27 GWs; Right: 31 GWs).

angular stacks also causes errors in slice-to-volume registration. Overall, based
on both qualitative and quantitative evaluations, our PAK-SRR achieves much
clearer anatomical structures, especially for the challenging samples, and out-
performs NiftyMIC for all cases of different GWs and different acquisition views,
in terms of all the evaluation metrics.

4.5 Ablation Study

In PAK-SRR, we propose two key components, i.e., seg-priors (SP) and atlas-
priors (AP). To demonstrate their effectiveness, we conduct ablation study on
two variants, SP-SRR and AP-SRR, for evaluating seg-priors and atlas-priors
(as shown in Table 4), respectively.

Effectiveness of Seg-priors: The seg-priors are obtained by tissue segmenta-
tion which is one of the key contributions. Figure 7 demonstrates the results of
NiftyMIC and SP-SRR for two fetal brains of 27 GWs and 31 GWs. We can see
that both methods obtain reasonable HR images for two fetal brains. However,
NiftyMIC reconstructs HR images not only with blurry boundaries but also with
less fidelity compared to the reference images. On the contrary, SP-SRR achieves
successful reconstruction in these challenging regions as masked and zoomed-up
in Fig. 7, demonstrating that the seg-priors extracted from the tissue segmenta-
tion maps indeed improve both the registration accuracy and the reconstruction
performance.

Effectiveness of Atlas-priors: To show the effectiveness of AP-SRR, we pro-
vide a challenging case with large motion and artifacts in Fig. 8. In this case, the
brain cannot be identified in the other two views. The NiftyMIC fails to recon-
struct the kth slice in the sagittal view, and shows severe streak artifacts in the
other two views. In contrast, with the guidance of longitudinal atlases (i.e., atlas-
priors), AP-SRR achieves promising reconstruction in all three views. It is worth



PAK-SRR 439

Fig. 8. Qualitative performance of NiftyMIC (middle three columns) and AP-SRR
(right three columns) for a 35 GWs subject. The kth reference slice of the sagittal view
is corrupted with large motion and artifacts (left three column).

Fig. 9. Visualization of the initial image (x(1)), initially-registered atlas (x(1)
a ), recon-

structed HR image (x), and reference.

noting that since the super-resolved sagittal view provided by AP-SRR intends to
compensate for the motion artifact and generates more plausible images than the
corrupted input slice, which is usually considered as a reference, it may reduce
quantitative assessment for this particular case. In some cases, there might be
significant differences between the appearances of the atlas and the reference.
Even in this way, the anatomical structures of the reconstructed slices using
atlas-priors can still be consistent with the references as shown in Fig. 9. This
demonstrates the robustness of our proposed method.

5 Conclusion

In this paper, we proposed a novel prior-anatomical-knowledge assisted method
for super-resolution reconstruction (SRR) of fetal brain MRI, namely PAK-SSR.
Our method is built on a two-stage iterative registration-reconstruction scheme.
Different from the existing methods, we introduce the seg-priors, derived from
the segmentation maps of six tissue types in fetal brains, to guide the slice-
to-volume registration and volumetric reconstruction. Moreover, we propose to
employ the atlas-priors, derived from the longitudinal fetal brain atlases, to
exploit developmental characteristics for assisting the volumetric reconstruction
stage. We performed extensive experiments to evaluate our PAK-SRR. Experi-
mental results show that PAK-SRR outperforms the state-of-the-art SRR meth-
ods by a large margin in terms of both quantitative and qualitative evalua-
tions. In the ablation study, we further show that our proposed seg-priors and
atlas-priors can effectively improve slice-to-volume registration and volumetric
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reconstruction, eventually providing reconstructed 3D images with high fidelity
and clear tissue details. In the future, we will explore to leverage these high-
quality fetal brain images to improve existing brain development studies [10,16]
by extending the temporal dimension to pro-gestation period.
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