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Abstract. Federated learning (FL) enables multiple client medical insti-
tutes collaboratively train a deep learning (DL) model with privacy pro-
tection. However, the performance of FL can be constrained by the lim-
ited availability of labeled data in small institutes and the heterogeneous
(i.e., non-i.i.d.) data distribution across institutes. Though data augmen-
tation has been a proven technique to boost the generalization capabil-
ities of conventional centralized DL as a “free lunch”, its application
in FL is largely underexplored. Notably, constrained by costly label-
ing, 3D medical segmentation generally relies on data augmentation. In
this work, we aim to develop a vicinal feature-level data augmentation
(VFDA) scheme to efficiently alleviate the local feature shift and facili-
tate collaborative training for privacy-aware FL segmentation. We take
both the inner- and inter-institute divergence into consideration, without
the need for cross-institute transfer of raw data or their mixup. Specif-
ically, we exploit the batch-wise feature statistics (e.g., mean and stan-
dard deviation) in each institute to abstractly represent the discrepancy
of data, and model each feature statistic probabilistically via a Gaussian
prototype, with the mean corresponding to the original statistic and the
variance quantifying the augmentation scope. From the vicinal risk min-
imization perspective, novel feature statistics can be drawn from the
Gaussian distribution to fulfill augmentation. The variance is explicitly
derived by the data bias in each individual institute and the underlying
feature statistics characterized by all participating institutes. The added-
on VFDA consistently yielded marked improvements over six advanced
FL methods on both 3D brain tumor and cardiac segmentation.
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1 Introduction

Federated learning (FL) [25] for medical image analysis, which follows a privacy-
aware decentralized paradigm to learn a global model on several local medical
institutes, has recently been the center of much attention. In practice, however,
the participating institutes may have diverse data collection schemes, which can
lead to inefficient global collaboration [17,25] in two ways. First, some of the
small institutes may have limited training data to support effective local updat-
ing. This is especially evident in the medical segmentation task, which is often
constrained by the availability of costly labeled training data [7]. Second, the
data collected from different institutes with heterogeneous vendors, doses, and
populations can result in biased gradient uploading to hinder the convergence
of the federal model. Though in conventional centralized learning, the widely
used data augmentation [27] can be a straightforward and unified solution to
the challenges of limited sample and poor generalized data distribution [37], it
remains largely underexplored in FL segmentation.

It is of great importance to explore the proper global data augmentation
scheme under the strict privacy restriction of FL, in which each client can-
not access the data across institutes [25]. Simply utilizing the data augmen-
tation methods in centralized learning without injecting global information is
sub-optimal, inheriting the institute’s bias. Early attempts [13,15,28] require
accessing a global dataset to achieve balanced training, which is restricted in
standard FL settings. Astraea [6] addresses this issue with several mediators
between global servers and institutes. However, since each mediator group is
a set of institutes, privacy among them is not protected. On the other hand,
FedMix [34] and XORMix [26] propose to transmit the averaged images across
institutes, which still take risk of privacy breaches and are inherently weak at con-
structing semantic transform with image-level MixUp [18]. In addition, the above
methods focus on classification and do not apply to segmentation–an important
medical image analysis task with great demand for data augmentation [7].

In this work, we propose to take both the inner- and inter-institute diver-
gence into consideration without the need for any cross-institute transmission
of raw data or their MixUp [26,34]. To mitigate the aforementioned limitations,
we resort to the feature-level vicinal risk minimization (VRM) [4] to expand an
example point in the feature space to a probabilistically modeled flexible distri-
bution, e.g., a conceptually simple Gaussian prototype, centered at the original
point, with the variation reflecting the local and global data divergence. Novel
feature statistics can be drawn from the Gaussian prototype distribution to ful-
fill augmentation. Moreover, inspired by the previous image style generation and
domain adaptation works [3,16,20], we propose to exploit the batch-wise feature
statistics (e.g., mean and standard deviation) in each institute to abstractly rep-
resent the discrepancy of data, which are shared among institutes without any
raw data transmission.

With our VFDA framework, the core issue is to properly associate the vari-
ance with the data bias in each individual institute and the underlying feature
statistics characterized by all participating institutes. For effective augmentation,
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a proper variance is determined based on variances of feature statistics within each
institute, regulated by the global variance of feature statistics characterized by
all participating institutes. The augmentation in VFDA allows the local model
to be trained over samples drawn from diverse feature distributions, alleviating
local distribution shifts and facilitating institute-invariant representation learn-
ing, eventually leading to a better global model.

The main contributions of this work can be summarized as follows:

• To our knowledge, this is the first attempt to investigate an efficient data
augmentation scheme in FL segmentation, which is especially pertinent for
3D medical data analysis.

• We propose a vicinal feature-level data augmentation (VFDA) scheme to
model each feature statistic probabilistically via a conceptually simple Gaus-
sian prototype and use the statistics drawn from the Gaussian distribution
to implement augmentation. The transmission of raw images or their MixUp
is not needed, meeting requirements for strict privacy protection.

• Both local and global divergence are taken into account in the abstractly
represented batch feature statistics to quantify the augmentation scope.

• We evaluated our VFDA scheme on 3D brain tumor and cardiac anatomical
segmentation tasks with 6 advanced FL methods to demonstrate its general
efficacy and superiority.

2 Methodology

In FL segmentation, we are given N local client institutes, in which the n-th
institute has Mn pairs of input volume xn

m ∈ X and the corresponding segmen-
tation label yn

m ∈ Y. We are expected to learn a global segmentation model
fg(wg) : X → Y parameterized by wg across all institutes, generally enforced by
the global empirical risk minimization (ERM) objectives:

Lg
ERM (wg) =

1
N

N∑

n=1

E(xn
m,yn

m)∼Pn [Ln
ERM (xN

m, yN
m ;wn)], (1)

where Pn is the underlying distribution of institute n (i.e., {xn
m, yn

m}Mn

m=1 ∼ Pn),
and Ln

ERM is the institutes-wise empirical risk with local network parameter
wn. Specifically, in the segmentation task, Ln

ERM typically follows the empirical
form of voxel-wise cross-entropy or Dice loss. With a privacy-aware decentral-
ized setting, directly calculating Lg

ERM (wg) with all data across institutes as
conventional centralized training is infeasible. In contrast, FL [21,25] relies on
local training of models fn(wn), n ∈ {1, · · · , N} in each institute in parallel with
the local data only. In each round, the trained local models are aggregated to
a global model fg(wg), which is then further distributed to each institute for
the next round of local training. Therefore, the local training objective in FL
is equivalent to empirically approximating the local distribution Pn by a finite
Mn number of samples, i.e., Pn

ERM (x, y) = 1
Mn

∑Mn

m=1 δ(x = xn
m, y = yn

m), where
δ(x = xn

m, y = yn
m) is a Dirac delta distribution with a point mass at (xn

m, yn
m).
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Fig. 1. Illustration of our VFDA over an encoder layer in the classical FL 3D segmen-
tation framework with heterogeneous clients.

Although the ERM objectives have been widely adopted in deep FL frame-
works as the training scheme, the underlying assumption is that the empirical
local distributions Pn

ERM are homologous to the underlying global distribution
Pg, which is unrealistic in actual clinical scenarios [16,24]. In practice, there can be
a significant performance drop since each Pn

ERM exhibits diverse data drifts with
respect to Pn and Pg, which lead to inconsistency of local and global empirical
objectives and difficulties of generalization to testing distribution [1,9]. In addi-
tion, each local model can be data starved, given only access to institute samples.

2.1 Label Consistent Vicinal Feature Distribution Extrapolation

Based on the above concerns, we propose to expand the Dirac delta distribution
inherent in Pn

ERM (x, y) to a more expressive one to approximate the true distri-
bution following the idea of VRM [4,36]. Therefore, we are able to examine the
vicinal region of each sample (xn

m, yn
m) for infinite data augmentation. Specifi-

cally, we can define a institute-wise vicinity distribution Vn(x̂n
m, ŷn

m|xn
m, yn

m) and
apply it to each sample (xn

m, yn
m) to generate numerous pseudo samples (x̂n

m, ŷn
m)

and support the local institute training. More formally, we construct the vici-
nal local distribution as Pn

V RM = 1
Mn

∑Mn

m=1 Vn(x̂n
m, ŷn

m|xn
m, yn

m), and expect a
better mimic of Pn with a proper Vn(·).

There are numerous successful candidates of Vn(·) in conventional centralized
learning, e.g., MixUp [36] and CutMix [35]. Though simply utilizing MixUp [36]
or CutMix locally can potentially improve the performance (as shown in exper-
iments), it can be sub-optimal as there are no global cues injected. In these
cases, Pn

V RM gives a better mimic of the true local distribution Pn rather than
the global distribution Pg.

Instead of the raw voxel level MixUp [35,36], VFDA estimates a vicinity
distribution Vn

l at each encoder layer l to augment its batch-wise interme-
diate feature Zn

l in n-th institute for more flexible expansion [18]. Of note,
Zn

l ∈ R
B×C×H×W×S denotes the intermediate feature representation of B mini-

batch volumes, with height H, width W , slices S, and channels C. In addition,
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to achieve consistency training [32], we define Vn
l to be label consistent, i.e.,

Vn
l (Ẑn

l , Ŷ n|Zn
l , Y n) = Vn

l (Ẑn
l |Zn

l )δ(Ŷ n = Y n), which only extrapolate the latent
feature Zn

l while maintaining the consistency of the label Y n ∈ R
B×H×W×S .

Then, a key challenge is adaptively configuring Vn
l (Ẑn

l |Zn
l ) based on the local

and global data divergence.

2.2 Probabilistic Modeling of Feature Statistics

As opposed to explicitly modeling Vn
l (Ẑn

l |Zn
l ), VFDA resorts to implicit feature

augmentation by exploiting the batch-wise feature statistics in each institute
to abstractly represent the discrepancy of input data, and model each feature
statistic probabilistically via a Gaussian prototype. Specifically, we utilize the
channel-wise feature statistics of mean μn

l and standard deviation σn
l . For Zn

l ,
its channel-wise statistics of μn

l ∈ R
B×C and σn

l ∈ R
B×C can be formulated as:

μn
l =

1
H × W × S

H∑

h=1

W∑

w=1

S∑

s=1

Zn
l ; σn

l =

√√√√ 1
H × W × S

H∑

h=1

W∑

w=1

S∑

s=1

(Zn
l − μn

l ).

(2)

Recent works [3,19,20,30] demonstrated that these low-order batch statistics
are domain-specific, owing to the divergence of feature representations. As the
abstraction of latent features, the feature statistics among local institutes will also
exhibit inconsistency and follow shifts from the statistics of the true distribution.

We propose to capture such shifts via probabilistic modeling. We hypothesize
that each feature statistic follows a multi-variate Gaussian prototype, i.e., μn

l ∼
N (μn

l , Σ̂2
μn
l
) and σn

l ∼ N (σn
l , Σ̂2

σn
l
), where each Gaussian prototype’s center

corresponds to the original statistic, and the variance is an estimation of the
potential feature statistic shift from the true distribution.

2.3 Local and Global Statistic Variances Quantification

Determining an appropriate variant range is challenging since each institute has
only access to the data itself but has no sense of its statistical biases. Recent
research [29,31] has shown that deep feature space contains many semantic direc-
tions, and feature variances provide a reasonable measurement of potential mean-
ingful semantic changes along the directions. This motivates us to estimate the
variance of the Gaussian prototype from the variance of feature statistics.

Local Statistic Variances. In each institute, we compute local variances of
feature statistics based on the information within each mini-batch:

Σ2
μn
l

=
1
B

B∑

b=1

(μn
l − E[μn

l ])2 ∈ R
C ; Σ2

σn
l

=
1
B

B∑

b=1

(σn
l − E[σn

l ])2 ∈ R
C , (3)

where Σ2
μn
l

and Σ2
σn
l

denote the variance of feature mean μn
l and standard devi-

ation σn
l that are specific to each institute. Each value in Σ2

μn
l

and Σ2
σn
l

is the
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variance of feature statistics in a particular channel, and its magnitude captures
the potential change in that particular channel at that specific institute.

Global Statistic Variances. The institute-specific statistic variances are solely
computed based on the data in each institute and are thus likely biased due to
the bias in the local dataset. To resolve this, we further estimate the variances
of the institute-sharing feature statistics, taking information from all institutes
into account. Particularly, we propose a momentum version of feature statistics
for each institute, which is updated online with an exponential momentum decay
(EMD) strategy:

μn
l ← (1 − η)

1
B

B∑

b=1

μn
l + ημn

l ∈ R
C ; σn

l ← (1 − η)
1
B

B∑

b=1

σn
l + ησn

l ∈ R
C , (4)

where the momentum factor η = η0exp(−r) follows an exponential decay over
round r. Notably, μn

l and σn
l are the momentum updated feature statistics of

encoder layer l in institute n. η0 is empirically initialized to 10.
In each communication round, these accumulated local feature statistics are

sent to the server along with model parameters. Let μl = [μ1, · · · , μN ] ∈ R
N×C

and σl = [σ1, · · · , σN ] ∈ R
N×C denote the collections of accumulated feature

statistics of all institutes, then the global, institute sharing statistic variances
are calculated as:

Σ2
μl

=
1
N

N∑

n=1

(μn
l − E[μl])

2 ∈ R
C ; Σ2

σl
=

1
N

N∑

n=1

(σn
l − E[σl])2 ∈ R

C . (5)

Along with the aggregated model parameters as in classical FL methods, e.g.,
FedAvg [21], these variances are distributed back to each institute to inform a
global estimation of feature statistic variances. Note that Σ2

μl
and Σ2

σl
are shared

by all participating institutes.
Institute sharing estimations Σ2

μl
and Σ2

σl
provide a quantification of distri-

bution divergence among institutes, and larger values imply potentials of more
significant changes of the corresponding channels in the true feature statistic
space. Therefore, for each institute, we weight the institute-specific statistic vari-
ances Σ2

μn
l
, Σ2

σn
l

with Σ2
μl

, Σ2
σl

, so that each institute has a sense of such global

divergence, i.e., Σ̂2
μn
l

= Σ2
μl

Σ2
μn
l

and Σ̂2
σn
l

= Σ2
σl

Σ2
σn
l
.

2.4 Implementation of Vicinal Feature-Level Data Augmentation

After establishing the Gaussian prototype, we calculate novel feature Ẑn
l in the

vicinity of Zn
l as follows:

Ẑn
l = σ̂n

l

Zn
l − μn

l

σn
l

+ μ̂n
l ; μ̂n

l ∼ N (μn
l , Σ̂2

μn
l
), σ̂n

l ∼ N (σn
l , Σ̂2

σn
l
), (6)

where Zn
l is first normalized with its original statistics by Zn

l −μn
l

σn
l

, and further
scaled with novel statistics μ̂n

l and σ̂n
l that are randomly sampled from the
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Table 1. Comparisons of different FL methods with or without our VFDA framework
in FeTS2021, and the ablation study of VFDA modules.

Method Additional augmentation Dice Score [%] ↑
ET TC WT Mean

FedAvg [21] – 75.63 62.01 76.55 71.14

FedAvg [21] MixUp 75.80 62.74 76.95 71.83

FedAvg [21] VFDA (Ours) 76.59 64.10 77.86 72.85

FedAvg [21] VFDA w/o EMD 76.08 63.47 77.29 72.28

FedAvg [21] VFDA w/o Global Statistic Variances 75.92 63.15 77.03 72.03

FedNorm [33] – 75.60 63.76 76.98 72.11

FedNorm [33] MixUp 75.82 63.96 77.05 72.28

FedNorm [33] VFDA (Ours) 76.49 64.82 78.17 73.16

FedNorm [33] VFDA w/o EMD 76.14 64.55 77.83 72.84

FedNorm [33] VFDA w/o Global Statistic Variances 76.01 64.34 77.50 72.62

corresponding Gaussian distribution [12]. To make the sampling differentiable,
we apply the re-parameterization trick [10]:

μ̂n
l = μn

l + εμΣ̂2
μn
l
, σ̂n

l = σn
l + εσΣ̂2

σn
l
), (7)

where εμ ∼ N (0, 1) and εσ ∼ N (0, 1) follow normal distribution.
The proposed VFDA in Eq. (6) works in a plug-and-play fashion, which

can be inserted at arbitrary positions of the model to facilitate latent semantic
augmentation. In our implementation, we add a VFDA after each encoder layer of
UNet. Of note, we explore the batch-wise feature statistics for vicinal expansion
while not relying on the network with batch normalization layer [14,16]. Our
FDA can be widely generalized to modern deep learning models with mini-batch
training. During testing, no augmentation is performed.

3 Experiments and Results

To show the effectiveness of our framework, we experimented on both 3D feder-
ated brain tumor and cardiac anatomical segmentation tasks and added VFDA
to numerous advanced FL segmentation models, e.g., FedAvg [21], FedProx [8],
FedBN [14], FedNorm [33], PRRF [5], and FedCRLD [23]. Of note, our VFDA
can be directly applied to 2D segmentation by setting S = 0.

We implemented all modules on a server with an NVIDIA A100 GPU and
used the PyTorch toolbox. For the evaluation metrics, we employed the widely
accepted Dice similarity coefficient (DSC), which measures the overlap between
the predicted segmentation mask and the label.

3.1 Federated Brain Tumor Segmentation

The Federated Tumor Segmentation (FeTS) 2021 Challenge Task-1 [22] incorpo-
rates the magnetic resonance imaging (MRI) volumes and segmentation label of
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Fig. 2. Left: The qualitative comparisons of 2 slices from two subjects with FedNorm
with or without our VFDA. CT: red; ET: purple; WT: red+purple+green; background:
black (best viewed in color). Right: the normalized training loss of FedNorm with or
without our VFDA.

three brain tumor structures, i.e., tumor core (TC), enhanced tumor (ET) and
whole tumor (WT), from 341 subjects. For FL, we followed the standard dataset
partition-2 to separate 22 local clients based on their original institutions and
further split the large institutes into subsets according to the tumor sizes, which
are subject-independent. MRI scans can be highly heterogeneous among partic-
ipating clients in the FeTS challenge as various scanners and image protocols
were employed. The size-based subset also involves the divergence of different
tumor grades. With the fine-grained partition in FeTS partition-2, the subjects
in each local client are limited.

According to the standard evaluation protocol, the segmentation model of
ResNet-based 3D UNet is fixed for all participants [22]. We adopted the suc-
cessful solutions in FeTS, i.e., FedNorm [33] and FedAvg [21] with different
model aggregation schemes as our baselines. For fair comparisons, we followed
the detailed setting of federated aggregation with tensor normalization (Fed-
Norm) [33] based on the open-fl framework. All of the experiments were con-
ducted under a fixed train validation split and random seed to make our results
convincing and deterministic. Specifically, in each communication round, we per-
formed one epoch for local client training and initialized the learning rate to 5e-4
with a polynomial decaying factor of 0.9 consistently. For all methods, we added
the vanilla data augmentation of rotation, scaling, elastic deformation, bright-
ness, and aggressiveness adjustment as in [33].

The quantitative evaluation results with respect to Dice score are presented
in Table 1. Simply adding the MixUp augmentation improved the performance of
both FedAvg and FedNorm significantly. By taking a more flexible feature-level
expansion based on the local and global divergence described by the abstract
feature statistic variances, our VFDA can achieve remarkable results. For the
ablation study, we removed the global statistic variances or EMD module and
denoted them as VFDA w/o EMD or VFDA w/o Global Statistic Variances,
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Table 2. Comparisons of different FL methods with or without our VFDA framework
in cardiac segmentation task, and the ablation study of VFDA modules.

Method Additional
augmentation

Dice Score [%] ↑
A B C D E F Mean

FedAvg [21] – 85.84 85.39 89.08 79.77 84.42 18.36 73.81

FedAvg [21] VFDA w/o Global 87.42 86.25 88.30 82.59 85.45 45.08 79.18

FedAvg [21] VFDA (Ours) 88.72 87.53 89.91 84.15 86.05 52.47 81.4

FedProx [8] – 86.70 84.41 88.81 82.85 83.66 27.26 75.62

FedProx [8] VFDA w/o Global 87.65 86.40 89.28 84.91 85.13 49.72 80.51

FedProx [8] VFDA (Ours) 88.23 87.13 89.95 84.86 85.60 52.81 81.43

FedBN [14] – 86.98 85.87 89.58 81.91 84.73 27.49 76.09

FedBN [14] VFDA w/o Global 88.05 86.85 89.74 83.62 85.82 45.65 79.96

FedBN [14] VFDA (Ours) 88.62 87.28 90.20 85.07 86.15 48.30 80.94

PRRF [5] – 87.04 86.11 88.05 84.65 83.85 53.09 80.47

PRRF [5] VFDA w/o Global 87.86 87.03 89.65 85.12 85.44 61.05 82.69

PRRF [5] VFDA (Ours) 88.92 88.75 90.26 86.07 86.29 62.38 83.79

FedCRLD [23] – 88.06 87.28 90.88 86.96 86.40 76.15 85.96

FedCRLD [23] VFDA w/o Global 89.02 88.34 91.24 87.35 87.23 77.80 86.83

FedCRLD [23] VFDA (Ours) 89.74 89.05 92.11 87.83 87.62 78.53 87.48

respectively. Their inferior performance compared to VFDA demonstrates the
contribution of global statistic variances or EMD training.

In Fig. 2, some example slices are shown, in which the VFDA achieves more
accurate delineations compared to FedNorm. In addition, adding VFDA con-
tributes to a stabler continuous optimization process than FedNorm.

3.2 Federated Cardiac Anatomical Segmentation

To further demonstrate the generalizability of VFDA, we also evaluated it on
multi-center multi-sequence cardiac MRI segmentation as in [23]. Specifically,
a real-world FL task is constructed using the publicly available M&M [2] and
Emidec [11] datasets. Of note, M&M dataset incorporates the cine-MRI of the
subjects from five centers in three countries and is scanned with four different
scanner vendors, and the Emidec is a delayed enhancement (DE) MRI dataset.
As in [23], the M&M dataset is split into five institutes/centers, i.e., client A-
E, while Emidec is configured as the sixth institute, i.e., client F. There are
notable appearance shifts across institute due to the diverge centers, devices,
and contrast agents. We chose the subject-independent 7/1/2 split for each client
institute and adopted the 3D UNet as the segmentation model backbone.

For fair comparisons, we adopted the vanilla augmentation of rotation, trans-
lation, scale, and mirror as [23]. Notably, the compared baselines of FedProx [8],
FedBN [14], PRRF [5], and FedCRLD [23] are designed for non-IID cases, which
explicitly target the data bias among local institutes using different techniques.
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Fig. 3. Left: Sensitivity analysis of adding VFDA to each layer of the 3DUNet encoder
in FedCRLD with five times random trails. Right: the normalized training loss of
FedCRLD with or without our VFDA.

However, how to efficiently induce the global data divergence for FL debias is a
long-lasting challenge. Our VFDA can be a unified and general solution to sim-
ply add on these methods to efficiently improve the segmentation performance,
as shown in Table 2. In the ablation study, we also demonstrated that taking the
global statistic variances into consideration is important for VFDA for all these
baselines.

In Fig. 3 left, we investigated the effect of VFDA in different encoder layers.
Of note, adding VFDA to the decoder layer does not improve the performance.
In Fig. 3 right, the FedCRLD training in client F (i.e., Emidec with different
DE-MRI) is relatively unstable, while adding VFDA smooths the optimization
and leads to a lower loss.

4 Conclusion

In this work, we proposed a novel and efficient data augmentation methodology
for federated learning in 3D medical volume segmentation, which suffers from
the imbalance of clients in small institutes, and the inner- and inter-institute het-
erogeneous data shift. We resort to batch-wise feature statistics as an abstract
quantification of the local and global statistic variances and utilize them prob-
abilistically via a Gaussian prototype. We utilize the mean corresponding to
the original statistic and the variance to define the proper augmentation scope
in a label-preserving vicinal risk minimization framework on the feature space
to expand the feature by simply sampling the Gaussian distribution with the
re-parameterization trick. The experiments in both 3D brain tumor and car-
diac anatomical structure segmentation FL tasks with six advanced FL methods
consistently demonstrate its efficiency and generality. It has the potential to be
widely adapted to different FL scenarios with low additional community costs.

Funding. This work is partly supported by JSPS KAKENHI JP23KJ0118.
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