
Learning Probabilistic Piecewise Rigid
Atlases of Model Organisms

via Generative Deep Networks

Amin Nejatbakhsh1(B), Neel Dey2, Vivek Venkatachalam3, Eviatar Yemini4,
Liam Paninski1, and Erdem Varol5

1 Departments of Neuroscience and Statistics, Columbia University, New York, USA
mn2822@cumc.columbia.edu

2 Computer Science and Artificial Intelligence Lab, MIT, Massachusetts, USA
3 Department of Physics, Northeastern University, Boston, USA

4 Department of Neurobiology, University of Massachusetts Chan Medical School,
Worcester, USA

5 Department of Computer Science and Engineering, New York University,
New York, USA

Abstract. Atlases are crucial to imaging statistics as they enable the
standardization of inter-subject and inter-population analyses. While
existing atlas estimation methods based on fluid/elastic/diffusion reg-
istration yield high-quality results for the human brain, these deforma-
tion models do not extend to a variety of other challenging areas of
neuroscience such as the anatomy of C. elegans worms and fruit flies.
To this end, this work presents a general probabilistic deep network-
based framework for atlas estimation and registration which can flexibly
incorporate various deformation models and levels of keypoint supervi-
sion that can be applied to a wide class of model organisms. Of particular
relevance, it also develops a deformable piecewise rigid atlas model which
is regularized to preserve inter-observation distances between neighbors.
These modeling considerations are shown to improve atlas construction
and key-point alignment across a diversity of datasets with small sample
sizes including neuron positions in C. elegans hermaphrodites, fluores-
cence microscopy of male C. elegans, and images of fruit fly wings. Code
is accessible at https://github.com/amin-nejat/Deformable-Atlas.

1 Introduction

Constructing biological atlases via image registration helps summarize norma-
tive patterns and variability within a target population. An atlas also provides
a common coordinate system for image registration and segmentation, which
can help decouple and quantify different sources of variability observed in the
data [15,18,22,23]. However, while atlas estimation of structures such as the
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Fig. 1. Schematic of generative model of atlas construction. A: Each observa-
tion (Z i) is modeled as a random draw from an atlas parametrized by θ and perturbed
by transformation f−1

β i
. B: We infer atlas parameters (θ) from observations (X i) by

optimizing a neural network loss function that penalizes the distance of each trans-
formed observation (Z i) to the latent atlas (θ) and also learn the transformation model
parameters (βi) that minimizes the loss.

human brain are well served with existing registration techniques [4,9,10,12,19],
this work argues that other domains of neuroscience require alternative models.

Motivation. While fluid, elastic, and diffusion-based deformation models are
well-motivated for the human brain, other structures may benefit from piecewise
rigid deformations. For example, fluorescence microscopy of the nematode C.
elegans nervous system is of high interest for atlas construction [7,20,28,31,33],
where the shape and position of each neuron may individually deform rigidly
while the number and function of neurons are conserved across individuals.
Another model organism whose morphometry is of interest to neuroscience is
the fruit fly Drosophila melanogaster [17]. In the fly, one suitable structure for
atlas building is the wing whose inter-fly deformation can be well approximated
by piece-wise rigid motion. However, probabilistic atlases that explore the struc-
tural variability amongst wings of different phenotypes and sexes has not yet
been established. Further, atlas-building methods are typically hand-tailored to
accommodate the specifications of a single organism, a single experimental con-
dition, or the specifics of a developing/degenerating population [24], and are
thus cannot be generally repurposed for experimentalists that require atlases for
novel biological datasets that they curate [16].

Contributed Methods. This paper provides a general probabilistic framework
for building atlases for any model organism using point clouds and/or images.
Herein, we demonstrate the utility for two disparate organisms: nematodes and
the fruit flies. We model individual observations, e.g., neural positions in a partic-
ular worm or the wing shape in an individual fly, as drawing from a generative
atlas perturbed by a deformation jointly estimated via registration networks.
The proposed framework allows for incorporating arbitrary transformations and
atlas distributions with an emphasis on piece-wise rigid transformations well-
suited to the considered model organisms. Further, we develop regularizers that
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encourage the conservation of inter-keypoint distances within an observation to
prevent self-intersections. Lastly, it allows for flexible supervision-levels, ranging
from full manual annotations of neural positions (supervised) to partial annota-
tions (semi-supervised), and no annotations (unsupervised).

Experimental Results. We show three applications of our framework to
model organisms under varying levels of supervision. First, we construct rigid
and piecewise-rigid atlases of C. elegans neural positions from fully supervised
datasets [33]. Then we build a semi-supervised atlas of male C.elegans using
pixel intensities and partial annotations of neural positions [29]. Lastly, we show
fully unsupervised atlas building of fruit fly wings from natural images [26]. To
our knowledge, this work presents the first piecewise rigid atlases of C. elegans
neural point clouds, C. elegans images, and D. melanogaster wing images.

The proposed procedure can provide valuable insights into the appropriate-
ness of the transformation models. For example, the contained analyses address
whether worm posture can be modeled using rigid or piecewise rigid motion
and the constructed fly wing atlases enable morphometric comparisons across
genotypes.

1.1 Related Work

C. Elegans Statistical Atlases. A number of atlases of neural positions in the
C. elegans hermaphrodite have been introduced, utilizing a variety of shape and
pose models [6,21,25,30,31]. However, atlas construction of the male C. elegans
nervous system introduces further challenges due to having more neurons and
higher density [14], additional ganglia enclosing these neurons [27], and greater
variability in their neuronal and gangliar positions [29]. Therefore, existing atlas
models of hermaphrodite neuron positions do not necessarily generalize to males.

Piecewise Rigid Registration. Piecewise rigid deformations are of key inter-
est when modeling articulated structures (such as bones [32], joints, or C. ele-
gans neurons) where local movements may be linear and global motion may be
deformable. Theoretical treatments for such registration models have appeared
in [1,2,8], yet to our knowledge, this paper is the first to construct atlases with
such models, especially in a probabilistic deep network framework.

Atlas Building. In practice, several atlas building methods alternate between
registering observations to a template and updating the template with a point-
wise intensity and/or shape average of the aligned observations [3,4,19]. More
recent deep network-based methods [9,12,13] instead explicitly synthesize tem-
plates via regularized registration objectives without averaging. This latter
method typically yield sharper and more interpretable estimates, and this is
the approach that we follow and modify towards probabilistic atlas construction
with deformation models well-suited for model organisms.

Most relevant to our work, atlas construction via statistical inference with
deep networks has been done for diffusion-regularized registration for large-scale
3D neuroimages in [9]. The proposed framework is distinct in that: (1) We specifi-
cally use piecewise rigid deformations for atlas construction on model organisms.
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As our flow fields are explicitly constrained, we do not require diffusion regular-
ization; (2) Our framework constructs atlases across varying levels of keypoint
supervision (un/semi/fully-supervised) which is crucial for model organisms; (3)
We develop an inter-keypoint distance conserving regularization to avoid self-
intersections; (4) The datasets considered here are of much lower sample sizes
and do not admit training the large registration and synthesis networks of [9].

2 Methods

Setup. We denote the atlas as a latent variable Z ∈ R
D following the distribu-

tion Pθ (Z) (Fig. 1A). Both X (the observations) and Z random variables can be
high-dimensional or low dimensional depending on the application. For example,
an atlas constructed using point clouds is lower dimensional than an atlas that is
constructed using image intensities [31]. Given the atlas, i.e. a distribution over
the random variable Z, the observations Xi are samples from the prior Zi that
are warped by transformation fβi

∈ F where F is a function class of feasible
deformations between the atlas and observations and βi are the parameters of
the deformation for the ith observation. In this work, F is the space of rigid or
piecewise rigid transformations.

Inference and Optimization. With F and the functional form of Pθ pre-
specified, our goal is to solve the inverse problem for parameters θ,β1:n. In
general terms, we write a probabilistic cost function informed by our statistical
model and optimize it w.r.t. θ,β1:n as:

L(θ,β1:n) = log Pθ ,β1:n
(X1:n,Z1:n) =

n∑

i=1

log Pβi
(Xi|Zi) + log Pθ (Zi)

where Zi ∼ Pθ (Z) and Xi|Zi ∼ P (X|Zi) = fβi
(Zi) + εi

We take an alternating approach for optimizing L where we iteratively opti-
mize L w.r.t. θ and β1:n. Given our estimate of the values β1:n denoted by β̂1:n

we find the best fit θ̂ to the data in the following way:

θ̂ = max
θ

L(θ|β̂1:n) = max
θ

n∑

i=1

log Pθ (f−1

β̂i

(Xi)) (1)

Notice that here we are trying to find the sufficient statistics of Pθ from
known observations Z1:n. For the case of multivariate normal distributions where
θ = {μ,Σ}, the maximum likelihood estimate (MLE) is the empirical mean and
covariance. However, our formulation allows for incorporating arbitrarily com-
plex distributions where we solve the MLE problem using stochastic variational
inference in the parameter space. This is facilitated by probabilistic program-
ming where generic algorithms for MLE and MAP estimation are provided.

On the other hand if we have a reasonable estimate of θ then in order to
update our estimates of β1:n we need to solve the following for each i:

β̂i = max
βi∈F

L(βi|θ̂) = max
βi∈F

log Pθ̂ (f−1
βi

(Xi)) (2)
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Analytical solutions might exist for specific F , but in general specific algorithms
are required for particular choices of F as demonstrated in the experiments.

Amortized Learning of Transformations. Instead of optimizing this loss
function with respect to the parameters {β1:n} directly, we solve an alternative
amortized optimization problem. We parameterize βi = nnφ(Xi) where nnφ is
a neural network with weights φ and optimize the loss w.r.t. the parameters of
the neural net. We parameterize rigid and piecewise rigid transformations using
3 angles and 3 translation parameters per piece. The optimization is performed
using the Adam optimizer. The updates of β1:n are performed by backpropagating
the gradients of φ while the maximum likelihood estimation of θ is performed
with the stochastic variational inference module of Pyro [5].

A full instantiation of the model requires an observation model P (X|Z),
transformation parameters β1:n, transformation function fβ , transformation reg-
ularization R(β), and a prior model Pθ (Z). In the experiments section, we pro-
vide various instantiations of the model consistent with the assumption of their
corresponding datasets, as summarized in Table 1. For each instantiation, the
loss is determined by the choice of its components and is used to update the
transformation (β1:n) and prior parameters (θ).

3 Experiments

Our experiments are presented below and are split into fully-supervised, semi-
supervised, and unsupervised settings acting on point cloud and/or image rep-
resentations. To benchmark registration error when ground truth landmarks are
available, we use the commonly used target to registration error (TRE) which
measures the l2 distance between moved keypoints and target keypoints.

3.1 Supervised Atlas of Hermaphrodite C. elegans Neuron
Positions

We used a public dataset of five point clouds of hermaphrodite C. elegans tail
neurons with 42 neurons per worm [33]. Each neuron in worm i has a 3D loca-
tion denoted by pi,n ∈ R

3 and an RGB color denoted by ci,n ∈ R
3. Therefore,

the observation for each worm consists of positions and colors of all its neurons
Xi = {(pi,n, ci,n), n = 1, . . . , 42}. Every neuron in the worm body corresponds
to a ganglion, therefore for every neuron in the dataset we also have a label
determining which ganglion that neuron corresponds to. The ganglia provide a
natural grouping of the neurons that move together in space, making our pro-
posed PR model suitable for the registration of the point clouds. Our regulariza-
tion ensures that the distances between neighboring ganglia are approximately
preserved after alignment (Eq. 14) as depicted in Fig. 2B.

Statistical Model: We experiment with two different deformation classes for the
spatial component of the point clouds, namely rigid (R) and regularized piecewise
rigid (PR) warps (Eq. 9). The function class for the color component is a simple
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Fig. 2. Supervised positional and color atlas of tail neurons of hermaphrodite
C. elegans. A: Model description for point clouds of neuron positions and colors in
3 dimensions. An MLP processes the input data and outputs piecewise rigid (PR)
parameters βi per piece. B: Motivation of PR for worm point clouds. PR aligns ganglia
(denoted by g1, g2, g3) between the atlas (gray worm) and observed point clouds (blue
worms) while maintaining the distances between the neighboring ganglia. C: Train
errors and cross-validated TRE (± standard error) for 4 different models (PR: piecewise
rigid, R: rigid, D: Dirichlet, N: normal). Notice that all models exhibit overfitting due
to the small sample size. D, E: Learned atlas using PR-Dirichlet (D) and PR-Normal
(E) models. Small dots indicate individuals’ neural positions, larger dots indicate mean
positions in the atlas and ellipses indicate one standard deviation of mass. The PRD
model projects the mean colors into 3 distinct ones while the PRN model preserves a
more detailed description of mean colors. (Color figure online)



338 A. Nejatbakhsh et al.

6 Neurons 11 Neurons 17 Neurons
0

500

1000

1500

2000

2500

TR
E

PR
R

B

D

F

E

C

G

H

10um

L

R

AP

6 Neurons 11 Neurons 17 Neurons
0

200

400

600

800

1000

1200

1400

1600
PR
R

Hermaphrodite Dataset Male Dataset

Unaligned

ANTs Affine+SyGN

ANTs SyGN

Ours - 17 Landmarks

Ours - 6 Landmarks

Convolutional Layers

Fully Connected
Layer

Input
Params

Apply Piecewise Rigid Transform
Flow Field:

Grid Sampling:

Neural Net Architecture

Regularization:

Compute Loss and Backprop, Update

Alignment

Semi-Supervision:

Aligned

co
nv

 [
7-

7-
1]

co
nv

 [
5-

5-
1]

co
nv

 [
2-

2-
1]

Size:
32

A

Ours - 11 Landmarks

Fig. 3. Semi-supervised image atlas of tail neurons of hermaphrodite and
male C. elegans. A: Model description for image data. Images are pushed through
a CNN which regresses PR transformation parameters and flow field. The flow field is
regularized using the Jacobian of the transformation on a grid of points and the position
of the landmark points. Transformations (β1:n) and atlas (θ) parameters are optimized
under the log-likelihood cost (red box). B: Out-of-sample alignment error decreases
with increasing number of neural annotations for the male dataset. The hermaphrodite
dataset exhibits less deformations and hence the TRE does not improve by adding
more annotations. C: Superposition of unaligned NeuroPAL [33] strain hermaphrodite
worms used as input. D, E: Atlases constructed using a widely-adopted neuroimaging
atlas estimation method (SyGN [4]), highlighting how human brain-specific models do
not extend to the considered model organisms. F-H: Results from our semi-supervised
piecewise rigid atlas estimation framework with a varying number of annotations per
worm, showing improved alignment and realistic deformations. (Color figure online)

softmax operator normalizing the transformed RGB colors to sum to one (Eq. 11).
For the prior distribution over the positions and colors, we considered two statis-
tical models. We chose the prior distribution over the positions to be multivariate
normal as suggested by previous work [6,31]. However, for the color distribution
we experimented with Normal and Dirichlet distributions1 (Eq. 16, 17). For reg-
istration amortization, we use a fully connected architecture for φ (Fig. 2A).

Results. In Fig. 2, we illustrate the atlas parameters θ and aligned point clouds
Z1:n as well the uncertainties and the training and testing errors. We learned
the atlas and the registration network using 4 worms and tested whether the
registration model is capable of aligning the test image to the learned atlas. In
Fig. 2 the training TRE refers to the error between the atlas points and aligned

1 Dirichlet is an appropriate choice for color distribution as its samples sum to one and
prior information about expected color can be encoded in its parameters α.
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points corresponding to the training worms while the test TRE measures this
error for the test worms when aligned using the trained registration model. As we
are using a very small sample size (n = 4) we expect the test error to be higher
than the training error. Our results suggest that the rigid model with Dirichlet
color distribution (RD) achieves the best test error (5-fold cross-validated) in
the fully-supervised point cloud setting but all 4 models achieve comparable
performances in terms of training error.

3.2 Semi-supervised Atlas of C. elegans images w/partial keypoints

We now showcase the flexibility of our framework in a semi-supervised set-
ting by applying it to images (instead of point clouds) and using partial land-
mark annotations to guide the transformation. We use a dataset of 5 images of
hermaphrodite C. elegans and 12 images of male C. elegans along with land-
marks corresponding to the locations of neurons in those images.

Statistical Model. Formally, Xi = {Ii,pi,n} where Ii ∈ R
W×H×D×C , n =

1, . . . , 42, pi,n ∈ R
3, and where W,H,D,C are the width, height, depth, and

the number of channels. Here, PR transformation operates both on images and
landmarks (Eq. 10). The semi-supervision is achieved by regularizing the trans-
formation parameters to align the landmarks (Eq. 12). We have further regular-
ization using the Jacobian of the transformation to ensure the feasibility of the
transformation (Eq. 15). The prior distribution is the image space is pixel-wise
standard normal (Eq. 18). Instead of a fully connected architecture for φ here
we used a convolutional neural network to extract image features that are useful
for registration. The pictorial description of the model is illustrated in Fig. 3A.

Results. We use a subset of keypoints for registration and atlas construction
and hold out other key points for benchmarking generalization. The test key-
points are chosen to cover different parts of the image to provide a full pic-
ture of the registration quality (Fig. 3). We vary the level of semi-supervision
by using {6, 11, 17} landmarks per image and observed that test TRE drops
with more landmarks as expected (Fig. 3B). Further, the alignment parameters
lead to more biologically feasible transformations when we include more land-
marks (Fig. 3F-H). We then compare our method against the de facto standard
deformable atlas construction technique for human brains (SyGN) [4] with and
without affine prealignment. As SyGN does not make use of landmarks or piece-
wise rigid deformations, it fails to align the neurons (especially in lower density
posterior regions) and does not yield biologically plausible atlases (Fig. 3D,E).
We observe that for the hermaphrodite dataset the PR and R models achieve
comparable performances. However, for the male dataset, where images contain
denser subsets of neurons in smaller regions, the PR model outperforms R when
more landmarks are included as expected.

3.3 Unsupervised Atlas of Transgenic D. melanogaster wings

We used a public dataset [26] of 128 2D fruit fly images from 4 genotypes (egfr,
samw, star, tkv) and 2 sexes to infer a latent atlas image that represents an
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Fig. 4. Unsupervised atlas of fruit fly wing: Atlas: We infer a latent canonical
atlas wing in the pixel space without the use of any markers or annotations using 128
example images of fruit fly wings in varying poses. Pre-rigid Unregistered, Unreg-
istered: pre-aligned using rigid transformation. The unregistered image is shown in
panels before and after rigid alignment. egfr F L - tkv M L: Averaging wing images
of different genotypes and sexes enables a visual comparison of morphological differ-
ences between these groups. M vs. F: Pointwise t-statistics (q<0.05) between males
and females yields a heatmap that shows that females have more mass in the the medial
part the wing than males.

average wing corrected for postural differences by a piecewise rigid motion model.
This dataset can be organized into pairs Xi = (Ii,Y i) where Ii ∈ R

W×H and
Y i ∈ {efgr, samw, star, tkv} × {male, female}.

Statistical Model. The observation model is the same as Sect. 3.2 with land-
marks removed, i.e., we only rely on image intensities for learning the atlas
(Eq. 13). Similar to [9] our framework allows for incorporating genotype-
dependent parameters and learning conditional atlases (Eq. 19). To do this,
we chose a prior of the form Pθ (Z|Yi) = N (Z;μ(Y i)).

Results. The resulting image atlas is illustrated in Fig. 4. Using the atlas coordi-
nate framework, we performed a pixelwise t-test on the aligned wings of females
and males to observe statistically significant differences in the wing tip density
in the medial part of the wing. Furthermore, our results show morphological
differences between genotypes which matches domain knowledge.

4 Discussion

Limitations. Some limitations exist in the presented work and will be addressed
in the future: (1) The sample sizes considered in the C. elegans experiments are
small and cannot yield broadly generalizable templates. As more data is publicly
released, we will retrain our models to lower atlas bias. (2) Unlike our point cloud
experiments, our image experiments do not yield pixelwise uncertainties. We will
modify our atlas prior in future work to remedy this.
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Table 1. Instantiations of our model in Fully Supervised (Full), Semi-Supervised
(Semi), and Unsupervised (None) settings. Each statistical model consists of the dataset
(Data), observation model (Obs.), warp parameters (Par.), transformation function
(Func.), warp regularization (Reg.), and prior/atlas distribution (Prior). Notation:
I is an image, p is a 3D point, c is an RGB color, Y is a discrete label, δ is the
delta distribution, β denotes the transformation parameters, Φ is a vector of rotation
angles and R creates a rotation matrix with Φ, T is the set of translations, FF is a flow
field parameterized by β, w1:K are scalar weights summing to one, μ is the centroid
of positions within a ganglion, G is the ganglion neighborhood graph, and J is the
Jacobian. We use g(p) to denote the ganglion that the neuron positioned at point p
corresponds to. The positional parameters described above determine a piecewise rigid
transformation in the spatial domain. The prior R(β) regularizes warps and ensures
smoothness across neighboring ganglia.

Setting (EqNo.) Description

D
a
ta

Full (3) {(pi,n, ci,n), n = 1, . . . , 42}
Semi (4) {Ii, pi,n, n = 1, . . . , 42} Ii ∈ R

W×H×D×C pi,n ∈ R
3

None (5) (Ii, Y i), Ii ∈ R
W×H , Y i ∈ {efgr, samw, star, tkv} × {male, female}

O
b
s.

Full (6) δ(pi; fβ
p
i
(pi))δ(ci; fβ c

i
(ci)) exp(−R(βi))

Semi (7) δ(Ii, pi; fβ i
(Ii, pi)) exp(−R(βi))

None (8) δ(Ii; fβ i
(Ii)) exp(−R(βi))

P
a
r. Full (9) βc

i = {} βp
i = {T 1:K

i , Φ1:K
i }, T k

i ∈ [−1, 1]3, Φk
i ∈ [−π, π]3

Semi/None (10) βi = {T 1:K
i , Φ1:K

i }, T k
i ∈ [−1, 1]3, Φk

i ∈ [−π, π]3

F
u
n
c.

Full (11) fβ (p, c) =
[
fβp

(p), fβ c
(c))

]
=

[
R(Φg(p))p + T g(p), softmax(c)

]

Semi (12) fβ (I , p) =
[
FFβ ◦ I , FFβ (p)

]
FF(p) =

∑K
k=1 wk(p)

(
R(Φk)p + T k

)

None (13) fβ (I) = FFβ ◦ I , FF(p) =
∑K

k=1 wk(p)
(
R(Φk)p + T k

)

R
eg

. Full (14) R(βi) = σβ

∑
i,j∈G

∥
∥D(μi, μj) − D(μa

i , μa
j )

∥
∥2

Semi/None (15) R(β) = σβ

∑K
k=1 det Jβ (qk)

P
ri

o
r

Full-1 (16) Pθ(Z) = P (p)P (c) = N (p; μp , σpI)N (c; μc , σcI) MVN-MVN

Full-2 (17) Pθ(Z) = P (p)P (c) = N (p; μp, σpI)Dir(c; μc) MVN-Dir

Semi (18) Pθ (Ii, pi) = N (Ii; μ
I , σII)N (pi; μ

p, σpI)

None (19) Pθ (Z |Yi ) = N (Z ; μ(Y i))

Conclusions. This work developed a general probabilistic framework to com-
pute piecewise rigid point cloud and image atlases in novel imaging datasets of
model organisms such as C. elegans and fruit flies. As new imaging modalities
emerge to capture different views of the nervous systems of model animals, we
expect that the flexibility of our framework will be valuable for standardizing
downstream analyses. We also expect piecewise rigid atlas construction to apply
to applications such as motion correction [11,34] and kinematics modeling [32].
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