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Abstract. Identification and classification of cell-graph features using
graph-neural networks (GNNs) has been shown to be useful in digital
pathology. In this work, we consider the role of edge labels in cell-graph
modeling, including histological modeling techniques, edge aggregation
in GNN architectures, and edge label prediction. We propose EAGNN
(Edge Aggregated GNN), a new GNN model that aggregates both node
and edge label information to take advantage of topological information
about cellular data and facilitate edge label prediction. We introduce new
edge label features that improve histological modeling and prediction. We
evaluate our EAGNN model for the task of detecting the presence and
location of the basement membrane in oral mucosal tissue, as a proof-of-
concept application.
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1 Introduction

To capture intra-cellular and high-level histological relationships in whole-slide
images (WSI) of tissue samples, cell-graph models have been considered [13]. In
a cell-graph, properties of cells and interactions between them are represented by
labelled nodes and edges. Graph neural networks (GNNs) are a specific class of
machine learning (ML) algorithm which have been applied to cell-graph models
to locate and classify complex histological features [4,16,20]. In this work, we
consider the role of edge labels in cell-graph modeling and GNN-based model
analysis including: (i) histological modeling using edge labels, (ii) edge aggrega-
tion in GNNs, and (iii) edge label classification algorithms.

Our study will mainly focus on new GNN algorithms for aggregating node and
edge data, with a view to making edge label predictions in a cell-graph model.
We also propose new types of edge features, going beyond the simple geometric
distance label found in the literature. These new edge labels are shown to be
effective for improved histological analysis by means of ML ablation studies.
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We evaluate the new GNN models and edge features on a representative digital
pathology task of predicting the presence and location of the basement membrane
(BM) in hematoxylin and eosin (H&E) stained oral mucosa samples. Structural
properties of the BM play an important role in classifying oral diseases such as
chronic graft-versus-host disease (oral cGvHD) [23].

1.1 Contributions of This Work

The main contributions of this work are as follows:

1. We propose EAGNN as a novel message passing model1 for predicting cell-
graph properties. EAGNN aggregates both node and edge label data to yield
edge label predictions.

2. We propose two new types of edge classification algorithm, which can be used
on the backend of EAGNN to make edge label predictions.

3. We propose three new edge label features for cell-graph analyses: (a) cell
density difference, (b) cell entropy difference, and (c) neighborhood overlap
similarity.

4. We evaluate different combinations of EAGNN with edge classifiers and edge
label features for the prediction of BM location in oral mucosa images. We
show that EAGNN can significantly outperform simple node-based aggrega-
tion across a wide variety of performance measures.

The organisation of this work is as follows. In Sect. 2 we consider background
and related research on GNNs for learning cell-graph models. In Sect. 3 we discuss
message passing GNNs and graph data aggregation. In Sect. 4 we define the
EAGNN model with edge label aggregation and edge classification algorithms. In
Sect. 5 we evaluate EAGNN on the task of predicting BM integrity in healthy and
diseased oral tissue images and compare it with simple node-based aggregation.
In Sect. 6 we discuss some limitations of this study and address the possible
directions to overcome them. Finally, in Sect. 7 we present some conclusions.

2 Background and Related Work

Mapping the structural features of tissues is key to understanding and making a
diagnosis of disease severity in digital pathology, for example the BM. An accu-
rate estimation of the BM location and integrity is an important feature in health
and disease, but a challenging task. Several studies have considered this problem
[6,25,26]. However, most of these methods depend upon pixel level information
that fails to capture histological and topological relationships between the BM
and various cells locally present in the tissue. In this study, we used cell-graphs
and graph-based ML techniques to map oral mucosal tissue and locate the BM
in healthy and diseased situations.

1 Official PyTorch implementation of the EAGNN algorithm is publicly available at
https://github.com/aravi11/EAGNN.

https://github.com/aravi11/EAGNN
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Generally in the literature on digital pathology, node labels alone have been
used for cell-graph modeling and GNN training [1]. To our knowledge, [17] is
the only work that has considered the use of cellular interactions in a cell graph
for identifying the BM. However the GNN model used in [17] does not utilize
the topological information encoded in graph edges during the learning process.
Other GNN case studies also utilize edge features such as distance [2,5,21,22]
or edge weights [9] for digital pathology. However, in all these approaches the
edge features are simple one-dimensional real-valued features. The use of multi-
dimensional edge features for optimal cell-graph representation and prediction
is currently heavily under-explored.

3 Graph Neural Networks for Cell-Graph Learning

3.1 Cell-Graphs as Labelled Graph Structures

A cell-graph is a mathematical model of histological tissue features that can
represent nuclei and the interactions between nuclei. This model is motivated by
the hypothesis that cells in a tissue organize to perform a specific function [27].

Formally, a cell-graph: G =
(V, E , lV ∶ V → R

D, lE ∶ E → R
P

)
, is a labelled

undirected graph where V = {v1, . . . , vn} is a finite set of nodes, and n is the
size of the graph. Furthermore, E = {e1, . . . , em} is a finite set of edges, and
each edge e ∈ E is an unordered pair of nodes e = {vi, vj}. A node vj is termed
an immediate neighbour of vi if there exists an edge {vj , vi} ∈ E . We let N (v)
denote the set of all immediate neighbours of v. The degree of a node v is the
size of its immediate neighbour set, deg(v)= |N (v)|. The functions lV and lE are
node and edge labelling functions of D and P features respectively.

To apply methods of linear algebra to graph learning problems, an edge set
E can be encoded by an adjacency matrix A ∈Rn×n of real values, where n is the
graph size. The matrix values Auv and Avu are both set to 1.0 if there exists an
edge between node u and node v in E , otherwise both are set to 0.0. Moreover,
the node labelling lV can be encoded as a node feature matrix X∈Rn×D in which
case the matrix row Xv ∈R

D represents the feature vector for node v. Similarly,
the edge labelling lE can be encoded as an edge feature tensor E ∈ Rn×n×P .
For each pair of connected nodes {u, v} ∈ E the entry Euv ∈ R

P represents the
P -dimensional feature vector of the edge between node u and node v. As a
simplifying notation, for any edge feature 1≤ p≤P the matrix Ep ∈R

n×n denotes
the projection of E onto the single edge feature p.

3.2 Graph Neural Networks

A general spatial-based GNN has a layered architecture, where at each layer k, a
low-dimensional (dk-dimensional) representation hk

u ∈R
dk of the graph structure

around node u is computed. Computation at each layer k normally consists of
two stages. Firstly, for each node u, an AGGREGATEk operation produces an
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integrated representation hk
N (u) of all immediate neighbors v ∈N (u) of u using

the representations hk−1
v from layer k − 1 and is represented as,

hk
N (u) =AGGREGATEk

({hk−1
v ,∀v ∈N (u)})

. (1)

Secondly, for each node u, a COMBINEk operation updates the represen-
tation hk

u of u by combining its previous representation hk−1
u on layer k − 1 with

the aggregated representation hk
N (u) of all its immediate neighbours N (u), using

a nonlinear function, hk
u = COMBINEk

(
hk−1

u ,hk
N (u)

)
.

This iterative computation over layers 0≤k≤K is initialized by setting h0
u=Xu.

Spatial variants of GNNs [3,10,18] implement aggregation by matrix multipli-
cation as:

Hk
agg =AHk−1Wk

0 (2)

where Hk
agg ∈ R

n×dk is the tensor matrix (i.e. stack) of all aggregations hk
N (u),

A ∈ Rn×n is the adjacency matrix, Hk−1
∈ R

n×dk−1 is the tensor matrix of repre-
sentations hk−1

v on the k − 1-th layer, and Wk
0 ∈R

dk−1×dk is a matrix of learnable
parameters. The combine operation is formulated as:

Hk
= σ

(
Hk

agg +H
k−1Wk

1

)
(3)

where Wk
1 ∈ R

dk−1×dk is a second matrix of learnable parameters, and σ is a
nonlinear function applied pointwise, such as ReLU [11]. Finally, after K layers,
a low-dimensional node embedding Z ∈ Rn×dK is obtained as a tensor matrix,
Z=HK . A widely used spatial GNN using node aggregation alone is GraphSAGE
[14].

To solve edge classification problems, we need a low-dimensional edge embed-
ding Ze ∈ R

k of each edge e. The simplest approach to embed an edge e is to
combine the final embeddings of both of its nodes.

4 A GNN Model for Node and Edge Aggregation

Our proposed GNN architecture is depicted in Fig. 1, and can be divided into
two stages, node embedding layers and an edge classifier. The node embedding
layers derive latent node representation from a cell-graph.

4.1 Node Embedding Layers

Inspired by EGNN(C) [12], we propose an EAGNN layer which incorporates
multiple edge features to embed nodes. The major difference between the pro-
posed EAGNN layer and EGNN(C) is the way that edge features are normalised
before aggregation. This feature normalization method is explained in detail in
Sect. 5.1.
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Fig. 1. The overview of the proposed GNN architecture which consists of two EAGNN
layers and a classifier. The model extracts node and edge features from a cell-graph,
and outputs a score to classify each edge as a BM crossing one or not.

Following the matrix multiplication as in Eq. 2, we formulate the aggregation
operation of the proposed model at layer k, named EAggk, as follows:

EAggk(Ep,Hk−1) =EpHk−1W0 (4)

Then, we combine the previous node representation using the combine operation
formulated in Sect. 3.2. We perform these aggregation and combining operations
for each edge feature, and concatenate them. Therefore, the formula for the kth
EAGNN layer is given by:

Hk
= σ

[
‖P

p=1

(
EpHk−1Wk−1

0 +Hk−1Wk−1
1

)
]

(5)

where ‖ denotes the concatenation operator. As a non-linear function σ we
employ the ELU function [7]. Note that this non-linear function is not used
in the final layer K of the node embedding layers. As described in Fig. 1, we
used two EAGNN layers in our case study of BM identification: our evaluation
suggests that two layers are sufficient for this task. After two embedding layers,
the node representation zu is given by zu =H2

u for node u.

4.2 Edge Classifiers

Once the node embedding layers have computed the node representations, an
edge classifier can partition all edges into two non-overlapping classes A,B. For
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each edge e = {u, v} ∈ E , the edge classifier computes a score Suv ∈ [0, 1] which
represents the estimated likelihood that e falls into class A or class B. The
estimated likelihood score Suv is compared with a class threshold criterion θ,
which represents the decision boundary between A and B.

We propose here three methods of edge classification: multiplication (MUL),
negative multiplication (NegMUL) and bidirectional concatenation + multilayer
perceptron (BC+MLP). The simplest classifier among the three variants is the
MUL classifier. It multiplies the embedding vector of node u and node v followed
by the sigmoid function: Suv = sigmoid(zuzT

v ). Similarly to the MUL classifier,
the NegMul classifier multiplies the embedding vectors of a pair of nodes, but
unlike MUL it subtracts the output from 1, Suv = 1 − sigmoid(zuzT

v ).
In contrast with the classifiers MUL and NegMUL, the BC+MLP classifier,

which is depicted in Fig. 1, uses a shallow neural network approach to compute
a score Suv for each edge. A neural network approach to edge classification also
needs to combine the embedding vectors. There are several ways to combine
a pair of node representations, such as element-wise product or summation.
Concatenation of node embedding vectors is a simple and effective approach,
since it preserves all node information [8]. As shown in Fig. 1, the BC+MLP
classifier concatenates the node embeddings zu, zv of nodes u, v in both directions
(zuv =zu ‖zv, zvu=zv ‖zu) to obtain a final score in an orientation-invariant way.
The node embedding concatenations zuv, zvu are sequentially fed into an MLP to
analyse the relationship between the nodes u, v. The scores generated from the
MLP layers are combined and passed through the sigmoid activation function to
obtain the final score Suv

2 bounded in [0, 1]. A class threshold criterion θ can be
chosen as a parameter, and compared with Suv to determine class membership.

5 Evaluation of the EAGNN Model

In this section we compare the performance of EAGNN against the widely used
GraphSage GNN which is based on node aggregation alone. The evaluation task
is prediction of the BM location and integrity in cell-graph models of oral mucosa
samples.

5.1 An Oral Mucosa Cell-Graph Dataset

For supervised training and evaluation of the EAGNN model, a dataset of
ground truth cell-graphs was compiled from digitized images of H&E stained
oral tissue samples. To compile the dataset, we extracted 42 tiles from WSI
of oral mucosal biopsies from nine patients receiving haematopoetic cell trans-
plantation [23]. On each tile, histology experts manually annotated the cell
type and x, y centroid co-ordinates for each cell nucleus. Focusing on the cell
types T={epithelial, fibroblast and endothelial, inflammatory, lymphocyte}, each
nucleus was then modeled by a graph node vi ∈ V and labelled by its cell type
Ntype(vi) ∈ T.

2 Note Suv = Svu and so the proposed method is invariant to node ordering.



Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction 271

Fig. 2. Examples of nodes and their entropy values. The center node is highlighted
with a rectangular box. The neighboring nodes are highlighted with a white circle and
yellow edges. Cell types are represented by four colours: epithelial (red), fibroblast and
endothelial (blue), inflammatory (green) and lymphocyte (yellow). (Color figure online)

The location and extent of the BM in each tile was manually annotated using
cubic splines. An undirected edge set E for V was generated using the Delaunay
triangulation method and all edges e = {u, v} having a Euclidean length greater
than 300 pixels (150 microns) were deleted3

For accurate GNN-based prediction of the BM, besides cell type Ntype, addi-
tional node and edge labels were shown to improve the quality of BM prediction.

Additional Node Labels

1. Cell Density: We define the (local) cell density at node v ∈ V as the average
distance between v and its immediate neighbours u ∈N (v).

Nden(v) =
1

∣N (v)∣
∑

u∈N (v)
d(v, u). (6)

2. Cell Entropy: For defining the (local) cell entropy of a node v ∈ V, we first
calculate the probability pv(τ) of finding the cell type τ ∈ T in its immediate
neighbourhood using Eq. 7. Cell entropy is defined using the Shannon entropy
measure in Eq. 8 and vizualised in Fig. 2.

pv(τ) =
|{u ∈N(v) or u = v ∶Ntype(u) = τ}|

∣N (v)∣
(7)

Nent(v) = − ∑
τ∈T

pv(τ) × ln pv(τ) (8)

3 We kept the limiting criterion equivalent to 300 pixels to avoid long edges in the
cell-graph, as the cell density varies across different parts of a tile.
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Additional Edge Labels. For GNN-based prediction of the BM, the use of
edge labels significantly increased the accuracy of our model. We make use of five
edge labels defined below using edge feature tensor representation (c.f. Sect. 3.1).

1. Node Distance: For each edge {u, v} ∈ E(d) we use the Euclidean distance
between the endpoints as the distance label: Êdis

u,v = d(u, v).
2. Cell Density Difference: Recalling the cell density definition of Eq. 6, we can

define the difference in cell density along edge {u, v} ∈ E(d) by: Êden
u,v =

Nden[v] − Nden[u]
3. Cell Entropy Difference: Similarly to the cell density difference, we can define

the cell entropy difference4 along an edge {u, v} ∈E(d) by: Êent
u,v = ∣Nent[v]−

Nent[u]∣
4. Neighbourhood Overlap Similarity: This measure aims to quantify the overlap

between the neighbourhoods of two nodes, which is useful for tasks like edge
and community detection [15]. To define the (relativized) overlap between
two nodes u and v we use the Sorenson similarity index defined by: Ênei

u,v =

2∣N (u) ∩ N (v)∣
deg(u) + deg(v)

5. BM Crossing: For each edge {u, v} ∈ E(d) we define the binary valued BM
crossing measure: Êbm

u,v = 1 if {u, v} crosses the BM, otherwise Êbm
u,v = 0.

Edge Feature Normalization. To incorporate the edge features we multiply
them with the node features during the convolution operations of each EAGNN
layer. In order to maintain the feature scale during the matrix multiplication, we
normalize the edge feature values. There are several ways to normalize the edge
feature values, including the Doubly Stochastic Normalization method proposed
in [12]. However the Doubly Stochastic Normalization method assumes all the
edge feature values to be non-negative which is not true in our case especially
while considering the cell density difference. We normalize the edge feature values
by rows as proposed in [24]. The row normalization for feature 1≤p≤P and edge
(u, v) ∈ E(d) is defined by:

EX
uvp =

ÊX
uvp

∑v′
∈N (u) ∣ ÊX

uv′p∣
. (9)

5.2 Training Setup

The cell-graph dataset was divided into two subsets: training (70%) and test data
(30%). Some of the training dataset was reserved as a validation set (15%). Table 1
show the population sizes of edge classes in the data set indicating data bias to
non-crossing edges. The GNN models were trained by backpropagation to mini-
mize the mean of the binary cross entropy loss function for each mini-batch. The

4 The reason for choosing the absolute difference here was to have non-negative entropy
difference value. Ablation studies showed that negative cell entropy differences had
an adverse effect on the efficiency of the trained model.
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loss function was given by: loss = − 1
N ∑

N
i=1 [lilog(ypred) + (1 − li)log(1 − ypred)],

where N is the number of samples in a mini-batch, li ∈ {0, 1} and ypred ∈ [0, 1] are
the label and the prediction for sample i respectively. We trained the models for
100 epochs with a batch size of 32. Each batch had 16 BM crossing edges and
16 BM non-crossing edges to avoid the bias derived from data imbalance. To opti-
mize learnable parameters, we used Adam with an initial learning rate set to 0.001
which was scheduled to drop by 0.1 after every 40 epochs. To avoid overfitting on
the training data, we used dropout with probability 0.5 for EAGNN layers and
BC+MLP classifier, 0.3 for GraphSAGE, and the weight-decay parameter was
set to 0.0001.

Table 1. Population sizes of edge classes in the oral mucosa cell-graph dataset.

Dataset Non-Crossing Edges Crossing Edges Total Edges

Training 96195 6221 102416

Validation 20017 1169 21186

Testing 45779 2733 48512

Total 161991 10123 172114

5.3 Discussion

To compensate for data imbalances in the ground truth dataset, we evaluated
EAGNN performance on the BM prediction problem using five standard metrics:
precision, recall, F1 score, ROC-AUC and accuracy.

Table 2. Comparison of GNN models, edge classifiers, aggregated node features (NF)
and edge features (EF) for BM prediction on the oral mucosa cell-graph dataset. (NF
specifies aggregated node features: N1 =Ntype, N2 =Nden, and N3 =Nent. EF specifies
aggregated edge features: E1 = Êdis, E2 = Êden, E3 = Êent, and E4 = Ênei.)

Model Classifier NF EF Precision Recall F1 ROC-AUC Accuracy

GraphSAGE MUL N1 - 0.3114 0.7494 0.4400 0.9112 0.8925
GraphSAGE NegMUL N1 - 0.7548 0.8547 0.8016 0.9712 0.9762
GraphSAGE BC+MLP N1 - 0.7714 0.8580 0.8124 0.9764 0.9777
GraphSAGE BC+MLP N123 - 0.7793 0.8426 0.8097 0.9777 0.9781

EAGNN MUL N123 Ê1234 0.5275 0.5258 0.5267 0.9284 0.9468
EAGNN NegMUL N123 Ê1234 0.7353 0.8496 0.7883 0.9763 0.9743
EAGNN BC+MLP N123 Ê1234 0.8751 0.7845 0.8273 0.9822 0.9816
EAGNN BC+MLP N1 Ê1234 0.8548 0.8247 0.8395 0.9799 0.9822
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Fig. 3. Comparison of EAGNN and GraphSage predictions for intact and degraded BM
tissue samples. The blue line is the BM annotation. The green, yellow and red lines
represent true positive, false negative and false positive edge predictions respectively.
(Color figure online)

Table 2 summarizes the performance of EAGNN combined with three differ-
ent types of edge classifiers in comparison with GraphSAGE [14]. The combina-
tion GraphSAGE+MUL (row 2) is the baseline architecture which was used in
[17] for BM prediction. The combination of EAGNN with the BC+MLPs edge
classifier outperforms the other methods in 4 out of 5 metrics. GraphSAGE with
BC+MLP resulted in high recall and relatively low precision, while EAGNN with
BC+MLP resulted in high precision and relatively low recall. This is caused by
the selection of the class threshold criterion θ. Tuning the parameter θ w.r.t F1
score, helped to balance the trade-off between precision and recall. The optimum
balance was θ = 0.7.

Figure 3 shows the BM prediction results for the best and worst performing
models: EAGNN+BC+MLP (NF = N1, EF = E1234) and GraphSAGE+MUL
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(NF =N1) respectively5. The figure shows BM prediction results for both models
on an intact BM (Fig. 3 a, b) and a degraded BM (Fig. 3 c, d) from the test set.
Figure 3 c shows that GraphSAGE+Mul erroneously classifies non-crossing edges
close to the BM as crossing-edges, as shown by the many red lines. We term this
tendency a “halo effect”. Notice that EAGNN+BC+MLP does not exhibit this
halo effect as the false positives in Fig. 3 d are primarily in the region of broken
BM.

6 Limitations

There exist several limitations to this study. One is the limitation of our dataset
and prediction task: BM identification. Further cell-graph datasets and predic-
tion tasks are needed to establish the wider value of the edge aggregation, clas-
sification and labelling methods proposed here.

Another general limitation is the data imbalance problem inherent in many
medical datasets, due to low disease frequency, small sample sizes and the effort
of annotation. A specific example of this limitation is the class imbalance problem
between BM crossing and non-crossing edges. Since the BM is a thin protein
interface localised between the epithelial and connective tissue, non-crossing BM
edges constitute a large majority of the edges in each cell graph, as shown in
Table 1. Figure 3 shows the difference in F1-scores for BM crossing edges between
a healthy tissue sample where the BM is intact and a degraded sample where
the BM is broken. This specific imbalance could be addressed by using the focal
loss function [19] to reduce class imbalance.

7 Conclusions

In this work, we have proposed a new GNN model EAGNN that aggregates
both node and edge label information and is suitable for edge label prediction.
We have presented a digital pathology case study of BM prediction showing
that aggregation of both node and edge label information can take advantage
of the topological information in cell-graphs. In our case study, EAGNN signif-
icantly outperformed the widely used GraphSAGE GNN model under several
performance measures. Furthermore, we have introduced new edge label fea-
tures including cell entropy gradient and neighbourhood overlap similarity and
shown that these improve the accuracy of BM prediction. Future directions of
research include improving EAGNN performance and data augmentation meth-
ods to reduce the data imbalance.
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