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Abstract. Functional neuroimaging technology offers a new window to snapshot
the transient neural activity in-vivo. Although tremendous efforts have been made
to characterize spontaneous functional fluctuations, little attention has been paid
to the functional mechanisms of neural interactions. Inspired by the notion of
holography, we propose an explainable machine learning approach to establishing
a novel underpinning of self-organized cross-frequency coupling (CFC) through
the lens of brain wave interference on top of the network topology. Specifically, we
conceptualize that the interaction between ubiquitous neural activities and a collec-
tion of reference harmonic wavelets forms a region-adaptive interference pattern
that captures cross-frequency coupling of remarkable neuronal oscillations. In this
regard, assembling whole-brain CFC patterns under the constraint of brain wiring
mechanisms constitutes a HoloBrain mapping that records a wide spectrum of
spontaneous neural activities. Since each local interference pattern is a symmetric
and positive-definite (SPD) matrix, we tailor a deep model of HoloBrain (coined
DeepHoloBrain) to infer the latent feature representations on the Riemannian
manifold of SPDmatrices for predicting brain states and recognizing disease con-
nectomes. We have applied DeepHoloBrain to the Human Connectome Project
and several dementia-related datasets. Comparedwith current state-of-the-art deep
models, our DeepHoloBrain not only improves the recognition/prediction accu-
racy but also sheds new light on understanding the neurobiological mechanisms
of brain function and cognition.
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1 Introduction

Recent developments of in-vivo neuroimaging technology, such as functional magnetic
resonance imaging (fMRI), allow us to investigate the connectivity between distinct
regions in the brain, where we used to study each region separately. Since the research
paradigm has been shifted to investigate region-to-region interactions, network neuro-
science comes to the stage, which conceptualizes the brain as a connectome an inter-
active network map where distinct brain regions synchronize their neuroactivities via
myriads of interconnecting nerve fibers [1]. Network neuroscience provides a simple
yet elegant system-level approach to understanding how neural circuits support brain
function, how they constrain each other, and how they differ across individuals, which
sheds new light on gaining insight into cognitive science and uncovering system-level
principles of disease mechanisms.

The presumption of functional connectivity (FC) is a statistical dependency between
the time series measured neurophysiological signals, which allows us to study whole-
brain functional connections as a complex wiring system of the brain network [2]. In this
context, graph theory is introduced to describe the global and local topological properties
[3]. Recently, the research interest has shifted to dynamic functional connectivities,
where the network topology changes over time, even in the resting state [4]. Despite
great success in understanding cognition and behavior from a network neuroscience
perspective, the neurobiological mechanism of functional co-activation is still largely
unknown.

Mounting evidence in neuroscience shows that neuronal oscillations (aka. Brain
waves), presenting across a broad frequency spectrum, might emerge remarkable rhyth-
mic changes that support the functional mechanism of the interaction between dif-
ferent frequency bands, a phenomenon termed cross-frequency coupling (CFC) [5].
CFC has been reported in many cortical and subcortical regions in multiple species,
yielding distinct signatures in neural dynamics [6]. In computer vision, holography is
a stereo-imaging technique that generates a hologram by superimposing a reference
beam on the wavefront of interest [7]. The resulting hologram is an interference pattern
that can be recorded on a physical medium. Taking together, we present a proof-of-
concept approach, called HoloBrain, to computationally “record” the cross-frequency
couplings of time-evolving interference patterns that are formed by superimposing
the harmonic wavelets (with predefined oscillation frequencies) on the subject-specific
neural activities.

From the data structure perspective,HoloBrain is a graph consisting of nodes (corre-
sponding to brain regions) and edges (weighted by functional co-activations). In contrast
to conventional graph embedding vectors, HoloBrain uses a symmetric and positive-
definite (SPD) matrix to encode all possible CFCs at each brain region (node). In this
context, a new machine-learning challenge arises, that is, how to find the most relevant
and explainable CFC feature representations throughout the brain network for predicting
brain states and recognizing disease brain connectomes. To address this challenge, we
formulate the machine-learning problem as a message-exchanging process on a com-
pact subgraph, where we progressively refine the CFC feature representations via the
learned random walks on the subgraph. Since the CFC holds the unique data geometry,
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we further present a manifold-based deep model (coined DeepHoloBrain) to infer the
explainable CFC features on the Riemannian manifold of SPD matrices.

We have elucidated the neuroscience insight of HoloBrain via a set of group com-
parison studies. Meanwhile, we have evaluated the clinical value of DeepHoloBrain
in recognizing brain states on Human Connectome Project (HCP) data and diagnosing
Alzheimer’s disease (AD), obsessive-compulsive disorder (OCD), and schizophrenia
(SZ). Compared to the current “black-box deep” models, our DeepHoloBrain not only
improves the prediction/recognition accuracy using functional neuroimaging data but
also offers an explainable solution with great biophysics and neuroscience insight.

2 Methods

Supposewe partition a brain intoN distinct regions. At each region, we observe themean
time course of BOLD (blood-oxygen-level-dependent) signal xi(t) ∈ R (i = 1, . . . ,N )
where t is a continuous variable of time. Thus, we form a discretized time-varying signal
matrix X(t) = [xt]Tt=1 ∈ RN×T , where xt ∈ RN is a column vector of whole-brain
BOLD signal snapshot at time t. In this context, we can represent the brain network
as a graph G = (V,W) with N nodes (brain regions) V = {vi|i = 1, . . . ,N } and
the adjacency matrix W = [

wij
]N
i,j=1 ∈ RN×N describing FC strength (measured by

Pearson’s correlation). Let L = D − W as the underlying Laplacian matrix, where D
is a diagonal matrix of the total connectivity degree at each node. In the following,
we first introduce the neuroscience insight and physics principles of our new model
HoloBrain for studying brain functions. After that, we present an explainable deep
model forHoloBrain using graph neural network and Riemannian manifold techniques.

2.1 HoloBrain: A Physics-Informed Model for Brain Function Analysis

Our work is inspired by frequency-specific harmonic waves [8], where the oscillation
patterns of harmonic waves act as the basis functions to express the neural activities in
the graph spectrum domain (constrained by brain network topology). By applying SVD
on graph Laplacian matrix L, the top K eigenvectors φ = [φk ]Kk=1 (corresponding to the
first K smallest eigenvalues) are used as subject-specific harmonic waves.

Harmonic Wavelets. Furthermore, we extend the harmonic technique to the regime of
harmonicwaveletswhere the region-adaptive oscillation patterns allowus to characterize
localized neural activities. To do so, we follow the approximation method in [9] to
construct the harmonic wavelets for each node vi in two steps. First, we generate a
subgraph mask ui ∈ RN where all the nodes are connected to the underlying node vi
within h hops. Thus, ui is an index vector where ui(j) = 1 denotes region vj is in the
subgraph centered at vi and ui(j) = 0 otherwise. Second, we estimate a collection of
harmonic wavelets ψ i = [

ψ s
i

]S
s=1 across frequency s by:

min
ψ i

tr
(
ψT

i Lψ i

)
+ tr

(
ψT

i diag(1 − ui)ψ i

)
+ tr

(
ψT

i φTφψ i

)
, s.t.,ψT

i ψ i = I. (1)

Minimizing the first trace norm with the orthogonal constraint leads deterministic
solution of harmonic waves in [8]. Since we sought to localize each harmonic wavelet
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within a subgraph, the second trace norm is used to encourage ‖ψ i‖2 to be zero out of
the subgraph. In order to achieve complementary basis functions, we introduce the third
trace norm to make the harmonic wavelets ψ i orthogonal to the global harmonic wave
φ. Due to the linearity of the trace norms, we unify three trace terms in Eq. 1 into one
trace term with a matrix �i = L+ diag(1 − ui)+φTφ. Thus, the optimization of Eq. 1
is boiled down to the eigendecomposition of the matrix �i.

Examples of harmonic wavelets are shown at the top-left of Fig. 1. It is clear that
each harmonic wavelet captures the oscillation patterns (indicated by colored arrows,
blue for positive and red for negative values) within a local network topology centered
at the underlying brain region, where the waves oscillate slowly in the low-frequency
and rapidly in the high-frequency band.

Fig. 1. The workflow of constructing HoloBrain for each subject, which consists of four major
steps: (i) estimate harmonic wavelets, (ii) calculate interference waves, (iii) construct local CFC
matrix, and (iv) assemble localized CFC matrices into a tensor, yielding HoloBrain.

Construction ofHoloBrain. As shown in the middle of Fig. 1, we regard the snapshot
of the whole-brain BOLD signal xt as a time-dependent wave of subject-specific neural
activities. Likewise, each harmonic wavelet ψ s

i is considered as a predefined reference
wave corresponding to a neuronal oscillation frequency. In this context, we define an
interferencewaveρi,s(t) = (xt)T ·ψ s

i , which quantifies the dynamic engagement effect of
superimposing the reference harmonicwavelets and the subject-specific neural activities.

Following the notion of CFC, we can construct a local CFC matrix for each region

vi by Ci = [
cpqi

]S
p,q=1, where each local CFC pattern cpqi = (

ρi,p
)T · ρi,q captures the

synchronization between interface waves ρi,p at pth frequency and ρi,q at qth frequency
band. To that end, HoloBrain is defined as an assembly of CFC matrices throughout the
brain as H = [Ci]Ni=1, where H is formulated as a S × S × N tensor.

Insight of HoloBrain. From a Neuroscience perspective, we position each harmonic
wavelet as a predefined neuronal oscillation. In this regard, a set of harmonic wavelets at
the region vi constitute a spectrum of brain rhythms with varying frequencies along the
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brain cortex. Since the neuronal activity associated with stimulus processingmight differ
depending on its timing relative to the ongoing oscillation [5], the interaction between
harmonic wavelets and BOLD signal snapshot at time t indicates the contribution of
the underlying harmonic wavelet ψ s

i to the local cortical excitability. The proposition of
considering the time-evolving interaction as the frequency-specific interference pattern
sets the stage for understanding the physiological mechanism of CFC in the human brain.
Since the human brain is a complex system, our HoloBrain “records” the footprint of
whole-brain neural activities in the representation of evolving CFC.

Fig. 2. The physics insight of HoloBrain (right) in analogy to the wave interference principle
(left), which both yield constructive and destructive interference patterns on the screen and cross-
frequency couplings, respectively.

From a physics point of view, the waves from two slits interfere constructively or
destructively, as shown in Fig. 2 left. In our HoloBrain, each harmonic wavelet acts as
the multi-slits where the geometry (e.g., the slit gaps) reflects its oscillation patterns. As
shown in the right panel of Fig. 2, we conceptualize the snapshot of BOLD signals x(t)
is the source wave of neural activity. In this context, the temporal interaction between a
harmonic wavelet and the source wave, i.e., ρi,s(t), can be regarded as an interference
wave. Since each interference wave is associated with a harmonic frequency, we super-
impose the interferencewaves across frequencies and form the S×S region-specificCFC
patterns, which hold the exact nature of interference patterns in the art of 3D hologram
[7]. In analogy to the constructive and destructive interferences observed in Young’s
double slit [10], we also detect a similar phenomenon along the off-diagonal lines in the
S × S CFC matrix (purple dash lines in Fig. 2). Note, the first off-diagonal line (closest
the diagonal line) records the CFC patterns having one shift between one pair of fre-
quency bands. The second off-diagonal line captures two-frequency-shift CFC, etc. As a
proof-of-concept approach, we sought to examine the neuroscience insight of how these
constructive/destructive interferences in our HoloBrain underline the cognition status
and the separation between healthy and disease connectomes.

From the machine learning perspective, the workflow in Fig. 1 is essentially a data
representation process where we use the learned harmonic wavelets (as the basis func-
tions) to express the observed BOLD signal at each time point. To that end, the resulting
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CFC tensor of HolobrainH can be understood as an expression pattern of location and
frequency associated with the evolving brain states.

2.2 DeepHoloBrain: An Explainable Deep Model for HoloBrain

Challenges. Without loss of generality, we sought to find a non-linear mapping from
HoloBrain H to an outcome label (e.g., disease connectome). There are three major
challenges. First, the data dimensionality of CFC pattern at each brain region grows
quadratic (O(S2)) with the number of frequency bands. Since the contribution of each
brain region varies in different cognitive statuses or disease progression, a compact
representation of H allows us to find the most relevant features and thus enhance the
prediction/recognition accuracy. Second, each CFC is an instance of SPD matrix. Since
the data structure of CFC holds neuroscience insight, it is important to preserve such
intrinsic data geometry in feature representation learning. Third, since CFC patterns in
theHoloBrain are topologically wired, the machine-learning model should take network
topology into account.

Problem Formulation. The input is the tensorH ofHoloBrain associated with a graph
topology G. We train a deep model M to learn the latent low-dimension feature F and
a neural circuit GF (subgraph of G) that explains the formation of application-specific
feature representation F. Due to the consideration of model explainability, we expect
the output feature representation F to preserve the geometric structure of S × S CFC
pattern, i.e., F ∈ Sym+

S is a data instance of co-activation patterns on the Riemannian
manifold of SPDmatrices Sym+

S . Since the conventional graph convolution plus pooling
technique [11] has limitations in interpreting the neuroscience insight of learned features,
we present a reinforcement learning framework to find the representative CFC pattern
F via a set of random walks on the graph G, as decribed next.

Design of our Explainable Deep Model for HoloBrain. The overall workflow of our
DeepHoloBrain is shown in Fig. 3. Following the spirit of the partially observedMarkov
decision process [12], the agent A is trained to learn a stochastic policy that, at each
step l, maps the history of past interactions with the environment (existing nodes v(1),
v(2),…, v(l−1) in the subgraphGF) to a probability distribution over actions for the current
step l. At each step l, the agent performs two actions: (i) update CFC patterns in the
HoloBrain through a re-wiring process (steering the feature representation learning), and
(ii) add node v(l) to the subgraph GF that supports the formation of the representative
CFC pattern F (for model explainability). In this context of reinforcement learning, our
DeepHoloBrain is made of the following learning components (indicated by color in
Fig. 3).

(1) Sensor. As explained in the “Action” module, the actions from the agent A include

the lth candidate node v(l) and a vector of re-wiringmessagem(l) =
[
m(l)
j

]N

j=1
∈ RN .

Here v(l) is an index function that returns the node index in the lth step. Suppose
v(l) = vi. Thus, each element m(l)

j indicates the interaction between Ci and other

CFC pattern Cj. Furthermore, we use G(l)
F = {v(1), v(2), . . . , v(l)} denote the set of
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node indexes selected by the agent in the past l steps. By integrating the re-wiring
message m(l) with the connectivity profile (ith row in the adjacency matrix W) at
node vi, we define the external state of the agent E(l) by: E(l) = ∑N

j=1m
(l)
j w

ij
C
j
.

Fig. 3. (a) The overall design of DeepHoloBrain falls into a reinforcement learning framework,
which consists of a sensor (in purple), an internal state (in brown), a set of actions (in red), and
a reward function (in green). (b) The learning process of representative CFC features F forms
a trajectory on the manifold Sym+

S as we sequentially walk from v(l) to v(l+1) at each step of
reinforcement learning.

(2) Internal state. The agent maintains an internal state h that summarizes the repre-
sentative CFC pattern extracted from the history of selected nodes G(l)

F . The agentA
perceives the evolving environment (updated representative featureF(l)) by deciding
how to act (for exchanging information between CFC patterns) and where to deploy
the new sensor (for steering the random walk). In this context, we train a recurrent
neural network (RNN) to update the internal state by h(l) = f�(h(l−1),E(l)), where
f� denotes the RNN with trainable parameters �.

(3) Actions. At each step, the output of RNN is used to predict the node index v(l+1) of
the next candidate node in G(l+1)

F and a re-wiring message m(l+1) that contributes to
the change of the environment state. Specifically, the node index v(l+1) is determined
stochastically from a distribution parameterized by the random walk network, i.e.,
v(l+1) ∼ p(v|g�(h(l))), where g denotes a neural network with trainable parameters
�. Similarly, the re-wiring vector is drawn from a distribution conditioned on the



36 H. Liu et al.

output of the attention network ξZ(h(l)), i.e., m(l+1) ∼ p(m|ξZ(h(l))), where Z is the
attention network parameters. Based on the current hidden state h(l), we further train
a prediction network rω to learn the representative features F(l), where the output is
a softmax classifier for outcome prediction (e.g., recognizing disease connectomes).

(4) Rewards. After executing the above actions, the agent goes to a new external state
E(l+1) and a reward τ (l+1). In most applications, τ (l+1) = 1 suggests that the learned
representative featuresF(l) successfully predict the outcome label for the underlying
subject after l + 1 steps and 0 otherwise.

Extend Our Deep Model to the Riemannian Manifold. Since multiple lines of evi-
dence show the importance of preserving the geometry of SPD matrices in functional
brain network analysis [13, 14], we extend our DeepHoloBrain model in Fig. 3 to the
manifold-based deep model by replacing the RNN model f� to SPD-SRU [15], where
the operations in the SPD-SRU use the manifold algebra for SPD matrices. To that end,
the hidden state h(l) ∈ Sym+

S becomes a S × S SPD matrix.

Training DeepHoloBrain. The driving force of DeepHoloBrain consists of two parts.
First, we use cross entropy to monitor the classification error between the ground truth
and predicted outcome label by the current representative CFC featureF(l) at each stepl.
Second, since the random walk from the current brain region v(l) to the next spot v(l+1)

is steered by the re-wiring messagem(l), we evaluate the effectiveness of random walk
by a composite score of τ (l) · m(l)

vl
, where τ (l) is the reward at the current step and m(l)

vl
reflects the reliability of suggesting good candidate regions in reinforcement learning.
The parameters of DeepHoloBrain {�,Z,�,ω} are fine-tuned by the Adam optimizer,
where the learning rate is set to 0.001.

3 Experiments

In the following experiments, we first investigate the neuroscience insight of HoloBrain
underlying the relationship between brain function and cognitive status. After that, we
evaluate the diagnostic power ofDeepHoloBrain in recognizing disease connectomes for
AD, OCD, and schizophrenia using resting-stage fMRI scans, and recognizing cognitive
tasks from task-based fMRI scans in HCP.

Data Description. We evaluate our proposed HoloBrain and DeepHoloBrain on the
task fMRI data from HCP and resting-stage fMRI data from three disease-related
datasets. For the task fMRI in HCP, we use Yale’s functional atlas [16] which con-
sists of 268 brain parcellations. The task includes 2-back and 0-back task conditions
for body, place, face, and tool stimuli, as well as fixation periods. For the resting-state
fMRI, the classic AAL atlas [17] is employed. For each fMRI scan, ICA-AROMA [18]
is used to remove motion signal artifacts based on temporal and spatial features in the
data related to head motion. A band-pass filter (0.009–0.08 Hz) is then applied to each
scan. After spatial normalization, we compute the mean BOLD time course for each
parcellated brain region. We perform experiments of cognitive normal (CN) vs. disease
connectomes classification on ADNI dataset (102 CN vs. 63 AD), OCD study (63 CN
vs. 61 OCD), and schizophrenia study (159 CN vs. 182 SZ). Meanwhile, we perform
task recognition experiment on 264 subjects with task-fMRI data from HCP.
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3.1 Understanding the Neuroscience Insight of HoloBrain

Since harmonic wavelets are widely used for signal reconstruction, we determine the
number of frequency bands S by evaluating the residual error between the original signals
and reconstructed signals with limited bandwidth. By doing so, we fix S = 10 in all the
following experiments. Thus, each CFC pattern is a 10 × 10 SPD matrix.

We show the population average of global CFC patterns (i.e., averaging throughout
brain regions and across individuals) for each clinic cohort in Fig. 4. There is a clear sign
that the population-wise CFC average exhibit remarkable off-diagonal striping patterns,
which resembles the constructive/destructive interference phenomena in Young’s double
slit shown in Fig. 2. In light of this, we hypothesize that the consistency of CFC degree
along these striping patterns might offer a new explanation how brain functions emerge
diverse cognition and behaviors. Since the striping patterns are visually distinguishable
between healthy and disease cohorts, we further speculate that the coherence of main-
taining the striping patterns might be an indicator of how brain function is altered as the
disease progresses.

Fig. 4. The statistical power of HoloBrain in healthy vs. disease connectome (left) comparison
and separating cognitive tasks (right). In each group comparison, we display the average CFC
patterns and the quantitative measures that evaluate the discriminative power of HoloBrain.

Following this clue, we calculate the interclass correlation coefficient (ICC [19])
for each off-diagonal line, where a higher ICC indicates less variance between CFC
degrees under consideration. In Fig. 4, we plot the distribution of ICC for the first
three off-diagonal lines for each cohort. It is apparent that the ICC level manifests strong
differences between healthy and disease connectomes at the significance level p < 10−6.
Although the difference between 0-bk and 2-bk tasks is not significant, the CFC patterns
show significant differences (p < 0.005) in ICC along the first diagonal line among
cognitive tasks.
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3.2 Evaluating the Clinical Value of DeepHoloBrain

In this section,we shift the focus to predicting outcome labels for each functional connec-
tome using the trainedDeepHoloBrain. The benchmark methods include classic support
vector machine (SVM) and graph convolution network (GCN) [11]. For SVM, we vec-
torize the CFC matrix at each brain region and concatenate them across brain regions.
Then we train SVM to predict the outcome from the concatenated vector. For GCN, we
consider the vectorized CFCmatrix as the graph embedding vector. Then, we train GCN
to predict the outcomes based on the topology of the functional connectivities. For all
learning-based methods, we use 5-fold cross-validation.

Evaluating the Prediction Accuracy. The prediction results of classifying AD,
OCD, and schizophrenia from resting-stage fMRI and recognizing cognitive tasks
from task-based fMRI are summarized in Table 1. It is apparent that our DeepHolo-
Brain outperforms the other counterpart methods in terms of accuracy, sensitivity, and
specificity.

Table 1. The statistics of machine learning performance in recognizing disease connectomes
(top) and cognitive tasks (bottom).

Experiments Methods Accuracy Sensitivity Specificity

CN vs. AD SVM 0.713 ± 0.031 0.231 ± 0.065 0.842 ± 0.039

GCN 0.772 ± 0.026 0.430 ± 0.056 0.743 ± 0.025

Ours 0.808 ± 0.036 0.650 ± 0.048 0.941 ± 0.036

CN vs. OCD SVM 0.513 ± 0.020 0.565 ± 0.035 0.452 ± 0.049

GCN 0.573 ± 0.011 0.560 ± 0.023 0.530 ± 0.055

Ours 0.611 ± 0.030 0.664 ± 0.026 0.664 ± 0.041

CN vs. SZ SVM 0.508 ± 0.014 0.535 ± 0.021 0.478 ± 0.021

GCN 0.578 ± 0.021 0.563 ± 0.016 0.576 ± 0.025

Ours 0.605 ± 0.016 0.647 ± 0.015 0.690 ± 0.017

HCP
0-bk vs. 2-bk

SVM 0.521 ± 0.035 0.478 ± 0.059 0.570 ± 0.066

GCN 0.555 ± 0.016 0.244 ± 0.053 0.862 ± 0.041

Ours 0.595 ± 0.017 0.567 ± 0.045 0.671 ± 0.047

HCP
Tools/Place/
Body/Face

SVM 0.251 ± 0.032 0.155 ± 0.068 0.344 ± 0.078

GCN 0.272 ± 0.041 0.166 ± 0.056 0.422 ± 0.065

Ours 0.363 ± 0.034 0.213 ± 0.044 0.396 ± 0.059

Evaluating theModelExplainability. First, since ourDeepHoloBrainmodel is trained
to select the best combination of CFC patterns for connectome classification by reward-
guided reinforcement learning, we display the most frequently-visited brain regions and
frequently-selected random walks in Fig. 5, for CN vs. AD (top-left), CN vs. OCD (top-
right), and CN vs. schizophrenia (bottom-left), respectively. Specifically, we use node
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size and brightness to reflect the selection frequency, where high frequency indicates
the importance in disease classification. Take CN vs. AD classification as an example.
Most of the brain regions fall in the default mode network (e.g., precuneus and superior
frontal gyrus) and frontoparietal network (e.g., middle frontal gyrus). Meanwhile, we
show the population-average subgraph GF in each disease classification, which suggests
that theCFCpatterns along the subgraph reach the best balance betweendiagnostic power
and dimensionality. Furthermore, we display the weighed average of CFC patterns for
each clinical cohort in the bottom-right of Fig. 5. Compared to the group comparison
results in Fig. 4, it is clear that the constructive and destructive patterns are not only
well maintained in the off-diagonal lines in the learned CFD patterns but also greatly
enhanced with respect to group-to-group differences.

Fig. 5. The most frequently-visited brain regions and subgraph GF that are used in CN vs. AD
(top-left), CN vs. OCD (top-right), and CN vs. SZ (bottom-left), where the node size and link
color indicate the likelihood of being selected inDeepHoloBrain.Meanwhile, we display the group
average of CFC patterns within the subgraph GF for different clinical cohorts in the bottom-right
panel.

4 Conclusions

In thiswork,wepropose a principled computational framework to characterize the holog-
raphy of spontaneous functional connectivities in the human brain. Specifically, our
HoloBrain technique allows us to elucidate the neuroscience insight of cross-frequency
couplings which plays a mechanistic role in neuronal computation, communication, and
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learning. Furthermore, we tailor a deep model to translate theHoloBrain to various neu-
roscience and clinical applications, such as predicting cognitive states and recognizing
disease connectomes.
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