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Abstract. Test Time Adaptation (TTA) is promising to improve a deep
learning model’s robustness when encountering images from an unseen
domain. Existing TTA methods are with low performance due to the
insufficient supervision signal from unannotated target domain images,
or limited by specific requirements on the pre-training strategy and
network structure in the source domain. We aim to separate the pre-
training in the source domain and adaptation in the target domain, in
order to achieve high-performance and more generalizable TTA without
assumptions on the pre-training strategy. To solve this problem, we pro-
pose UPL-TTA, an Uncertainty-aware Pseudo Label guided fully Test
Time Adaptation method. Specifically, we introduce Test Time Growing
(TTG) to duplicate the prediction head of the source model with pertur-
bations at image and feature levels in the target domain. The different
predictions obtained in these duplicated prediction heads are used to
obtain pseudo labels for the unlabeled target domain images as well as
their uncertainty maps, which can identify reliable pseudo labels. Pix-
els with unreliable pseudo labels are regularized by imposing entropy
minimization on the mean prediction of the multiple heads. UPL-TTA
was validated bidirectionally on a cross-modality fetal brain segmenta-
tion dataset. Compared with no adaptation, it significantly improved the
average Dice in the two different target domains by 3.95% and 6.12%,
respectively, and outperformed several state-of-the-art TTA methods.
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1 Introduction

Benefiting from high-precision and large-scale annotations, deep learning with
Convolutional Neural Networks (CNNs) has achieved excellent performance in
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medical image segmentation tasks [11]. However, due to the low cross-domain
generalizability of existing methods, their performance will decrease largely when
applied to images with a new distribution, i.e., an unseen modality [3]. For
example, in the practical application, a pre-trained model can hardly maintain
robustness when deployed to a new medical center where the data distribution
may be different from the training set due to different scanning instruments used
or different imaging sequences [5,7,8,20]. Figure 1 shows such an example, where
the image intensity and contrast are quite different in two sequences of fetal
brain Magnetic Resonance Imaging (MRI): half-Fourier acquisition single-shot
turbo spin-echo (HASTE) and true fast imaging with steady state precession
(TrueFISP). A model trained with HASTE images has a poor performance on
TrueFISP images, and vice versa.

Fig. 1. The domain shift between HASTE and TrueFISP of fetal brain MRI. Our UPL-
TTA largely improves the model’s robustness on a different sequence at testing time.

Domain Adaptation (DA) is promising to solve the above problem of domain
gap between training and testing data [1]. To avoid time-consuming annotations
in the target domain, Unsupervised Domain Adaptation (UDA) [14] methods
are proposed to align the source and target distributions at image, feature, or
output levels [22]. These methods all require simultaneous access to source and
target domain data to make the model perform well. However, in practice, source
data is often unavailable when the model is deployed to a new center due to the
constraints on computation, bandwidth and privacy.

Source-free Domain Adaptation [10,17,19] aims to adapt a pre-trained model
to a new target data distribution without access to the source data. In the
literature, Test Time Training (TTT) [17] adds an auxiliary branch to predict
the rotation by self-supervision, and adapts the shared encoder in the target
domain. DTTA [8] and ATTA [5] optimize an auto-encoder during the training of
source model to learn shape priors, and align feature distributions for adaptation.
However, these methods require the insertion of specific modules, such as an
auxiliary prediction branch and auto-encoders, before the training of the source
model. They also require that the model should have been pre-trained with
a specific strategy in the source domain, which limits their applicability when
dealing with a pre-trained model that does not satisfy the training requirements.
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In practice, a target domain may be given a pre-trained model that has been
trained with an arbitrary strategy. Therefore, it is desirable to achieve fully test
time adaptation that does not need the pre-trained model to have a specific
structure and training strategy in the source domain [6]. PTBN [12] updates the
statistics of Batch Normalization (BN) layers on the target domain data, and
TENT [20] tunes BN layers by minimizing the entropy of predictions in the target
domain. However, these methods were originally designed for natural images,
and they simply assume that the domain shift can be sufficiently alleviated by
updating the BN layers, which leads to limited performance in TTA for medical
image segmentation [18]. URMA [2] is a method that aids the adaptation process
using pseudo labels generated in one branch and uncertainties from multiple
branches. However, its pseudo label may contain obvious errors and mislead the
model adaptation.

Fig. 2. Overview of our UPL-TTA, where the pk is the soft prediction of k-th branch,
τ is the confidence threshold. It does not require a specific training strategy in the
source domain, and uses pseudo labels based on test time growing for adaptation.

In this work, we propose Uncertainty-aware Pseudo Label guided Fully Test
Time Adaptation (UPL-TTA) for medical image segmentation, which does not
require the pre-trained model to be trained with an extra auxiliary branch or a
specific strategy in the source domain before adaptation to a target domain. For
a given pre-trained model, we first introduce Test Time Growing (TTG) to dupli-
cate the prediction head (e.g., the decoder in widely used UNet-like CNNs [15])
of the source model several times for the target domain, and add a range of ran-
dom perturbations (e.g., dropout, spatial transform) to their input image and
feature map to obtain several different segmentation predictions. Then pseudo
labels for target domain images are obtained by an ensemble of these predic-
tions. To suppress the effect of potentially incorrect pseudo labels, we introduce
ensembling-based and MC dropout uncertainty estimation to obtain a reliabil-
ity map. The pseudo labels of reliable pixels are used to supervise the output
of each prediction head, and the predictions of unreliable pixels are regularized
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by entropy minimization on the average prediction map. Experiments on bidi-
rectional cross-modality adaptation between HASTE and TrueFISP of the fetal
brain showed that our UPL-TTA significantly improved the model’s performance
on the target domain, and outperformed several existing TTA methods.

2 Method

The proposed UPL-TTA framework is depicted in Fig. 2. Without assumptions
on the training strategy in the source domain, we duplicate the prediction head
of the pre-trained model several times and add perturbations to obtain multiple
predictions, which leads to pseudo labels in the unannotated target domain and
the corresponding reliability maps to supervise the model for adaptation.

2.1 Pre-trained Model from the Source Domain

Let S with data distribution μS(x) be the source domain and T with data
distribution μT (x) be the target domain. Let XS = {(xs

i , y
s
i ), i = 1, ..., Ns} be

the training images and their labels in the source domain, and XT = {(xi, ), i =
1, ..., Nt} represent unlabeled images in the target domain for adaptation. Note
that μS(x) �= μT (x). The pre-training stage in the source domain is represented
as:

θ0g , θ0h = arg min
θg,θh

1
Ns

Ns∑

i=1

Ls

(
h
(
g(xs

i )
)
, ys

i

)
(1)

where g and h are the feature extractor and prediction head of a segmentation
network, respectively. θ0g and θ0h are their trained weights, respectively. Ls is
the training loss in the source domain, which might be implemented by fully
supervised learning, semi-supervised learning and weakly supervised learning,
etc., based on the type of the available labels in the source domain.

2.2 Test-Time Growing for Adaptation

When the source model is deployed to a new center, as access to the source
domain data is limited, we consider the problem of adapting the pre-trained
model to the target domain based on XT and {θ0g , θ0h}. For the pre-trained fea-
ture extractor g and prediction head h, we propose Test-Time Growing (TTG) to
duplicate h by K times in the target domain, as shown in Fig. 2. The weights of
shared feature extractor g and duplicated prediction heads {hk}(k = 1, 2, ...,K)
are initialized as θ0g and θ0h, respectively. Note that the weights in different pre-
diction heads will become different due to the inconsistency of the gradients gen-
erated by the different predictions under perturbations. An ensemble of these K
heads is used to obtain pseudo labels of target domain images that are unan-
notated. To encourage the different heads to obtain diverse results for better
ensemble, we introduce random perturbations on the input image and dropout
on features [21].
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First, for an input image x ∈ RH×W in the target domain, where H and
W are the height and width, respectively, we send it into the network K times,
each time with a random spatial transformation and for a different prediction
head hk. The segmentation prediction result for the k-th head is:

pk = T −1 ◦ hk
(
g(T ◦ x)

)
(2)

where T is a random spatial transformation and T −1 is the corresponding inverse
transformation. pk ∈ RC×H×W is the output segmentation probability map with
C channels obtained by Softmax, where C is the class number for segmentation.
In this paper, we set T as random flipping, rotation with π/2, π and 3π/2.

Second, K different dropout layers are applied in parallel after the feature
extractor g, so that the prediction heads take different random subsets of the
features as input. We then average across the K different predicted segmentation
probability maps for ensemble:

p̄ =
1
K

K∑

k=1

pk (3)

2.3 Supervision with Reliable Pseudo Labels

Based on the average probability map p̄, a pseudo label is obtained by taking
the argmax across channels. To reduce noises, it is post-processed by only keep-
ing the largest connected component for each foreground class (e.g., fetal brain
segmentation in this work). Then the post-processed pseudo label is converted
into a one-hot representation, which is denoted as ỹ ∈ {0, 1}C×H×W . Due to
the existence of domain gap, the pseudo labels have a limited accuracy. Directly
using the pseudo labels of all pixels for self-training would limit the model’s
performance.

To deal with these problem, it is important to highlight the reliable pseudo
labels and suppress unreliable ones during adaptation. Therefore, we use the
uncertainty information of p̄ to identify pixels with reliable pseudo labels and
only use the reliable region to supervise the model for adaptation. Specifically, a
binary reliability map M ∈ {0, 1}H×W is calculated for the pseudo label ỹ, and
each element in M is defined as:

Mn =

{
1 if p̄c∗,n > τ

0 otherwise
(4)

where n = 1, 2, ..., HW is the pixel index. c∗ = arg maxc(p̄c,n) is the class with
the highest probability for pixel n, and p̄c∗,n represents the confidence for the
pseudo label at that pixel. τ ∈ (1/C, 1.0) is a confidence threshold.

Then the reliability map is used as a mask to exclude unreliable pixels for
supervision, and a Reliable Pseudo Label (RPL) loss is denoted as:

LRPL =
1
K

K∑

k=1

Lw−dice(pk, ỹ,M) (5)



242 J. Wu et al.

where Lw−dice is the reliability map-weighted Dice loss for the k-th head:

Lw−dice(pk, ỹ,M) = 1 − 1
Z

C∑

c=1

HW∑

n=1

2Mnp
k
c,nỹc,n

pk
c,n + ỹc,n + ε

(6)

where n is the pixel index and ε = 10−5 is a small number for numeric stability.
Z = C

∑
n Mn is a normalization factor.

2.4 Mean Prediction-Based Entropy Minimization

Entropy minimization is widely used as a regularizer in test time adapta-
tion [9,13,18], which reduces the uncertainty of the system by reducing the
entropy of model predictions. However, in our method with multiple prediction
heads, applying entropy minimization to each head respectively may lead to sub-
optimal results when different heads predict confident while opposite results. For
example, in the binary segmentation problem, when branch k predicts a certain
pixel being the foreground with a probability of 0.0 and branch k + 1 predicts it
with a foreground probability of 1.0, both branches have the lowest entropy, but
their average result has a high entropy. To deal with this problem, we propose
to apply entropy minimization to the mean prediction across the K heads:

Lment = − 1
HW

HW∑

n=1

C∑

c=1

p̄c,nlog(p̄c,n), (7)

where p̄ is the mean probability prediction obtained by the K heads of TTG.
Compared with minimizing the entropy of each prediction head respectively,
minimizing the entropy of their mean prediction p̄ can not only reduce the
uncertainty of a single prediction head, but also make the predictions of the K
heads for the same test sample tend to be consistent, therefore improving the
prediction robustness of the model for unseen test samples.

2.5 Adaptation by Self-training

Our adaptation process adopts a self-training paradigm based on the pseudo
labels and mean prediction-based entropy minimization. We obtain the average
prediction p̄, pseudo label ỹ and the reliability map M based TTG for a test
sample, and then calculate LRPL and Lment. The overall loss for TTA is:

L = LRPL + λLment. (8)

where λ is a hyper-parameter to control the weight of Lment.
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3 Experiment and Results

3.1 Experimental Details

Dataset. We used a Fetal Brain (FB) segmentation dataset to evaluate our
UPL-TTA, and it consisted of fetal brain MRI with two imaging sequences: 1)
68 volumes acquired by HASTE with size of 640 × 520, in-plane resolution of
0.64 to 0.70 mm and slice-thickness of 6.5–7.15 mm; 2) 44 volumes acquired by
TrueFISP with size of 384 × 312, in-plane resolution of 0.67 to 1.12 mm and
thickness of 6.5 mm. The gestational age ranged from 21–33 weeks. As shown in
Fig. 1, the intensity distribution and contrast are different in these two sequences,
leading to a large domain gap. In addition, the different gestational age leads to
varying appearance of the fetal brain, which increases the difficulty for robust
segmentation. We performed bidirectional TTA for experiments: 1) HASTE to
TrueFISP, where HASTE was used as the source domain and TrueFISP as the
target domain; 2) TrueFISP to HASTE. We randomly split the images for each
domain into 70%, 10% and 20% for training, validation and testing, respectively,
and abandoned the labels of training images in the target domain.

Implementation Details. For preprocessing, we clip the intensities by the
1-st and 99-th percentiles, and linearly normalized them to [−1,1]. Each slice
was resized to 256×256. Due to the large inter-slice spacing, we used slice-
by-slice segmentation with 2D CNNs and stacked the results into a 3D vol-
ume. The segmentation network for our method is flexible, and we selected the
widely used UNet [15], as most medical image segmentation models are based
on UNet-like structures [11,16]. The feature extractor g and prediction head h
were implemented by the encoder and decoder of UNet [15], respectively. During
pre-training in the source domain, we trained UNet [15] for 400 epochs with Dice
loss, Adam optimizer and initial learning rate of 0.01 that was decayed to 90%
every 4 epochs. The model weight with the best performance on the validation
set in the source domain was used for adaptation. For adaptation in the target
domain, we duplicated the decoder of UNet [11] for K times, and updated all
the model parameters for 20 epochs with Adam optimizer and a fixed learning
rate of 10−4. In the training and adaptation stages, we set all the slices in a
single volume as a batch. The hyper-parameter setting was K = 4, λ = 1.0, and
τ = 0.9 based on the best performance on the validation set.

During inference, we computed the argmax of the average prediction gener-
ated by the K heads, and we did not apply any post-processing to the output.
All the experiments were implemented with PyTorch 1.8.1, using an NVIDIA
GeForce RTX 2080Ti GPU. For quantitative evaluation of the volumetric seg-
mentation results, we adopted the commonly used Dice score (DSC) and Average
Symmetric Surface Distance (ASSD). As the slice thickness is large (6–7.15 mm),
we calculated ASSD values with unit of pixel.

3.2 Results

Comparison with Other Methods. Our UPL-TTA was compared with four
state-of-the-art test time adaptation methods on the FB dataset: 1) PTBN [12]
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Table 1. Quantitative comparison of different TTA methods on fetal brain segmenta-
tion. † means significant improvement (p-value < 0.05) from “Source only”.

Method HASTE to TrueFISP TrueFISP to HASTE

Dice (%) ASSD (pixel) Dice (%) ASSD (pixel)

Source only 84.09± 6.34 1.33± 0.49 83.91± 7.39 2.31± 1.96

Target only 88.85± 4.12 0.91± 0.30 94.09± 3.47 0.50± 0.38

PTBN [12] 85.70± 4.88 1.85± 0.96 85.47± 5.65 2.92± 2.55

TENT [20] 85.75± 3.62 1.60± 0.71 88.21± 5.35† 1.16± 1.17

TTT [17] 85.84± 4.52 1.80± 0.90 87.20± 5.33 2.28± 1.99

URMA [2] 84.12± 6.82 2.18± 1.19 81.05± 6.85 5.95± 3.9

UPL-TTA (Ours) 88.04±4.82† 1.20±0.74 90.03±5.28† 0.85±0.64†

Fig. 3. Qualitative comparison of different TTA methods. First row: HASTE to True-
FISP. Second row: TrueFISP to HASTE.

that updates batch normalization statistics on the target data during test time;
2) TENT [20] that only updates the parameters of batch normalization layers by
minimizing the entropy of model predictions on new test data; 3) TTT [17] that
uses self-supervision for adaptation, where an auxiliary decoder is used in both of
the source and target domains to predict the rotation angle of an image; and 4)
URMA [2] that uses pseudo labels generated in one branch and uncertainties in
multiple branches to aid the adaptation process. We also compared our method
with two oracle methods: 1) Source only where the pre-trained model was
directly used for inference on the target domain dataset, and 2) Target only
where the model was trained with annotated images in the target domain. All
the compared methods were implemented with the same backbone (UNet [15])
for a fair comparison.

The quantitative evaluation results of bidirectional TTA are shown in Table 1.
It can be observed that Source only and Target only achieved an average
Dice of 84.09% and 88.85%, respectively in HASTE to TrueFISP and 83.90%
and 94.09%, respectively in TrueFISP to HASTE, showing the large gap between
the two domains. The existing methods only achieved a slight improvement or
even a decrease compared with Source only, with the Dice values ranging from
84.12% to 85.84% for HASTE to TrueFISP and 81.05% to 88.21% for True-
FISP to HASTE, respectively. In contrast, our method largely improved the
Dice to 88.04% and 90.03% for the two target domains, respectively. Our method
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achieved an average ASSD of 1.20 and 0.85 pixels, in the two domains, respec-
tively, which was lower than those of the other TTA methods. The qualitative
comparison in Fig. 3 shows that the existing methods tend to achieve under-
segmentation of the fetal brain, while our method can successfully segment the
entire fetal brain region with high accuracy.

Fig. 4. Performance of our method with different hyper-parameter values on the vali-
dation set when HASTE and TrueFISP are the source and target domains, respectively.

Ablation Study. Our UPL-TTA adds two new hyperparameters: the number
of duplicated prediction heads K, and the confidence threshold τ to select reli-
able pseudo labels. We first investigated the effect of K by setting it to 1 to 5
respectively, and the performance on the validation set of TrueFISP is shown in
Fig. 4(a). It can be observed that K = 1 performed worse than larger K values,
showing the superiority of using Test-Time Growing (TTG). As K increased, our
method performed progressively better, and K = 5 reached a plateau. There-
fore, we finally set K to 4 considering the trade-off between performance and
memory consumption. Then we investigated the effect of τ . A higher threshold τ
will result in a smaller reliable region for each class, which helps avoid the model
being misled by inaccurate pseudo label, but a too large τ will make the reliable
pseudo label region too small and thus cannot provide sufficient supervision.
Quantitative comparison between different τ values in Fig. 4(b) shows that the
best performance on the validation set was achieved when τ = 0.9.

We further investigated the effect of each component of our UPL-TTA. The
baseline was just using the pre-trained model’s predictions as pseudo labels for
adaptation, and the introduced components are: 1) single-head entropy mini-
mization (Entropy-min) [4] that is applied to each of the prediction heads respec-
tively; 2) “Reliability map” that uses M to suppress unreliable pseudo labels;
3) Test Time Growing (TTG) that duplicates the prediction head K times with
feature dropout; 4) random spatial transformation (T ) further introduced to the
K heads; and 5) Lment that applies entropy minimization to the mean prediction
of the K heads rather than to each head respectively. The quantitative evalu-
ation results are presented in Table 2. We observed that the baseline (74.98%)
performed worse than “Source only” (84.09%). Additionally using entropy min-
imization (83.44%) was still not better than “Source only”, which indicated
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Fig. 5. Pseudo labels at different training steps in self-training. Epoch 0 means “Source
only” (before adaptation) and n is the optimal epoch number on the validation set of
the target domain. In (c)–(g), only reliable pseudo labels are encoded by colors. (Color
figure online)

Table 2. Ablation study of the proposed method. HASTE and TrueFISP were used
as the source and target domains, respectively. The baseline was just using the pre-
trained model’s predictions as pseudo labels for adaptation. Entropy-min: Entropy
minimization for each prediction head. Lment is entropy minimization on the average
prediction of the K heads.

Components Dice (%) ASSD (pixel)

Entropy-min Reliability-map TTG T Lment

74.98± 10.72 4.9± 1.37

� 83.44± 7.38 1.39± 0.76

� � 85.88± 5.49 1.56± 1.01

� � � 86.77± 4.17 0.95± 0.24

� � � � 86.92± 5.41 0.91±0.36

� � � � 88.04±4.82 1.20± 0.74

that the pseudo label from a single prediction head contained a lot of mislead-
ing information. In contrast, each component of our introduced reliability map,
TTG, spatial transformation and Lment led to some improvement, showing the
effectiveness of our method.

4 Discussions

In general, a segmentation model contains a feature extractor and a prediction
head, and our method duplicates the prediction head via Test-Time Growing
(TTG) in the target domain. This paper implemented TTG with an encoder-
decoder structure, as most efficient CNNs for medical image segmentation tasks
are UNet-like [3,15]. However, our method can be easily applied to other seg-
mentation networks, as it has a minimal assumption on the structure of the
pre-trained model and how it was trained in the source domain, which is more
general than existing methods like TTT [17] and DTTA [8].

Due to the absence of annotations in the target domain, it is important
to obtain effective supervision signal and regularization for the TTA task. Our
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method uses reliable pseudo labels to deal with the unannotated images, where
the TTG improves the quality of pseudo labels, and the introduced reliability
map avoids the model being corrupted by inaccurate pseudo labels. URMA [2]
also uses pseudo labels to guide the adaptation, but its pseudo labels are obtained
from a single decoder, which are less robust than our pseudo labels based on
an ensemble of multiple heads. In addition, our mean prediction-based entropy
minimization has an implicit consistency regularization on the K prediction
heads, which improves the model’s robustness against perturbations in the target
domain.

Despite UPL-TTA’s higher performance than existing TTA methods in the
experiment, it is applicable to a moderate domain shift where high-quality
pseudo labels can be obtained by TTG. In some other scenarios where the
domain gap is extremely large, it may be hard to obtain usable pseudo labels,
and our method may not be applicable. In addition, this work only deals with
a binary segmentation task, but the pipeline can also be applied for multi-class
segmentation and 3D segmentation networks.

5 Conclusion

To summarize, we propose a fully test time adaptation method that adapts the
source model to an unannotated target domain without knowing the training
strategy of the source model. Without access to source domain images, our pro-
posed uncertainty-aware pseudo label-guided TTA generates multiple prediction
outputs for the same sample in the target domain via Test Time Growing (TTG).
It generates high-quality pseudo labels and the corresponding reliability maps
to provide effective supervision in the unannotated target domain. Pixels with
unreliable pseudo labels are further regularized by entropy minimization of the
mean prediction across the duplicated heads, which also introduces an implicit
consistency regularization. Experiments on bidirectionally cross-modality TTA
for fetal brain segmentation showed that our method outperformed several state-
of-the-art TTA methods. In the future, it is of interest to implement a 3D version
of our method and apply it to other segmentation tasks.
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